5.7 KiB
Results
Aishell training result(Transducer-stateless)
2022-2-19
(Duo Ma): The tensorboard log for training is available at https://tensorboard.dev/experiment/25PmX3MxSVGTdvIdhOwllw/#scalars You can find a pretrained model by visiting https://huggingface.co/shuanguanma/icefall_aishell_transducer_stateless_context_size2_epoch60_2022_2_19
test | comment | |
---|---|---|
greedy search | 5.4 | --epoch 59, --avg 10, --max-duration 100 |
beam search | 5.05 | --epoch 59, --avg 10, --max-duration 100 |
You can use the following commands to reproduce our results:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python3 ./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir exp/transducer_stateless_context_size2 \
--max-duration 100 \
--lr-factor 2.5 \
--context-size 2
lang_dir=data/lang_char
dir=exp/transducer_stateless_context_size2
python3 ./transducer_stateless/decode.py\
--epoch 59 \
--avg 10 \
--exp-dir $dir \
--lang-dir $lang_dir \
--decoding-method greedy_search \
--context-size 2 \
--max-sym-per-frame 3
lang_dir=data/lang_char
dir=exp/transducer_stateless_context_size2
python3 ./transducer_stateless/decode.py \
--epoch 59\
--avg 10\
--exp-dir $dir \
--lang-dir $lang_dir \
--decoding-method beam_search \
--context-size 2 \
--max-sym-per-frame 3
Aishell training results (Transducer-stateless)
2022-02-18
(Pingfeng Luo) : The tensorboard log for training is available at https://tensorboard.dev/experiment/k3QL6QMhRbCwCKYKM9po9w/ And pretrained model is available at https://huggingface.co/pfluo/icefall-aishell-transducer-stateless-char-2021-12-29
test | |
---|---|
CER | 5.05% |
You can use the following commands to reproduce our results:
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8"
./transducer_stateless/train.py \
--bucketing-sampler True \
--world-size 8 \
--lang-dir data/lang_char \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp_rnnt_k2 \
--max-duration 80 \
--lr-factor 3
./transducer_stateless/decode.py \
--epoch 59 \
--avg 10 \
--lang-dir data/lang_char \
--exp-dir transducer_stateless/exp_rnnt_k2 \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
Aishell training results (Conformer-MMI)
2021-12-04
(Pingfeng Luo): Result of https://github.com/k2-fsa/icefall/pull/140
The tensorboard log for training is available at https://tensorboard.dev/experiment/PSRYVbptRGynqpPRSykp1g
And pretrained model is available at https://huggingface.co/pfluo/icefall_aishell_mmi_model
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 61 to 85, and using attention-decoder
decoder with num_paths equals to 100.
test | |
---|---|
CER | 4.94% |
lm_scale | attention_scale | |
---|---|---|
test | 1.1 | 0.3 |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/aishell/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8"
python conformer_mmi/train.py --bucketing-sampler True \
--max-duration 200 \
--start-epoch 0 \
--num-epochs 90 \
--world-size 8
python conformer_mmi/decode.py --nbest-scale 0.5 \
--epoch 85 \
--avg 25 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100
Aishell training results (Conformer-CTC)
2021-11-16
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 60 to 84, and using attention-decoder
decoder with num_paths equals to 100.
test | |
---|---|
CER | 4.26% |
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below.
lm_scale | attention_scale | |
---|---|---|
test | 0.3 | 0.9 |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/aishell/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python conformer_ctc/train.py --bucketing-sampler True \
--max-duration 200 \
--start-epoch 0 \
--num-epochs 90 \
--world-size 4
python conformer_ctc/decode.py --nbest-scale 0.5 \
--epoch 84 \
--avg 25 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100
Aishell training results (Tdnn-Lstm)
2021-09-13
(Wei Kang): Result of phone based Tdnn-Lstm model, https://github.com/k2-fsa/icefall/pull/30
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc_lstm_ctc
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 19 to 8, and using 1best
decoding method.
test | |
---|---|
CER | 10.16% |