icefall/egs/must_c/ST/prepare.sh

174 lines
4.7 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=10
stage=0
stop_stage=100
version=v1.0
tgt_lang=de
dl_dir=$PWD/download
must_c_dir=$dl_dir/must-c/$version/en-$tgt_lang/data
# We assume dl_dir (download dir) contains the following
# directories and files.
# - $dl_dir/must-c/$version/en-$tgt_lang/data/{dev,train,tst-COMMON,tst-HE}
#
# Please go to https://ict.fbk.eu/must-c-releases/
# to download and untar the dataset if you have not already done this.
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate
# data/lang_bpe_${tgt_lang}_xxx
# data/lang_bpe_${tgt_lang}_yyy
# if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ ! -d $must_c_dir ]; then
log "$must_c_dir does not exist"
exit 1
fi
for d in dev train tst-COMMON tst-HE; do
if [ ! -d $must_c_dir/$d ]; then
log "$must_c_dir/$d does not exist!"
exit 1
fi
done
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download musan"
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare must-c $version manifest for target language $tgt_lang"
mkdir -p data/manifests/$version
if [ ! -e data/manifests/$version/.${tgt_lang}.manifests.done ]; then
lhotse prepare must-c \
-j $nj \
--tgt-lang $tgt_lang \
$dl_dir/must-c/$version/ \
data/manifests/$version/
touch data/manifests/$version/.${tgt_lang}.manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Text normalization for $version with target language $tgt_lang"
if [ ! -f ./data/manifests/$version/.$tgt_lang.norm.done ]; then
./local/preprocess_must_c.py \
--manifest-dir ./data/manifests/$version/ \
--tgt-lang $tgt_lang
touch ./data/manifests/$version/.$tgt_lang.norm.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for $version with target language $tgt_lang"
mkdir -p data/fbank/$version/
if [ ! -e data/fbank/$version/.$tgt_lang.done ]; then
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj \
--perturb-speed 1
touch data/fbank/$version/.$tgt_lang.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang for $version with target language $tgt_lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}/$version/$tgt_lang/
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
./local/get_text.py ./data/fbank/$version/must_c_feats_en-${tgt_lang}_train.jsonl.gz > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
./local/get_words.py $lang_dir/transcript_words.txt > $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
done
fi