icefall/egs/wenetspeech/ASR/RESULTS.md
Mingshuang Luo f26b62ac00
[WIP] Pruned-transducer-stateless5-for-WenetSpeech (offline and streaming) (#447)
* pruned-rnnt5-for-wenetspeech

* style check

* style check

* add streaming conformer

* add streaming decode

* changes codes for fast_beam_search and export cpu jit

* add modified-beam-search for streaming decoding

* add modified-beam-search for streaming decoding

* change for streaming_beam_search.py

* add README.md and RESULTS.md

* change for style_check.yml

* do some changes

* do some changes for export.py

* add some decode commands for usage

* add streaming results on README.md
2022-07-28 12:54:27 +08:00

166 lines
6.0 KiB
Markdown

## Results
### WenetSpeech char-based training results (offline and streaming) (Pruned Transducer 5)
#### 2022-07-22
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/447.
When training with the L subset, the CERs are
**Offline**:
|decoding-method| epoch | avg | use-averaged-model | DEV | TEST-NET | TEST-MEETING|
|-- | -- | -- | -- | -- | -- | --|
|greedy_search | 4 | 1 | True | 8.22 | 9.03 | 14.54|
|modified_beam_search | 4 | 1 | True | **8.17** | **9.04** | **14.44**|
|fast_beam_search | 4 | 1 | True | 8.29 | 9.00 | 14.93|
The offline training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless5/exp_L_offline \
--world-size 8 \
--num-epochs 15 \
--start-epoch 2 \
--max-duration 120 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--average-period 1000 \
--training-subset L
```
The tensorboard training log can be found at https://tensorboard.dev/experiment/SvnN2jfyTB2Hjqu22Z7ZoQ/#scalars .
A pre-trained offline model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline>
**Streaming**:
|decoding-method| epoch | avg | use-averaged-model | DEV | TEST-NET | TEST-MEETING|
|--|--|--|--|--|--|--|
| greedy_search | 7| 1| True | 8.78 | 10.12 | 16.16 |
| modified_beam_search | 7| 1| True| **8.53**| **9.95** | **15.81** |
| fast_beam_search | 7 | 1| True | 9.01 | 10.47 | 16.28 |
The streaming training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless5/exp_L_streaming \
--world-size 8 \
--num-epochs 15 \
--start-epoch 1 \
--max-duration 140 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--average-period 1000 \
--training-subset L \
--dynamic-chunk-training True \
--causal-convolution True \
--short-chunk-size 25 \
--num-left-chunks 4
```
The tensorboard training log can be found at https://tensorboard.dev/experiment/E2NXPVflSOKWepzJ1a1uDQ/#scalars .
A pre-trained offline model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_streaming>
### WenetSpeech char-based training results (Pruned Transducer 2)
#### 2022-05-19
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349.
When training with the L subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|-------|----------|--------------|------------------------------------------|
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 |
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 |
| fast beam search (set as default) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless2/exp \
--world-size 8 \
--num-epochs 15 \
--start-epoch 0 \
--max-duration 180 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--training-subset L
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/wM4ZUNtASRavJx79EOYYcg/#scalars
The decoding command is:
```
epoch=10
avg=2
## greedy search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
## modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```
When training with the M subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 |
| fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 |
When training with the S subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 |
| modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 |
| fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 |
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2>