mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 02:22:17 +00:00
976 B
976 B
Results
zipformer
See https://github.com/k2-fsa/icefall/pull/1421 for more details
You can find a pretrained model, training logs, decoding logs, and decoding results at: https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-2024-03-12#/
The model achieves the following mean averaged precision on AudioSet:
Model | mAP |
---|---|
Zipformer-AT | 45.1 |
The training command is:
export CUDA_VISIBLE_DEVICES="4,5,6,7"
subset=full
python zipformer/train.py \
--world-size 4 \
--num-epochs 50 \
--exp-dir zipformer/exp_at_as_${subset} \
--start-epoch 1 \
--use-fp16 1 \
--num-events 527 \
--audioset-subset $subset \
--max-duration 1000 \
--enable-musan True \
--master-port 13455
The evaluation command is:
python zipformer/evaluate.py \
--epoch 32 \
--avg 8 \
--exp-dir zipformer/exp_at_as_full \
--max-duration 500