- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle
deprecations in PyTorch ≥2.3.0
- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast
with the new utilities across all training and inference scripts
- Update all torch.load calls to include weights_only=False for compatibility with
newer PyTorch versions
- some AudioTransform classes produce audio signals out of range [-1,+1]
- Resample produced 1.0079
- The range [-10,+10] was chosen to still be able to reliably
distinguish from the [-32k,+32k] signal...
- this is related to : https://github.com/lhotse-speech/lhotse/issues/1254
* fixes for `diagnostics`
Replace `2 ** 22` with `512` as the default value of `diagnostics.TensorDiagnosticOptions`
also black formatted some scripts
* fixed formatting issues
* support transformer LM
* show number of parameters during training
* update docstring
* testing files for ppl calculation
* add lm wrampper for rnn and transformer LM
* apply lm wrapper in lm shallow fusion
* small updates
* update decode.py to support LM fusion and LODR
* add export.py
* update CI and workflow
* update decoding results
* fix CI
* remove transformer LM from CI test
* shuffled full/partial librispeech data
* fixed the code style issue
* Shuffled full librispeech data off-line
* Fixed style, addressed comments, and removed redandunt codes
* Used the suggested version of black
* Propagated the changes to other folders for librispeech (except
conformer_mmi and streaming_conformer_ctc)
* add ScaledLSTM
* add RNNEncoderLayer and RNNEncoder classes in lstm.py
* add RNN and Conv2dSubsampling classes in lstm.py
* hardcode bidirectional=False
* link from pruned_transducer_stateless2
* link scaling.py pruned_transducer_stateless2
* copy from pruned_transducer_stateless2
* modify decode.py pretrained.py test_model.py train.py
* copy streaming decoding files from pruned_transducer_stateless2
* modify streaming decoding files
* simplified code in ScaledLSTM
* flat weights after scaling
* pruned2 -> pruned4
* link __init__.py
* fix style
* remove add_model_arguments
* modify .flake8
* fix style
* fix scale value in scaling.py
* add random combiner for training deeper model
* add using proj_size
* add scaling converter for ScaledLSTM
* support jit trace
* add using averaged model in export.py
* modify test_model.py, test if the model can be successfully exported by jit.trace
* modify pretrained.py
* support streaming decoding
* fix model.py
* Add cut_id to recognition results
* Add cut_id to recognition results
* do not pad in Conv subsampling module; add tail padding during decoding.
* update RESULTS.md
* minor fix
* fix doc
* update README.md
* minor change, filter infinite loss
* remove the condition of raise error
* modify type hint for the return value in model.py
* minor change
* modify RESULTS.md
Co-authored-by: pkufool <wkang.pku@gmail.com>
* Sort result to make it more convenient to compare decoding results
* Add cut_id to recognition results
* add cut_id to results for all recipes
* Fix torch.jit.script
* Fix comments
* Minor fixes
* Fix torch.jit.tracing for Pytorch version before v1.9.0
* add stats about duration and padding proportion
* add for utt_duration
* add stats for other recipes
* add stats for other 2 recipes
* modify doc
* minor change