mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Merge japanese-to-english multilingual branch (#1860)
* add streaming support to reazonresearch * update README for streaming * Update RESULTS.md * add onnx decode --------- Co-authored-by: root <root@KDA03.cm.cluster> Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> Co-authored-by: root <root@KDA01.cm.cluster> Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
This commit is contained in:
parent
dd5d7e358b
commit
0855b0338a
2
.github/workflows/style_check.yml
vendored
2
.github/workflows/style_check.yml
vendored
@ -69,7 +69,7 @@ jobs:
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
black --check --diff .
|
||||
|
||||
|
||||
- name: Run isort
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
|
17
egs/multi_ja_en/ASR/README.md
Normal file
17
egs/multi_ja_en/ASR/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
# Introduction
|
||||
|
||||
A bilingual Japanese-English ASR model that utilizes ReazonSpeech, developed by the developers of ReazonSpeech.
|
||||
|
||||
**ReazonSpeech** is an open-source dataset that contains a diverse set of natural Japanese speech, collected from terrestrial television streams. It contains more than 35,000 hours of audio.
|
||||
|
||||
|
||||
# Included Training Sets
|
||||
|
||||
1. LibriSpeech (English)
|
||||
2. ReazonSpeech (Japanese)
|
||||
|
||||
|Datset| Number of hours| URL|
|
||||
|---|---:|---|
|
||||
|**TOTAL**|35,960|---|
|
||||
|LibriSpeech|960|https://www.openslr.org/12/|
|
||||
|ReazonSpeech (all) |35,000|https://huggingface.co/datasets/reazon-research/reazonspeech|
|
53
egs/multi_ja_en/ASR/RESULTS.md
Normal file
53
egs/multi_ja_en/ASR/RESULTS.md
Normal file
@ -0,0 +1,53 @@
|
||||
## Results
|
||||
|
||||
### Zipformer
|
||||
|
||||
#### Non-streaming
|
||||
|
||||
The training command is:
|
||||
|
||||
```shell
|
||||
./zipformer/train.py \
|
||||
--bilingual 1 \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp \
|
||||
--max-duration 600
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```shell
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
```
|
||||
|
||||
To export the model with onnx:
|
||||
|
||||
```shell
|
||||
./zipformer/export-onnx.py --tokens data/lang_bbpe_2000/tokens.txt --use-averaged-model 0 --epoch 35 --avg 1 --exp-dir zipformer/exp --num-encoder-layers "2,2,3,4,3,2" --downsampling-factor "1,2,4,8,4,2" --feedforward-dim "512,768,1024,1536,1024,768" --num-heads "4,4,4,8,4,4" --encoder-dim "192,256,384,512,384,256" --query-head-dim 32 --value-head-dim 12 --pos-head-dim 4 --pos-dim 48 --encoder-unmasked-dim "192,192,256,256,256,192" --cnn-module-kernel "31,31,15,15,15,31" --decoder-dim 512 --joiner-dim 512 --causal False --chunk-size "16,32,64,-1" --left-context-frames "64,128,256,-1" --fp16 True
|
||||
```
|
||||
Word Error Rates (WERs) listed below:
|
||||
|
||||
| Datasets | ReazonSpeech | ReazonSpeech | LibriSpeech | LibriSpeech |
|
||||
|----------------------|--------------|---------------|--------------------|-------------------|
|
||||
| Zipformer WER (%) | dev | test | test-clean | test-other |
|
||||
| greedy_search | 5.9 | 4.07 | 3.46 | 8.35 |
|
||||
| modified_beam_search | 4.87 | 3.61 | 3.28 | 8.07 |
|
||||
| fast_beam_search | 41.04 | 36.59 | 16.14 | 22.0 |
|
||||
|
||||
|
||||
Character Error Rates (CERs) for Japanese listed below:
|
||||
| Decoding Method | In-Distribution CER | JSUT | CommonVoice | TEDx |
|
||||
| :------------------: | :-----------------: | :--: | :---------: | :---: |
|
||||
| greedy search | 12.56 | 6.93 | 9.75 | 9.67 |
|
||||
| modified beam search | 11.59 | 6.97 | 9.55 | 9.51 |
|
||||
|
||||
Pre-trained model can be found here: https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/main
|
||||
|
146
egs/multi_ja_en/ASR/local/compute_fbank_reazonspeech.py
Normal file
146
egs/multi_ja_en/ASR/local/compute_fbank_reazonspeech.py
Normal file
@ -0,0 +1,146 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
# fmt: off
|
||||
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
RecordingSet,
|
||||
SupervisionSet,
|
||||
)
|
||||
|
||||
# fmt: on
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
RNG_SEED = 42
|
||||
concat_params = {"gap": 1.0, "maxlen": 10.0}
|
||||
|
||||
|
||||
def make_cutset_blueprints(
|
||||
manifest_dir: Path,
|
||||
) -> List[Tuple[str, CutSet]]:
|
||||
cut_sets = []
|
||||
|
||||
# Create test dataset
|
||||
logging.info("Creating test cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"test",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_test.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_test.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Create dev dataset
|
||||
logging.info("Creating dev cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"dev",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_dev.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_dev.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Create train dataset
|
||||
logging.info("Creating train cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"train",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_train.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_train.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
return cut_sets
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument("-m", "--manifest-dir", type=Path)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||
num_jobs = min(16, os.cpu_count())
|
||||
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
if (args.manifest_dir / ".reazonspeech-fbank.done").exists():
|
||||
logging.info(
|
||||
"Previous fbank computed for ReazonSpeech found. "
|
||||
f"Delete {args.manifest_dir / '.reazonspeech-fbank.done'} to allow recomputing fbank."
|
||||
)
|
||||
return
|
||||
else:
|
||||
cut_sets = make_cutset_blueprints(args.manifest_dir)
|
||||
for part, cut_set in cut_sets:
|
||||
logging.info(f"Processing {part}")
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
num_jobs=num_jobs,
|
||||
storage_path=(args.manifest_dir / f"feats_{part}").as_posix(),
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cut_set.to_file(args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz")
|
||||
|
||||
logging.info("All fbank computed for ReazonSpeech.")
|
||||
(args.manifest_dir / ".reazonspeech-fbank.done").touch()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
58
egs/multi_ja_en/ASR/local/display_manifest_statistics.py
Normal file
58
egs/multi_ja_en/ASR/local/display_manifest_statistics.py
Normal file
@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2022 The University of Electro-Communications (author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
ARGPARSE_DESCRIPTION = """
|
||||
This file displays duration statistics of utterances in a manifest.
|
||||
You can use the displayed value to choose minimum/maximum duration
|
||||
to remove short and long utterances during the training.
