Minor fixes to infer pretrained model

This commit is contained in:
pkufool 2025-06-17 16:02:20 +08:00
parent 8c529ebe90
commit 60572c2444
11 changed files with 359 additions and 13 deletions

View File

@ -21,7 +21,33 @@ ZipVoice is a high-quality zero-shot TTS model with a small model size and fast
## Installation
* Clone icefall repository and change to zipvoice directory:
```bash
git clone https://github.com/k2-fsa/icefall.git
cd icefall/egs/zipvoice
```
* Create a Python virtual environment (optional but recommended):
```bash
python3 -m venv venv
source venv/bin/activate
```
* Install the required packages:
```bash
# Install pytorch and k2.
# If you want to use different versions, please refer to https://k2-fsa.org/get-started/k2/ for details.
# For users in China mainland, please refer to https://k2-fsa.org/zh-CN/get-started/k2/
pip install torch==2.5.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
pip install k2==1.24.4.dev20250208+cuda12.1.torch2.5.1 -f https://k2-fsa.github.io/k2/cuda.html
# Install other dependencies.
pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html
pip install -r requirements.txt
```
@ -31,12 +57,21 @@ To generate speech with our pre-trained ZipVoice or ZipVoice-Distill models, use
### 1. Inference of a single sentence:
```bash
# Chinese example
python3 zipvoice/zipvoice_infer.py \
--model-name "zipvoice_distill" \
--prompt-wav prompt.wav \
--prompt-text "I am the transcription of the prompt wav." \
--text "I am the text to be synthesized." \
--res-wav-path result.wav
--prompt-wav assets/prompt-zh.wav \
--prompt-text "对,这就是我,万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。" \
--text "欢迎使用我们的语音合成模型,希望它能给你带来惊喜!" \
--res-wav-path result-zh.wav
# English example
python3 zipvoice/zipvoice_infer.py \
--model-name "zipvoice_distill" \
--prompt-wav assets/prompt-en.wav \
--prompt-text "Some call me nature, others call me mother nature. I've been here for over four point five billion years, twenty two thousand five hundred times longer than you." \
--text "Welcome to use our tts model, have fun!" \
--res-wav-path result-en.wav
```
### 2. Inference of a list of sentences:
@ -46,6 +81,7 @@ python3 zipvoice/zipvoice_infer.py \
--test-list test.tsv \
--res-dir results/test
```
- `--model-name` can be `zipvoice` or `zipvoice_distill`, which are models before and after distillation, respectively.
- Each line of `test.tsv` is in the format of `{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`.
@ -357,4 +393,4 @@ on three test sets, i.e., LibriSpeech-PC test-clean, Seed-TTS test-en and Seed-T
journal={arXiv preprint arXiv:2506.13053},
year={2025},
}
```
```

Binary file not shown.

Binary file not shown.

0
egs/zipvoice/local/compute_fbank_libritts.py Executable file → Normal file
View File

0
egs/zipvoice/local/validate_manifest.py Executable file → Normal file
View File

232
egs/zipvoice/scripts/prepare.sh Executable file
View File

@ -0,0 +1,232 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
# add icefall to PYTHONPATH
export PYTHONPATH=../../../:$PYTHONPATH
set -eou pipefail
stage=0
stop_stage=100
token_type=bpe # bpe, letter, phone
bpe_vocab_size=500
nj=32
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -2 ] && [ $stop_stage -ge -2 ]; then
if [ ! -d $dl_dir/xvector_nnet_1a_libritts_clean_460 ]; then
log "Downloading x-vector"
git clone https://huggingface.co/datasets/zrjin/xvector_nnet_1a_libritts_clean_460 $dl_dir/xvector_nnet_1a_libritts_clean_460
mkdir -p exp/xvector_nnet_1a/
cp -r $dl_dir/xvector_nnet_1a_libritts_clean_460/* exp/xvector_nnet_1a/
fi
fi
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: build monotonic_align lib"
if [ ! -d vits/monotonic_align/build ]; then
cd vits/monotonic_align
python setup.py build_ext --inplace
cd ../../
else
log "monotonic_align lib already built"
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriTTS,
# you can create a symlink
#
# ln -sfv /path/to/LibriTTS $dl_dir/LibriTTS
#
if [ ! -d $dl_dir/LibriTTS ]; then
lhotse download libritts $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriTTS manifest"
