mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
add token extraction
This commit is contained in:
parent
db9fb8ad31
commit
540430d213
205
egs/emilia/TTS/local/extract_cosyvoice2_token.py
Normal file
205
egs/emilia/TTS/local/extract_cosyvoice2_token.py
Normal file
@ -0,0 +1,205 @@
|
||||
# Copyright (c) 2024 Tsinghua Univ. (authors: Xingchen Song)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Example Usage
|
||||
cpu:
|
||||
|
||||
s3tokenizer --data_dir xxx.scp \
|
||||
--device "cpu" \
|
||||
--output_dir "./" \
|
||||
--batch_size 32
|
||||
|
||||
gpu:
|
||||
|
||||
torchrun --nproc_per_node=8 --nnodes=1 \
|
||||
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
`which s3tokenizer` --data_dir xxx.scp \
|
||||
--device "cuda" \
|
||||
--output_dir "./" \
|
||||
--batch_size 32
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import s3tokenizer
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from lhotse.serialization import load_jsonl
|
||||
from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
def __init__(self, data_dir, jsonl_file):
|
||||
self.data = []
|
||||
# convert data_dir to Path object
|
||||
self.data_dir = Path(data_dir)
|
||||
# jsonl_files = self.data_dir.glob("*.jsonl")
|
||||
jsonl_files = [self.data_dir / jsonl_file]
|
||||
for jsonl_file in jsonl_files:
|
||||
for item in tqdm(
|
||||
# Note: People's Speech manifest.json is really a JSONL.
|
||||
load_jsonl(jsonl_file),
|
||||
desc=f"Processing {jsonl_file}",
|
||||
):
|
||||
self.data.append(item)
|
||||
break
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
file_path = self.data_dir / self.data[idx]["wav"]
|
||||
audio = s3tokenizer.load_audio(file_path)
|
||||
if audio.shape[0] / 16000 > 30:
|
||||
print(
|
||||
f"do not support extract speech token for audio longer than 30s, file_path: {file_path}" # noqa
|
||||
)
|
||||
mel = torch.zeros(128, 0)
|
||||
else:
|
||||
mel = s3tokenizer.log_mel_spectrogram(audio)
|
||||
return self.data[idx], mel
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
keys = [item[0] for item in batch]
|
||||
mels = [item[1] for item in batch]
|
||||
mels, mels_lens = s3tokenizer.padding(mels)
|
||||
return keys, mels, mels_lens
|
||||
|
||||
|
||||
def init_distributed():
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
rank = int(os.environ.get("RANK", 0))
|
||||
print(
|
||||
"Inference on multiple gpus, this gpu {}".format(local_rank)
|
||||
+ ", rank {}, world_size {}".format(rank, world_size)
|
||||
)
|
||||
torch.cuda.set_device(local_rank)
|
||||
dist.init_process_group("nccl")
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description="extract speech code")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
required=True,
|
||||
type=str,
|
||||
choices=[
|
||||
"speech_tokenizer_v1",
|
||||
"speech_tokenizer_v1_25hz",
|
||||
"speech_tokenizer_v2_25hz",
|
||||
],
|
||||
help="model version",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--data_dir",
|
||||
required=True,
|
||||
type=str,
|
||||
help="each line contains `wav_name wav_path`",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--jsonl_file",
|
||||
required=True,
|
||||
type=str,
|
||||
help="each line contains `wav_name wav_path`",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
required=True,
|
||||
type=str,
|
||||
choices=["cuda", "cpu"],
|
||||
help="device for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir", required=True, type=str, help="dir to save result"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
required=True,
|
||||
type=int,
|
||||
help="batch size (per-device) for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers", type=int, default=4, help="workers for dataloader"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefetch", type=int, default=5, help="prefetch for dataloader"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if args.device == "cuda":
|
||||