|
||||
|
||||
See the function `remove_short_and_long_utt()` in
|
||||
pruned_transducer_stateless5/train.py for usage.
|
||||
"""
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=ARGPARSE_DESCRIPTION,
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--manifest-dir", type=Path, help="Path to cutset manifests")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser()
|
||||
|
||||
for part in ["train", "dev"]:
|
||||
path = args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz"
|
||||
cuts: CutSet = load_manifest(path)
|
||||
|
||||
print("\n---------------------------------\n")
|
||||
print(path.name + ":")
|
||||
cuts.describe()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/multi_ja_en/ASR/local/prepare_char.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/prepare_char.py
|
66
egs/multi_ja_en/ASR/local/prepare_for_bpe_model.py
Executable file
66
egs/multi_ja_en/ASR/local/prepare_for_bpe_model.py
Executable file
@ -0,0 +1,66 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script tokenizes the training transcript by CJK characters
|
||||
# and saves the result to transcript_chars.txt, which is used
|
||||
# to train the BPE model later.
|
||||
|
||||
import argparse
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from icefall.utils import tokenize_by_ja_char
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Output directory.
|
||||
The generated transcript_chars.txt is saved to this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
help="Training transcript.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
text = Path(args.text)
|
||||
|
||||
assert lang_dir.exists() and text.exists(), f"{lang_dir} or {text} does not exist!"
|
||||
|
||||
transcript_path = lang_dir / "transcript_chars.txt"
|
||||
|
||||
with open(text, "r", encoding="utf-8") as fin:
|
||||
with open(transcript_path, "w+", encoding="utf-8") as fout:
|
||||
for line in tqdm(fin):
|
||||
fout.write(tokenize_by_ja_char(line) + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/multi_ja_en/ASR/local/prepare_lang.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang.py
|
268
egs/multi_ja_en/ASR/local/prepare_lang_bbpe.py
Executable file
268
egs/multi_ja_en/ASR/local/prepare_lang_bbpe.py
Executable file
@ -0,0 +1,268 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
This script takes as input `lang_dir`, which should contain::
|
||||
|
||||
- lang_dir/bbpe.model,
|
||||
- lang_dir/words.txt
|
||||
|
||||
and generates the following files in the directory `lang_dir`:
|
||||
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
- L.pt
|
||||
- L_disambig.pt
|
||||
- tokens.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
add_disambig_symbols,
|
||||
add_self_loops,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
from icefall.byte_utils import byte_encode
|
||||
from icefall.utils import str2bool, tokenize_by_ja_char
|
||||
|
||||
|
||||
def lexicon_to_fst_no_sil(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format).
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||
|
||||
arcs = []
|
||||
|
||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||
assert token2id["<blk>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
for word, pieces in lexicon:
|
||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
pieces = [token2id[i] for i in pieces]
|
||||
|
||||
for i in range(len(pieces) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last piece of this word
|
||||
i = len(pieces) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def generate_lexicon(
|
||||
model_file: str, words: List[str], oov: str
|
||||
) -> Tuple[Lexicon, Dict[str, int]]:
|
||||
"""Generate a lexicon from a BPE model.
|
||||
|
||||
Args:
|
||||
model_file:
|
||||
Path to a sentencepiece model.
|
||||
words:
|
||||
A list of strings representing words.
|
||||
oov:
|
||||
The out of vocabulary word in lexicon.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
- A dict whose keys are words and values are the corresponding
|
||||
word pieces.
|
||||
- A dict representing the token symbol, mapping from tokens to IDs.
|
||||
"""
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(model_file))
|
||||
|
||||
# Convert word to word piece IDs instead of word piece strings
|
||||
# to avoid OOV tokens.
|
||||
encode_words = [byte_encode(tokenize_by_ja_char(w)) for w in words]
|
||||
words_pieces_ids: List[List[int]] = sp.encode(encode_words, out_type=int)
|
||||
|
||||
# Now convert word piece IDs back to word piece strings.
|
||||
words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids]
|
||||
|
||||
lexicon = []
|
||||
for word, pieces in zip(words, words_pieces):
|
||||
lexicon.append((word, pieces))
|
||||
|
||||
lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())]))
|
||||
|
||||
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
||||
|
||||
return lexicon, token2id
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain the bpe.model and words.txt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--oov",
|
||||
type=str,
|
||||
default="<UNK>",
|
||||
help="The out of vocabulary word in lexicon.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True for debugging, which will generate
|
||||
a visualization of the lexicon FST.
|
||||
|
||||
Caution: If your lexicon contains hundreds of thousands
|
||||
of lines, please set it to False!
|
||||
|
||||
See "test/test_bpe_lexicon.py" for usage.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
model_file = lang_dir / "bbpe.model"
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
words = word_sym_table.symbols
|
||||
|
||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", args.oov, "#0", "<s>", "</s>"]
|
||||
|
||||
for w in excluded:
|
||||
if w in words:
|
||||
words.remove(w)
|
||||
|
||||
lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
next_token_id = max(token_sym_table.values()) + 1
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in token_sym_table
|
||||
token_sym_table[disambig] = next_token_id
|
||||
next_token_id += 1
|
||||
|
||||
word_sym_table.add("#0")
|
||||
word_sym_table.add("<s>")
|
||||
word_sym_table.add("</s>")
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||
|
||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst_no_sil(
|
||||
lexicon,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst_no_sil(
|
||||
lexicon_disambig,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if args.debug:
|
||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
L.labels_sym = labels_sym
|
||||
L.aux_labels_sym = aux_labels_sym
|
||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||
|
||||
L_disambig.labels_sym = labels_sym
|
||||
L_disambig.aux_labels_sym = aux_labels_sym
|
||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
75
egs/multi_ja_en/ASR/local/prepare_lang_char.py
Normal file
75
egs/multi_ja_en/ASR/local/prepare_lang_char.py
Normal file
@ -0,0 +1,75 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"train_cut", metavar="train-cut", type=Path, help="Path to the train cut"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default=Path("data/lang_char"),
|
||||
help=(
|
||||
"Name of lang dir. "
|
||||
"If not set, this will default to lang_char_{trans-mode}"
|
||||
),
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(
|
||||
format=("%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"),
|
||||
level=logging.INFO,
|
||||
)
|
||||
|
||||
sysdef_string = set(["<blk>", "<unk>", "<sos/eos>", " "])
|
||||
|
||||
token_set = set()
|
||||
logging.info(f"Creating vocabulary from {args.train_cut}.")
