mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Add streaming feature extractor.
This commit is contained in:
parent
189ca555b1
commit
f16b759397
4
.flake8
4
.flake8
@ -14,3 +14,7 @@ exclude =
|
|||||||
.git,
|
.git,
|
||||||
**/data/**,
|
**/data/**,
|
||||||
icefall/shared/make_kn_lm.py
|
icefall/shared/make_kn_lm.py
|
||||||
|
|
||||||
|
ignore =
|
||||||
|
# E203 whitespace before ':'
|
||||||
|
E203,
|
||||||
|
@ -63,11 +63,11 @@ class Emformer(EncoderInterface):
|
|||||||
num_encoder_layers:
|
num_encoder_layers:
|
||||||
Number of encoder layers.
|
Number of encoder layers.
|
||||||
segment_length:
|
segment_length:
|
||||||
Number of frames per segment.
|
Number of frames per segment before subsampling.
|
||||||
left_context_length:
|
left_context_length:
|
||||||
Number of frames in the left context.
|
Number of frames in the left context before subsampling.
|
||||||
right_context_length:
|
right_context_length:
|
||||||
Number of frames in the right context.
|
Number of frames in the right context before subsampling.
|
||||||
max_memory_size:
|
max_memory_size:
|
||||||
TODO.
|
TODO.
|
||||||
dropout:
|
dropout:
|
||||||
@ -94,6 +94,7 @@ class Emformer(EncoderInterface):
|
|||||||
else:
|
else:
|
||||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||||
|
|
||||||
|
self.segment_length = segment_length
|
||||||
self.right_context_length = right_context_length
|
self.right_context_length = right_context_length
|
||||||
|
|
||||||
assert right_context_length % subsampling_factor == 0
|
assert right_context_length % subsampling_factor == 0
|
||||||
|
184
egs/librispeech/ASR/transducer_emformer/export.py
Executable file
184
egs/librispeech/ASR/transducer_emformer/export.py
Executable file
@ -0,0 +1,184 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./transducer_emformer/export.py \
|
||||||
|
--exp-dir ./transducer_emformer/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained.pt
|
||||||
|
|
||||||
|
To use the generated file with `transducer_emformer/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./transducer_emformer/decode.py \
|
||||||
|
--exp-dir ./transducer_emformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 1000 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
assert args.jit is False, "Support torchscript will be added later"
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -20,14 +20,14 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Optional
|
|
||||||
|
|
||||||
import kaldifeat
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from emformer import LOG_EPSILON
|
||||||
|
from streaming_feature_extractor import Stream
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
@ -147,10 +147,10 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--sample-rate",
|
"--sampling-rate",
|
||||||
type=int,
|
type=float,
|
||||||
default=16000,
|
default=16000,
|
||||||
help="The sample rate of the input sound file",
|
help="Sample rate of the audio",
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -158,32 +158,159 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_feature_extractor(
|
def greedy_search(
|
||||||
params: AttributeDict,
|
model: nn.Module,
|
||||||
) -> kaldifeat.Fbank:
|
stream: Stream,
|
||||||
logging.info("Constructing Fbank computer")
|
encoder_out: torch.Tensor,
|
||||||
opts = kaldifeat.FbankOptions()
|
sp: spm.SentencePieceProcessor,
|
||||||
opts.device = params.device
|
):
|
||||||
opts.frame_opts.dither = 0
|
"""
|
||||||
opts.frame_opts.snip_edges = True
|
Args:
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
model:
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
The RNN-T model.
|
||||||
|
stream:
|
||||||
|
A stream object.
|
||||||
|
encoder_out:
|
||||||
|
A 2-D tensor of shape (T, encoder_out_dim) containing the output of
|
||||||
|
the encoder model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
"""
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
|
||||||
return kaldifeat.Fbank(opts)
|
if stream.decoder_out is None:
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp.ys[-context_size:]],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
stream.decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
).unsqueeze(1)
|
||||||
|
# stream.decoder_out is of shape (1, 1, decoder_out_dim)
|
||||||
|
|
||||||
|
assert encoder_out.ndim == 2
|
||||||
|
|
||||||
|
T = encoder_out.size(0)
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[t].reshape(
|
||||||
|
1, 1, 1, encoder_out.size(-1)
|
||||||
|
)
|
||||||
|
logits = model.joiner(current_encoder_out, stream.decoder_out)
|
||||||
|
# logits is of shape (1, 1, 1, vocab_size)
|
||||||
|
y = logits.argmax().item()
|
||||||
|
if y == blank_id:
|
||||||
|
continue
|
||||||
|
stream.hyp.ys.append(y)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp.ys[-context_size:]],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
|
||||||
|
stream.decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
).unsqueeze(1)
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Partial result:\n{sp.decode(stream.hyp.ys[context_size:])}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def process_feature_frames(
|
||||||
|
model: nn.Module,
|
||||||
|
stream: Stream,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
):
|
||||||
|
"""Process the feature frames contained in ``stream.feature_frames``.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The RNN-T model.
