mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 01:22:22 +00:00
Libriheavy recipe (zipformer) (#1261)
* initial commit for libriheavy * Data prepare pipeline * Fix train.py * Fix decode.py * Add results * minor fixes * black * black * Incorporate PR https://github.com/k2-fsa/icefall/pull/1269 --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
This commit is contained in:
parent
11d816d174
commit
238b45bea8
6
egs/libriheavy/ASR/README.md
Normal file
6
egs/libriheavy/ASR/README.md
Normal file
@ -0,0 +1,6 @@
|
||||
# Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context
|
||||
|
||||
Libriheavy is a labeled version of [Librilight](https://arxiv.org/pdf/1912.07875.pdf). Please refer to our repository [k2-fsa/libriheavy](https://github.com/k2-fsa/libriheavy) for more details. We also have a paper: *Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context*, [Preprint available on arxiv](https://arxiv.org/abs/2309.08105).
|
||||
|
||||
|
||||
See [RESULTS](./RESULTS.md) for the results for icefall recipes.
|
@ -1,6 +1,116 @@
|
||||
## Results
|
||||
# Results
|
||||
|
||||
### Zipformer PromptASR (zipformer + PromptASR + BERT text encoder)
|
||||
## zipformer (zipformer + pruned stateless transducer)
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/1261> for more details.
|
||||
|
||||
[zipformer](./zipformer)
|
||||
|
||||
### Non-streaming
|
||||
|
||||
#### Training on normalized text, i.e. Upper case without punctuation
|
||||
|
||||
##### normal-scaled model, number of model parameters: 65805511, i.e., 65.81 M
|
||||
|
||||
You can find a pretrained model, training logs at:
|
||||
<https://www.modelscope.cn/models/pkufool/icefall-asr-zipformer-libriheavy-20230926/summary>
|
||||
|
||||
Note: The repository above contains three models trained on different subset of libriheavy exp(large set), exp_medium_subset(medium set),
|
||||
exp_small_subset(small set).
|
||||
|
||||
Results of models:
|
||||
|
||||
| training set | decoding method | librispeech clean | librispeech other | libriheavy clean | libriheavy other | comment |
|
||||
|---------------|---------------------|-------------------|-------------------|------------------|------------------|--------------------|
|
||||
| small | greedy search | 4.19 | 9.99 | 4.75 | 10.25 |--epoch 90 --avg 20 |
|
||||
| small | modified beam search| 4.05 | 9.89 | 4.68 | 10.01 |--epoch 90 --avg 20 |
|
||||
| medium | greedy search | 2.39 | 4.85 | 2.90 | 6.6 |--epoch 60 --avg 20 |
|
||||
| medium | modified beam search| 2.35 | 4.82 | 2.90 | 6.57 |--epoch 60 --avg 20 |
|
||||
| large | greedy search | 1.67 | 3.32 | 2.24 | 5.61 |--epoch 16 --avg 3 |
|
||||
| large | modified beam search| 1.62 | 3.36 | 2.20 | 5.57 |--epoch 16 --avg 3 |
|
||||
|
||||
The training command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
python ./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--master-port 12365 \
|
||||
--exp-dir zipformer/exp \
|
||||
--num-epochs 60 \ # 16 for large; 90 for small
|
||||
--lr-hours 15000 \ # 20000 for large; 5000 for small
|
||||
--use-fp16 1 \
|
||||
--start-epoch 1 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--max-duration 1000 \
|
||||
--subset medium
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0"
|
||||
for m in greedy_search modified_beam_search; do
|
||||
./zipformer/decode.py \
|
||||
--epoch 16 \
|
||||
--avg 3 \
|
||||
--exp-dir zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--causal 0 \
|
||||
--decoding-method $m
|
||||
done
|
||||
```
|
||||
|
||||
#### Training on full formatted text, i.e. with casing and punctuation
|
||||
|
||||
##### normal-scaled model, number of model parameters: 66074067 , i.e., 66M
|
||||
|
||||
You can find a pretrained model, training logs at:
|
||||
<https://www.modelscope.cn/models/pkufool/icefall-asr-zipformer-libriheavy-punc-20230830/summary>
|
||||
|
||||
Note: The repository above contains three models trained on different subset of libriheavy exp(large set), exp_medium_subset(medium set),
|
||||
exp_small_subset(small set).
