mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
add training codes
This commit is contained in:
parent
540430d213
commit
fa6587010e
27
egs/emilia/TTS/llasa_cosyvoice2_token/config.json
Normal file
27
egs/emilia/TTS/llasa_cosyvoice2_token/config.json
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"llm_model_name_or_path": "/workspace/slam/icefall_omni/egs/speech_llm/SPEECH2SPEECH/models/Qwen2.5-0.5B-Instruct",
|
||||||
|
"data_path": ["../emilia_cosyvoice_v2_token/cosy_v2_tokens_ZH.jsonl"],
|
||||||
|
"bf16": false,
|
||||||
|
"output_dir": "./exp_zh",
|
||||||
|
"num_train_epochs": 3,
|
||||||
|
"per_device_train_batch_size": 8,
|
||||||
|
"per_device_eval_batch_size": 8,
|
||||||
|
"gradient_accumulation_steps": 1,
|
||||||
|
"evaluation_strategy": "steps",
|
||||||
|
"eval_steps": 1000,
|
||||||
|
"save_strategy": "steps",
|
||||||
|
"save_steps": 5000,
|
||||||
|
"save_total_limit": 100,
|
||||||
|
"learning_rate": 0.00005,
|
||||||
|
"weight_decay": 0.01,
|
||||||
|
"adam_beta2": 0.95,
|
||||||
|
"warmup_ratio": 0.03,
|
||||||
|
"lr_scheduler_type": "cosine",
|
||||||
|
"logging_steps": 100,
|
||||||
|
"report_to": "wandb",
|
||||||
|
"model_max_length": 2048,
|
||||||
|
"gradient_checkpointing": false,
|
||||||
|
"dataloader_num_workers": 4,
|
||||||
|
"dataloader_prefetch_factor": 4,
|
||||||
|
"deepspeed": "ds_config_zero2.json"
|
||||||
|
}
|
47
egs/emilia/TTS/llasa_cosyvoice2_token/ds_config_zero2.json
Normal file
47
egs/emilia/TTS/llasa_cosyvoice2_token/ds_config_zero2.json
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": "auto",
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"initial_scale_power": 64,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": "auto"
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": "auto",
|
||||||
|
"eps": "auto",
|
||||||
|
"weight_decay": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupCosineLR",
|
||||||
|
"params": {
|
||||||
|
"total_num_steps": "auto",
|
||||||
|
"warmup_min_ratio": 0.03,
|
||||||
|
"warmup_num_steps": "auto",
|
||||||
|
"cos_min_ratio": 0.1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"overlap_comm": false,
|
||||||
|
"contiguous_gradients": true,
|
||||||
|
"sub_group_size": 1e9,
|
||||||
|
"reduce_bucket_size": "auto"
|
||||||
|
},
|
||||||
|
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"gradient_clipping": 1.0,
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
7
egs/emilia/TTS/llasa_cosyvoice2_token/requirements.txt
Normal file
7
egs/emilia/TTS/llasa_cosyvoice2_token/requirements.txt
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
torch
|
||||||
|
transformers
|
||||||
|
wandb
|
||||||
|
datasets
|
||||||
|
accelerate>=0.26.0
|
||||||
|
deepspeed
|
||||||
|
flash-attn
|
4
egs/emilia/TTS/llasa_cosyvoice2_token/run.sh
Normal file
4
egs/emilia/TTS/llasa_cosyvoice2_token/run.sh
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
|
||||||
|
WANDB_KEY=df59308c1f07be8338a87497523163014442d605 # TODO Set YOUR KEY!
|
||||||
|
wandb login ${WANDB_KEY}
|
||||||
|
torchrun --nproc_per_node=8 train.py config.json
|
171
egs/emilia/TTS/llasa_cosyvoice2_token/train.py
Normal file
171
egs/emilia/TTS/llasa_cosyvoice2_token/train.py
Normal file
@ -0,0 +1,171 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import sys
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from functools import partial
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import wandb
|
||||||
|
from datasets import load_dataset, load_from_disk
|
||||||
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
from transformers import (
|
||||||
|
AutoConfig,
|
||||||
|
AutoModelForCausalLM,
|
||||||
|
AutoTokenizer,
|
||||||
|
DataCollatorForSeq2Seq,
|
||||||
|
HfArgumentParser,
|
||||||
|
Trainer,
|
||||||
|
TrainingArguments,
|
||||||
|
)
|
||||||
|
from transformers.trainer_pt_utils import LabelSmoother
|
||||||
|
|
||||||
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArguments:
|
||||||
|
llm_model_name_or_path: Optional[str] = field(
|
||||||
|
default="meta-llama/Llama-3.2-1B-Instruct"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class DataArguments:
|
||||||
|
data_path: List[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "Root path(s) to the data. Can be single path or list."},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CustomTrainingArguments(TrainingArguments):
|
||||||
|
optim: str = field(default="adamw_torch_fused")
|
||||||
|
model_max_length: int = field(
|
||||||
|
default=2048,
|
||||||
|
metadata={"help": "Maximum sequence length"},
|
||||||
|
)
|
||||||
|