|
||||||
|
stream:
|
||||||
|
The stream corresponding to the input audio samples.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
"""
|
||||||
|
# number of frames before subsampling
|
||||||
|
segment_length = model.encoder.segment_length
|
||||||
|
|
||||||
|
right_context_length = model.encoder.right_context_length
|
||||||
|
|
||||||
|
chunk_length = (segment_length + 3) + right_context_length
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
while len(stream.feature_frames) >= chunk_length:
|
||||||
|
# a list of tensor, each with a shape (1, feature_dim)
|
||||||
|
this_chunk = stream.feature_frames[:chunk_length]
|
||||||
|
|
||||||
|
stream.feature_frames = stream.feature_frames[segment_length:]
|
||||||
|
features = torch.cat(this_chunk, dim=0).to(device) # (T, feature_dim)
|
||||||
|
features = features.unsqueeze(0) # (1, T, feature_dim)
|
||||||
|
feature_lens = torch.tensor([features.size(1)], device=device)
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
stream.states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
features,
|
||||||
|
feature_lens,
|
||||||
|
stream.states,
|
||||||
|
)
|
||||||
|
greedy_search(
|
||||||
|
model=model,
|
||||||
|
stream=stream,
|
||||||
|
encoder_out=encoder_out[0],
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
|
||||||
|
if stream.feature_extractor.is_last_frame(stream.num_fetched_frames - 1):
|
||||||
|
assert len(stream.feature_frames) < chunk_length
|
||||||
|
|
||||||
|
if len(stream.feature_frames) > 0:
|
||||||
|
this_chunk = stream.feature_frames[:chunk_length]
|
||||||
|
stream.feature_frames = []
|
||||||
|
features = torch.cat(this_chunk, dim=0) # (T, feature_dim)
|
||||||
|
features = features.to(device).unsqueeze(0) # (1, T, feature_dim)
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, chunk_length - features.size(1)),
|
||||||
|
value=LOG_EPSILON,
|
||||||
|
)
|
||||||
|
feature_lens = torch.tensor([features.size(1)], device=device)
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
stream.states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
features,
|
||||||
|
feature_lens,
|
||||||
|
stream.states,
|
||||||
|
)
|
||||||
|
greedy_search(
|
||||||
|
model=model,
|
||||||
|
stream=stream,
|
||||||
|
encoder_out=encoder_out[0],
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def decode_one_utterance(
|
def decode_one_utterance(
|
||||||
audio_samples: torch.Tensor,
|
audio_samples: torch.Tensor,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
fbank: kaldifeat.Fbank,
|
stream: Stream,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
):
|
):
|
||||||
"""Decode one utterance.
|
"""Decode one utterance.
|
||||||
Args:
|
Args:
|
||||||
audio_samples:
|
audio_samples:
|
||||||
A 1-D float32 tensor of shape (num_samples,) containing the normalized
|
A 1-D float32 tensor of shape (num_samples,) containing the
|
||||||
audio samples. Normalized means the samples is in the range [-1, 1].
|
audio samples.
|
||||||
model:
|
model:
|
||||||
The RNN-T model.
|
The RNN-T model.
|
||||||
feature_extractor:
|
feature_extractor:
|
||||||
@ -193,80 +320,23 @@ def decode_one_utterance(
|
|||||||
sp:
|
sp:
|
||||||
The BPE model.
|
The BPE model.
|
||||||
"""
|
"""