|
||||
|
||||
Results of models:
|
||||
|
||||
| training set | decoding method | libriheavy clean (WER) | libriheavy other (WER) | libriheavy clean (CER) | libriheavy other (CER) | comment |
|
||||
|---------------|---------------------|-------------------|-------------------|------------------|------------------|--------------------|
|
||||
| small | modified beam search| 13.04 | 19.54 | 4.51 | 7.90 |--epoch 88 --avg 41 |
|
||||
| medium | modified beam search| 9.84 | 13.39 | 3.02 | 5.10 |--epoch 50 --avg 15 |
|
||||
| large | modified beam search| 7.76 | 11.32 | 2.41 | 4.22 |--epoch 16 --avg 2 |
|
||||
|
||||
The training command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
python ./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--master-port 12365 \
|
||||
--exp-dir zipformer/exp \
|
||||
--num-epochs 60 \ # 16 for large; 90 for small
|
||||
--lr-hours 15000 \ # 20000 for large; 10000 for small
|
||||
--use-fp16 1 \
|
||||
--train-with-punctuation 1 \
|
||||
--start-epoch 1 \
|
||||
--bpe-model data/lang_punc_bpe_756/bpe.model \
|
||||
--max-duration 1000 \
|
||||
--subset medium
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0"
|
||||
for m in greedy_search modified_beam_search; do
|
||||
./zipformer/decode.py \
|
||||
--epoch 16 \
|
||||
--avg 3 \
|
||||
--exp-dir zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--causal 0 \
|
||||
--decoding-method $m
|
||||
done
|
||||
```
|
||||
|
||||
## Zipformer PromptASR (zipformer + PromptASR + BERT text encoder)
|
||||
|
||||
#### [zipformer_prompt_asr](./zipformer_prompt_asr)
|
||||
|
||||
|
242
egs/libriheavy/ASR/local/compute_fbank_libriheavy.py
Executable file
242
egs/libriheavy/ASR/local/compute_fbank_libriheavy.py
Executable file
@ -0,0 +1,242 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the Libriheavy dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-dir",
|
||||
type=str,
|
||||
help="""The source directory that contains raw manifests.
|
||||
""",
|
||||
default="data/manifests",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--fbank-dir",
|
||||
type=str,
|
||||
help="""Fbank output dir
|
||||
""",
|
||||
default="data/fbank",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--perturb-speed",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use speed perturbation.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-splits",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to compute fbank on splits.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
help="""The number of splits of the medium and large subset.
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Process pieces starting from this number (inclusive).
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="""Stop processing pieces until this number (exclusive).
|
||||
Only needed when --use-splits is true.""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_libriheavy(args):
|
||||
src_dir = Path(args.manifest_dir)
|
||||
output_dir = Path(args.fbank_dir)
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
subset = args.subset
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
output_cuts_path = output_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
|
||||
if output_cuts_path.exists():
|
||||
logging.info(f"{output_cuts_path} exists - skipping")
|
||||
return
|
||||
|
||||
input_cuts_path = src_dir / f"libriheavy_cuts_{subset}.jsonl.gz"
|
||||
assert input_cuts_path.exists(), f"{input_cuts_path} does not exist!"
|
||||
logging.info(f"Loading {input_cuts_path}")
|
||||
cut_set = CutSet.from_file(input_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/libriheavy_feats_{subset}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {output_cuts_path}")
|
||||
cut_set.to_file(output_cuts_path)
|
||||
|
||||
|
||||
def compute_fbank_libriheavy_splits(args):
|
||||
num_splits = args.num_splits
|
||||
subset = args.subset
|
||||
src_dir = f"{args.manifest_dir}/libriheavy_{subset}_split"
|
||||
src_dir = Path(src_dir)
|
||||
output_dir = f"{args.fbank_dir}/libriheavy_{subset}_split"
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
start = args.start
|
||||
stop = args.stop
|
||||
if stop < start:
|
||||
stop = num_splits
|
||||
|
||||
stop = min(stop, num_splits)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
num_digits = 8 # num_digits is fixed by lhotse split-lazy
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = src_dir / f"libriheavy_cuts_{subset}.{idx}.jsonl.gz"
|
||||
if not raw_cuts_path.is_file():
|
||||
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
||||
continue
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
if (output_dir / f"libriheavy_feats_{subset}_{idx}.lca").exists():
|
||||
logging.info(f"Removing {output_dir}/libriheavy_feats_{subset}_{idx}.lca")
|
||||
os.remove(output_dir / f"libriheavy_feats_{subset}_{idx}.lca")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/libriheavy_feats_{subset}_{idx}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info("About to split cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
logging.info(f"Saved to {cuts_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
if args.use_splits:
|
||||
assert args.num_splits is not None, "Please provide num_splits"
|
||||
compute_fbank_libriheavy_splits(args)
|
||||
else:
|
||||
compute_fbank_libriheavy(args)
|
1
egs/libriheavy/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/libriheavy/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compute_fbank_musan.py
|
58
egs/libriheavy/ASR/local/norm_text.py
Executable file
58
egs/libriheavy/ASR/local/norm_text.py
Executable file
@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import codecs
|
||||
import sys
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
help="""Path to the input text.
