mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
2.5 KiB
2.5 KiB
Results
Aishell2 char-based training results (Pruned Transducer 5)
2022-07-11
Using the codes from this commit https://github.com/k2-fsa/icefall/pull/461.
When training with context size equals to 1, the WERs are
dev-ios | test-ios | comment | |
---|---|---|---|
greedy search | 5.57 | 5.89 | --epoch 10, --avg 2, --max-duration 100 |
modified beam search (beam size 4) | 5.32 | 5.56 | --epoch 10, --avg 2, --max-duration 100 |
fast beam search (set as default) | 5.5 | 5.78 | --epoch 10, --avg 2, --max-duration 1500 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless5/train.py \
--world-size 4 \
--lang-dir data/lang_char \
--num-epochs 40 \
--start-epoch 1 \
--exp-dir /result \
--max-duration 300 \
--use-fp16 0 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512
The decoding command is:
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 25 \
--avg 5 \
--exp-dir /result \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512 \
--use-averaged-model True
done
The tensorboard training log can be found at https://tensorboard.dev/experiment/RXyX4QjQQVKjBS2eQ2Qajg/#scalars
A pre-trained model and decoding logs can be found at https://huggingface.co/yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12
When training with context size equals to 2, the WERs are
dev-ios | test-ios | comment | |
---|---|---|---|
greedy search | 5.47 | 5.81 | --epoch 25, --avg 5, --max-duration 600 |
modified beam search (beam size 4) | 5.38 | 5.61 | --epoch 25, --avg 5, --max-duration 600 |
fast beam search (set as default) | 5.36 | 5.61 | --epoch 25, --avg 5, --max-duration 600 |
The tensorboard training log can be found at https://tensorboard.dev/experiment/5AxJ8LHoSre8kDAuLp4L7Q/#scalars