|
||||||
sample_rate = params.sample_rate
|
|
||||||
frame_shift = sample_rate * fbank.opts.frame_opts.frame_shift_ms / 1000
|
|
||||||
|
|
||||||
frame_shift = int(frame_shift) # number of samples
|
|
||||||
|
|
||||||
# Note: We add 3 here because the subsampling method ((n-1)//2-1))//2
|
|
||||||
# is not equal to n//4. We will switch to a subsampling method that
|
|
||||||
# satisfies n//4, where n is the number of input frames.
|
|
||||||
segment_length = (params.segment_length + 3) * frame_shift
|
|
||||||
|
|
||||||
right_context_length = params.right_context_length * frame_shift
|
|
||||||
chunk_size = segment_length + right_context_length
|
|
||||||
|
|
||||||
opts = fbank.opts.frame_opts
|
|
||||||
chunk_size += (
|
|
||||||
(opts.frame_length_ms - opts.frame_shift_ms) / 1000 * sample_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
chunk_size = int(chunk_size)
|
|
||||||
|
|
||||||
states: Optional[List[List[torch.Tensor]]] = None
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
hyp = [blank_id] * context_size
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(hyp, device=device, dtype=torch.int64).reshape(
|
|
||||||
1, context_size
|
|
||||||
)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
num_samples = audio_samples.size(0)
|
num_samples = audio_samples.size(0)
|
||||||
while i < num_samples:
|
while i < num_samples:
|
||||||
# Note: The current approach of computing the features is not ideal
|
# Simulate streaming.
|
||||||
# since it re-computes the features for the right context.
|
this_chunk_num_samples = torch.randint(2000, 5000, (1,)).item()
|
||||||
chunk = audio_samples[i : i + chunk_size] # noqa
|
|
||||||
i += segment_length
|
|
||||||
if chunk.size(0) < chunk_size:
|
|
||||||
chunk = torch.nn.functional.pad(
|
|
||||||
chunk, pad=(0, chunk_size - chunk.size(0))
|
|
||||||
)
|
|
||||||
features = fbank(chunk)
|
|
||||||
feature_lens = torch.tensor([features.size(0)], device=params.device)
|
|
||||||
|
|
||||||
features = features.unsqueeze(0) # (1, T, C)
|
thiks_chunk_samples = audio_samples[i : (i + this_chunk_num_samples)]
|
||||||
|
i += this_chunk_num_samples
|
||||||
|
|
||||||
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
stream.accept_waveform(
|
||||||
features,
|
sampling_rate=params.sampling_rate,
|
||||||
feature_lens,
|
waveform=thiks_chunk_samples,
|
||||||
states,
|
|
||||||
)
|
)
|
||||||
for t in range(encoder_out_lens.item()):
|
process_feature_frames(model=model, stream=stream, sp=sp)
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[0:1, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
|
||||||
# logits is (1, 1, 1, vocab_size)
|
|
||||||
y = logits.argmax().item()
|
|
||||||
if y == blank_id:
|
|
||||||
continue
|
|
||||||
|
|
||||||
hyp.append(y)
|
stream.input_finished()
|
||||||
|
process_feature_frames(model=model, stream=stream, sp=sp)
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp[-context_size:]], device=device, dtype=torch.int64
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
logging.info(f"Partial result:\n{sp.decode(hyp[context_size:])}")
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
@ -333,10 +403,12 @@ def main():
|
|||||||
|
|
||||||
test_clean_cuts = librispeech.test_clean_cuts()
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
|
||||||
fbank = get_feature_extractor(params)
|
|
||||||
|
|
||||||
for num, cut in enumerate(test_clean_cuts):
|
for num, cut in enumerate(test_clean_cuts):
|
||||||
logging.info("Processing {num}")
|
logging.info(f"Processing {num}")
|
||||||
|
stream = Stream(
|
||||||
|
context_size=model.decoder.context_size,
|
||||||
|
blank_id=model.decoder.blank_id,
|
||||||
|
)
|
||||||
|
|
||||||
audio: np.ndarray = cut.load_audio()
|
audio: np.ndarray = cut.load_audio()
|
||||||
# audio.shape: (1, num_samples)
|
# audio.shape: (1, num_samples)
|
||||||
@ -347,16 +419,17 @@ def main():
|
|||||||
decode_one_utterance(
|
decode_one_utterance(
|
||||||
audio_samples=torch.from_numpy(audio).squeeze(0).to(device),
|
audio_samples=torch.from_numpy(audio).squeeze(0).to(device),
|
||||||
model=model,
|
model=model,
|
||||||
fbank=fbank,
|
stream=stream,
|
||||||
params=params,
|
params=params,
|
||||||
sp=sp,
|
sp=sp,
|
||||||
)
|
)
|
||||||
|
|
||||||
logging.info(f"The ground truth is:\n{cut.supervisions[0].text}")
|
logging.info(f"The ground truth is:\n{cut.supervisions[0].text}")
|
||||||
if num >= 0:
|
if num >= 2:
|
||||||
break
|
break
|
||||||
time.sleep(2) # So that you can see the decoded results
|
time.sleep(2) # So that you can see the decoded results
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
torch.manual_seed(20220410)
|
||||||
main()
|
main()
|
||||||
|
@ -0,0 +1,106 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from beam_search import Hypothesis
|
||||||
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||||
|
|
||||||
|
|
||||||
|
def _create_streaming_feature_extractr() -> OnlineFeature:
|
||||||
|
"""Create a CPU streaming feature extractor.