|
||||
""",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def remove_punc_to_upper(text: str) -> str:
|
||||
text = text.replace("‘", "'")
|
||||
text = text.replace("’", "'")
|
||||
tokens = set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'")
|
||||
s_list = [x.upper() if x in tokens else " " for x in text]
|
||||
s = " ".join("".join(s_list).split()).strip()
|
||||
return s
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
if args.text:
|
||||
f = codecs.open(args.text, encoding="utf-8")
|
||||
else:
|
||||
f = codecs.getreader("utf-8")(sys.stdin.buffer)
|
||||
|
||||
sys.stdout = codecs.getwriter("utf-8")(sys.stdout.buffer)
|
||||
line = f.readline()
|
||||
while line:
|
||||
print(remove_punc_to_upper(line))
|
||||
line = f.readline()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
47
egs/libriheavy/ASR/local/prepare_manifest.py
Executable file
47
egs/libriheavy/ASR/local/prepare_manifest.py
Executable file
@ -0,0 +1,47 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gzip
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def simple_cleanup(text: str) -> str:
|
||||
table = str.maketrans("’‘,。;?!():-《》、“”【】", "'',.;?!(): <>/\"\"[]")
|
||||
text = text.translate(table)
|
||||
return text.strip()
|
||||
|
||||
|
||||
# Assign text of the supervisions and remove unnecessary entries.
|
||||
def main():
|
||||
assert len(sys.argv) == 3, "Usage: ./local/prepare_manifest.py INPUT OUTPUT_DIR"
|
||||
fname = Path(sys.argv[1]).name
|
||||
oname = Path(sys.argv[2]) / fname
|
||||
with gzip.open(sys.argv[1], "r") as fin, gzip.open(oname, "w") as fout:
|
||||
for line in fin:
|
||||
cut = json.loads(line)
|
||||
cut["supervisions"][0]["text"] = simple_cleanup(
|
||||
cut["supervisions"][0]["custom"]["texts"][0]
|
||||
)
|
||||
del cut["supervisions"][0]["custom"]
|
||||
del cut["custom"]
|
||||
fout.write((json.dumps(cut) + "\n").encode())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
113
egs/libriheavy/ASR/local/train_bpe_model.py
Executable file
113
egs/libriheavy/ASR/local/train_bpe_model.py
Executable file
@ -0,0 +1,113 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
#
|
||||
# Due to an issue reported in
|
||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||
#
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
import argparse
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
The generated bpe.model is saved to this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--byte-fallback",
|
||||
action="store_true",
|
||||
help="""Whether to enable byte_fallback when training bpe.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--character-coverage",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Character coverage in vocabulary.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transcript",
|
||||
type=str,
|
||||
help="Training transcript.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
help="Vocabulary size for BPE training",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
vocab_size = args.vocab_size
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
model_type = "unigram"
|
||||
|
||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||
train_text = args.transcript
|
||||
input_sentence_size = 100000000
|
||||
|
||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||
unk_id = len(user_defined_symbols)
|
||||
# Note: unk_id is fixed to 2.
|
||||
# If you change it, you should also change other
|
||||
# places that are using it.
|
||||
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if not model_file.is_file():
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=args.character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
byte_fallback=args.byte_fallback,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
else:
|
||||
print(f"{model_file} exists - skipping")
|
||||
return
|
||||
|
||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
314
egs/libriheavy/ASR/prepare.sh
Executable file
314
egs/libriheavy/ASR/prepare.sh
Executable file
@ -0,0 +1,314 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
export CUDA_VISIBLE_DEVICES=""
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/librilight
|
||||
# You can find small, medium, large, etc. inside it.
|
||||
#
|
||||
# - $dl_dir/libriheavy
|
||||
# You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it.
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# vocab size for sentence piece models.
