icefall/egs/wenetspeech/ASR/RESULTS.md
Wei Kang 219bba1310
zipformer wenetspeech (#1130)
* copy files

* update train.py

* small fixes

* Add decode.py

* Fix dataloader in decode.py

* add blank penalty

* Add blank-penalty to other decoding method

* Minor fixes

* add zipformer2 recipe

* Minor fixes

* Remove pruned7

* export and test models

* Replace bpe with tokens in export.py and pretrain.py

* Minor fixes

* Minor fixes

* Minor fixes

* Fix export

* Update results

* Fix zipformer-ctc

* Fix ci

* Fix ci

* Fix CI

* Fix CI

---------

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2023-06-26 09:33:18 +08:00

295 lines
10 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Results
### WenetSpeech char-based training results (Non-streaming and streaming) on zipformer model
This is the [pull request](https://github.com/k2-fsa/icefall/pull/1130) in icefall.
#### Non-streaming
Best results (num of params : ~76M):
Type | Greedy(dev & net & meeting) | Beam search(dev & net & meeting) |  
-- | -- | -- | --
Non-streaming | 7.36 & 7.65 & 12.43 | 7.32 & 7.61 & 12.35 | --epoch=12
The training command:
```
./zipformer/train.py \
--world-size 6 \
--num-epochs 12 \
--use-fp16 1 \
--max-duration 450 \
--training-subset L \
--lr-epochs 1.5 \
--context-size 2 \
--exp-dir zipformer/exp_L_context_2 \
--causal 0 \
--num-workers 8
```
Listed best results for each epoch below:
Epoch | Greedy search(dev & net & meeting) | Modified beam search(dev & net & meeting) |  
-- | -- | -- | --
4 | 7.83 & 8.86 &13.73 | 7.75 & 8.81 & 13.67 | avg=1;blank-penalty=2
5 | 7.75 & 8.46 & 13.38 | 7.68 & 8.41 & 13.27 | avg=1;blank-penalty=2
6 | 7.72 & 8.19 & 13.16 | 7.62 & 8.14 & 13.06 | avg=1;blank-penalty=2
7 | 7.59 & 8.08 & 12.97 | 7.53 & 8.01 & 12.87 | avg=2;blank-penalty=2
8 | 7.68 & 7.87 & 12.96 | 7.61 & 7.81 & 12.88 | avg=1;blank-penalty=2
9 | 7.57 & 7.77 & 12.87 | 7.5 & 7.71 & 12.77 | avg=1;blank-penalty=2
10 | 7.45 & 7.7 & 12.69 | 7.39 & 7.63 & 12.59 | avg=2;blank-penalty=2
11 | 7.35 & 7.67 & 12.46 | 7.31 & 7.63 & 12.43 | avg=3;blank-penalty=2
12 | 7.36 & 7.65 & 12.43 | 7.32 & 7.61 & 12.35 | avg=4;blank-penalty=2
The pre-trained model is available here : https://huggingface.co/pkufool/icefall-asr-zipformer-wenetspeech-20230615
#### Streaming
Best results (num of params : ~76M):
Type | Greedy(dev & net & meeting) | Beam search(dev & net & meeting) |  
-- | -- | -- | --
Streaming | 8.45 & 9.89 & 16.46 | 8.21 & 9.77 & 16.07 | --epoch=12; --chunk-size=16; --left-context-frames=256
Streaming | 8.0 & 9.0 & 15.11 | 7.84 & 8.94 & 14.92 | --epoch=12; --chunk-size=32; --left-context-frames=256
The training command:
```
./zipformer/train.py \
--world-size 8 \
--num-epochs 12 \
--use-fp16 1 \
--max-duration 450 \
--training-subset L \
--lr-epochs 1.5 \
--context-size 2 \
--exp-dir zipformer/exp_L_causal_context_2 \
--causal 1 \
--num-workers 8
```
Best results for each epoch (--chunk-size=16; --left-context-frames=128)
Epoch | Greedy search(dev & net & meeting) | Modified beam search(dev & net & meeting) |  
-- | -- | -- | --
6 | 9.14 & 10.75 & 18.15 | 8.79 & 10.54 & 17.64 | avg=1;blank-penalty=1.5
7 | 9.11 & 10.61 & 17.86 | 8.8 & 10.42 & 17.29 | avg=1;blank-penalty=1.5
8 | 8.89 & 10.32 & 17.44 | 8.59 & 10.09 & 16.9 | avg=1;blank-penalty=1.5
9 | 8.86 & 10.11 & 17.35 | 8.55 & 9.87 & 16.76 | avg=1;blank-penalty=1.5
10 | 8.66 & 10.0 & 16.94 | 8.39 & 9.83 & 16.47 | avg=2;blank-penalty=1.5
11 | 8.58 & 9.92 & 16.67 | 8.32 & 9.77 & 16.27 | avg=3;blank-penalty=1.5
12 | 8.45 & 9.89 & 16.46 | 8.21 & 9.77 & 16.07 | avg=4;blank-penalty=1.5
The pre-trained model is available here: https://huggingface.co/pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615
### WenetSpeech char-based training results (offline and streaming) (Pruned Transducer 5)
#### 2022-07-22
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/447.
