mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Add TDNN-LSTM-CTC Results (#25)
* Add tdnn-lstm pretrained model and results * Add docs for TDNN-LSTM-CTC * Minor fix * Fix typo * Fix style checking
This commit is contained in:
parent
1bd5dcc8ac
commit
f4223ee110
1
.flake8
1
.flake8
@ -5,6 +5,7 @@ max-line-length = 80
|
||||
per-file-ignores =
|
||||
# line too long
|
||||
egs/librispeech/ASR/conformer_ctc/conformer.py: E501,
|
||||
egs/librispeech/ASR/conformer_ctc/decode.py: E501,
|
||||
|
||||
exclude =
|
||||
.git,
|
||||
|
@ -1,2 +1,322 @@
|
||||
TDNN LSTM CTC
|
||||
TDNN-LSTM-CTC
|
||||
=============
|
||||
|
||||
This tutorial shows you how to run a TDNN-LSTM-CTC model with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||
|
||||
|
||||
.. HINT::
|
||||
|
||||
We assume you have read the page :ref:`install icefall` and have setup
|
||||
the environment for ``icefall``.
|
||||
|
||||
|
||||
Data preparation
|
||||
----------------
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./prepare.sh
|
||||
|
||||
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||
All you need to do is to run it.
|
||||
|
||||
The data preparation contains several stages, you can use the following two
|
||||
options:
|
||||
|
||||
- ``--stage``
|
||||
- ``--stop-stage``
|
||||
|
||||
to control which stage(s) should be run. By default, all stages are executed.
|
||||
|
||||
|
||||
For example,
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||
|
||||
means to run only stage 0.
|
||||
|
||||
To run stage 2 to stage 5, use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||
|
||||
|
||||
Training
|
||||
--------
|
||||
|
||||
Now describing the training of TDNN-LSTM-CTC model, contained in
|
||||
the `tdnn_lstm_ctc <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/tdnn_lstm_ctc>`_
|
||||
folder.
|
||||
|
||||
The command to run the training part is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
$ ./tdnn_lstm_ctc/train.py --world-size 4
|
||||
|
||||
By default, it will run ``20`` epochs. Training logs and checkpoints are saved
|
||||
in ``tdnn_lstm_ctc/exp``.
|
||||
|
||||
In ``tdnn_lstm_ctc/exp``, you will find the following files:
|
||||
|
||||
- ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-19.pt``
|
||||
|
||||
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn_lstm_ctc/train.py --start-epoch 11
|
||||
|
||||
- ``tensorboard/``
|
||||
|
||||
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||
rate, etc, are recorded in these logs. You can visualize them by:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd tdnn_lstm_ctc/exp/tensorboard
|
||||
$ tensorboard dev upload --logdir . --description "TDNN LSTM training for librispeech with icefall"
|
||||
|
||||
- ``log/log-train-xxxx``
|
||||
|
||||
It is the detailed training log in text format, same as the one
|
||||
you saw printed to the console during training.
|
||||
|
||||
|
||||
To see available training options, you can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn_lstm_ctc/train.py --help
|
||||
|
||||
Other training options, e.g., learning rate, results dir, etc., are
|
||||
pre-configured in the function ``get_params()``
|
||||
in `tdnn_lstm_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py>`_.
|
||||
Normally, you don't need to change them. You can change them by modifying the code, if
|
||||
you want.
|
||||
|
||||
Decoding
|
||||
--------
|
||||
|
||||
The decoding part uses checkpoints saved by the training part, so you have
|
||||
to run the training part first.
|
||||
|
||||
The command for decoding is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ export CUDA_VISIBLE_DEVICES="0"
|
||||
$ ./tdnn_lstm_ctc/decode.py
|
||||
|
||||
You will see the WER in the output log.
|
||||
|
||||
Decoded results are saved in ``tdnn_lstm_ctc/exp``.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn_lstm_ctc/decode.py --help
|
||||
|
||||
shows you the available decoding options.
|
||||
|
||||
Some commonly used options are:
|
||||
|
||||
- ``--epoch``
|
||||
|
||||
You can select which checkpoint to be used for decoding.
|
||||
For instance, ``./tdnn_lstm_ctc/decode.py --epoch 10`` means to use
|
||||
``./tdnn_lstm_ctc/exp/epoch-10.pt`` for decoding.