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
# 5000
|
||||
# 2000
|
||||
# 1000
|
||||
500
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
fbank_dir=data/fbank
|
||||
manifests_dir=data/manifests
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "Stage -1: Download audio data."
|
||||
# If you have pre-downloaded it to /path/to/librilight,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/librilight $dl_dir/librilight
|
||||
#
|
||||
mkdir -p $dl_dir/librilight
|
||||
for subset in small medium large; do
|
||||
log "Downloading ${subset} subset."
|
||||
if [ ! -d $dl_dir/librilight/${subset} ]; then
|
||||
wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar
|
||||
tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight
|
||||
else
|
||||
log "Skipping download, ${subset} subset exists."
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download manifests from huggingface."
|
||||
|
||||
# If you have pre-downloaded it to /path/to/libriheavy,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/libriheavy $dl_dir/libriheavy
|
||||
#
|
||||
mkdir -p $dl_dir/libriheavy
|
||||
for subset in small medium large dev test_clean test_other; do
|
||||
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then
|
||||
log "Downloading ${subset} subset."
|
||||
wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz
|
||||
else
|
||||
log "Skipping download, ${subset} subset exists."
|
||||
fi
|
||||
done
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Download manifests from modelscope"
|
||||
mkdir -p $dl_dir/libriheavy
|
||||
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_small.jsonl.gz ]; then
|
||||
cd $dl_dir/libriheavy
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/datasets/pkufool/Libriheavy.git
|
||||
cd Libriheavy
|
||||
git lfs pull --exclude "raw/*"
|
||||
mv *.jsonl.gz ../
|
||||
cd ..
|
||||
rm -rf Libriheavy
|
||||
cd ../../
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to $dl_dir/musan
|
||||
mkdir -p $manifests_dir
|
||||
if [ ! -e $manifests_dir/.musan.done ]; then
|
||||
lhotse prepare musan $dl_dir/musan $manifests_dir
|
||||
touch $manifests_dir/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare Libriheavy manifests"
|
||||
mkdir -p $manifests_dir
|
||||
for subset in small medium large dev test_clean test_other; do
|
||||
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
|
||||
log "Prepare manifest for subset : ${subset}"
|
||||
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for musan"
|
||||
mkdir -p $fbank_dir
|
||||
if [ ! -e $fbank_dir/.musan.done ]; then
|
||||
./local/compute_fbank_musan.py
|
||||
touch $fbank_dir/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for small subset and validation subsets"
|
||||
for subset in test_clean test_other dev small; do
|
||||
log "Computing $subset subset."
|
||||
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
|
||||
./local/compute_fbank_libriheavy.py \
|
||||
--manifest-dir ${manifests_dir} \
|
||||
--subset ${subset} \
|
||||
--fbank-dir $fbank_dir \
|
||||
--num-workers $nj
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
num_per_split=8000
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Split medium and large subsets."
|
||||
for subset in medium large; do
|
||||
log "Spliting subset : $subset"
|
||||
split_dir=$manifests_dir/libriheavy_${subset}_split
|
||||
mkdir -p $split_dir
|
||||
if [ ! -e $split_dir/.split_completed ]; then
|
||||
lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split
|
||||
touch $split_dir/.split_completed
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Compute fbank for medium and large subsets"
|
||||
mkdir -p $fbank_dir
|
||||
chunk_size=20
|
||||
for subset in medium large; do
|
||||
if [ $subset == "large" ]; then
|
||||
chunk_size=200
|
||||
fi
|
||||
num_splits=$(find $manifests_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz" | wc -l)
|
||||
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
|
||||
for i in $(seq 0 1 6); do
|
||||
start=$(( i * $chunk_size ))
|
||||
end=$(( (i+1) * $chunk_size ))
|
||||
./local/compute_fbank_libriheavy.py \
|
||||
--manifest-dir ${manifests_dir} \
|
||||
--use-splits 1 \
|
||||
--subset ${subset} \
|
||||
--fbank-dir $fbank_dir \
|
||||
--num-splits $num_splits \
|
||||
--num-workers $nj \
|
||||
--start $start \
|
||||
--stop $end &
|
||||
done
|
||||
wait
|
||||
touch $fbank_dir/.libriheavy.${subset}.done
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Combine features for medium and large subsets."
|
||||
for subset in medium large; do
|
||||
log "Combining $subset subset."
