icefall/egs/multi_ja_en/ASR/prepare.sh
Machiko Bailey 0855b0338a
Merge japanese-to-english multilingual branch (#1860)
* add streaming support to reazonresearch

* update README for streaming

* Update RESULTS.md

* add onnx decode

---------

Co-authored-by: root <root@KDA03.cm.cluster>
Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
Co-authored-by: root <root@KDA01.cm.cluster>
Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
2025-02-04 01:33:09 +08:00

186 lines
5.6 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
vocab_sizes=(
2000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
log "Dataset: musan"
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Soft link fbank of musan"
mkdir -p data/fbank
if [ -e ../../librispeech/ASR/data/fbank/.musan.done ]; then
cd data/fbank
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_feats) .
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_cuts.jsonl.gz) .
cd ../..
else
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 4 --stop-stage 4"
exit 1
fi
fi
log "Dataset: LibriSpeech"
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 1: Soft link fbank of LibriSpeech"
mkdir -p data/fbank
if [ -e ../../librispeech/ASR/data/fbank/.librispeech.done ]; then
cd data/fbank
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_cuts*) .
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_feats*) .
cd ../..
else
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 1 --stop-stage 1 and ../../librispeech/ASR/prepare.sh --stage 3 --stop-stage 3"
exit 1
fi
fi
log "Dataset: ReazonSpeech"
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 2: Soft link fbank of ReazonSpeech"
mkdir -p data/fbank
if [ -e ../../reazonspeech/ASR/data/manifests/.reazonspeech.done ]; then
cd data/fbank
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/reazonspeech_cuts*) .
cd ..
mkdir -p manifests
cd manifests
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/feats_*) .
cd ../..
else
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 0 --stop-stage 2"
exit 1
fi
fi
# New Stage 3: Prepare char based lang for ReazonSpeech
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
lang_char_dir=data/lang_char
log "Stage 3: Prepare char based lang for ReazonSpeech"
mkdir -p $lang_char_dir
# Prepare text
if [ ! -f $lang_char_dir/text ]; then
gunzip -c ../../reazonspeech/ASR/data/manifests/reazonspeech_supervisions_train.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# jp word segmentation for text
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
python3 ./local/text2segments.py \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
python3 ./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
python3 ./local/prepare_char.py --lang-dir data/lang_char
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Prepare Byte BPE based lang"
mkdir -p data/fbank
if [ ! -d ../../reazonspeech/ASR/data/lang_char ] && [ ! -d ./data/lang_char ]; then
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 3 --stop-stage 3"
exit 1
fi
if [ ! -d ../../librispeech/ASR/data/lang_bpe_500 ] && [ ! -d ./data/lang_bpe_500 ]; then
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 5 --stop-stage 5"
exit 1
fi
cd data/
# if [ ! -d ./lang_char ]; then
# ln -svf $(realpath ../../../reazonspeech/ASR/data/lang_char) .
# fi
if [ ! -d ./lang_bpe_500 ]; then
ln -svf $(realpath ../../../librispeech/ASR/data/lang_bpe_500) .
fi
cd ../
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
mkdir -p $lang_dir
cat data/lang_char/text data/lang_bpe_500/transcript_words.txt \
> $lang_dir/text
if [ ! -f $lang_dir/transcript_chars.txt ]; then
./local/prepare_for_bpe_model.py \
--lang-dir ./$lang_dir \
--text $lang_dir/text
fi
if [ ! -f $lang_dir/text_words_segmentation ]; then
python3 ./local/text2segments.py \
--input-file ./data/lang_char/text \
--output-file $lang_dir/text_words_segmentation
cat ./data/lang_bpe_500/transcript_words.txt \
>> $lang_dir/text_words_segmentation
fi
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
if [ ! -f $lang_dir/words.txt ]; then
python3 ./local/prepare_words.py \
--input-file $lang_dir/words_no_ids.txt \
--output-file $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bbpe.model ]; then
./local/train_bbpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
ln -svf $(realpath ../../multi_zh_en/ASR/local/validate_bpe_lexicon.py) local/
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bbpe.model
fi
done
fi
log "prepare.sh: PREPARATION DONE"