|
||||
|
||||
- ``--avg``
|
||||
|
||||
It's related to model averaging. It specifies number of checkpoints
|
||||
to be averaged. The averaged model is used for decoding.
|
||||
For example, the following command:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn_lstm_ctc/decode.py --epoch 10 --avg 3
|
||||
|
||||
uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt``
|
||||
for decoding.
|
||||
|
||||
- ``--export``
|
||||
|
||||
If it is ``True``, i.e., ``./tdnn_lstm_ctc/decode.py --export 1``, the code
|
||||
will save the averaged model to ``tdnn_lstm_ctc/exp/pretrained.pt``.
|
||||
See :ref:`tdnn_lstm_ctc use a pre-trained model` for how to use it.
|
||||
|
||||
.. HINT::
|
||||
|
||||
There are several decoding methods provided in `tdnn_lstm_ctc/decode.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py>`_, you can change the decoding method by modifying ``method`` parameter in function ``get_params()``.
|
||||
|
||||
|
||||
.. _tdnn_lstm_ctc use a pre-trained model:
|
||||
|
||||
Pre-trained Model
|
||||
-----------------
|
||||
|
||||
We have uploaded the pre-trained model to
|
||||
`<https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc>`_.
|
||||
|
||||
The following shows you how to use the pre-trained model.
|
||||
|
||||
Download the pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ mkdir tmp
|
||||
$ cd tmp
|
||||
$ git lfs install
|
||||
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
You have to use ``git lfs`` to download the pre-trained model.
|
||||
|
||||
After downloading, you will have the following files:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ tree tmp
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tmp/
|
||||
`-- icefall_asr_librispeech_tdnn-lstm_ctc
|
||||
|-- README.md
|
||||
|-- data
|
||||
| |-- lang_phone
|
||||
| | |-- HLG.pt
|
||||
| | |-- tokens.txt
|
||||
| | `-- words.txt
|
||||
| `-- lm
|
||||
| `-- G_4_gram.pt
|
||||
|-- exp
|
||||
| `-- pretrained.pt
|
||||
`-- test_wavs
|
||||
|-- 1089-134686-0001.flac
|
||||
|-- 1221-135766-0001.flac
|
||||
|-- 1221-135766-0002.flac
|
||||
`-- trans.txt
|
||||
|
||||
6 directories, 10 files
|
||||
|
||||
|
||||
Download kaldifeat
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used for extracting
|
||||
features from a single or multiple sound files. Please refer to
|
||||
`<https://github.com/csukuangfj/kaldifeat>`_ to install ``kaldifeat`` first.
|
||||
|
||||
Inference with a pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./tdnn_lstm_ctc/pretrained.py --help
|
||||
|
||||
shows the usage information of ``./tdnn_lstm_ctc/pretrained.py``.
|
||||
|
||||
To decode with ``1best`` method, we can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
|
||||
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
|
||||
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
|
||||
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
|
||||
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
|
||||
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
|
||||
|
||||
|
||||
To decode with ``whole-lattice-rescoring`` methond, you can use
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The decoding output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
|
||||
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
|
||||
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
|
||||
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
|
||||
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
|
||||
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
|
||||
|
||||
|
||||
Colab notebook
|
||||
--------------
|
||||
|
||||
We provide a colab notebook for decoding with pre-trained model.
|
||||
|
||||
|librispeech tdnn_lstm_ctc colab notebook|
|
||||
|
||||
.. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd
|
||||
|
||||
|
||||
**Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``.
|
||||
|
@ -6,7 +6,7 @@
|
||||
|
||||
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
|
||||
|
||||
Pretrained model is available at https://huggingface.co/pkufool/conformer_ctc
|
||||
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
|
||||
|
||||
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||
|
||||
@ -21,3 +21,26 @@ To get more unique paths, we scaled the lattice.scores with 0.5 (see https://git
|
||||
|test-clean|1.3|1.2|
|
||||
|test-other|1.2|1.1|
|
||||
|
||||
|
||||
### LibriSpeech training results (Tdnn-Lstm)
|
||||
#### 2021-08-24
|
||||
|
||||
(Wei Kang): Result of phone based Tdnn-Lstm model.