|
||||||
|
|
||||||
|
At present, we assume it returns a fbank feature extractor with
|
||||||
|
fixed options. In the future, we will support passing in the options
|
||||||
|
from outside.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a CPU streaming feature extractor.
|
||||||
|
"""
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
return OnlineFbank(opts)
|
||||||
|
|
||||||
|
|
||||||
|
class Stream(object):
|
||||||
|
def __init__(self, context_size: int, blank_id: int = 0) -> None:
|
||||||
|
"""Context size of the RNN-T decoder model."""
|
||||||
|
self.feature_extractor = _create_streaming_feature_extractr()
|
||||||
|
self.hyp = Hypothesis(
|
||||||
|
ys=([blank_id] * context_size),
|
||||||
|
log_prob=torch.tensor([0.0]),
|
||||||
|
) # for greedy search, will extend it to beam search
|
||||||
|
|
||||||
|
# It contains a list of 1-D tensors representing the feature frames.
|
||||||
|
self.feature_frames: List[torch.Tensor] = []
|
||||||
|
|
||||||
|
self.num_fetched_frames = 0
|
||||||
|
|
||||||
|
# For the emformer model, it contains the states of each
|
||||||
|
# encoder layer.
|
||||||
|
self.states: Optional[List[List[torch.Tensor]]] = None
|
||||||
|
|
||||||
|
# For the RNN-T decoder, it contains the decoder output
|
||||||
|
# corresponding to the decoder input self.hyp.ys[-context_size:]
|
||||||
|
self.decoder_out: Optional[torch.Tensor] = None
|
||||||
|
|
||||||
|
def accept_waveform(
|
||||||
|
self,
|
||||||
|
sampling_rate: float,
|
||||||
|
waveform: torch.Tensor,
|
||||||
|
) -> None:
|
||||||
|
"""Feed audio samples to the feature extractor and compute features
|
||||||
|
if there are enough samples available.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
The range of the audio samples should match the one used in the
|
||||||
|
training. That is, if you use the range [-1, 1] in the training, then
|
||||||
|
the input audio samples should also be normalized to [-1, 1].
|
||||||
|
|
||||||
|
Args
|
||||||
|
sampling_rate:
|
||||||
|
The sampling rate of the input audio samples. It is used for sanity
|
||||||
|
check to ensure that the input sampling rate equals to the one
|
||||||
|
used in the extractor. If they are not equal, then no resampling
|
||||||
|
will be performed; instead an error will be thrown.
|
||||||
|
waveform:
|
||||||
|
A 1-D torch tensor of dtype torch.float32 containing audio samples.
|
||||||
|
It should be on CPU.
|
||||||
|
"""
|
||||||
|
self.feature_extractor.accept_waveform(
|
||||||
|
sampling_rate=sampling_rate,
|
||||||
|
waveform=waveform,
|
||||||
|
)
|
||||||
|
self._fetch_frames()
|
||||||
|
|
||||||
|
def input_finished(self) -> None:
|
||||||
|
"""Signal that no more audio samples available and the feature
|
||||||
|
extractor should flush the buffered samples to compute frames.
|
||||||
|
"""
|
||||||
|
self.feature_extractor.input_finished()
|
||||||
|
self._fetch_frames()
|
||||||
|
|
||||||
|
def _fetch_frames(self) -> None:
|
||||||
|
"""Fetch frames from the feature extractor"""
|
||||||
|
while self.num_fetched_frames < self.feature_extractor.num_frames_ready:
|
||||||
|
frame = self.feature_extractor.get_frame(self.num_fetched_frames)
|
||||||
|
self.feature_frames.append(frame)
|
||||||
|
self.num_fetched_frames += 1
|
53
egs/librispeech/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
53
egs/librispeech/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
@ -0,0 +1,53 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_emformer/test_streaming_feature_extractor.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from streaming_feature_extractor import Stream
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_feature_extractor():
|
||||||
|
stream = Stream(context_size=2, blank_id=0)
|
||||||
|
samples = torch.rand(16000)
|
||||||
|
start = 0
|
||||||
|
while True:
|
||||||
|
n = torch.randint(50, 500, (1,)).item()
|
||||||
|
end = start + n
|
||||||
|
this_chunk = samples[start:end]
|
||||||
|
start = end
|
||||||
|
|
||||||
|
if len(this_chunk) == 0:
|
||||||
|
break
|
||||||
|
stream.accept_waveform(sampling_rate=16000, waveform=this_chunk)
|
||||||
|
print(len(stream.feature_frames))
|
||||||
|
stream.input_finished()
|
||||||
|
print(len(stream.feature_frames))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_streaming_feature_extractor()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user