Change model.py and joiner.py to use torchaudio's RNN-T loss.

This commit is contained in:
Fangjun Kuang 2022-04-21 11:01:08 +08:00
parent e83dcdc3b4
commit e4d45adf5a
3 changed files with 51 additions and 90 deletions

View File

@ -14,6 +14,7 @@ The following table lists the differences among them.
| `transducer` | Conformer | LSTM | |
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
| `transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
| `transducer_lstm` | LSTM | LSTM | |
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |

View File

@ -33,6 +33,10 @@ class Joiner(nn.Module):
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
self.encoder_dim = encoder_dim
self.decoder_dim = decoder_dim
self.joiner_dim = joiner_dim
def forward(
self,
encoder_out: torch.Tensor,
@ -42,9 +46,9 @@ class Joiner(nn.Module):
"""
Args:
encoder_out:
Output from the encoder. Its shape is (N, T, s_range, C).
Output from the encoder. Its shape is (N, T, joiner_dim).
decoder_out:
Output from the decoder. Its shape is (N, T, s_range, C).
Output from the decoder. Its shape is (N, U, joiner_dim).
project_input:
If true, apply input projections encoder_proj and decoder_proj.
If this is false, it is the user's responsibility to do this
@ -52,16 +56,30 @@ class Joiner(nn.Module):
Returns:
Return a tensor of shape (N, T, s_range, C).
"""
assert encoder_out.ndim == decoder_out.ndim == 4
assert encoder_out.shape[:-1] == decoder_out.shape[:-1]
assert encoder_out.ndim == decoder_out.ndim == 3
assert encoder_out.size(0) == decoder_out.size(0)
if project_input:
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
decoder_out
)
assert encoder_out.size(2) == self.encoder_dim
assert decoder_out.size(2) == self.decoder_dim
encoder_out = self.encoder_proj(encoder_out)
decoder_out = self.decoder_proj(decoder_out)
else:
logit = encoder_out + decoder_out
assert encoder_out.size(2) == self.joiner_dim
assert decoder_out.size(2) == self.joiner_dim
logit = self.output_linear(torch.tanh(logit))
encoder_out = encoder_out.unsqueeze(2) # (N, T, 1, C)
decoder_out = decoder_out.unsqueeze(1) # (N, 1, U, C)
x = encoder_out + decoder_out # (N, T, U, C)
return logit
activations = torch.tanh(x)
logits = self.output_linear(activations)
if not self.training:
# We reuse the beam_search.py from transducer_stateless,
# which expects that the joiner network outputs
# a 2-D tensor.
logits = logits.squeeze(2).squeeze(1)
return logits

View File

@ -63,19 +63,11 @@ class Transducer(nn.Module):
self.decoder = decoder
self.joiner = joiner
self.simple_am_proj = ScaledLinear(
encoder_dim, vocab_size, initial_speed=0.5
)
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
warmup: float = 1.0,
) -> torch.Tensor:
"""
@ -88,26 +80,11 @@ class Transducer(nn.Module):
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
prune_range:
The prune range for rnnt loss, it means how many symbols(context)
we are considering for each frame to compute the loss.
am_scale:
The scale to smooth the loss with am (output of encoder network)
part
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
warmup:
A value warmup >= 0 that determines which modules are active, values
warmup > 1 "are fully warmed up" and all modules will be active.
Returns:
Return the transducer loss.
Note:
Regarding am_scale & lm_scale, it will make the loss-function one of
the form:
lm_scale * lm_probs + am_scale * am_probs +
(1-lm_scale-am_scale) * combined_probs
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
@ -115,8 +92,8 @@ class Transducer(nn.Module):
assert x.size(0) == x_lens.size(0) == y.dim0
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
assert torch.all(x_lens > 0)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup)
assert torch.all(encoder_out_lens > 0)
# Now for the decoder, i.e., the prediction network
row_splits = y.shape.row_splits(1)
@ -125,69 +102,34 @@ class Transducer(nn.Module):
blank_id = self.decoder.blank_id
sos_y = add_sos(y, sos_id=blank_id)
# sos_y_padded: [B, S + 1], start with SOS.
# sos_y_padded: [B, U + 1], start with SOS.
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
# decoder_out: [B, S + 1, decoder_dim]
# decoder_out: [B, U + 1, decoder_dim]
decoder_out = self.decoder(sos_y_padded)
logits = self.joiner(
encoder_out=encoder_out,
decoder_out=decoder_out,
project_input=True,
)
# Note: y does not start with SOS
# y_padded : [B, S]
# y_padded : [B, U]
y_padded = y.pad(mode="constant", padding_value=0)
y_padded = y_padded.to(torch.int64)
boundary = torch.zeros(
(x.size(0), 4), dtype=torch.int64, device=x.device
)
boundary[:, 2] = y_lens
boundary[:, 3] = x_lens
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
symbols=y_padded,
termination_symbol=blank_id,
lm_only_scale=lm_scale,
am_only_scale=am_scale,
boundary=boundary,
reduction="sum",
return_grad=True,
)
# ranges : [B, T, prune_range]
ranges = k2.get_rnnt_prune_ranges(
px_grad=px_grad,
py_grad=py_grad,
boundary=boundary,
s_range=prune_range,
assert hasattr(torchaudio.functional, "rnnt_loss"), (
f"Current torchaudio version: {torchaudio.__version__}\n"
"Please install a version >= 0.10.0"
)
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned, lm_pruned = k2.do_rnnt_pruning(
am=self.joiner.encoder_proj(encoder_out),
lm=self.joiner.decoder_proj(decoder_out),
ranges=ranges,
loss = torchaudio.functional.rnnt_loss(
logits=logits,
targets=y_padded,
logit_lengths=encoder_out_lens,
target_lengths=y_lens,
blank=blank_id,
reduction="sum",
)
# logits : [B, T, prune_range, vocab_size]
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,
ranges=ranges,
termination_symbol=blank_id,
boundary=boundary,
reduction="sum",
)
return (simple_loss, pruned_loss)
return loss