When training with the L subset, the CERs are
**Offline**:
|decoding-method| epoch | avg | use-averaged-model | DEV | TEST-NET | TEST-MEETING|
|-- | -- | -- | -- | -- | -- | --|
|greedy_search | 4 | 1 | True | 8.22 | 9.03 | 14.54|
|modified_beam_search | 4 | 1 | True | **8.17** | **9.04** | **14.44**|
|fast_beam_search | 4 | 1 | True | 8.29 | 9.00 | 14.93|
The offline training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless5/exp_L_offline \
--world-size 8 \
--num-epochs 15 \
--start-epoch 2 \
--max-duration 120 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--average-period 1000 \
--training-subset L
```
The tensorboard training log can be found at https://tensorboard.dev/experiment/SvnN2jfyTB2Hjqu22Z7ZoQ/#scalars .
A pre-trained offline model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline>
**Streaming**:
|decoding-method| epoch | avg | use-averaged-model | DEV | TEST-NET | TEST-MEETING|
|--|--|--|--|--|--|--|
| greedy_search | 7| 1| True | 8.78 | 10.12 | 16.16 |
| modified_beam_search | 7| 1| True| **8.53**| **9.95** | **15.81** |
| fast_beam_search | 7 | 1| True | 9.01 | 10.47 | 16.28 |
The streaming training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless5/exp_L_streaming \
--world-size 8 \
--num-epochs 15 \
--start-epoch 1 \
--max-duration 140 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--average-period 1000 \
--training-subset L \
--dynamic-chunk-training True \
--causal-convolution True \
--short-chunk-size 25 \
--num-left-chunks 4
```
The tensorboard training log can be found at https://tensorboard.dev/experiment/E2NXPVflSOKWepzJ1a1uDQ/#scalars .
A pre-trained offline model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_streaming>
### WenetSpeech char-based training results (Pruned Transducer 2)
#### 2022-05-19
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349.
When training with the L subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|-------|----------|--------------|------------------------------------------|
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 |
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 |
| fast beam search (1best) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 |
| fast beam search (nbest) | 9.82 | 10.98 | 16.37 | --epoch 10, --avg 2, --max-duration 600 |
| fast beam search (nbest oracle) | 6.88 | 7.18 | 11.77 | --epoch 10, --avg 2, --max-duration 600 |
| fast beam search (nbest LG, ngram_lm_scale=0.35) | 8.83 | 9.88 | 15.47 | --epoch 10, --avg 2, --max-duration 600 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless2/exp \
--world-size 8 \
--num-epochs 15 \
--start-epoch 0 \
--max-duration 180 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--training-subset L
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/wM4ZUNtASRavJx79EOYYcg/#scalars
The decoding command is:
```
epoch=10
avg=2
## greedy search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
## modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search (1best)
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
## fast beam search (nbest)
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
## fast beam search (nbest oracle WER)
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
## fast beam search (with LG)
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--ngram-lm-scale 0.35 \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
```
When training with the M subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 |
| fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 |
When training with the S subset, the CERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 |
| modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 |
| fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 |
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2>