|
||||
train_cut: CutSet = CutSet.from_file(args.train_cut)
|
||||
for cut in train_cut:
|
||||
for sup in cut.supervisions:
|
||||
token_set.update(sup.text)
|
||||
|
||||
token_set = ["<blk>"] + sorted(token_set - sysdef_string) + ["<unk>", "<sos/eos>"]
|
||||
args.lang_dir.mkdir(parents=True, exist_ok=True)
|
||||
(args.lang_dir / "tokens.txt").write_text(
|
||||
"\n".join(f"{t}\t{i}" for i, t in enumerate(token_set))
|
||||
)
|
||||
|
||||
(args.lang_dir / "lang_type").write_text("char")
|
||||
logging.info("Done.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/multi_ja_en/ASR/local/prepare_words.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_words.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell2/ASR/local/prepare_words.py
|
95
egs/multi_ja_en/ASR/local/text2segments.py
Normal file
95
egs/multi_ja_en/ASR/local/text2segments.py
Normal file
@ -0,0 +1,95 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input "text", which refers to the transcript file:
|
||||
- text
|
||||
and generates the output file with word segmentation implemented using MeCab:
|
||||
- text_words_segmentation
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from multiprocessing import Pool
|
||||
|
||||
import MeCab
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Japanese Word Segmentation for text",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-process",
|
||||
"-n",
|
||||
default=20,
|
||||
type=int,
|
||||
help="the number of processes",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-file",
|
||||
"-i",
|
||||
default="data/lang_char/text",
|
||||
type=str,
|
||||
help="the input text file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-file",
|
||||
"-o",
|
||||
default="data/lang_char/text_words_segmentation",
|
||||
type=str,
|
||||
help="the text implemented with word segmentation using MeCab",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def cut(lines):
|
||||
if lines is not None:
|
||||
mecab = MeCab.Tagger("-Owakati") # Use '-Owakati' option for word segmentation
|
||||
segmented_line = mecab.parse(lines).strip()
|
||||
return segmented_line.split() # Return as a list of words
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
num_process = args.num_process
|
||||
input_file = args.input_file
|
||||
output_file = args.output_file
|
||||
|
||||
with open(input_file, "r", encoding="utf-8") as fr:
|
||||
lines = fr.readlines()
|
||||
|
||||
with Pool(processes=num_process) as p:
|
||||
new_lines = list(tqdm(p.imap(cut, lines), total=len(lines)))
|
||||
|
||||
with open(output_file, "w", encoding="utf-8") as fw:
|
||||
for line in new_lines:
|
||||
fw.write(" ".join(line) + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
177
egs/multi_ja_en/ASR/local/text2token.py
Executable file
177
egs/multi_ja_en/ASR/local/text2token.py
Executable file
@ -0,0 +1,177 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2017 Johns Hopkins University (authors: Shinji Watanabe)
|
||||
# 2022 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import codecs
|
||||
import re
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
from romkan import to_roma # Replace with python-romkan v0.2.1
|
||||
|
||||
is_python2 = sys.version_info[0] == 2
|
||||
|
||||
|
||||
def exist_or_not(i, match_pos):
|
||||
start_pos = None
|
||||
end_pos = None
|
||||
for pos in match_pos:
|
||||
if pos[0] <= i < pos[1]:
|
||||
start_pos = pos[0]
|
||||
end_pos = pos[1]
|
||||
break
|
||||
|
||||
return start_pos, end_pos
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="convert raw text to tokenized text",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--nchar",
|
||||
"-n",
|
||||
default=1,
|
||||
type=int,
|
||||
help="number of characters to split, i.e., \
|
||||
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||
)
|
||||
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||
parser.add_argument(
|
||||
"--non-lang-syms",
|
||||
"-l",
|
||||
default=None,
|
||||
type=str,
|
||||
help="list of non-linguistic symbols, e.g., <NOISE> etc.",
|
||||
)
|
||||
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||
parser.add_argument(
|
||||
"--trans_type",
|
||||
"-t",
|
||||
type=str,
|
||||
default="char",
|
||||
choices=["char", "romaji"],
|
||||
help="Transcript type. char/romaji",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def token2id(
|
||||
texts, token_table, token_type: str = "romaji", oov: str = "<unk>"
|
||||
) -> List[List[int]]:
|
||||
"""Convert token to id.
|
||||
Args:
|
||||
texts:
|
||||
The input texts, it refers to the Japanese text here.
|
||||
token_table:
|
||||
The token table is built based on "data/lang_xxx/token.txt"
|
||||
token_type:
|
||||
The type of token, such as "romaji".
|
||||
oov:
|
||||
Out of vocabulary token. When a word(token) in the transcript
|
||||
does not exist in the token list, it is replaced with `oov`.
|
||||
|
||||
Returns:
|
||||
The list of ids for the input texts.
|
||||
"""
|
||||
if texts is None:
|
||||
raise ValueError("texts can't be None!")
|
||||
else:
|
||||
oov_id = token_table[oov]
|
||||
ids: List[List[int]] = []
|
||||
for text in texts:
|
||||
chars_list = list(str(text))
|
||||
if token_type == "romaji":
|
||||
text = [to_roma(c) for c in chars_list]
|
||||
sub_ids = [
|
||||
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||
]
|
||||
ids.append(sub_ids)
|
||||
return ids
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
rs = []
|
||||
if args.non_lang_syms is not None:
|
||||
with codecs.open(args.non_lang_syms, "r", encoding="utf-8") as f:
|
||||
nls = [x.rstrip() for x in f.readlines()]
|
||||
rs = [re.compile(re.escape(x)) for x in nls]
|
||||
|
||||
if args.text:
|
||||
f = codecs.open(args.text, encoding="utf-8")
|
||||
else:
|
||||
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||
|
||||
sys.stdout = codecs.getwriter("utf-8")(
|
||||
sys.stdout if is_python2 else sys.stdout.buffer
|
||||
)
|
||||
line = f.readline()
|
||||
n = args.nchar
|
||||
while line:
|
||||
x = line.split()
|
||||
print(" ".join(x[: args.skip_ncols]), end=" ")
|
||||
a = " ".join(x[args.skip_ncols :]) # noqa E203
|
||||
|
||||
# get all matched positions
|
||||
match_pos = []
|
||||
for r in rs:
|
||||
i = 0
|
||||
while i >= 0:
|
||||
m = r.search(a, i)
|
||||
if m:
|
||||
match_pos.append([m.start(), m.end()])
|
||||
i = m.end()
|
||||
else:
|
||||
break
|
||||
if len(match_pos) > 0:
|
||||
chars = []
|
||||
i = 0
|
||||
while i < len(a):
|
||||
start_pos, end_pos = exist_or_not(i, match_pos)
|
||||
if start_pos is not None:
|
||||
chars.append(a[start_pos:end_pos])
|
||||
i = end_pos
|
||||
else:
|
||||
chars.append(a[i])
|
||||
i += 1
|
||||
a = chars
|
||||
|
||||
if args.trans_type == "romaji":
|
||||
a = [to_roma(c) for c in list(str(a))]
|
||||
|
||||
a = [a[j : j + n] for j in range(0, len(a), n)] # noqa E203
|
||||
|
||||
a_flat = []
|
||||
for z in a:
|
||||
a_flat.append("".join(z))
|
||||
|
||||
a_chars = "".join(a_flat)
|
||||
print(a_chars)
|
||||
line = f.readline()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
114
egs/multi_ja_en/ASR/local/train_bbpe_model.py
Executable file
114
egs/multi_ja_en/ASR/local/train_bbpe_model.py
Executable file
@ -0,0 +1,114 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
#
|
||||
# Due to an issue reported in
|
||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||
#
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
import argparse
|
||||
import re
|
||||
import shutil
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
from icefall import byte_encode
|
||||
from icefall.utils import tokenize_by_ja_char
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
The generated bpe.model is saved to this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transcript",
|
||||
type=str,
|
||||
help="Training transcript.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
help="Vocabulary size for BPE training",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def _convert_to_bchar(in_path: str, out_path: str):
|
||||
with open(out_path, "w") as f:
|
||||
for line in open(in_path, "r").readlines():
|
||||
f.write(byte_encode(tokenize_by_ja_char(line)) + "\n")
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
vocab_size = args.vocab_size
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
model_type = "unigram"
|
||||
|
||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if model_file.is_file():
|
||||
print(f"{model_file} exists - skipping")
|
||||
return
|
||||
|
||||
character_coverage = 1.0
|
||||
input_sentence_size = 100000000
|
||||
|
||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||
unk_id = len(user_defined_symbols)