|
||||
if [ ! -f $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
|
||||
pieces=$(find $fbank_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz")
|
||||
lhotse combine $pieces $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Train BPE model for normalized text"
|
||||
|
||||
if [ ! -f data/texts ]; then
|
||||
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
|
||||
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
|
||||
| ./local/norm_text.py > data/texts
|
||||
fi
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
cp data/texts $lang_dir/text
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/text
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
log "Stage 10: Train BPE model for unnormalized text"
|
||||
if [ ! -f data/punc_texts ]; then
|
||||
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
|
||||
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' > data/punc_texts
|
||||
fi
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
new_vacab_size = $(($vocab_size + 256))
|
||||
lang_dir=data/lang_punc_bpe_${new_vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
cp data/punc_texts $lang_dir/text
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--byte-fallback \
|
||||
--vocab-size ${new_vocab_size} \
|
||||
--byte-fallback \
|
||||
--character-coverage 0.99 \
|
||||
--transcript $lang_dir/text
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
log "Stage 11: Prepare language model for normalized text"
|
||||
|
||||
for subset in small medium large; do
|
||||
if [ ! -f $manifests_dir/texts_${subset} ]; then
|
||||
gunzip -c $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \
|
||||
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
|
||||
| ./local/norm_text.py > $manifests_dir/texts_${subset}
|
||||
fi
|
||||
done
|
||||
|
||||
mkdir -p data/lm
|
||||
if [ ! -f data/lm/text ]; then
|
||||
cat $manifests_dir/texts_small $manifests_dir/texts_medium $manifests_dir/texts_large > data/lm/text
|
||||
fi
|
||||
|
||||
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
|
||||
> data/lm/words.txt
|
||||
|
||||
cat data/lm/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
|
||||
| awk '{print $1" "NR+3}' >> data/lm/words.txt
|
||||
|
||||
num_lines=$(< data/lm/words.txt wc -l)
|
||||
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
|
||||
>> data/lm/words.txt
|
||||
|
||||
# Train LM on transcripts
|
||||
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
|
||||
python3 ./shared/make_kn_lm.py \
|
||||
-ngram-order 3 \
|
||||
-text data/lm/text \
|
||||
-lm data/lm/3-gram.unpruned.arpa
|
||||
fi
|
||||
|
||||
# We assume you have install kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table=data/lm/words.txt \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
443
egs/libriheavy/ASR/zipformer/asr_datamodule.py
Normal file
443
egs/libriheavy/ASR/zipformer/asr_datamodule.py
Normal file
@ -0,0 +1,443 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriHeavyAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
default="S",
|
||||
help="""The subset to be used. Should be S, M or L. Note: S subset
|
||||
includes libriheavy_cuts_small.jsonl.gz, M subset includes
|
||||
libriheavy_cuts_small.jsonl.gz and libriheavy_cuts_medium.jsonl.gz,
|
||||
L subset includes libriheavy_cuts_small.jsonl.gz,
|
||||
libriheavy_cuts_medium.jsonl.gz and libriheavy_cuts_large.jsonl.gz.
|
||||
""",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_small_cuts(self) -> CutSet:
|
||||
logging.info("About to get small subset cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_small.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_medium_cuts(self) -> CutSet:
|
||||
logging.info("About to get medium subset cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_medium.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_large_cuts(self) -> CutSet:
|
||||
logging.info("About to get large subset cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_large.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get the test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_test_clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get the test-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "libriheavy_cuts_test_other.jsonl.gz"
|
||||
)
|
1
egs/libriheavy/ASR/zipformer/beam_search.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
794
egs/libriheavy/ASR/zipformer/decode.py
Normal file
794
egs/libriheavy/ASR/zipformer/decode.py
Normal file
@ -0,0 +1,794 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriHeavyAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from text_normalization import remove_punc_to_upper
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search_nbest,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--train-with-punctuation",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Set to True, if the model was trained on texts with casing
|
||||
and punctuation.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--post-normalization",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Upper case and remove all chars except ' and -
