Add data preparation for the MuST-C speech translation corpus (#1107)

This commit is contained in:
Fangjun Kuang 2023-06-05 15:49:41 +08:00 committed by GitHub
parent ba257efbcd
commit c0de78d3c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 984 additions and 1 deletions

View File

@ -107,7 +107,7 @@ fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compute_fbank_musan.py

View File

@ -0,0 +1,155 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file computes fbank features of the MuST-C dataset.
It looks for manifests in the directory "in_dir" and write
generated features to "out_dir".
"""
import argparse
import logging
from pathlib import Path
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
FeatureSet,
LilcomChunkyWriter,
load_manifest,
)
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--in-dir",
type=Path,
required=True,
help="Input manifest directory",
)
parser.add_argument(
"--out-dir",
type=Path,
required=True,
help="Output directory where generated fbank features are saved.",
)
parser.add_argument(
"--tgt-lang",
type=str,
required=True,
help="Target language, e.g., zh, de, fr.",
)
parser.add_argument(
"--num-jobs",
type=int,
default=1,
help="Number of jobs for computing features",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="""True to enable speed perturb with factors 0.9 and 1.1 on
the train subset. False (by default) to disable speed perturb.
""",
)
return parser.parse_args()
def compute_fbank_must_c(
in_dir: Path,
out_dir: Path,
tgt_lang: str,
num_jobs: int,
perturb_speed: bool,
):
out_dir.mkdir(parents=True, exist_ok=True)
extractor = Fbank(FbankConfig(num_mel_bins=80))
parts = ["dev", "tst-COMMON", "tst-HE", "train"]
prefix = "must_c"
suffix = "jsonl.gz"
for p in parts:
logging.info(f"Processing {p}")
cuts_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}"
if perturb_speed and p == "train":
cuts_path += "_sp"
cuts_path += ".jsonl.gz"
if Path(cuts_path).is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
recordings_filename = in_dir / f"{prefix}_recordings_en-{tgt_lang}_{p}.jsonl.gz"
supervisions_filename = (
in_dir / f"{prefix}_supervisions_en-{tgt_lang}_{p}_norm_rm.jsonl.gz"
)
assert recordings_filename.is_file(), recordings_filename
assert supervisions_filename.is_file(), supervisions_filename
cut_set = CutSet.from_manifests(
recordings=load_manifest(recordings_filename),
supervisions=load_manifest(supervisions_filename),
)
if perturb_speed and p == "train":
logging.info("Speed perturbing for the train dataset")
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
storage_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}_sp"
else:
storage_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}"
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=storage_path,
num_jobs=num_jobs,
storage_type=LilcomChunkyWriter,
)
logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")
def main():
args = get_args()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
logging.info(vars(args))
assert args.in_dir.is_dir(), args.in_dir
compute_fbank_must_c(
in_dir=args.in_dir,
out_dir=args.out_dir,
tgt_lang=args.tgt_lang,
num_jobs=args.num_jobs,
perturb_speed=args.perturb_speed,
)
if __name__ == "__main__":
main()