assert torch.cuda.is_available()
|
||||
world_size, local_rank, rank = init_distributed()
|
||||
else:
|
||||
world_size, local_rank, rank = 1, 0, 0
|
||||
|
||||
device = torch.device(args.device)
|
||||
model = s3tokenizer.load_model(args.model).to(device)
|
||||
dataset = AudioDataset(args.data_dir, args.jsonl_file)
|
||||
|
||||
if args.device == "cuda":
|
||||
model = torch.nn.parallel.DistributedDataParallel(
|
||||
model, device_ids=[local_rank]
|
||||
)
|
||||
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
||||
else:
|
||||
sampler = None
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
|
||||
total_steps = len(dataset)
|
||||
|
||||
if rank == 0:
|
||||
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
|
||||
|
||||
writer = open(f"{args.output_dir}/part_{rank + 1}_of_{world_size}", "w")
|
||||
for keys, mels, mels_lens in dataloader:
|
||||
codes, codes_lens = model(mels.to(device), mels_lens.to(device))
|
||||
for i, k in enumerate(keys):
|
||||
code = codes[i, : codes_lens[i].item()].tolist()
|
||||
k["code"] = code
|
||||
writer.write(json.dumps(k, ensure_ascii=False) + "\n")
|
||||
if rank == 0:
|
||||
progress_bar.update(world_size * len(keys))
|
||||
|
||||
if rank == 0:
|
||||
progress_bar.close()
|
||||
writer.close()
|
||||
if args.device == "cuda":
|
||||
dist.barrier()
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
178
egs/emilia/TTS/prepare.sh
Executable file
178
egs/emilia/TTS/prepare.sh
Executable file
@ -0,0 +1,178 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
# pip install lhotse s3tokenizer
|
||||
stage=6
|
||||
stop_stage=6
|
||||
|
||||
dl_dir=$PWD/download
|
||||
dl_dir=/workspace_data/Emilia-Dataset/
|
||||
prefix="emilia"
|
||||
# zh, en, ja, ko, de, fr
|
||||
lang_set=("de" "en" "zh" "ja" "ko" "fr")
|
||||
lang_set=("de" "en" "zh" "ja" "fr")
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "dl_dir: $dl_dir"
|
||||
log "Stage 0: Download data"
|
||||
#huggingface-cli login
|
||||
# huggingface-cli download --repo-type dataset --local-dir $dl_dir Wenetspeech4TTS/WenetSpeech4TTS
|
||||
|
||||
# Extract the downloaded data:
|
||||
for lang in "${lang_set[@]}"; do
|
||||
lang_upper=$(echo "${lang}" | tr '[:lower:]' '[:upper:]')
|
||||
folder=$dl_dir/raw/${lang_upper}
|
||||
for file in $folder/*.tar.gz; do
|
||||
echo "Processing ${file}"
|
||||
# e.g. $dl_dir/raw/DE/*tar.gz untar first, DE is the language code in upper case
|
||||
tar -xzvf $file -C $folder
|
||||
done
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare emilia manifest"
|
||||
# We assume that you have downloaded the Emilia corpus
|
||||
# to $dl_dir/emilia
|
||||
mkdir -p data/manifests
|
||||
for lang in "${lang_set[@]}"; do
|
||||
echo "Processing ${lang}"
|
||||
if [ ! -e data/manifests/.emilia.${lang}.done ]; then
|
||||
lhotse prepare emilia $dl_dir data/manifests --num-jobs 30 --lang "${lang}"
|
||||
touch data/manifests/.emilia.${lang}.done
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Generate fbank (used by ./f5-tts)"
|
||||
mkdir -p data/fbank
|
||||
for lang in "${lang_set[@]}"; do
|
||||
echo "Processing ${lang}"
|
||||
if [ ! -e data/fbank/.emilia.${lang}.done ]; then
|
||||
./local/compute_mel_feat.py --dataset-parts $lang --split 100 --prefix ${prefix}
|
||||
touch data/fbank/.emilia.${lang}.done
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then
|
||||
log "Stage 6: Split the ${prefix} cuts into train, valid and test sets (used by ./f5-tts)"
|
||||
if [ ! -f data/fbank/${prefix}_cuts_${subset}.jsonl.gz ]; then
|
||||
echo "Combining ${prefix} cuts"
|
||||
pieces=$(find data/fbank/ -name "${prefix}_cuts_${subset}.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/${prefix}_cuts_${subset}.jsonl.gz
|
||||
fi
|
||||
if [ ! -e data/fbank/.${prefix}_split.done ]; then
|
||||
echo "Splitting ${prefix} cuts into train, valid and test sets"
|
||||
|
||||
lhotse subset --last 800 \