|
||||
# Note: unk_id is fixed to 2.
|
||||
# If you change it, you should also change other
|
||||
# places that are using it.
|
||||
|
||||
temp = tempfile.NamedTemporaryFile()
|
||||
train_text = temp.name
|
||||
|
||||
_convert_to_bchar(args.transcript, train_text)
|
||||
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
|
||||
shutil.copyfile(model_file, f"{lang_dir}/bbpe.model")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
355
egs/multi_ja_en/ASR/local/utils/asr_datamodule.py
Normal file
355
egs/multi_ja_en/ASR/local/utils/asr_datamodule.py
Normal file
@ -0,0 +1,355 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class ReazonSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/dev/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
|
||||
transforms = []
|
||||
input_transforms = []
|
||||
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.info("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_test.jsonl.gz"
|
||||
)
|
252
egs/multi_ja_en/ASR/local/utils/tokenizer.py
Normal file
252
egs/multi_ja_en/ASR/local/utils/tokenizer.py
Normal file
@ -0,0 +1,252 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Callable, List, Union
|
||||
|
||||
import sentencepiece as spm
|
||||
from k2 import SymbolTable
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
text2word: Callable[[str], List[str]]
|
||||
|
||||
@staticmethod
|
||||
def add_arguments(parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(title="Lang related options")
|
||||
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||
|
||||
group.add_argument(
|
||||
"--lang-type",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Either 'bpe' or 'char'. If not provided, it expects lang_dir/lang_type to exists. "
|
||||
"Note: 'bpe' directly loads sentencepiece.SentencePieceProcessor"
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def Load(lang_dir: Path, lang_type="", oov="<unk>"):
|
||||
|
||||
if not lang_type:
|
||||
assert (lang_dir / "lang_type").exists(), "lang_type not specified."
|
||||
lang_type = (lang_dir / "lang_type").read_text().strip()
|
||||
|
||||
tokenizer = None
|
||||
|
||||
if lang_type == "bpe":
|
||||
assert (
|
||||
lang_dir / "bpe.model"
|
||||
).exists(), f"No BPE .model could be found in {lang_dir}."
|
||||
tokenizer = spm.SentencePieceProcessor()
|
||||
tokenizer.Load(str(lang_dir / "bpe.model"))
|
||||
elif lang_type == "char":
|
||||
tokenizer = CharTokenizer(lang_dir, oov=oov)
|
||||
else:
|
||||
raise NotImplementedError(f"{lang_type} not supported at the moment.")
|
||||
|
||||
return tokenizer
|
||||
|
||||
load = Load
|
||||
|
||||
def PieceToId(self, piece: str) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
piece_to_id = PieceToId
|
||||
|
||||
def IdToPiece(self, id: int) -> str:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
id_to_piece = IdToPiece
|
||||
|
||||
def GetPieceSize(self) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
get_piece_size = GetPieceSize
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.get_piece_size()
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsIds(self, input: str) -> List[int]:
|
||||
return self.EncodeAsIdsBatch([input])[0]
|
||||
|
||||
def EncodeAsPieces(self, input: str) -> List[str]:
|
||||
return self.EncodeAsPiecesBatch([input])[0]
|
||||
|
||||
def Encode(
|
||||
self, input: Union[str, List[str]], out_type=int
|
||||
) -> Union[List, List[List]]:
|
||||
if not input:
|
||||
return []
|
||||
|
||||
if isinstance(input, list):
|
||||
if out_type is int:
|
||||
return self.EncodeAsIdsBatch(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPiecesBatch(input)
|
||||
|
||||
if out_type is int:
|
||||
return self.EncodeAsIds(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPieces(input)
|
||||
|
||||
encode = Encode
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodeIds(self, input: List[int]) -> str:
|
||||
return self.DecodeIdsBatch([input])[0]
|
||||
|
||||
def DecodePieces(self, input: List[str]) -> str:
|
||||
return self.DecodePiecesBatch([input])[0]
|
||||
|
||||
def Decode(
|
||||
self,
|
||||
input: Union[int, List[int], List[str], List[List[int]], List[List[str]]],
|
||||
) -> Union[List[str], str]:
|
||||
|
||||
if not input:
|
||||
return ""
|
||||
|
||||
if isinstance(input, int):
|
||||
return self.id_to_piece(input)
|
||||
elif isinstance(input, str):
|
||||
raise TypeError(
|
||||
"Unlike spm.SentencePieceProcessor, cannot decode from type str."