|
||||
|
||||
Icefall version: https://github.com/k2-fsa/icefall/commit/caa0b9e9425af27e0c6211048acb55a76ed5d315
|
||||
|
||||
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||
|
||||
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using `whole-lattice-rescoring` decoding method.
|
||||
|
||||
||test-clean|test-other|
|
||||
|--|--|--|
|
||||
|WER| 6.59% | 17.69% |
|
||||
|
||||
We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below.
|
||||
|
||||
||lm_scale|
|
||||
|--|--|
|
||||
|test-clean|0.8|
|
||||
|test-other|0.9|
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html>
|
||||
for how to run this recipe.
|
||||
|
@ -83,7 +83,7 @@ def get_parser():
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice. Rescore the decoding lattice with an n-gram LM
|
||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an n-gram LM
|
||||
(e.g., a 4-gram LM), the best path of rescored lattice is the
|
||||
decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored lattice,
|
||||
|
270
egs/librispeech/ASR/tdnn_lstm_ctc/Pre-trained.md
Normal file
270
egs/librispeech/ASR/tdnn_lstm_ctc/Pre-trained.md
Normal file
@ -0,0 +1,270 @@
|
||||
|
||||
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
||||
|
||||
(See the bottom of this document for the link to a colab notebook.)
|
||||
|
||||
You need to prepare 4 files:
|
||||
|
||||
- a model checkpoint file, e.g., epoch-20.pt
|
||||
- HLG.pt, the decoding graph
|
||||
- words.txt, the word symbol table
|
||||
- a sound file, whose sampling rate has to be 16 kHz.
|
||||
Supported formats are those supported by `torchaudio.load()`,
|
||||
e.g., wav and flac.
|
||||
|
||||
Also, you need to install `kaldifeat`. Please refer to
|
||||
<https://github.com/csukuangfj/kaldifeat> for installation.
|
||||
|
||||
```bash
|
||||
./tdnn_lstm_ctc/pretrained.py --help
|
||||
```
|
||||
|
||||
displays the help information.
|
||||
|
||||
## HLG decoding
|
||||
|
||||
Once you have the above files ready and have `kaldifeat` installed,
|
||||
you can run:
|
||||
|
||||
```bash
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
/path/to/your/sound.wav
|
||||
```
|
||||
|
||||
and you will see the transcribed result.
|
||||
|
||||
If you want to transcribe multiple files at the same time, you can use:
|
||||
|
||||
```bash
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
/path/to/your/sound1.wav \
|
||||
/path/to/your/sound2.wav \
|
||||
/path/to/your/sound3.wav
|
||||
```
|
||||
|
||||
**Note**: This is the fastest decoding method.
|
||||
|
||||
## HLG decoding + LM rescoring
|
||||
|
||||
`./tdnn_lstm_ctc/pretrained.py` also supports `whole lattice LM rescoring`.
|
||||
|
||||
To use whole lattice LM rescoring, you also need the following files:
|
||||
|
||||
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
||||
|
||||
The command to run decoding with LM rescoring is:
|
||||
|
||||
```bash
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
/path/to/your/sound1.wav \
|
||||
/path/to/your/sound2.wav \
|
||||
/path/to/your/sound3.wav
|
||||
```
|
||||
|
||||
# Decoding with a pre-trained model in action
|
||||
|
||||
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc>
|
||||
|
||||
The following shows the steps about the usage of the provided pre-trained model.
|
||||
|
||||
### (1) Download the pre-trained model
|
||||
|
||||
```bash
|
||||
sudo apt-get install git-lfs
|
||||
cd /path/to/icefall/egs/librispeech/ASR
|
||||
git lfs install
|
||||
mkdir tmp
|
||||
cd tmp
|
||||
git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||
```
|
||||
|
||||
**CAUTION**: You have to install `git-lfs` to download the pre-trained model.
|
||||
|
||||
You will find the following files:
|
||||
|
||||
```
|
||||
tmp/
|
||||
`-- icefall_asr_librispeech_tdnn-lstm_ctc
|
||||
|-- README.md
|
||||
|-- data
|
||||
| |-- lang_phone
|
||||
| | |-- HLG.pt
|
||||
| | |-- tokens.txt
|
||||
| | `-- words.txt
|
||||
| `-- lm
|
||||
| `-- G_4_gram.pt
|
||||
|-- exp
|
||||
| `-- pretrained.pt
|
||||
`-- test_wavs
|
||||
|-- 1089-134686-0001.flac
|
||||
|-- 1221-135766-0001.flac
|
||||
|-- 1221-135766-0002.flac
|
||||
`-- trans.txt
|
||||
|
||||
6 directories, 10 files
|
||||
```
|
||||
|
||||
**File descriptions**:
|
||||
|
||||
- `data/lang_phone/HLG.pt`
|
||||
|
||||
It is the decoding graph.