logging_steps: int = field(default=100, metadata={"help": "Log every X updates"})
|
||||||
|
report_to: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "The integration to report the results and logs to."},
|
||||||
|
)
|
||||||
|
run_name: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "The name of the run for logging."}
|
||||||
|
)
|
||||||
|
gradient_checkpointing: bool = field(default=False)
|
||||||
|
lr_scheduler_type: str = field(
|
||||||
|
default="cosine", metadata={"help": "The learning rate scheduler to use."}
|
||||||
|
)
|
||||||
|
remove_unused_columns: bool = field(default=False)
|
||||||
|
|
||||||
|
|
||||||
|
def data_collator(batch, tokenizer):
|
||||||
|
speech_generation_start_index = tokenizer.convert_tokens_to_ids(
|
||||||
|
"<|SPEECH_GENERATION_START|>"
|
||||||
|
)
|
||||||
|
assistant_index = tokenizer.convert_tokens_to_ids("assistant")
|
||||||
|
input_ids_list = []
|
||||||
|
for i, item in enumerate(batch):
|
||||||
|
text, code = item["text"], item["code"]
|
||||||
|
message = [
|
||||||
|
{"role": "user", "content": f"Convert the text to speech: {text}"},
|
||||||
|
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"},
|
||||||
|
]
|
||||||
|
|
||||||
|
input_ids = tokenizer.apply_chat_template(
|
||||||
|
message,
|
||||||
|
tokenize=True,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
)
|
||||||
|
|
||||||
|
code = [c + 151665 for c in code]
|
||||||
|
|
||||||
|
idx = input_ids.index(speech_generation_start_index)
|
||||||
|
input_ids = input_ids[:idx] + code + input_ids[idx + 1 :]
|
||||||
|
if len(input_ids) < 2048:
|
||||||
|
input_ids_list.append(input_ids)
|
||||||
|
|
||||||
|
max_len = max([len(input_ids) for input_ids in input_ids_list])
|
||||||
|
input_ids_list = [
|
||||||
|
input_ids + [tokenizer.pad_token_id] * (max_len - len(input_ids))
|
||||||
|
for input_ids in input_ids_list
|
||||||
|
]
|
||||||
|
input_ids = torch.tensor(input_ids_list, dtype=torch.int)
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
target_ids = input_ids.clone()
|
||||||
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||||
|
mask_indices = torch.where(input_ids == assistant_index)
|
||||||
|
for i in range(mask_indices[0].size(0)):
|
||||||
|
row = mask_indices[0][i]
|
||||||
|
col = mask_indices[1][i]
|
||||||
|
# + 2 to skip: 'assistant', '\n'
|
||||||
|
target_ids[row, : col + 2] = IGNORE_TOKEN_ID
|
||||||
|
return {
|
||||||
|
"input_ids": input_ids,
|
||||||
|
"attention_mask": attention_mask,
|
||||||
|
"labels": target_ids.to(dtype=torch.int64),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = transformers.HfArgumentParser(
|
||||||
|
(ModelArguments, DataArguments, CustomTrainingArguments)
|
||||||
|
)
|
||||||
|
assert len(sys.argv) == 2 and sys.argv[1].endswith(".json")
|
||||||
|
(
|
||||||
|
model_args,
|
||||||
|
data_args,
|
||||||
|
training_args,
|
||||||
|
) = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||||
|
|
||||||
|
is_main_process = training_args.local_rank in [-1, 0]
|
||||||
|
if training_args.report_to == "wandb" and is_main_process:
|
||||||
|
wandb.init(
|
||||||
|
project="llm_tts",
|
||||||
|
config=training_args.to_sanitized_dict(),
|
||||||
|
name=training_args.run_name,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_args.llm_model_name_or_path,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
attn_implementation="flash_attention_2",
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_args.llm_model_name_or_path)
|
||||||
|
new_tokens = [f"<|s_{i}|>" for i in range(6561)] + ["<|SPEECH_GENERATION_START|>"]
|
||||||
|
num_added_tokens = tokenizer.add_tokens(new_tokens)
|
||||||
|
|
||||||
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
model.vocab_size = len(tokenizer)
|
||||||
|
|
||||||
|
dataset = load_dataset("json", data_files=data_args.data_path)
|
||||||
|
dataset = dataset["train"]
|
||||||
|
train_test_split = dataset.train_test_split(test_size=100, seed=42)
|
||||||
|
train_dataset, eval_dataset = train_test_split["train"], train_test_split["test"]
|
||||||
|
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
args=training_args,
|
||||||
|
train_dataset=train_dataset,
|
||||||
|
eval_dataset=eval_dataset,
|
||||||
|
data_collator=lambda features: data_collator(features, tokenizer),
|
||||||
|
)
|
||||||
|
|
||||||
|
if is_main_process:
|
||||||
|
trainer.add_callback(transformers.integrations.WandbCallback())
|
||||||
|
|
||||||
|
trainer.train(resume_from_checkpoint=None)
|
||||||
|
trainer.save_model(training_args.output_dir)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user