|
||||
)
|
||||
|
||||
if isinstance(input[0], list):
|
||||
if not input[0] or isinstance(input[0][0], int):
|
||||
return self.DecodeIdsBatch(input)
|
||||
|
||||
if isinstance(input[0][0], str):
|
||||
return self.DecodePiecesBatch(input)
|
||||
|
||||
if isinstance(input[0], int):
|
||||
return self.DecodeIds(input)
|
||||
if isinstance(input[0], str):
|
||||
return self.DecodePieces(input)
|
||||
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
decode = Decode
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def Split(self, input: Union[List[str], str]) -> Union[List[List[str]], List[str]]:
|
||||
if isinstance(input, list):
|
||||
return self.SplitBatch(input)
|
||||
elif isinstance(input, str):
|
||||
return self.SplitBatch([input])[0]
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
split = Split
|
||||
|
||||
|
||||
class CharTokenizer(Tokenizer):
|
||||
def __init__(self, lang_dir: Path, oov="<unk>", sep=""):
|
||||
assert (
|
||||
lang_dir / "tokens.txt"
|
||||
).exists(), f"tokens.txt could not be found in {lang_dir}."
|
||||
token_table = SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
assert (
|
||||
"#0" not in token_table
|
||||
), "This tokenizer does not support disambig symbols."
|
||||
self._id2sym = token_table._id2sym
|
||||
self._sym2id = token_table._sym2id
|
||||
self.oov = oov
|
||||
self.oov_id = self._sym2id[oov]
|
||||
self.sep = sep
|
||||
if self.sep:
|
||||
self.text2word = lambda x: x.split(self.sep)
|
||||
else:
|
||||
self.text2word = lambda x: list(x.replace(" ", ""))
|
||||
|
||||
def piece_to_id(self, piece: str) -> int:
|
||||
try:
|
||||
return self._sym2id[piece]
|
||||
except KeyError:
|
||||
return self.oov_id
|
||||
|
||||
def id_to_piece(self, id: int) -> str:
|
||||
return self._id2sym[id]
|
||||
|
||||
def get_piece_size(self) -> int:
|
||||
return len(self._sym2id)
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
return [[self.piece_to_id(i) for i in self.text2word(text)] for text in input]
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [
|
||||
[i if i in self._sym2id else self.oov for i in self.text2word(text)]
|
||||
for text in input
|
||||
]
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
return [self.sep.join(self.id_to_piece(i) for i in text) for text in input]
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
return [self.sep.join(text) for text in input]
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [self.text2word(text) for text in input]
|
||||
|
||||
|
||||
def test_CharTokenizer():
|
||||
test_single_string = "こんにちは"
|
||||
test_multiple_string = [
|
||||
"今日はいい天気ですよね",
|
||||
"諏訪湖は綺麗でしょう",
|
||||
"这在词表外",
|
||||
"分かち 書き に し た 文章 です",
|
||||
"",
|
||||
]
|
||||
test_empty_string = ""
|
||||
sp = Tokenizer.load(Path("lang_char"), "char", oov="<unk>")
|
||||
splitter = sp.split
|
||||
print(sp.encode(test_single_string, out_type=str))
|
||||
print(sp.encode(test_single_string, out_type=int))
|
||||
print(sp.encode(test_multiple_string, out_type=str))
|
||||
print(sp.encode(test_multiple_string, out_type=int))
|
||||
print(sp.encode(test_empty_string, out_type=str))
|
||||
print(sp.encode(test_empty_string, out_type=int))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=int)))
|
||||
print(splitter(test_single_string))
|
||||
print(splitter(test_multiple_string))
|
||||
print(splitter(test_empty_string))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_CharTokenizer()
|
1
egs/multi_ja_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
1
egs/multi_ja_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/validate_bpe_lexicon.py
|
96
egs/multi_ja_en/ASR/local/validate_manifest.py
Normal file
96
egs/multi_ja_en/ASR/local/validate_manifest.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script checks the following assumptions of the generated manifest:
|
||||
|
||||
- Single supervision per cut
|
||||
- Supervision time bounds are within cut time bounds
|
||||
|
||||
We will add more checks later if needed.
|
||||
|
||||
Usage example:
|
||||
|
||||
python3 ./local/validate_manifest.py \
|
||||
./data/fbank/librispeech_cuts_train-clean-100.jsonl.gz
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest",
|
||||
type=Path,
|
||||
help="Path to the manifest file",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def validate_one_supervision_per_cut(c: Cut):
|
||||
if len(c.supervisions) != 1:
|
||||
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
||||
|
||||
|
||||
def validate_supervision_and_cut_time_bounds(c: Cut):
|
||||
s = c.supervisions[0]
|
||||
|
||||
# Removed because when the cuts were trimmed from supervisions,
|
||||
# the start time of the supervision can be lesser than cut start time.
|
||||
# https://github.com/lhotse-speech/lhotse/issues/813
|
||||
# if s.start < c.start:
|
||||
# raise ValueError(
|
||||
# f"{c.id}: Supervision start time {s.start} is less "
|
||||
# f"than cut start time {c.start}"
|
||||
# )
|
||||
|
||||
if s.end > c.end:
|
||||
raise ValueError(
|
||||
f"{c.id}: Supervision end time {s.end} is larger "
|
||||
f"than cut end time {c.end}"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
manifest = Path(args.manifest)
|
||||
logging.info(f"Validating {manifest}")
|
||||
|
||||
assert manifest.is_file(), f"{manifest} does not exist"
|
||||
cut_set = load_manifest(manifest)
|
||||
assert isinstance(cut_set, CutSet)
|
||||
|
||||
for c in cut_set:
|
||||
validate_one_supervision_per_cut(c)
|
||||
validate_supervision_and_cut_time_bounds(c)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
185
egs/multi_ja_en/ASR/prepare.sh
Executable file
185
egs/multi_ja_en/ASR/prepare.sh
Executable file
@ -0,0 +1,185 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
vocab_sizes=(
|
||||
2000
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
log "Dataset: musan"
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Soft link fbank of musan"
|
||||
mkdir -p data/fbank
|
||||
if [ -e ../../librispeech/ASR/data/fbank/.musan.done ]; then
|
||||
cd data/fbank
|
||||
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_feats) .
|
||||
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_cuts.jsonl.gz) .
|
||||
cd ../..
|
||||
else
|
||||
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 4 --stop-stage 4"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
log "Dataset: LibriSpeech"
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 1: Soft link fbank of LibriSpeech"
|
||||
mkdir -p data/fbank
|
||||
if [ -e ../../librispeech/ASR/data/fbank/.librispeech.done ]; then
|
||||
cd data/fbank
|
||||
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_cuts*) .
|
||||
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_feats*) .
|
||||
cd ../..
|
||||
else
|
||||
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 1 --stop-stage 1 and ../../librispeech/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
log "Dataset: ReazonSpeech"
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 2: Soft link fbank of ReazonSpeech"
|
||||
mkdir -p data/fbank
|
||||
if [ -e ../../reazonspeech/ASR/data/manifests/.reazonspeech.done ]; then
|
||||
cd data/fbank
|
||||
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/reazonspeech_cuts*) .
|
||||
cd ..
