icefall/egs/libriheavy/ASR/RESULTS.md
marcoyang1998 16a2748d6c
PromptASR for contextualized ASR with controllable style (#1250)
* Add PromptASR with BERT as text encoder

* Support using word-list based content prompts for context biasing

* Upload the pretrained models to huggingface

* Add usage example
2023-10-11 14:56:41 +08:00

206 lines
7.3 KiB
Markdown

## Results
### Zipformer PromptASR (zipformer + PromptASR + BERT text encoder)
#### [zipformer_prompt_asr](./zipformer_prompt_asr)
See <https://github.com/k2-fsa/icefall/pull/1250> for commit history and
our paper <https://arxiv.org/abs/2309.07414> for more details.
##### Training on the medium subset, with content & style prompt, **no** context list
You can find a pre-trained model, training logs, decoding logs, and decoding results at: <https://huggingface.co/marcoyang/icefall-promptasr-libriheavy-zipformer-BERT-2023-10-10>
The training command is:
```bash
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 60 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list 0 \
--top-k $top_k \
--use-style-prompt 1
```
The decoding results using utterance-level context (epoch-60-avg-10):
| decoding method | lh-test-clean | lh-test-other | comment |
|----------------------|---------------|---------------|---------------------|
| modified_beam_search | 3.13 | 6.78 | --use-pre-text False --use-style-prompt False |
| modified_beam_search | 2.86 | 5.93 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
| modified_beam_search | 2.6 | 5.5 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command is:
```bash
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 60 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
```
##### Training on the medium subset, with content & style prompt, **with** context list
You can find a pre-trained model, training logs, decoding logs, and decoding results at: <https://huggingface.co/marcoyang/icefall-promptasr-with-context-libriheavy-zipformer-BERT-2023-10-10>
This model is trained with an extra type of content prompt (context words), thus it does better
on **word-level** context biasing. Note that to train this model, please first run `prepare_prompt_asr.sh`
to prepare a manifest containing context words.
The training command is:
```bash
causal=0
subset=medium
memory_dropout_rate=0.05
text_encoder_type=BERT
use_context_list=True
# prepare the required data for context biasing
./prepare_prompt_asr.sh --stage 0 --stop_stage 1
python ./zipformer_prompt_asr/train_bert_encoder.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 50 \
--exp-dir ./zipformer_prompt_asr/exp \
--use-fp16 True \
--memory-dropout-rate $memory_dropout_rate \
--causal $causal \
--subset $subset \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--text-encoder-type $text_encoder_type \
--text-encoder-dim 768 \
--use-context-list $use_context_list \
--top-k 10000 \
--use-style-prompt 1
```
*Utterance-level biasing:*
| decoding method | lh-test-clean | lh-test-other | comment |
|----------------------|---------------|---------------|---------------------|
| modified_beam_search | 3.17 | 6.72 | --use-pre-text 0 --use-style-prompt 0 |
| modified_beam_search | 2.91 | 6.24 | --pre-text-transform upper-no-punc --style-text-transform upper-no-punc |
| modified_beam_search | 2.72 | 5.72 | --pre-text-transform mixed-punc --style-text-transform mixed-punc |
The decoding command for the table above is:
```bash
for style in mixed-punc upper-no-punc; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set False \
--use-ls-context-list False \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform $style \
--pre-text-transform $style \
--compute-CER 0
done
```
*Word-level biasing:*
The results are reported on LibriSpeech test-sets using the biasing list provided from <https://arxiv.org/abs/2104.02194>.
You need to set `--use-ls-test-set True` so that the LibriSpeech test sets are used.
| decoding method | ls-test-clean | ls-test-other | comment |
|----------------------|---------------|---------------|---------------------|
| modified_beam_search | 2.4 | 5.08 | --use-pre-text 0 --use-style-prompt 0 |
| modified_beam_search | 2.14 | 4.62 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 0 |
| modified_beam_search | 2.14 | 4.64 | --use-ls-context-list 1 --pre-text-transform mixed-punc --style-text-transform mixed-punc --ls-distractors 100 |
The decoding command is for the table above is:
```bash
use_ls_test_set=1
use_ls_context_list=1
for ls_distractors in 0 100; do
python ./zipformer_prompt_asr/decode_bert.py \
--epoch 50 \
--avg 10 \
--use-averaged-model True \
--post-normalization True \
--causal False \
--exp-dir ./zipformer_prompt_asr/exp \
--manifest-dir data/fbank \
--bpe-model data/lang_bpe_500_fallback_coverage_0.99/bpe.model \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4 \
--text-encoder-type BERT \
--text-encoder-dim 768 \
--memory-layer 0 \
--use-ls-test-set $use_ls_test_setse \
--use-ls-context-list $use_ls_context_list \
--ls-distractors $ls_distractors \
--max-prompt-lens 1000 \
--use-pre-text True \
--use-style-prompt True \
--style-text-transform mixed-punc \
--pre-text-transform mixed-punc \
--compute-CER 0
done
```