34
egs/must_c/ST/local/get_text.py Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file prints the text field of supervisions from cutset to the console
"""
import argparse
from lhotse import load_manifest_lazy
from pathlib import Path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"manifest",
type=Path,
help="Input manifest",
)
return parser.parse_args()
def main():
args = get_args()
assert args.manifest.is_file(), args.manifest
cutset = load_manifest_lazy(args.manifest)
for c in cutset:
for sup in c.supervisions:
print(sup.text)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,48 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file generates words.txt from the given transcript file.
"""
import argparse
from pathlib import Path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"transcript",
type=Path,
help="Input transcript file",
)
return parser.parse_args()
def main():
args = get_args()
assert args.transcript.is_file(), args.transcript
word_set = set()
with open(args.transcript) as f:
for line in f:
words = line.strip().split()
for w in words:
word_set.add(w)
# Note: reserved* should be kept in sync with ./local/prepare_lang_bpe.py
reserved1 = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
reserved2 = ["#0", "<s>", "</s>"]
for w in reserved1 + reserved2:
assert w not in word_set, w
words = sorted(list(word_set))
words = reserved1 + words + reserved2
for i, w in enumerate(words):
print(w, i)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,169 @@
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import re
def normalize_punctuation(s: str, lang: str) -> str:
"""
This function implements
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
Args:
s:
A string to be normalized.
lang:
The language to which `s` belongs
Returns:
Return a normalized string.
"""
# s/\r//g;
s = re.sub("\r", "", s)
# remove extra spaces
# s/\(/ \(/g;
s = re.sub("\(", " (", s) # add a space before (
# s/\)/\) /g; s/ +/ /g;
s = re.sub("\)", ") ", s) # add a space after )
s = re.sub(" +", " ", s) # convert multiple spaces to one
# s/\) ([\.\!\:\?\;\,])/\)$1/g;
s = re.sub("\) ([\.\!\:\?\;\,])", r")\1", s)
# s/\( /\(/g;
s = re.sub("\( ", "(", s) # remove space after (
# s/ \)/\)/g;
s = re.sub(" \)", ")", s) # remove space before )
# s/(\d) \%/$1\%/g;
s = re.sub("(\d) \%", r"\1%", s) # remove space between a digit and %
# s/ :/:/g;
s = re.sub(" :", ":", s) # remove space before :
# s/ ;/;/g;
s = re.sub(" ;", ";", s) # remove space before ;
# normalize unicode punctuation
# s/\`/\'/g;
s = re.sub("`", "'", s) # replace ` with '
# s/\'\'/ \" /g;
s = re.sub("''", '"', s) # replace '' with "
# s/„/\"/g;
s = re.sub("", '"', s) # replace „ with "
# s/“/\"/g;
s = re.sub("", '"', s) # replace “ with "
# s/”/\"/g;
s = re.sub("", '"', s) # replace ” with "
# s//-/g;
s = re.sub("", "-", s) # replace with -
# s/—/ - /g; s/ +/ /g;
s = re.sub("", " - ", s)
s = re.sub(" +", " ", s) # convert multiple spaces to one
# s/´/\'/g;
s = re.sub("´", "'", s)
# s/([a-z])([a-z])/$1\'$2/gi;
s = re.sub("([a-z])([a-z])", r"\1'\2", s, flags=re.IGNORECASE)
# s/([a-z])([a-z])/$1\'$2/gi;
s = re.sub("([a-z])([a-z])", r"\1'\2", s, flags=re.IGNORECASE)
# s//\'/g;
s = re.sub("", "'", s)
# s//\'/g;
s = re.sub("", "'", s)
# s//\"/g;
s = re.sub("", '"', s)
# s/''/\"/g;
s = re.sub("''", '"', s)
# s/´´/\"/g;
s = re.sub("´´", '"', s)
# s/…/.../g;
s = re.sub("", "...", s)
# French quotes
# s/ « / \"/g;
s = re.sub(" « ", ' "', s)
# s/« /\"/g;
s = re.sub("« ", '"', s)
# s/«/\"/g;
s = re.sub("«", '"', s)
# s/ » /\" /g;
s = re.sub(" » ", '" ', s)
# s/ »/\"/g;
s = re.sub(" »", '"', s)
# s/»/\"/g;
s = re.sub("»", '"', s)
# handle pseudo-spaces
# s/ \%/\%/g;
s = re.sub(" %", r"%", s)
# s/nº /nº /g;
s = re.sub(" ", "", s)
# s/ :/:/g;
s = re.sub(" :", ":", s)
# s/ ºC/ ºC/g;
s = re.sub(" ºC", " ºC", s)
# s/ cm/ cm/g;
s = re.sub(" cm", " cm", s)
# s/ \?/\?/g;
s = re.sub(" \?", "\?", s)
# s/ \!/\!/g;
s = re.sub(" \!", "\!", s)
# s/ ;/;/g;
s = re.sub(" ;", ";", s)
# s/, /, /g; s/ +/ /g;
s = re.sub(", ", ", ", s)
s = re.sub(" +", " ", s)
if lang == "en":
# English "quotation," followed by comma, style
# s/\"([,\.]+)/$1\"/g;
s = re.sub('"([,\.]+)', r'\1"', s)
elif lang in ("cs", "cz"):
# Czech is confused
pass
else:
# German/Spanish/French "quotation", followed by comma, style
# s/,\"/\",/g;
s = re.sub(',"', '",', s)
# s/(\.+)\"(\s*[^<])/\"$1$2/g; # don't fix period at end of sentence
s = re.sub('(\.+)"(\s*[^<])', r'"\1\2', s)
if lang in ("de", "es", "cz", "cs", "fr"):
# s/(\d) (\d)/$1,$2/g;
s = re.sub("(\d) (\d)", r"\1,\2", s)
else:
# s/(\d) (\d)/$1.$2/g;
s = re.sub("(\d) (\d)", r"\1.\2", s)
return s

