- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle
deprecations in PyTorch ≥2.3.0
- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast
with the new utilities across all training and inference scripts
- Update all torch.load calls to include weights_only=False for compatibility with
newer PyTorch versions
* shuffled full/partial librispeech data
* fixed the code style issue
* Shuffled full librispeech data off-line
* Fixed style, addressed comments, and removed redandunt codes
* Used the suggested version of black
* Propagated the changes to other folders for librispeech (except
conformer_mmi and streaming_conformer_ctc)
* print out timestamps during decoding
* add word-level alignments
* support to compute mean symbol delay with word-level alignments
* print variance of symbol delay
* update doc
* support to compute delay for pruned_transducer_stateless4
* fix bug
* add doc
* add ScaledLSTM
* add RNNEncoderLayer and RNNEncoder classes in lstm.py
* add RNN and Conv2dSubsampling classes in lstm.py
* hardcode bidirectional=False
* link from pruned_transducer_stateless2
* link scaling.py pruned_transducer_stateless2
* copy from pruned_transducer_stateless2
* modify decode.py pretrained.py test_model.py train.py
* copy streaming decoding files from pruned_transducer_stateless2
* modify streaming decoding files
* simplified code in ScaledLSTM
* flat weights after scaling
* pruned2 -> pruned4
* link __init__.py
* fix style
* remove add_model_arguments
* modify .flake8
* fix style
* fix scale value in scaling.py
* add random combiner for training deeper model
* add using proj_size
* add scaling converter for ScaledLSTM
* support jit trace
* add using averaged model in export.py
* modify test_model.py, test if the model can be successfully exported by jit.trace
* modify pretrained.py
* support streaming decoding
* fix model.py
* Add cut_id to recognition results
* Add cut_id to recognition results
* do not pad in Conv subsampling module; add tail padding during decoding.
* update RESULTS.md
* minor fix
* fix doc
* update README.md
* minor change, filter infinite loss
* remove the condition of raise error
* modify type hint for the return value in model.py
* minor change
* modify RESULTS.md
Co-authored-by: pkufool <wkang.pku@gmail.com>
* add stats about duration and padding proportion
* add for utt_duration
* add stats for other recipes
* add stats for other 2 recipes
* modify doc
* minor change
* support streaming in conformer
* Add more documents
* support streaming on pruned_transducer_stateless2; add delay penalty; fixes for decode states
* Minor fixes
* streaming for pruned_transducer_stateless4
* Fix conv cache error, support async streaming decoding
* Fix style
* Fix style
* Fix style
* Add torch.jit.export
* mask the initial cache
* Cutting off invalid frames of encoder_embed output
* fix relative positional encoding in streaming decoding for compution saving
* Minor fixes
* Minor fixes
* Minor fixes
* Minor fixes
* Minor fixes
* Fix jit export for torch 1.6
* Minor fixes for streaming decoding
* Minor fixes on decode stream
* move model parameters to train.py
* make states in forward streaming optional
* update pretrain to support streaming model
* update results.md
* update tensorboard and pre-models
* fix typo
* Fix tests
* remove unused arguments
* add streaming decoding ci
* Minor fix
* Minor fix
* disable right context by default
* keep model_avg on cpu
* explicitly convert model_avg to cpu
* minor fix
* remove device convertion for model_avg
* modify usage of the model device in train.py
* change model.device to next(model.parameters()).device for decoding
* assert params.start_epoch>0
* assert params.start_epoch>0, params.start_epoch
* First upload of model average codes.
* minor fix
* update decode file
* update .flake8
* rename pruned_transducer_stateless3 to pruned_transducer_stateless4
* change epoch number counter starting from 1 instead of 0
* minor fix of pruned_transducer_stateless4/train.py
* refactor the checkpoint.py
* minor fix, update docs, and modify the epoch number to count from 1 in the pruned_transducer_stateless4/decode.py
* update author info
* add docs of the scaling in function average_checkpoints_with_averaged_model