|
||||
mkdir -p manifests
|
||||
cd manifests
|
||||
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/feats_*) .
|
||||
cd ../..
|
||||
else
|
||||
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 0 --stop-stage 2"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# New Stage 3: Prepare char based lang for ReazonSpeech
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
lang_char_dir=data/lang_char
|
||||
log "Stage 3: Prepare char based lang for ReazonSpeech"
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
# Prepare text
|
||||
if [ ! -f $lang_char_dir/text ]; then
|
||||
gunzip -c ../../reazonspeech/ASR/data/manifests/reazonspeech_supervisions_train.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' \
|
||||
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
||||
fi
|
||||
|
||||
# jp word segmentation for text
|
||||
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
||||
python3 ./local/text2segments.py \
|
||||
--input-file $lang_char_dir/text \
|
||||
--output-file $lang_char_dir/text_words_segmentation
|
||||
fi
|
||||
|
||||
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
|
||||
|
||||
if [ ! -f $lang_char_dir/words.txt ]; then
|
||||
python3 ./local/prepare_words.py \
|
||||
--input-file $lang_char_dir/words_no_ids.txt \
|
||||
--output-file $lang_char_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
||||
python3 ./local/prepare_char.py --lang-dir data/lang_char
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Prepare Byte BPE based lang"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -d ../../reazonspeech/ASR/data/lang_char ] && [ ! -d ./data/lang_char ]; then
|
||||
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d ../../librispeech/ASR/data/lang_bpe_500 ] && [ ! -d ./data/lang_bpe_500 ]; then
|
||||
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 5 --stop-stage 5"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cd data/
|
||||
# if [ ! -d ./lang_char ]; then
|
||||
# ln -svf $(realpath ../../../reazonspeech/ASR/data/lang_char) .
|
||||
# fi
|
||||
if [ ! -d ./lang_bpe_500 ]; then
|
||||
ln -svf $(realpath ../../../librispeech/ASR/data/lang_bpe_500) .
|
||||
fi
|
||||
cd ../
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bbpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
cat data/lang_char/text data/lang_bpe_500/transcript_words.txt \
|
||||
> $lang_dir/text
|
||||
|
||||
if [ ! -f $lang_dir/transcript_chars.txt ]; then
|
||||
./local/prepare_for_bpe_model.py \
|
||||
--lang-dir ./$lang_dir \
|
||||
--text $lang_dir/text
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/text_words_segmentation ]; then
|
||||
python3 ./local/text2segments.py \
|
||||
--input-file ./data/lang_char/text \
|
||||
--output-file $lang_dir/text_words_segmentation
|
||||
|
||||
cat ./data/lang_bpe_500/transcript_words.txt \
|
||||
>> $lang_dir/text_words_segmentation
|
||||
fi
|
||||
|
||||
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
|
||||
|
||||
if [ ! -f $lang_dir/words.txt ]; then
|
||||
python3 ./local/prepare_words.py \
|
||||
--input-file $lang_dir/words_no_ids.txt \
|
||||
--output-file $lang_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bbpe.model ]; then
|
||||
./local/train_bbpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/text
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
|
||||
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
ln -svf $(realpath ../../multi_zh_en/ASR/local/validate_bpe_lexicon.py) local/
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bbpe.model
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
log "prepare.sh: PREPARATION DONE"
|
1
egs/multi_ja_en/ASR/shared
Symbolic link
1
egs/multi_ja_en/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
1
egs/multi_ja_en/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../local/utils/asr_datamodule.py
|
1
egs/multi_ja_en/ASR/zipformer/beam_search.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/beam_search.py
|
1
egs/multi_ja_en/ASR/zipformer/ctc_decode.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/ctc_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/ctc_decode.py
|
792
egs/multi_ja_en/ASR/zipformer/decode.py
Executable file
792
egs/multi_ja_en/ASR/zipformer/decode.py
Executable file
@ -0,0 +1,792 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall import byte_encode, smart_byte_decode
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
tokenize_by_ja_char,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bbpe_2000/bbpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bbpe_2000",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(smart_byte_decode(hyp).split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(smart_byte_decode(hyp).split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(byte_encode(tokenize_by_ja_char(supervisions["text"]))),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(smart_byte_decode(hyp).split())
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(smart_byte_decode(hyp).split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(smart_byte_decode(hyp).split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(smart_byte_decode(sp.decode(hyp)).split())
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [tokenize_by_ja_char(str(text)).split() for text in texts]
|
||||
# print(texts)
|
||||
# exit()
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
this_batch.append((cut_id, ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
word_table = None
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
data_module = ReazonSpeechAsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||
)
|
||||
return T > 0
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dl = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
logging.info(f"Start decoding test set: {test_set}")
|
||||
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/multi_ja_en/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/multi_ja_en/ASR/zipformer/decoder.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1261
egs/multi_ja_en/ASR/zipformer/do_not_use_it_directly.py
Executable file
1261
egs/multi_ja_en/ASR/zipformer/do_not_use_it_directly.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_ja_en/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/multi_ja_en/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/multi_ja_en/ASR/zipformer/export.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/multi_ja_en/ASR/zipformer/generate_averaged_model.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/generate_averaged_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/generate_averaged_model.py
|
1
egs/multi_ja_en/ASR/zipformer/joiner.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/multi_ja_en/ASR/zipformer/model.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
143
egs/multi_ja_en/ASR/zipformer/multi_dataset.py
Normal file
143
egs/multi_ja_en/ASR/zipformer/multi_dataset.py
Normal file
@ -0,0 +1,143 @@
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from lhotse import CutSet, load_manifest_lazy
|
||||
|
||||
|
||||
class MultiDataset:
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files:
|
||||
- reazonspeech_cuts_train.jsonl.gz
|
||||
- librispeech_cuts_train-clean-100.jsonl.gz
|
||||
- librispeech_cuts_train-clean-360.jsonl.gz
|
||||
- librispeech_cuts_train-other-500.jsonl.gz
|
||||
"""
|
||||
self.fbank_dir = Path(args.manifest_dir)
|
||||
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset train cuts")
|
||||
|
||||
logging.info("Loading Reazonspeech in lazy mode")
|
||||
reazonspeech_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "reazonspeech_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
logging.info("Loading LibriSpeech in lazy mode")
|
||||
train_clean_100_cuts = self.train_clean_100_cuts()
|
||||
train_clean_360_cuts = self.train_clean_360_cuts()
|
||||
train_other_500_cuts = self.train_other_500_cuts()
|
||||
|
||||
return CutSet.mux(
|
||||
reazonspeech_cuts,
|
||||
train_clean_100_cuts,
|
||||
train_clean_360_cuts,
|
||||
train_other_500_cuts,
|
||||
weights=[
|
||||
len(reazonspeech_cuts),
|
||||
len(train_clean_100_cuts),
|
||||
len(train_clean_360_cuts),
|
||||
len(train_other_500_cuts),
|
||||
],
|
||||
)
|
||||
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset dev cuts")
|
||||
|
||||
logging.info("Loading Reazonspeech DEV set in lazy mode")
|
||||
reazonspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
logging.info("Loading LibriSpeech DEV set in lazy mode")
|
||||
dev_clean_cuts = self.dev_clean_cuts()
|
||||
dev_other_cuts = self.dev_other_cuts()
|
||||
|
||||
return CutSet.mux(
|
||||
reazonspeech_dev_cuts,
|
||||
dev_clean_cuts,
|
||||
dev_other_cuts,
|
||||
weights=[
|
||||
len(reazonspeech_dev_cuts),
|
||||
len(dev_clean_cuts),
|
||||
len(dev_other_cuts),
|
||||
],
|
||||
)
|
||||
|
||||
def test_cuts(self) -> Dict[str, CutSet]:
|
||||
logging.info("About to get multidataset test cuts")
|
||||
|
||||
logging.info("Loading Reazonspeech set in lazy mode")
|
||||
reazonspeech_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "reazonspeech_cuts_test.jsonl.gz"