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang_bpe.py

View File

@ -0,0 +1,96 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script normalizes transcripts from supervisions.
Usage:
./local/preprocess_must_c.py \
--manifest-dir ./data/manifests/v1.0/ \
--tgt-lang de
"""
import argparse
import logging
import re
from functools import partial
from pathlib import Path
from lhotse.recipes.utils import read_manifests_if_cached
from normalize_punctuation import normalize_punctuation
from remove_non_native_characters import remove_non_native_characters
from remove_punctuation import remove_punctuation
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--manifest-dir",
type=Path,
required=True,
help="Manifest directory",
)
parser.add_argument(
"--tgt-lang",
type=str,
required=True,
help="Target language, e.g., zh, de, fr.",
)
return parser.parse_args()
def preprocess_must_c(manifest_dir: Path, tgt_lang: str):
normalize_punctuation_lang = partial(normalize_punctuation, lang=tgt_lang)
remove_non_native_characters_lang = partial(
remove_non_native_characters, lang=tgt_lang
)
prefix = "must_c"
suffix = "jsonl.gz"
parts = ["dev", "tst-COMMON", "tst-HE", "train"]
for p in parts:
logging.info(f"Processing {p}")
name = f"en-{tgt_lang}_{p}"
# norm: normalization
# rm: remove punctuation
dst_name = manifest_dir / f"must_c_supervisions_{name}_norm_rm.jsonl.gz"
if dst_name.is_file():
logging.info(f"{dst_name} exists - skipping")
continue
manifests = read_manifests_if_cached(
dataset_parts=name,
output_dir=manifest_dir,
prefix=prefix,
suffix=suffix,
types=("supervisions",),
)
if name not in manifests:
raise RuntimeError(f"Processing {p} failed.")
supervisions = manifests[name]["supervisions"]
supervisions = supervisions.transform_text(normalize_punctuation_lang)
supervisions = supervisions.transform_text(remove_punctuation)
supervisions = supervisions.transform_text(lambda x: x.lower())
supervisions = supervisions.transform_text(remove_non_native_characters_lang)
supervisions = supervisions.transform_text(lambda x: re.sub(" +", " ", x))
supervisions.to_file(dst_name)
def main():
args = get_args()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
logging.info(vars(args))
assert args.manifest_dir.is_dir(), args.manifest_dir
preprocess_must_c(
manifest_dir=args.manifest_dir,
tgt_lang=args.tgt_lang,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,21 @@
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import re
def remove_non_native_characters(s: str, lang: str):
if lang == "de":
# ä -> ae
# ö -> oe
# ü -> ue
# ß -> ss
s = re.sub("ä", "ae", s)
s = re.sub("ö", "oe", s)
s = re.sub("ü", "ue", s)
s = re.sub("ß", "ss", s)
# keep only a-z and spaces
# note: ' is removed
s = re.sub(r"[^a-z\s]", "", s)
return s

View File

@ -0,0 +1,41 @@
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import re
import string
def remove_punctuation(s: str) -> str:
"""
It implements https://github.com/espnet/espnet/blob/master/utils/remove_punctuation.pl
"""
# Remove punctuation except apostrophe
# s/<space>/spacemark/g; # for scoring
s = re.sub("<space>", "spacemark", s)
# s/'/apostrophe/g;
s = re.sub("'", "apostrophe", s)
# s/[[:punct:]]//g;
s = s.translate(str.maketrans("", "", string.punctuation))
# string punctuation returns the following string
# !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
# See
# https://stackoverflow.com/questions/265960/best-way-to-strip-punctuation-from-a-string
# s/apostrophe/'/g;
s = re.sub("apostrophe", "'", s)
# s/spacemark/<space>/g; # for scoring
s = re.sub("spacemark", "<space>", s)
# remove whitespace
# s/\s+/ /g;
s = re.sub("\s+", " ", s)
# s/^\s+//;
s = re.sub("^\s+", "", s)
# s/\s+$//;
s = re.sub("\s+$", "", s)
return s

