icefall/egs/tedlium3/ASR/RESULTS.md
2022-04-11 22:19:26 +08:00

153 lines
4.6 KiB
Markdown

## Results
### TedLium3 BPE training results (Pruned Transducer)
#### 2022-03-21
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/261.
The WERs are
| | dev | test | comment |
|------------------------------------|------------|------------|------------------------------------------|
| greedy search | 7.27 | 6.69 | --epoch 29, --avg 13, --max-duration 100 |
| beam search (beam size 4) | 6.70 | 6.04 | --epoch 29, --avg 13, --max-duration 100 |
| modified beam search (beam size 4) | 6.77 | 6.14 | --epoch 29, --avg 13, --max-duration 100 |
| fast beam search (set as default) | 7.14 | 6.50 | --epoch 29, --avg 13, --max-duration 1500|
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--max-duration 300
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/VpA8b7SZQ7CEjZs9WZ5HNA/#scalars
The decoding command is:
```
epoch=29
avg=13
## greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_tedlium3_pruned_transducer_stateless>
### TedLium3 BPE training results (Transducer)
#### Conformer encoder + embedding decoder
##### 2022-03-21
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/233
And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604
Conformer encoder + non-current decoder. The decoder
contains only an embedding layer and a Conv1d (with kernel size 2).
The WERs are
| | dev | test | comment |
|------------------------------------|------------|------------|------------------------------------------|
| greedy search | 7.19 | 6.70 | --epoch 29, --avg 11, --max-duration 100 |
| beam search (beam size 4) | 7.02 | 6.36 | --epoch 29, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 6.91 | 6.33 | --epoch 29, --avg 11, --max-duration 100 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp \
--max-duration 300
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/4ks15jYHR4uMyvpW7Nz76Q/#scalars
The decoding command is:
```
epoch=29
avg=11
## greedy search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
```
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_tedlium3_transducer_stateless>