mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Model average (#344)
* First upload of model average codes. * minor fix * update decode file * update .flake8 * rename pruned_transducer_stateless3 to pruned_transducer_stateless4 * change epoch number counter starting from 1 instead of 0 * minor fix of pruned_transducer_stateless4/train.py * refactor the checkpoint.py * minor fix, update docs, and modify the epoch number to count from 1 in the pruned_transducer_stateless4/decode.py * update author info * add docs of the scaling in function average_checkpoints_with_averaged_model
This commit is contained in:
parent
8635fb4334
commit
00c48ec1f3
1
.flake8
1
.flake8
@ -9,6 +9,7 @@ per-file-ignores =
|
||||
egs/tedlium3/ASR/*/conformer.py: E501,
|
||||
egs/gigaspeech/ASR/*/conformer.py: E501,
|
||||
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
||||
egs/librispeech/ASR/pruned_transducer_stateless4/*.py: E501,
|
||||
egs/librispeech/ASR/*/optim.py: E501,
|
||||
egs/librispeech/ASR/*/scaling.py: E501,
|
||||
|
||||
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/__init__.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/__init__.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/__init__.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/beam_search.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/beam_search.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/conformer.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/conformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/conformer.py
|
603
egs/librispeech/ASR/pruned_transducer_stateless4/decode.py
Executable file
603
egs/librispeech/ASR/pruned_transducer_stateless4/decode.py
Executable file
@ -0,0 +1,603 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless4/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
assert params.iter == 0 and params.avg > 0
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/decoder.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/encoder_interface.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/export.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/export.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/joiner.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/joiner.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/model.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/model.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/optim.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/optim.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless4/scaling.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless4/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/scaling.py
|
1053
egs/librispeech/ASR/pruned_transducer_stateless4/train.py
Executable file
1053
egs/librispeech/ASR/pruned_transducer_stateless4/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,5 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -25,6 +26,7 @@ from typing import Any, Dict, List, Optional, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
@ -37,6 +39,7 @@ LRSchedulerType = object
|
||||
def save_checkpoint(
|
||||
filename: Path,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
@ -51,6 +54,8 @@ def save_checkpoint(
|
||||
The checkpoint filename.
|
||||
model:
|
||||
The model to be saved. We only save its `state_dict()`.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
optimizer:
|
||||
@ -80,6 +85,9 @@ def save_checkpoint(
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
|
||||
if model_avg is not None:
|
||||
checkpoint["model_avg"] = model_avg.state_dict()
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
assert k not in checkpoint
|
||||
@ -91,6 +99,7 @@ def save_checkpoint(
|
||||
def load_checkpoint(
|
||||
filename: Path,
|
||||
model: nn.Module,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
@ -118,6 +127,11 @@ def load_checkpoint(
|
||||
|
||||
checkpoint.pop("model")
|
||||
|
||||
if model_avg is not None and "model_avg" in checkpoint:
|
||||
logging.info("Loading averaged model")
|
||||
model_avg.load_state_dict(checkpoint["model_avg"], strict=strict)
|
||||
checkpoint.pop("model_avg")
|
||||
|
||||
def load(name, obj):
|
||||
s = checkpoint.get(name, None)
|
||||
if obj and s:
|
||||
@ -181,6 +195,7 @@ def save_checkpoint_with_global_batch_idx(
|
||||
out_dir: Path,
|
||||
global_batch_idx: int,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
@ -201,6 +216,8 @@ def save_checkpoint_with_global_batch_idx(
|
||||
model:
|
||||
The neural network model whose `state_dict` will be saved in the
|
||||
checkpoint.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
A dict of training configurations to be saved.
|
||||
optimizer:
|
||||
@ -223,6 +240,7 @@ def save_checkpoint_with_global_batch_idx(
|
||||
save_checkpoint(
|
||||
filename=filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
@ -327,3 +345,127 @@ def remove_checkpoints(
|
||||
to_remove = checkpoints[topk:]
|
||||
for c in to_remove:
|
||||
os.remove(c)
|
||||
|
||||
|
||||
def update_averaged_model(
|
||||
params: Dict[str, Tensor],
|
||||
model_cur: Union[nn.Module, DDP],
|
||||
model_avg: nn.Module,
|
||||
) -> None:
|
||||
"""Update the averaged model:
|
||||
model_avg = model_cur * (average_period / batch_idx_train)
|
||||
+ model_avg * ((batch_idx_train - average_period) / batch_idx_train)
|
||||
|
||||
Args:
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
model_cur:
|
||||
The current model.