View File

@ -0,0 +1,197 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
from normalize_punctuation import normalize_punctuation
def test_normalize_punctuation():
# s/\r//g;
s = "a\r\nb\r\n"
n = normalize_punctuation(s, lang="en")
assert "\r" not in n
assert len(s) - 2 == len(n), (len(s), len(n))
# s/\(/ \(/g;
s = "(ab (c"
n = normalize_punctuation(s, lang="en")
assert n == " (ab (c", n
# s/\)/\) /g;
s = "a)b c)"
n = normalize_punctuation(s, lang="en")
assert n == "a) b c) "
# s/ +/ /g;
s = " a b c d "
n = normalize_punctuation(s, lang="en")
assert n == " a b c d "
# s/\) ([\.\!\:\?\;\,])/\)$1/g;
for i in ".!:?;,":
s = f"a) {i}"
n = normalize_punctuation(s, lang="en")
assert n == f"a){i}"
# s/\( /\(/g;
s = "a( b"
n = normalize_punctuation(s, lang="en")
assert n == "a (b", n
# s/ \)/\)/g;
s = "ab ) a"
n = normalize_punctuation(s, lang="en")
assert n == "ab) a", n
# s/(\d) \%/$1\%/g;
s = "1 %a"
n = normalize_punctuation(s, lang="en")
assert n == "1%a", n
# s/ :/:/g;
s = "a :"
n = normalize_punctuation(s, lang="en")
assert n == "a:", n
# s/ ;/;/g;
s = "a ;"
n = normalize_punctuation(s, lang="en")
assert n == "a;", n
# s/\`/\'/g;
s = "`a`"
n = normalize_punctuation(s, lang="en")
assert n == "'a'", n
# s/\'\'/ \" /g;
s = "''a''"
n = normalize_punctuation(s, lang="en")
assert n == '"a"', n
# s/„/\"/g;
s = '„a"'
n = normalize_punctuation(s, lang="en")
assert n == '"a"', n
# s/“/\"/g;
s = "“a„"
n = normalize_punctuation(s, lang="en")
assert n == '"a"', n
# s/”/\"/g;
s = "“a”"
n = normalize_punctuation(s, lang="en")
assert n == '"a"', n
# s//-/g;
s = "ab"
n = normalize_punctuation(s, lang="en")
assert n == "a-b", n
# s/—/ - /g; s/ +/ /g;
s = "a—b"
n = normalize_punctuation(s, lang="en")
assert n == "a - b", n
# s/´/\'/g;
s = "a´b"
n = normalize_punctuation(s, lang="en")
assert n == "a'b", n
# s/([a-z])([a-z])/$1\'$2/gi;
for i in "":
s = f"a{i}B"
n = normalize_punctuation(s, lang="en")
assert n == "a'B", n
s = f"A{i}B"
n = normalize_punctuation(s, lang="en")
assert n == "A'B", n
s = f"A{i}b"
n = normalize_punctuation(s, lang="en")
assert n == "A'b", n
# s//\'/g;
# s//\'/g;
for i in "":
s = f"a{i}b"
n = normalize_punctuation(s, lang="en")
assert n == "a'b", n
# s//\"/g;
s = ""
n = normalize_punctuation(s, lang="en")
assert n == '"', n
# s/''/\"/g;
s = "''"
n = normalize_punctuation(s, lang="en")
assert n == '"', n
# s/´´/\"/g;
s = "´´"
n = normalize_punctuation(s, lang="en")
assert n == '"', n
# s/…/.../g;
s = ""
n = normalize_punctuation(s, lang="en")
assert n == "...", n
# s/ « / \"/g;
s = "a « b"
n = normalize_punctuation(s, lang="en")
assert n == 'a "b', n
# s/« /\"/g;
s = "a « b"
n = normalize_punctuation(s, lang="en")
assert n == 'a "b', n
# s/«/\"/g;
s = "a«b"
n = normalize_punctuation(s, lang="en")
assert n == 'a"b', n
# s/ » /\" /g;
s = " » "
n = normalize_punctuation(s, lang="en")
assert n == '" ', n
# s/ »/\"/g;
s = " »"
n = normalize_punctuation(s, lang="en")
assert n == '"', n
# s/»/\"/g;
s = "»"
n = normalize_punctuation(s, lang="en")
assert n == '"', n
# s/ \%/\%/g;
s = " %"
n = normalize_punctuation(s, lang="en")
assert n == "%", n
# s/ :/:/g;
s = " :"
n = normalize_punctuation(s, lang="en")
assert n == ":", n
# s/(\d) (\d)/$1.$2/g;
s = "2 3"
n = normalize_punctuation(s, lang="en")
assert n == "2.3", n
# s/(\d) (\d)/$1,$2/g;
s = "2 3"
n = normalize_punctuation(s, lang="de")
assert n == "2,3", n
def main():
test_normalize_punctuation()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,26 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
from remove_non_native_characters import remove_non_native_characters
def test_remove_non_native_characters():
s = "Ich heiße xxx好的01 fangjun".lower()
n = remove_non_native_characters(s, lang="de")
assert n == "ich heisse xxx fangjun", n
s = "äÄ".lower()
n = remove_non_native_characters(s, lang="de")
assert n == "aeae", n
s = "öÖ".lower()
n = remove_non_native_characters(s, lang="de")
assert n == "oeoe", n
s = "üÜ".lower()
n = remove_non_native_characters(s, lang="de")
assert n == "ueue", n
if __name__ == "__main__":
test_remove_non_native_characters()