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
this_batch = []
|
||||
if params.post_normalization and params.train_with_punctuation:
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = remove_punc_to_upper(ref_text).split()
|
||||
hyp_words = remove_punc_to_upper(" ".join(hyp_words)).split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[f"{name}_norm"].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriHeavyAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
libriheavy = LibriHeavyAsrDataModule(args)
|
||||
|
||||
def normalize_text(c: Cut):
|
||||
text = remove_punc_to_upper(c.supervisions[0].text)
|
||||
c.supervisions[0].text = text
|
||||
return c
|
||||
|
||||
test_clean_cuts = libriheavy.test_clean_cuts()
|
||||
test_other_cuts = libriheavy.test_other_cuts()
|
||||
|
||||
if not params.train_with_punctuation:
|
||||
test_clean_cuts = test_clean_cuts.map(normalize_text)
|
||||
test_other_cuts = test_other_cuts.map(normalize_text)
|
||||
|
||||
test_clean_dl = libriheavy.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = libriheavy.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/libriheavy/ASR/zipformer/decoder.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/libriheavy/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/libriheavy/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/libriheavy/ASR/zipformer/export.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/libriheavy/ASR/zipformer/jit_pretrained.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/jit_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
1
egs/libriheavy/ASR/zipformer/joiner.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/libriheavy/ASR/zipformer/model.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/libriheavy/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/libriheavy/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/libriheavy/ASR/zipformer/optim.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/libriheavy/ASR/zipformer/pretrained.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/libriheavy/ASR/zipformer/scaling.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/libriheavy/ASR/zipformer/scaling_coverter.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/scaling_coverter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/libriheavy/ASR/zipformer/subsampling.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
50
egs/libriheavy/ASR/zipformer/text_normalization.py
Normal file
50
egs/libriheavy/ASR/zipformer/text_normalization.py
Normal file
@ -0,0 +1,50 @@
|
||||
from num2words import num2words
|
||||
|
||||
|
||||
def remove_punc_to_upper(text: str) -> str:
|
||||
text = text.replace("‘", "'")
|
||||
text = text.replace("’", "'")
|
||||
tokens = set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'")
|
||||
s_list = [x.upper() if x in tokens else " " for x in text]
|
||||
s = " ".join("".join(s_list).split()).strip()
|
||||
return s
|
||||
|
||||
|
||||
def word_normalization(word: str) -> str:
|
||||
# 1. Use full word for some abbreviation
|
||||
# 2. Convert digits to english words
|
||||
# 3. Convert ordinal number to english words
|
||||
if word == "MRS":
|
||||
return "MISSUS"
|
||||
if word == "MR":
|
||||
return "MISTER"
|
||||
if word == "ST":
|
||||
return "SAINT"
|
||||
if word == "ECT":
|
||||
return "ET CETERA"
|
||||
|
||||
if word[-2:] in ("ST", "ND", "RD", "TH") and word[:-2].isnumeric(): # e.g 9TH, 6TH
|
||||
word = num2words(word[:-2], to="ordinal")
|
||||
word = word.replace("-", " ")
|
||||
|
||||
if word.isnumeric():
|
||||
num = int(word)
|
||||
if num > 1500 and num < 2030:
|
||||
word = num2words(word, to="year")
|
||||
else:
|
||||
word = num2words(word)
|
||||
word = word.replace("-", " ")
|
||||
return word.upper()
|
||||
|
||||
|
||||
def text_normalization(text: str) -> str:
|
||||
text = text.upper()
|
||||
return " ".join([word_normalization(x) for x in text.split()])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
assert remove_punc_to_upper("I like this 《book>") == "I LIKE THIS BOOK"
|
||||
assert (
|
||||
text_normalization("Hello Mrs st 21st world 3rd she 99th MR")
|
||||
== "HELLO MISSUS SAINT TWENTY FIRST WORLD THIRD SHE NINETY NINTH MISTER"
|
||||
)
|
1415
egs/libriheavy/ASR/zipformer/train.py
Normal file
1415
egs/libriheavy/ASR/zipformer/train.py
Normal file
File diff suppressed because it is too large
Load Diff
1
egs/libriheavy/ASR/zipformer/zipformer.py
Symbolic link
1
egs/libriheavy/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -17,6 +17,7 @@ six
|
||||
git+https://github.com/lhotse-speech/lhotse
|
||||
kaldilm==1.11
|
||||
kaldialign==0.7.1
|
||||
num2words
|
||||
sentencepiece==0.1.96
|
||||
tensorboard==2.8.0
|
||||
typeguard==2.13.3
|
||||
|
@ -1,6 +1,7 @@
|
||||
kaldifst
|
||||
kaldilm
|
||||
kaldialign
|
||||
num2words
|
||||
kaldi-decoder
|
||||
sentencepiece>=0.1.96
|
||||
tensorboard
|
||||
|
Loading…
x
Reference in New Issue
Block a user