2025-06-17 16:02:20 +08:00

233 lines
7.9 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
# add icefall to PYTHONPATH
export PYTHONPATH=../../../:$PYTHONPATH
set -eou pipefail
stage=0
stop_stage=100
token_type=bpe # bpe, letter, phone
bpe_vocab_size=500
nj=32
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -2 ] && [ $stop_stage -ge -2 ]; then
if [ ! -d $dl_dir/xvector_nnet_1a_libritts_clean_460 ]; then
log "Downloading x-vector"
git clone https://huggingface.co/datasets/zrjin/xvector_nnet_1a_libritts_clean_460 $dl_dir/xvector_nnet_1a_libritts_clean_460
mkdir -p exp/xvector_nnet_1a/
cp -r $dl_dir/xvector_nnet_1a_libritts_clean_460/* exp/xvector_nnet_1a/
fi
fi
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: build monotonic_align lib"
if [ ! -d vits/monotonic_align/build ]; then
cd vits/monotonic_align
python setup.py build_ext --inplace
cd ../../
else
log "monotonic_align lib already built"
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriTTS,
# you can create a symlink
#
# ln -sfv /path/to/LibriTTS $dl_dir/LibriTTS
#
if [ ! -d $dl_dir/LibriTTS ]; then
lhotse download libritts $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriTTS manifest"
# We assume that you have downloaded the LibriTTS corpus
# to $dl_dir/LibriTTS
mkdir -p data/manifests
if [ ! -e data/manifests/.libritts.done ]; then
lhotse prepare libritts --num-jobs ${nj} $dl_dir/LibriTTS data/manifests
touch data/manifests/.libritts.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute Fbank for LibriTTS"
mkdir -p data/fbank
for subset in train-clean-100 train-clean-360 train-other-500 dev-clean test-clean; do
python local/compute_fbank.py --dataset libritts --subset ${subset}
done
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/fbank/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
fi
if [ ! -f data/fbank/libritts_cuts_train-clean-460.jsonl.gz ]; then
cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) | \
shuf | gzip -c > data/fbank/libritts_cuts_train-clean-460.jsonl.gz
fi
if [ ! -e data/fbank/.libritts-validated.done ]; then
log "Validating data/fbank for LibriTTS"
./local/validate_manifest.py \
data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
touch data/fbank/.libritts-validated.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare tokens.txt"
if [ $token_type == "bpe" ] || [ $token_type == "letter" ]; then
if [ ! -e data/texts.txt ]; then
./local/export_normalized_texts.py --output data/texts.txt \
--manifests data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
fi
fi
if [ $token_type == "bpe" ]; then
mkdir -p data/lang_bpe_${bpe_vocab_size}
if [ ! -e data/lang_bpe_${bpe_vocab_size}/tokens.txt ]; then
./local/train_bpe_model.py --transcript data/texts.txt \
--lang-dir data/lang_bpe_${bpe_vocab_size} \
--vocab-size $bpe_vocab_size
fi
fi
if [ $token_type == "phone" ]; then
mkdir -p data/lang_phone
./local/export_tokens.py --token-type phone \
--output data/lang_phone/tokens.txt
fi
if [ $token_type == "letter" ]; then
mkdir -p data/lang_letter
./local/export_tokens.py --token-type letter \
--texts data/texts.txt \
--output data/lang_letter/tokens.txt
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Download and prepare librispeech-pc test clean for testing."
if [ ! -e $dl_dir/test-clean.tar.gz ]; then
wget https://huggingface.co/datasets/k2-fsa/LibriSpeech/resolve/main/test-clean.tar.gz -P $dl_dir
fi
# For China users.
if [ ! -e $dl_dir/test-clean.tar.gz ]; then
wget https://hf-mirror.com/datasets/k2-fsa/LibriSpeech/resolve/main/test-clean.tar.gz -P $dl_dir
fi
if [ ! -d $dl_dir/LibriSpeech/test-clean ]; then
tar -xvf $dl_dir/test-clean.tar.gz -C $dl_dir
fi
mkdir -p $dl_dir/LibriSpeech-PC
if [ ! -e $dl_dir/LibriSpeech-PC/test-clean.json ]; then
wget https://us.openslr.org/resources/145/manifests.tar.gz -P $dl_dir/LibriSpeech-PC
tar -xvf $dl_dir/LibriSpeech-PC/manifests.tar.gz -C $dl_dir/LibriSpeech-PC
fi
python local/compute_fbank.py --dataset librispeech --subset test-clean
python local/prepare_prompts_librispeech_test_clean.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute Spectrogram for LibriTTS (for VITS system)"
mkdir -p data/spectrogram
if [ ! -e data/spectrogram/.libritts.done ]; then
./local/compute_spectrogram_libritts.py --sampling-rate $sampling_rate
touch data/spectrogram/.libritts.done
fi
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
fi
# Here we shuffle and combine the train-clean-100, train-clean-360
# together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz
fi
if [ ! -e data/spectrogram/.libritts-validated.done ]; then
log "Validating data/spectrogram for LibriTTS"
./local/validate_manifest.py \
data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
touch data/spectrogram/.libritts-validated.done
fi
fi
audio_feats_dir=data/tokenized
dataset_parts="--dataset-parts all" # debug "-p dev-clean -p test-clean"
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Tokenize/Fbank LibriTTS for valle"
mkdir -p ${audio_feats_dir}
if [ ! -e ${audio_feats_dir}/.libritts.tokenize.done ]; then
python3 ./local/compute_neural_codec_and_prepare_text_tokens.py --dataset-parts "${dataset_parts}" \
--audio-extractor "Encodec" \
--batch-duration 400 \
--src-dir "data/manifests" \
--output-dir "${audio_feats_dir}"
fi
touch ${audio_feats_dir}/.libritts.tokenize.done
lhotse combine \
${audio_feats_dir}/libritts_cuts_train-clean-100.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-clean-360.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-other-500.jsonl.gz \
${audio_feats_dir}/cuts_train.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_dev-clean.jsonl.gz \
${audio_feats_dir}/cuts_dev.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_test-clean.jsonl.gz \
${audio_feats_dir}/cuts_test.jsonl.gz
fi