View File

@ -0,0 +1,17 @@
#!/usr/bin/env python3
from remove_punctuation import remove_punctuation
def test_remove_punctuation():
s = "a,b'c!#"
n = remove_punctuation(s)
assert n == "ab'c", n
s = " ab " # remove leading and trailing spaces
n = remove_punctuation(s)
assert n == "ab", n
if __name__ == "__main__":
test_remove_punctuation()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/train_bpe_model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/validate_bpe_lexicon.py

173
egs/must_c/ST/prepare.sh Executable file
View File

@ -0,0 +1,173 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=10
stage=0
stop_stage=100
version=v1.0
tgt_lang=de
dl_dir=$PWD/download
must_c_dir=$dl_dir/must-c/$version/en-$tgt_lang/data
# We assume dl_dir (download dir) contains the following
# directories and files.
# - $dl_dir/must-c/$version/en-$tgt_lang/data/{dev,train,tst-COMMON,tst-HE}
#
# Please go to https://ict.fbk.eu/must-c-releases/
# to download and untar the dataset if you have not already done this.
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate
# data/lang_bpe_${tgt_lang}_xxx
# data/lang_bpe_${tgt_lang}_yyy
# if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ ! -d $must_c_dir ]; then
log "$must_c_dir does not exist"
exit 1
fi
for d in dev train tst-COMMON tst-HE; do
if [ ! -d $must_c_dir/$d ]; then
log "$must_c_dir/$d does not exist!"
exit 1
fi
done
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download musan"
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare must-c $version manifest for target language $tgt_lang"
mkdir -p data/manifests/$version
if [ ! -e data/manifests/$version/.${tgt_lang}.manifests.done ]; then
lhotse prepare must-c \
-j $nj \
--tgt-lang $tgt_lang \
$dl_dir/must-c/$version/ \
data/manifests/$version/
touch data/manifests/$version/.${tgt_lang}.manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Text normalization for $version with target language $tgt_lang"
if [ ! -f ./data/manifests/$version/.$tgt_lang.norm.done ]; then
./local/preprocess_must_c.py \
--manifest-dir ./data/manifests/$version/ \
--tgt-lang $tgt_lang
touch ./data/manifests/$version/.$tgt_lang.norm.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for $version with target language $tgt_lang"
mkdir -p data/fbank/$version/
if [ ! -e data/fbank/$version/.$tgt_lang.done ]; then
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj \
--perturb-speed 1
touch data/fbank/$version/.$tgt_lang.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang for $version with target language $tgt_lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}/$version/$tgt_lang/
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
./local/get_text.py ./data/fbank/$version/must_c_feats_en-${tgt_lang}_train.jsonl.gz > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
./local/get_words.py $lang_dir/transcript_words.txt > $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
done
fi

1
egs/must_c/ST/shared Symbolic link
View File

@ -0,0 +1 @@
../../../icefall/shared