|
||||
model_avg:
|
||||
The averaged model to be updated.
|
||||
"""
|
||||
weight_cur = params.average_period / params.batch_idx_train
|
||||
weight_avg = 1 - weight_cur
|
||||
|
||||
if isinstance(model_cur, DDP):
|
||||
model_cur = model_cur.module
|
||||
|
||||
cur = model_cur.state_dict()
|
||||
avg = model_avg.state_dict()
|
||||
|
||||
average_state_dict(
|
||||
state_dict_1=avg,
|
||||
state_dict_2=cur,
|
||||
weight_1=weight_avg,
|
||||
weight_2=weight_cur,
|
||||
)
|
||||
|
||||
|
||||
def average_checkpoints_with_averaged_model(
|
||||
filename_start: str,
|
||||
filename_end: str,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> Dict[str, Tensor]:
|
||||
"""Average model parameters over the range with given
|
||||
start model (excluded) and end model.
|
||||
|
||||
Let start = batch_idx_train of model-start;
|
||||
end = batch_idx_train of model-end;
|
||||
interval = end - start.
|
||||
Then the average model over range from start (excluded) to end is
|
||||
(1) avg = (model_end * end - model_start * start) / interval.
|
||||
It can be written as
|
||||
(2) avg = model_end * weight_end + model_start * weight_start,
|
||||
where weight_end = end / interval,
|
||||
weight_start = -start / interval = 1 - weight_end.
|
||||
Since the terms `weight_end` and `weight_start` would be large
|
||||
if the model has been trained for lots of batches, which would cause
|
||||
overflow when multiplying the model parameters.
|
||||
To avoid this, we rewrite (2) as:
|
||||
(3) avg = (model_end + model_start * (weight_start / weight_end))
|
||||
* weight_end
|
||||
|
||||
The model index could be epoch number or checkpoint number.
|
||||
|
||||
Args:
|
||||
filename_start:
|
||||
Checkpoint filename of the start model. We assume it
|
||||
is saved by :func:`save_checkpoint`.
|
||||
filename_end:
|
||||
Checkpoint filename of the end model. We assume it
|
||||
is saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
"""
|
||||
state_dict_start = torch.load(filename_start, map_location=device)
|
||||
state_dict_end = torch.load(filename_end, map_location=device)
|
||||
|
||||
batch_idx_train_start = state_dict_start["batch_idx_train"]
|
||||
batch_idx_train_end = state_dict_end["batch_idx_train"]
|
||||
interval = batch_idx_train_end - batch_idx_train_start
|
||||
assert interval > 0, interval
|
||||
weight_end = batch_idx_train_end / interval
|
||||
weight_start = 1 - weight_end
|
||||
|
||||
model_end = state_dict_end["model_avg"]
|
||||
model_start = state_dict_start["model_avg"]
|
||||
avg = model_end
|
||||
|
||||
# scale the weight to avoid overflow
|
||||
average_state_dict(
|
||||
state_dict_1=avg,
|
||||
state_dict_2=model_start,
|
||||
weight_1=1.0,
|
||||
weight_2=weight_start / weight_end,
|
||||
scaling_factor=weight_end,
|
||||
)
|
||||
|
||||
return avg
|
||||
|
||||
|
||||
def average_state_dict(
|
||||
state_dict_1: Dict[str, Tensor],
|
||||
state_dict_2: Dict[str, Tensor],
|
||||
weight_1: float,
|
||||
weight_2: float,
|
||||
scaling_factor: float = 1.0,
|
||||
) -> Dict[str, Tensor]:
|
||||
"""Average two state_dict with given weights:
|
||||
state_dict_1 = (state_dict_1 * weight_1 + state_dict_2 * weight_2)
|
||||
* scaling_factor
|
||||
It is an in-place operation on state_dict_1 itself.
|
||||
"""
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
uniqued: Dict[int, str] = dict()
|
||||
for k, v in state_dict_1.items():
|
||||
v_data_ptr = v.data_ptr()
|
||||
if v_data_ptr in uniqued:
|
||||
continue
|
||||
uniqued[v_data_ptr] = k
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
for k in uniqued_names:
|
||||
state_dict_1[k] *= weight_1
|
||||
state_dict_1[k] += state_dict_2[k] * weight_2
|
||||
state_dict_1[k] *= scaling_factor
|
||||
|
Loading…
x
Reference in New Issue
Block a user