|
||||
data/fbank/${prefix}_cuts_${subset}.jsonl.gz \
|
||||
data/fbank/${prefix}_cuts_validtest.jsonl.gz
|
||||
lhotse subset --first 400 \
|
||||
data/fbank/${prefix}_cuts_validtest.jsonl.gz \
|
||||
data/fbank/${prefix}_cuts_valid.jsonl.gz
|
||||
lhotse subset --last 400 \
|
||||
data/fbank/${prefix}_cuts_validtest.jsonl.gz \
|
||||
data/fbank/${prefix}_cuts_test.jsonl.gz
|
||||
|
||||
rm data/fbank/${prefix}_cuts_validtest.jsonl.gz
|
||||
|
||||
n=$(( $(gunzip -c data/fbank/${prefix}_cuts_${subset}.jsonl.gz | wc -l) - 800 ))
|
||||
lhotse subset --first $n \
|
||||
data/fbank/${prefix}_cuts_${subset}.jsonl.gz \
|
||||
data/fbank/${prefix}_cuts_train.jsonl.gz
|
||||
touch data/fbank/.${prefix}_split.done
|
||||
fi
|
||||
fi
|
||||
|
||||
# zcat test.jsonl.gz | jq -r '.recording.id + " " + .recording.sources[0].source' > wav.scp
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Extract cosyvoice2 FSQ token (used by ./f5-tts semantic token experiment)"
|
||||
data_dir=$dl_dir/raw/ZH
|
||||
# for all jsonl files in data_dir
|
||||
for jsonl_file in $data_dir/*.jsonl; do
|
||||
# get the file basename
|
||||
jsonl_file_basename=$(basename $jsonl_file)
|
||||
echo "Processing $jsonl_file"
|
||||
output_dir="./cosy_v2_tokens_ZH/${jsonl_file_basename%.jsonl}"
|
||||
echo "output_dir: $output_dir"
|
||||
# skip if the output_dir exists
|
||||
if [ -e $output_dir ]; then
|
||||
echo "Output directory $output_dir already exists, skipping"
|
||||
continue
|
||||
fi
|
||||
mkdir -p $output_dir
|
||||
torchrun --nproc_per_node=8 --nnodes=1 \
|
||||
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
local/extract_cosyvoice2_token.py --data_dir $data_dir \
|
||||
--jsonl_file $jsonl_file_basename \
|
||||
--device "cuda" \
|
||||
--output_dir $output_dir \
|
||||
--batch_size 32 \
|
||||
--num_workers 2 \
|
||||
--model "speech_tokenizer_v2_25hz" # or "speech_tokenizer_v1_25hz
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Extract cosyvoice2 FSQ token (used by ./f5-tts semantic token experiment)"
|
||||
for lang in "${lang_set[@]}"; do
|
||||
lang_upper=$(echo "${lang}" | tr '[:lower:]' '[:upper:]')
|
||||
data_dir=$dl_dir/raw/${lang_upper}
|
||||
# for all jsonl files in data_dir
|
||||
for jsonl_file in $data_dir/*.jsonl; do
|
||||
# get the file basename
|
||||
jsonl_file_basename=$(basename $jsonl_file)
|
||||
echo "Processing $jsonl_file"
|
||||
output_dir="./cosy_v2_tokens_${lang_upper}/${jsonl_file_basename%.jsonl}"
|
||||
echo "output_dir: $output_dir"
|
||||
# skip if the output_dir exists
|
||||
if [ -e $output_dir ]; then
|
||||
echo "Output directory $output_dir already exists, skipping"
|
||||
continue
|
||||
fi
|
||||
mkdir -p $output_dir
|
||||
torchrun --nproc_per_node=8 --nnodes=1 \
|
||||
--rdzv_id=2024 --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
local/extract_cosyvoice2_token.py --data_dir $data_dir \
|
||||
--jsonl_file $jsonl_file_basename \
|
||||
--device "cuda" \
|
||||
--output_dir $output_dir \
|
||||
--batch_size 32 \
|
||||
--num_workers 2 \
|
||||
--model "speech_tokenizer_v2_25hz" # or "speech_tokenizer_v1_25hz
|
||||
done
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
# cat EN_B00008.tar.gz.* > EN_B00008.tar.gz
|
||||
for lang in "${lang_set[@]}"; do
|
||||
lang_upper=$(echo "${lang}" | tr '[:lower:]' '[:upper:]')
|
||||
cosy_token_dir="./cosy_v2_tokens_${lang_upper}"
|
||||
for dir in $cosy_token_dir/*; do
|
||||
echo "Processing $dir"
|
||||
# get the file basename
|
||||
dir_basename=$(basename $dir)
|
||||
echo "dir_basename: $dir_basename"
|
||||
cat $dir/part* > $dir/${dir_basename}.jsonl
|
||||
done
|
||||
cat $cosy_token_dir/${lang_upper}*/*.jsonl > $cosy_token_dir/cosy_v2_tokens_${lang_upper}.jsonl
|
||||
done
|
||||
fi
|
1
egs/emilia/TTS/shared
Symbolic link
1
egs/emilia/TTS/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
Loading…
x
Reference in New Issue
Block a user