|
||||
)
|
||||
reazonspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
logging.info("Loading LibriSpeech set in lazy mode")
|
||||
test_clean_cuts = self.test_clean_cuts()
|
||||
test_other_cuts = self.test_other_cuts()
|
||||
|
||||
test_cuts = {
|
||||
"reazonspeech_test": reazonspeech_test_cuts,
|
||||
"reazonspeech_dev": reazonspeech_dev_cuts,
|
||||
"librispeech_test_clean": test_clean_cuts,
|
||||
"librispeech_test_other": test_other_cuts,
|
||||
}
|
||||
|
||||
return test_cuts
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_100_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-100 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_360_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-360 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_other_500_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-other-500 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.fbank_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||
)
|
1
egs/multi_ja_en/ASR/zipformer/my_profile.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/my_profile.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/my_profile.py
|
1
egs/multi_ja_en/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/multi_ja_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/multi_ja_en/ASR/zipformer/optim.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/multi_ja_en/ASR/zipformer/pretrained.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/multi_ja_en/ASR/zipformer/scaling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/multi_ja_en/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/multi_ja_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
935
egs/multi_ja_en/ASR/zipformer/streaming_decode.py
Executable file
935
egs/multi_ja_en/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,935 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
|
||||
Monolingual:
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp-large \
|
||||
--lang data/lang_char \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192
|
||||
|
||||
Bilingual:
|
||||
./zipformer/streaming_decode.py \
|
||||
--bilingual 1 \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp-large \
|
||||
--lang data/lang_char \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
import subprocess as sp
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from tokenizer import Tokenizer
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bilingual",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether the model is bilingual or not. 1 = bilingual.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=model.device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=model.device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
# finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: Tokenizer,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
# - this is to avoid sending [-32k,+32k] signal in...
|
||||
# - some lhotse AudioTransform classes can make the signal
|
||||
# be out of range [-1, 1], hence the tolerance 10
|
||||
assert (
|
||||
np.abs(audio).max() <= 10
|
||||
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
|
||||
if not finished_streams:
|
||||
print("No finished streams, breaking the loop")
|
||||
break
|
||||
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
try:
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
except IndexError as e:
|
||||
print(f"IndexError: {e}")
|
||||
print(f"decode_streams length: {len(decode_streams)}")
|
||||
print(f"finished_streams: {finished_streams}")
|
||||
print(f"i: {i}")
|
||||
continue
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
torch.cuda.synchronize()
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||
Tokenizer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
if not params.bilingual:
|
||||
sp = Tokenizer.load(params.lang, params.lang_type)
|
||||
else:
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||
|
||||
if params.bilingual:
|
||||
multi_dataset = MultiDataset(args)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||
)
|
||||
return T > 0
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_cuts = [test_sets_cuts[k] for k in test_sets]
|
||||
|
||||
valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||
test_cuts = reazonspeech_corpus.test_cuts()
|
||||
|
||||
test_sets = ["valid", "test"]
|
||||
test_cuts = [valid_cuts, test_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
logging.info(f"Decoding {test_set}")
|
||||
if params.bilingual:
|
||||
test_cut = test_cut.filter(remove_short_utt)
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/multi_ja_en/ASR/zipformer/subsampling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1
egs/multi_ja_en/ASR/zipformer/test_scaling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/test_scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_scaling.py
|
1
egs/multi_ja_en/ASR/zipformer/test_subsampling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/test_subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_subsampling.py
|
1
egs/multi_ja_en/ASR/zipformer/tokenizer.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/tokenizer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../local/utils/tokenizer.py
|
1462
egs/multi_ja_en/ASR/zipformer/train.py
Executable file
1462
egs/multi_ja_en/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_ja_en/ASR/zipformer/zipformer.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -47,3 +47,41 @@ The decoding command is:
|
||||
--blank-penalty 0
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
|
||||
We have not completed evaluation of our models yet and will add evaluation results here once it's completed.
|
||||
|
||||
The training command is:
|
||||
```shell
|
||||
./zipformer/train.py \
|
||||
--world-size 8 \
|
||||
--num-epochs 40 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp-large \
|
||||
--causal 1 \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
--lang data/lang_char \
|
||||
--max-duration 1600
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```shell
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp-large \
|
||||
--lang data/lang_char \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192
|
||||
```
|
||||
|
||||
|
@ -12,7 +12,6 @@ class Tokenizer:
|
||||
@staticmethod
|
||||
def add_arguments(parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(title="Lang related options")
|
||||
|
||||
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||
|
||||
group.add_argument(
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||
#
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -17,28 +18,23 @@
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--decode-chunk-len 32 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--decoding_method greedy_search \
|
||||
--lang data/lang_char \
|
||||
--num-decode-streams 2000
|
||||
./zipformer/streaming_decode.py--epoch 28 --avg 15 --causal 1 --chunk-size 32 --left-context-frames 256 --exp-dir ./zipformer/exp-large --lang data/lang_char --num-encoder-layers 2,2,4,5,4,2 --feedforward-dim 512,768,1536,2048,1536,768 --encoder-dim 192,256,512,768,512,256 --encoder-unmasked-dim 192,192,256,320,256,192
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
import subprocess as sp
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||
from decode import save_results
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
@ -48,9 +44,9 @@ from streaming_beam_search import (
|
||||
modified_beam_search,
|
||||
)
|
||||
from tokenizer import Tokenizer
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
from zipformer import stack_states, unstack_states
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
@ -58,7 +54,14 @@ from icefall.checkpoint import (
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
@ -73,7 +76,7 @@ def get_parser():
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
@ -87,12 +90,6 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--gpu",
|
||||
type=int,
|
||||
default=0,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
@ -116,7 +113,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
@ -127,6 +124,13 @@ def get_parser():
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
@ -138,14 +142,6 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-graph",
|
||||
type=str,
|
||||
default="",
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
@ -157,7 +153,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4.0,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
@ -194,18 +190,235 @@ def get_parser():
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--res-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="The path to save results.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
@ -224,27 +437,32 @@ def decode_one_chunk(
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
# pdb.set_trace()
|
||||
# print(model)
|
||||
# print(model.device)
|
||||
# device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
feature_lens = torch.tensor(feature_lens, device=model.device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
