4 Commits

Author SHA1 Message Date
Fangjun Kuang
ec591698b0
Associate a cut with token alignment (without repeats) (#125)
* WIP: Associate a cut with token alignment (without repeats)

* Save framewise alignments with/without repeats.

* Minor fixes.
2021-11-29 18:50:54 +08:00
Wei Kang
4151cca147
Add torch script support for Aishell and update documents (#124)
* Add aishell recipe

* Remove unnecessary code and update docs

* adapt to k2 v1.7, add docs and results

* Update conformer ctc model

* Update docs, pretrained.py & results

* Fix code style

* Fix code style

* Fix code style

* Minor fix

* Minor fix

* Fix pretrained.py

* Update pretrained model & corresponding docs

* Export torch script model for Aishell

* Add C++ deployment docs

* Minor fixes

* Fix unit test

* Update Readme
2021-11-19 16:37:05 +08:00
Fangjun Kuang
21096e99d8
Update result for the librispeech recipe using vocab size 500 and att rate 0.8 (#113)
* Update RESULTS using vocab size 500, att rate 0.8

* Update README.

* Refactoring.

Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.

* Update documentation.

* Change default vocab size from 5000 to 500.
2021-11-10 14:32:52 +08:00
Fangjun Kuang
4890e27b45
Extract framewise alignment information using CTC decoding (#39)
* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Extract framewise alignment information using CTC decoding.

* Print environment information.

Print information about k2, lhotse, PyTorch, and icefall.

* Fix CI.

* Fix CI.

* Compute framewise alignment information of the LibriSpeech dataset.

* Update comments for the time to compute alignments of train-960.

* Preserve cut id in mix cut transformer.

* Minor fixes.

* Add doc about how to extract framewise alignments.
2021-10-18 14:24:33 +08:00