mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 02:22:17 +00:00
* add pruned transducer stateless5 recipe for tal_csasr * do some changes for merging * change for conformer.py * add wer and cer for Chinese and English respectively * fix a error for conformer.py
88 lines
2.7 KiB
Markdown
88 lines
2.7 KiB
Markdown
## Results
|
|
|
|
### TAL_CSASR Mix Chars and BPEs training results (Pruned Transducer Stateless5)
|
|
|
|
#### 2022-06-22
|
|
|
|
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/428.
|
|
|
|
The WERs are
|
|
|
|
|decoding-method | epoch(iter) | avg | dev | test |
|
|
|--|--|--|--|--|
|
|
|greedy_search | 30 | 24 | 7.49 | 7.58|
|
|
|modified_beam_search | 30 | 24 | 7.33 | 7.38|
|
|
|fast_beam_search | 30 | 24 | 7.32 | 7.42|
|
|
|greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39|
|
|
|modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22|
|
|
|fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27|
|
|
|greedy_search | 348000 | 30 | 7.46 | 7.54|
|
|
|modified_beam_search | 348000 | 30 | 7.24 | 7.36|
|
|
|fast_beam_search | 348000 | 30 | 7.25 | 7.39 |
|
|
|
|
The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English):
|
|
|decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en |
|
|
|--|--|--|--|--|--|--|--|--|
|
|
|greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|
|
|
|modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 |
|
|
|fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
|
|
|
|
The training command for reproducing is given below:
|
|
|
|
```
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
|
|
|
|
./pruned_transducer_stateless5/train.py \
|
|
--world-size 6 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--exp-dir pruned_transducer_stateless5/exp \
|
|
--lang-dir data/lang_char \
|
|
--max-duration 90
|
|
```
|
|
|
|
The tensorboard training log can be found at
|
|
https://tensorboard.dev/experiment/KaACzXOVR0OM6cy0qbN5hw/#scalars
|
|
|
|
The decoding command is:
|
|
```
|
|
epoch=30
|
|
avg=24
|
|
use_average_model=True
|
|
|
|
## greedy search
|
|
./pruned_transducer_stateless5/decode.py \
|
|
--epoch $epoch \
|
|
--avg $avg \
|
|
--exp-dir pruned_transducer_stateless5/exp \
|
|
--lang-dir ./data/lang_char \
|
|
--max-duration 800 \
|
|
--use-averaged-model $use_average_model
|
|
|
|
## modified beam search
|
|
./pruned_transducer_stateless5/decode.py \
|
|
--epoch $epoch \
|
|
--avg $avg \
|
|
--exp-dir pruned_transducer_stateless5/exp \
|
|
--lang-dir ./data/lang_char \
|
|
--max-duration 800 \
|
|
--decoding-method modified_beam_search \
|
|
--beam-size 4 \
|
|
--use-averaged-model $use_average_model
|
|
|
|
## fast beam search
|
|
./pruned_transducer_stateless5/decode.py \
|
|
--epoch $epoch \
|
|
--avg $avg \
|
|
--exp-dir ./pruned_transducer_stateless5/exp \
|
|
--lang-dir ./data/lang_char \
|
|
--max-duration 1500 \
|
|
--decoding-method fast_beam_search \
|
|
--beam 4 \
|
|
--max-contexts 4 \
|
|
--max-states 8 \
|
|
--use-averaged-model $use_average_model
|
|
```
|
|
|
|
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5>
|