# We assume that you have downloaded the LibriTTS corpus
# to $dl_dir/LibriTTS
mkdir -p data/manifests
if [ ! -e data/manifests/.libritts.done ]; then
lhotse prepare libritts --num-jobs ${nj} $dl_dir/LibriTTS data/manifests
touch data/manifests/.libritts.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute Fbank for LibriTTS"
mkdir -p data/fbank
for subset in train-clean-100 train-clean-360 train-other-500 dev-clean test-clean; do
python local/compute_fbank.py --dataset libritts --subset ${subset}
done
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/fbank/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
fi
if [ ! -f data/fbank/libritts_cuts_train-clean-460.jsonl.gz ]; then
cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) | \
shuf | gzip -c > data/fbank/libritts_cuts_train-clean-460.jsonl.gz
fi
if [ ! -e data/fbank/.libritts-validated.done ]; then
log "Validating data/fbank for LibriTTS"
./local/validate_manifest.py \
data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
touch data/fbank/.libritts-validated.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare tokens.txt"
if [ $token_type == "bpe" ] || [ $token_type == "letter" ]; then
if [ ! -e data/texts.txt ]; then
./local/export_normalized_texts.py --output data/texts.txt \
--manifests data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
fi
fi
if [ $token_type == "bpe" ]; then
mkdir -p data/lang_bpe_${bpe_vocab_size}
if [ ! -e data/lang_bpe_${bpe_vocab_size}/tokens.txt ]; then
./local/train_bpe_model.py --transcript data/texts.txt \
--lang-dir data/lang_bpe_${bpe_vocab_size} \
--vocab-size $bpe_vocab_size
fi
fi
if [ $token_type == "phone" ]; then
mkdir -p data/lang_phone
./local/export_tokens.py --token-type phone \
--output data/lang_phone/tokens.txt
fi
if [ $token_type == "letter" ]; then
mkdir -p data/lang_letter
./local/export_tokens.py --token-type letter \
--texts data/texts.txt \
--output data/lang_letter/tokens.txt
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Download and prepare librispeech-pc test clean for testing."
if [ ! -e $dl_dir/test-clean.tar.gz ]; then
wget https://huggingface.co/datasets/k2-fsa/LibriSpeech/resolve/main/test-clean.tar.gz -P $dl_dir
fi
# For China users.
if [ ! -e $dl_dir/test-clean.tar.gz ]; then
wget https://hf-mirror.com/datasets/k2-fsa/LibriSpeech/resolve/main/test-clean.tar.gz -P $dl_dir
fi
if [ ! -d $dl_dir/LibriSpeech/test-clean ]; then
tar -xvf $dl_dir/test-clean.tar.gz -C $dl_dir
fi
mkdir -p $dl_dir/LibriSpeech-PC
if [ ! -e $dl_dir/LibriSpeech-PC/test-clean.json ]; then
wget https://us.openslr.org/resources/145/manifests.tar.gz -P $dl_dir/LibriSpeech-PC
tar -xvf $dl_dir/LibriSpeech-PC/manifests.tar.gz -C $dl_dir/LibriSpeech-PC
fi
python local/compute_fbank.py --dataset librispeech --subset test-clean
python local/prepare_prompts_librispeech_test_clean.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute Spectrogram for LibriTTS (for VITS system)"
mkdir -p data/spectrogram
if [ ! -e data/spectrogram/.libritts.done ]; then
./local/compute_spectrogram_libritts.py --sampling-rate $sampling_rate
touch data/spectrogram/.libritts.done
fi
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
fi
# Here we shuffle and combine the train-clean-100, train-clean-360
# together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz
fi
if [ ! -e data/spectrogram/.libritts-validated.done ]; then
log "Validating data/spectrogram for LibriTTS"
./local/validate_manifest.py \
data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
touch data/spectrogram/.libritts-validated.done
fi
fi
audio_feats_dir=data/tokenized
dataset_parts="--dataset-parts all" # debug "-p dev-clean -p test-clean"
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Tokenize/Fbank LibriTTS for valle"
mkdir -p ${audio_feats_dir}
if [ ! -e ${audio_feats_dir}/.libritts.tokenize.done ]; then
python3 ./local/compute_neural_codec_and_prepare_text_tokens.py --dataset-parts "${dataset_parts}" \
--audio-extractor "Encodec" \
--batch-duration 400 \
--src-dir "data/manifests" \
--output-dir "${audio_feats_dir}"
fi
touch ${audio_feats_dir}/.libritts.tokenize.done
