icefall/egs/iwslt22_ta/ST/RESULTS.md
2023-11-01 06:39:24 +03:00

3.3 KiB

Results

IWSLT Tunisian training results (Stateless Pruned Transducer)

2023-06-01

Decoding method dev Bleu test Bleu comment
modified beam search 11.1 9.2 --epoch 20, --avg 10, beam(10), pruned range 5

The training command for reproducing is given below:

export CUDA_VISIBLE_DEVICES="0,1,2,3"


  
./pruned_transducer_stateless5/train_st.py \
  --world-size 4 \
  --num-epochs 20 \
  --start-epoch 1 \
  --exp-dir pruned_transducer_stateless5/exp \
  --max-duration 300 \
  --bucketing-sampler 1\
  --num-buckets 50

The tensorboard training log can be found at https://tensorboard.dev/experiment/YnzQNCVDSxCvP1onrCzg9A/

The decoding command is:

for method in modified_beam_search; do
  for epoch in 15 20; do
    ./pruned_transducer_stateless5/decode_st.py \
      --epoch $epoch \
      --beam-size 20 \
      --avg 10 \
      --exp-dir ./pruned_transducer_stateless5/exp_st_single_task2 \
      --max-duration 300 \
      --decoding-method $method \
      --max-sym-per-frame 1 \
      --num-encoder-layers 12 \
      --dim-feedforward 1024 \
      --nhead 8 \
      --encoder-dim 256 \
      --decoder-dim 256 \
      --joiner-dim 256 \
      --use-averaged-model true
done
done

IWSLT Tunisian training results (Zipformer)

2023-06-01

You can find a pretrained model, training logs, decoding logs, and decoding results at:

Decoding method dev Bleu test Bleu comment
modified beam search 14.7 12.4 --epoch 20, --avg 10, beam(10),pruned range 5
modified beam search 15.5 13 --epoch 20, --avg 10, beam(20),pruned range 5
modified beam search 17.6 14.8 --epoch 20, --avg 10, beam(10), pruned range 10

To reproduce the above result, use the following commands for training:

Note: the model was trained on V-100 32GB GPU

ST medium model 42.5M prune-range 10


  ./zipformer/train_st.py \
  --world-size 4 \
  --num-epochs 20 \
  --start-epoch 1 \
  --use-fp16 1 \
  --exp-dir zipformer/exp-st-medium-prun10 \
  --causal 0 \
  --num-encoder-layers 2,2,2,2,2,2 \
  --feedforward-dim 512,768,1024,1536,1024,768 \
  --encoder-dim 192,256,384,512,384,256 \
  --encoder-unmasked-dim 192,192,256,256,256,192 \
  --max-duration 300 \
  --context-size 2 \
  --prune-range 10
  --prune-range 10
  

The tensorboard training log can be found at https://tensorboard.dev/experiment/4sa4M1mRQyKjOE4o95mWUw/

The decoding command is:

for method in modified_beam_search; do
  for epoch in 15 20; do
    ./zipformer/decode_st.py \
    --epoch $epoch \
    --beam-size 20 \
    --avg 10 \
    --exp-dir ./zipformer/exp-st-medium-prun10 \
    --max-duration 800 \
    --decoding-method $method \
	--num-encoder-layers 2,2,2,2,2,2 \
  --feedforward-dim 512,768,1024,1536,1024,768 \
  --encoder-dim 192,256,384,512,384,256 \
  --encoder-unmasked-dim 192,192,256,256,256,192 \
  --context-size 2 \
    --use-averaged-model true
done
done