86 lines
2.9 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from scaling import ScaledLinear
class Joiner(nn.Module):
def __init__(
self,
encoder_dim: int,
decoder_dim: int,
joiner_dim: int,
vocab_size: int,
):
super().__init__()
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim)
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
self.encoder_dim = encoder_dim
self.decoder_dim = decoder_dim
self.joiner_dim = joiner_dim
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
project_input: bool = True,
) -> torch.Tensor:
"""
Args:
encoder_out:
Output from the encoder. Its shape is (N, T, joiner_dim).
decoder_out:
Output from the decoder. Its shape is (N, U, joiner_dim).
project_input:
If true, apply input projections encoder_proj and decoder_proj.
If this is false, it is the user's responsibility to do this
manually.
Returns:
Return a tensor of shape (N, T, s_range, C).
"""
assert encoder_out.ndim == decoder_out.ndim == 3
assert encoder_out.size(0) == decoder_out.size(0)
if project_input:
assert encoder_out.size(2) == self.encoder_dim
assert decoder_out.size(2) == self.decoder_dim
encoder_out = self.encoder_proj(encoder_out)
decoder_out = self.decoder_proj(decoder_out)
else:
assert encoder_out.size(2) == self.joiner_dim
assert decoder_out.size(2) == self.joiner_dim
encoder_out = encoder_out.unsqueeze(2) # (N, T, 1, C)
decoder_out = decoder_out.unsqueeze(1) # (N, 1, U, C)
x = encoder_out + decoder_out # (N, T, U, C)
activations = torch.tanh(x)
logits = self.output_linear(activations)
if not self.training:
# We reuse the beam_search.py from transducer_stateless,
# which expects that the joiner network outputs
# a 2-D tensor.
logits = logits.squeeze(2).squeeze(1)
return logits