lhotse combine \
${audio_feats_dir}/libritts_cuts_train-clean-100.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-clean-360.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-other-500.jsonl.gz \
${audio_feats_dir}/cuts_train.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_dev-clean.jsonl.gz \
${audio_feats_dir}/cuts_dev.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_test-clean.jsonl.gz \
${audio_feats_dir}/cuts_test.jsonl.gz
fi

View File

@ -85,4 +85,4 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
if [ ! -e data/tokens_libritts.txt ]; then
./local/prepare_token_file_libritts.py --tokens data/tokens_libritts.txt
fi
fi
fi

View File

@ -0,0 +1,75 @@
#!/usr/bin/env bash
export PYTHONPATH=../../../:$PYTHONPATH
stage=1
stop_stage=10
generated_wav_path="flow-matching/exp/generated_wavs"
. shared/parse_options.sh || exit 1
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
if [ $stage -le -2 ] && [ $stop_stage -ge -2 ]; then
log "Stage -2: Install dependencies and download models"
pip install -r requirements-eval.txt
pip install git+https://github.com/sarulab-speech/UTMOSv2.git
modelscope download --model k2-fsa/TTS_eval_models --local_dir TTS_eval_models
fi
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Prepare evaluation data."
mkdir -p data/reference/librispeech-test-clean
gunzip -c data/fbank/librispeech_cuts_with_prompts_test-clean.jsonl.gz | \
jq -r '"\(.recording.sources[0].source)"' | \
awk '{split($1, a, "/"); cmd="cp "$1" data/reference/librispeech-test-clean/"a[length(a)]; print cmd; system(cmd)}'
mkdir -p data/reference/librispeech-test-clean-prompt
gunzip -c data/fbank/librispeech_cuts_with_prompts_test-clean.jsonl.gz | \
jq -r '"\(.custom.prompt.recording.sources[0].source) \(.recording.sources[0].source)"' | \
awk '{split($2, a, "/"); cmd="cp "$1" data/reference/librispeech-test-clean-prompt/"a[length(a)]; print cmd; system(cmd)}'
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Evaluate the model with FSD."
python local/evaluate_fsd.py --real-path data/reference/librispeech-test-clean \
--eval-path $generated_wav_path
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Evaluate the model with SIM."
python local/evaluate_sim.py --real-path data/reference/librispeech-test-clean \
--eval-path $generated_wav_path
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Evaluate the model with UTMOS."
python local/evaluate_utmos.py --wav-path $generated_wav_path
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Evaluate the model with UTMOSv2."
python local/evaluate_utmosv2.py --wav-path $generated_wav_path
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Evaluate the model with WER."
python local/evaluate_wer_hubert.py --wav-path $generated_wav_path \
--decode-path $generated_wav_path/decode
fi

0
egs/zipvoice/zipvoice/generate_averaged_model.py Executable file → Normal file
View File

View File

@ -23,7 +23,7 @@ This script generates speech with our pre-trained ZipVoice or
Usage:
Note: If you having trouble connecting to HuggingFace,
you try switch endpoint to mirror site:
try switching endpoint to mirror site:
export HF_ENDPOINT=https://hf-mirror.com
@ -55,7 +55,6 @@ import os
import numpy as np
import safetensors.torch
import soundfile as sf
import torch
import torch.nn as nn
import torchaudio
@ -115,15 +114,20 @@ def get_parser():
"--res-dir",
type=str,
default="results",
help="Path name of the generated wavs dir, "
"used when decdode-list is not None",
help="""
Path name of the generated wavs dir,
used when test-list is not None
""",
)
parser.add_argument(
"--res-wav-path",
type=str,
default="result.wav",
help="Path name of the generated wav path, " "used when decdode-list is None",
help="""
Path name of the generated wav path,
used when test-list is None
""",
)
parser.add_argument(
@ -456,8 +460,7 @@ def generate_sentence(
# Adjust wav volume if necessary
if prompt_rms < target_rms:
wav = wav * prompt_rms / target_rms
wav = wav[0].cpu().numpy()
sf.write(save_path, wav, sampling_rate)
torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
return metrics