icefall/egs/libriheavy/ASR/local/compute_fbank_libriheavy.py
Wei Kang 238b45bea8
Libriheavy recipe (zipformer) (#1261)
* initial commit for libriheavy

* Data prepare pipeline

* Fix train.py

* Fix decode.py

* Add results

* minor fixes

* black

* black

* Incorporate PR https://github.com/k2-fsa/icefall/pull/1269

---------

Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
2023-11-23 01:22:57 +08:00

243 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the Libriheavy dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
)
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--manifest-dir",
type=str,
help="""The source directory that contains raw manifests.
""",
default="data/manifests",
)
parser.add_argument(
"--fbank-dir",
type=str,
help="""Fbank output dir
""",
default="data/fbank",
)
parser.add_argument(
"--subset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Whether to use speed perturbation.",
)
parser.add_argument(
"--use-splits",
type=str2bool,
default=False,
help="Whether to compute fbank on splits.",
)
parser.add_argument(
"--num-splits",
type=int,
help="""The number of splits of the medium and large subset.
Only needed when --use-splits is true.""",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="""Process pieces starting from this number (inclusive).
Only needed when --use-splits is true.""",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="""Stop processing pieces until this number (exclusive).
Only needed when --use-splits is true.""",
)
return parser.parse_args()
def compute_fbank_libriheavy(args):
src_dir = Path(args.manifest_dir)
output_dir = Path(args.fbank_dir)
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80
subset = args.subset
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
output_cuts_path = output_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
if output_cuts_path.exists():
logging.info(f"{output_cuts_path} exists - skipping")
return
input_cuts_path = src_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
assert input_cuts_path.exists(), f"{input_cuts_path} does not exist!"
logging.info(f"Loading {input_cuts_path}")
cut_set = CutSet.from_file(input_cuts_path)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/libriheavy_feats_{subset}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
logging.info(f"Saving to {output_cuts_path}")
cut_set.to_file(output_cuts_path)
def compute_fbank_libriheavy_splits(args):
num_splits = args.num_splits
subset = args.subset
src_dir = f"{args.manifest_dir}/libriheavy_{subset}_split"
src_dir = Path(src_dir)
output_dir = f"{args.fbank_dir}/libriheavy_{subset}_split"
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
num_digits = 8 # num_digits is fixed by lhotse split-lazy
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")
cuts_path = output_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = src_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
continue
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Computing features")
if (output_dir / f"libriheavy_feats_{subset}_{idx}.lca").exists():
logging.info(f"Removing {output_dir}/libriheavy_feats_{subset}_{idx}.lca")
os.remove(output_dir / f"libriheavy_feats_{subset}_{idx}.lca")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/libriheavy_feats_{subset}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
overwrite=True,
)
logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
if args.use_splits:
assert args.num_splits is not None, "Please provide num_splits"
compute_fbank_libriheavy_splits(args)
else:
compute_fbank_libriheavy(args)