|
||||
|
||||
- `data/lang_phone/tokens.txt`
|
||||
|
||||
It contains tokens and their IDs.
|
||||
|
||||
- `data/lang_phone/words.txt`
|
||||
|
||||
It contains words and their IDs.
|
||||
|
||||
- `data/lm/G_4_gram.pt`
|
||||
|
||||
It is a 4-gram LM, useful for LM rescoring.
|
||||
|
||||
- `exp/pretrained.pt`
|
||||
|
||||
It contains pre-trained model parameters, obtained by averaging
|
||||
checkpoints from `epoch-14.pt` to `epoch-19.pt`.
|
||||
Note: We have removed optimizer `state_dict` to reduce file size.
|
||||
|
||||
- `test_waves/*.flac`
|
||||
|
||||
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
||||
|
||||
- `test_waves/trans.txt`
|
||||
|
||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||
|
||||
The information of the test sound files is listed below:
|
||||
|
||||
```
|
||||
$ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||
File Size : 116k
|
||||
Bit Rate : 140k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||
File Size : 343k
|
||||
Bit Rate : 164k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||
File Size : 105k
|
||||
Bit Rate : 174k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Total Duration of 3 files: 00:00:28.16
|
||||
```
|
||||
|
||||
### (2) Use HLG decoding
|
||||
|
||||
```bash
|
||||
cd /path/to/icefall/egs/librispeech/ASR
|
||||
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||
```
|
||||
|
||||
The output is given below:
|
||||
|
||||
```
|
||||
2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
|
||||
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
|
||||
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
|
||||
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
|
||||
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
|
||||
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
|
||||
```
|
||||
|
||||
### (3) Use HLG decoding + LM rescoring
|
||||
|
||||
```bash
|
||||
./tdnn_lstm_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||
```
|
||||
|
||||
The output is:
|
||||
|
||||
```
|
||||
2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
|
||||
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
|
||||
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
|
||||
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
|
||||
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
|
||||
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
|
||||
```
|
||||
|
||||
**NOTE**: We provide a colab notebook for demonstration.
|
||||
[](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
||||
|
||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to run `HLG decoding + LM rescoring`.
|
||||
Otherwise, you can only run `HLG decoding` with Colab.
|
@ -1,2 +1,4 @@
|
||||
|
||||
Will add results later.
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/tdnn_lstm_ctc.html>
|
||||
for how to run this recipe.
|
||||
|
@ -43,6 +43,7 @@ from icefall.utils import (
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
@ -54,7 +55,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=9,
|
||||
default=19,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
@ -66,6 +67,16 @@ def get_parser():
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -408,6 +419,12 @@ def main():
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
|
277
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
Normal file
277
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
Normal file
@ -0,0 +1,277 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from model import TdnnLstm
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Possible values are:
|
||||
(1) 1best - Use the best path as decoding output. Only
|
||||
the transformer encoder output is used for decoding.
|
||||
We call it HLG decoding.
|
||||
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||
decoding lattice and then use 1best to decode the
|
||||
rescored lattice.
|
||||
We call it HLG decoding + n-gram LM rescoring.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--G",
|
||||
type=str,
|
||||
help="""An LM for rescoring.
|
||||
Used only when method is
|
||||
whole-lattice-rescoring.
|
||||
It's usually a 4-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="""
|
||||
Used only when method is whole-lattice-rescoring.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 3,
|
||||
"num_classes": 72,
|
||||
"sample_rate": 16000,
|
||||
"search_beam": 20,
|
||||
"output_beam": 5,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=params.num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = G.to(device)
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G.lm_scores = G.scores.clone()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
||||
|
||||
with torch.no_grad():
|
||||
nnet_output = model(features)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
logging.info("Use HLG decoding + LM rescoring")
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=[params.ngram_lm_scale],
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user