* Add PromptASR with BERT as text encoder * Support using word-list based content prompts for context biasing * Upload the pretrained models to huggingface * Add usage example
7.3 KiB
Results
Zipformer PromptASR (zipformer + PromptASR + BERT text encoder)
zipformer_prompt_asr
See https://github.com/k2-fsa/icefall/pull/1250 for commit history and our paper https://arxiv.org/abs/2309.07414 for more details.
Training on the medium subset, with content & style prompt, no context list
You can find a pre-trained model, training logs, decoding logs, and decoding results at: https://huggingface.co/marcoyang/icefall-promptasr-libriheavy-zipformer-BERT-2023-10-10
The training command is:
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 60 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list 0 \
--top-k $top_k \
--use-style-prompt 1
The decoding results using utterance-level context (epoch-60-avg-10):
decoding method | lh-test-clean | lh-test-other | comment |
---|---|---|---|
modified_beam_search | 3.13 | 6.78 | --use-pre-text False --use-style-prompt False |
modified_beam_search | 2.86 | 5.93 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
modified_beam_search | 2.6 | 5.5 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command is:
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 60 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
Training on the medium subset, with content & style prompt, with context list
You can find a pre-trained model, training logs, decoding logs, and decoding results at: https://huggingface.co/marcoyang/icefall-promptasr-with-context-libriheavy-zipformer-BERT-2023-10-10
This model is trained with an extra type of content prompt (context words), thus it does better
on word-level context biasing. Note that to train this model, please first run prepare_prompt_asr.sh
to prepare a manifest containing context words.
The training command is:
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
use_context_list=True
# prepare the required data for context biasing
./prepare_prompt_asr.sh --stage 0 --stop_stage 1
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 50 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list $use_context_list \
--top-k 10000 \
--use-style-prompt 1
Utterance-level biasing:
decoding method | lh-test-clean | lh-test-other | comment |
---|---|---|---|
modified_beam_search | 3.17 | 6.72 | --use-pre-text 0 --use-style-prompt 0 |
modified_beam_search | 2.91 | 6.24 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
modified_beam_search | 2.72 | 5.72 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command for the table above is:
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
Word-level biasing:
The results are reported on LibriSpeech test-sets using the biasing list provided from https://arxiv.org/abs/2104.02194.
You need to set --use-ls-test-set True
so that the LibriSpeech test sets are used.
decoding method | ls-test-clean | ls-test-other | comment |
---|---|---|---|
modified_beam_search | 2.4 | 5.08 | --use-pre-text 0 --use-style-prompt 0 |
modified_beam_search | 2.14 | 4.62 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 0 |
modified_beam_search | 2.14 | 4.64 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 100 |
The decoding command is for the table above is:
use_ls_test_set=1
use_ls_context_list=1
for ls_distractors in 0 100; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set $use_ls_test_setse \
--use-ls-context-list $use_ls_context_list \
--ls-distractors $ls_distractors \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform mixed-punc \
--pre-text-transform mixed-punc \
--compute-CER 0
done