||||
# factor in encoders is 8.
|
||||
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
||||
tail_length = 23
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
@ -256,12 +474,14 @@ def decode_one_chunk(
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
@ -269,6 +489,7 @@ def decode_one_chunk(
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=model.device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
@ -295,8 +516,9 @@ def decode_one_chunk(
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
# if decode_streams[i].done:
|
||||
# finished_streams.append(i)
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
@ -305,7 +527,7 @@ def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: Tokenizer,
|
||||
tokenizer: Tokenizer,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
@ -317,7 +539,7 @@ def decode_dataset(
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
tokenizer:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
@ -338,14 +560,14 @@ def decode_dataset(
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 50
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = model.encoder.get_init_state(device=device)
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
@ -361,15 +583,19 @@ def decode_dataset(
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
# - this is to avoid sending [-32k,+32k] signal in...
|
||||
# - some lhotse AudioTransform classes can make the signal
|
||||
# be out of range [-1, 1], hence the tolerance 10
|
||||
assert (
|
||||
np.abs(audio).max() <= 10
|
||||
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
||||
decode_stream.ground_truth = cut.supervisions[0].custom[params.transcript_mode]
|
||||
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
@ -380,8 +606,8 @@ def decode_dataset(
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
sp.text2word(decode_streams[i].ground_truth),
|
||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
||||
decode_streams[i].ground_truth.split(),
|
||||
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
@ -391,18 +617,37 @@ def decode_dataset(
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
# print("INSIDE LEN DECODE STREAMS")
|
||||
# pdb.set_trace()
|
||||
# print(model.device)
|
||||
# test_device = model.device
|
||||
# print("done")
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
# print('INSIDE FOR LOOP ')
|
||||
# print(finished_streams)
|
||||
|
||||
if not finished_streams:
|
||||
print("No finished streams, breaking the loop")
|
||||
break
|
||||
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
sp.text2word(decode_streams[i].ground_truth),
|
||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
||||
try:
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
del decode_streams[i]
|
||||
except IndexError as e:
|
||||
print(f"IndexError: {e}")
|
||||
print(f"decode_streams length: {len(decode_streams)}")
|
||||
print(f"finished_streams: {finished_streams}")
|
||||
print(f"i: {i}")
|
||||
continue
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
@ -416,9 +661,54 @@ def decode_dataset(
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
torch.cuda.synchronize()
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
@ -430,16 +720,20 @@ def main():
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
if not params.res_dir:
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
# for streaming
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
@ -455,21 +749,21 @@ def main():
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", params.gpu)
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = Tokenizer.load(params.lang, params.lang_type)
|
||||
sp_token = Tokenizer.load(params.lang, params.lang_type)
|
||||
|
||||
# <blk> and <unk> is defined in local/prepare_lang_char.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp_token.piece_to_id("<blk>")
|
||||
params.unk_id = sp_token.piece_to_id("<unk>")
|
||||
params.vocab_size = sp_token.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
@ -553,42 +847,51 @@ def main():
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_graph:
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(params.decoding_graph, map_location=device)
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||
|
||||
for subdir in ["valid"]:
|
||||
valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||
test_cuts = reazonspeech_corpus.test_cuts()
|
||||
|
||||
test_sets = ["valid", "test"]
|
||||
test_cuts = [valid_cuts, test_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=getattr(reazonspeech_corpus, f"{subdir}_cuts")(),
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
tokenizer=sp_token,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
tot_err = save_results(
|
||||
params=params, test_set_name=subdir, results_dict=results_dict
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
with (
|
||||
params.res_dir
|
||||
/ (
|
||||
f"{subdir}-{params.decode_chunk_len}"
|
||||
f"_{params.avg}_{params.epoch}.cer"
|
||||
)
|
||||
).open("w") as fout:
|
||||
if len(tot_err) == 1:
|
||||
fout.write(f"{tot_err[0][1]}")
|
||||
else:
|
||||
fout.write("\n".join(f"{k}\t{v}") for k, v in tot_err)
|
||||
# valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||
|
||||
# for valid_cut in valid_cuts:
|
||||
# results_dict = decode_dataset(
|
||||
# cuts=valid_cut,
|
||||
# params=params,
|
||||
# model=model,
|
||||
# sp=sp,
|
||||
# decoding_graph=decoding_graph,
|
||||
# )
|
||||
# save_results(
|
||||
# params=params,
|
||||
# test_set_name="valid",
|
||||
# results_dict=results_dict,
|
||||
# )
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
@ -68,6 +68,7 @@ from .utils import (
|
||||
str2bool,
|
||||
subsequent_chunk_mask,
|
||||
tokenize_by_CJK_char,
|
||||
tokenize_by_ja_char,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
@ -1758,6 +1758,30 @@ def tokenize_by_CJK_char(line: str) -> str:
|
||||
return " ".join([w.strip() for w in chars if w.strip()])
|
||||
|
||||
|
||||
def tokenize_by_ja_char(line: str) -> str:
|
||||
"""
|
||||
Tokenize a line of text with Japanese characters.
|
||||
|
||||
Note: All non-Japanese characters will be upper case.
|
||||
|
||||
Example:
|
||||
input = "こんにちは世界は hello world の日本語"
|
||||
output = "こ ん に ち は 世 界 は HELLO WORLD の 日 本 語"
|
||||
|
||||
Args:
|
||||
line:
|
||||
The input text.
|
||||
|
||||
Return:
|
||||
A new string tokenized by Japanese characters.
|
||||
"""
|
||||
pattern = re.compile(r"([\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF])")
|
||||
chars = pattern.split(line.strip())
|
||||
return " ".join(
|
||||
[w.strip().upper() if not pattern.match(w) else w for w in chars if w.strip()]
|
||||
)
|
||||
|
||||
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
|
Loading…
x
Reference in New Issue
Block a user