mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
add whisper llm
This commit is contained in:
parent
3b40d9bbb1
commit
e495c9d732
39
egs/speech_llm/ASR_LLM/README.md
Normal file
39
egs/speech_llm/ASR_LLM/README.md
Normal file
@ -0,0 +1,39 @@
|
||||
|
||||
# Introduction
|
||||
|
||||
This recipe includes scripts for training Zipformer model using multiple Chinese datasets.
|
||||
|
||||
# Included Training Sets
|
||||
1. THCHS-30
|
||||
2. AiShell-{1,2,4}
|
||||
3. ST-CMDS
|
||||
4. Primewords
|
||||
5. MagicData
|
||||
6. Aidatatang_200zh
|
||||
7. AliMeeting
|
||||
8. WeNetSpeech
|
||||
9. KeSpeech-ASR
|
||||
|
||||
|Datset| Number of hours| URL|
|
||||
|---|---:|---|
|
||||
|**TOTAL**|14,106|---|
|
||||
|THCHS-30|35|https://www.openslr.org/18/|
|
||||
|AiShell-1|170|https://www.openslr.org/33/|
|
||||
|AiShell-2|1,000|http://www.aishelltech.com/aishell_2|
|
||||
|AiShell-4|120|https://www.openslr.org/111/|
|
||||
|ST-CMDS|110|https://www.openslr.org/38/|
|
||||
|Primewords|99|https://www.openslr.org/47/|
|
||||
|aidatatang_200zh|200|https://www.openslr.org/62/|
|
||||
|MagicData|755|https://www.openslr.org/68/|
|
||||
|AliMeeting|100|https://openslr.org/119/|
|
||||
|WeNetSpeech|10,000|https://github.com/wenet-e2e/WenetSpeech|
|
||||
|KeSpeech|1,542|https://github.com/KeSpeech/KeSpeech|
|
||||
|
||||
|
||||
# Included Test Sets
|
||||
1. Aishell-{1,2,4}
|
||||
2. Aidatatang_200zh
|
||||
3. AliMeeting
|
||||
4. MagicData
|
||||
5. KeSpeech-ASR
|
||||
6. WeNetSpeech
|
116
egs/speech_llm/ASR_LLM/RESULTS.md
Normal file
116
egs/speech_llm/ASR_LLM/RESULTS.md
Normal file
@ -0,0 +1,116 @@
|
||||
## Results
|
||||
|
||||
### Multi Chinese datasets (without datatang 200h) finetuning results on Whisper-large-v2
|
||||
#### Whisper
|
||||
[./whisper](./whisper)
|
||||
|
||||
Character Error Rates (CERs) listed below are produced by the checkpoint of the second epoch using greedy search.
|
||||
|
||||
| Datasets | alimeeting | alimeeting | aishell-1 | aishell-1 | aishell-2 | aishell-2 | aishell-4 | magicdata | magicdata | kespeech-asr | kespeech-asr | kespeech-asr | WenetSpeech |
|
||||
|--------------------------------|-------------------|--------------|----------------|-------------|------------------|-------------|------------------|------------------|-------------|-----------------------|-----------------------|-------------|-------------------|
|
||||
| Split | eval| test | dev | test | dev| test | test | dev| test | dev phase1 | dev phase2 | test | test meeting |
|
||||
| Greedy Search | 23.22 | 28.24 | 0.61 | 0.66 | 2.67 | 2.80 | 16.61 | 2.56 | 2.21 | 4.73 | 1.90 | 5.98 | 8.13 |
|
||||
|
||||
Command for training is:
|
||||
```bash
|
||||
pip install -r whisper/requirements.txt
|
||||
|
||||
# We updated the label of wenetspeech to remove OCR deletion errors, see https://github.com/wenet-e2e/WenetSpeech/discussions/54
|
||||
|
||||
torchrun --nproc-per-node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./whisper/ds_config_zero1.json
|
||||
```
|
||||
|
||||
Command for decoding using fine-tuned models:
|
||||
```bash
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_multi-hans-zh_whisper
|
||||
ln -s icefall_asr_multi-hans-zh_whisper/v1.1/epoch-3-avg-10.pt whisper/exp_large_v2/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--beam-size 10 --max-duration 50
|
||||
```
|
||||
|
||||
Fine-tuned models, training logs, decoding logs, tensorboard and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/yuekai/icefall_asr_multi-hans-zh_whisper>
|
||||
|
||||
|
||||
### Multi Chinese datasets char-based training results (Non-streaming) on zipformer model
|
||||
|
||||
This is the [pull request #1238](https://github.com/k2-fsa/icefall/pull/1238) in icefall.
|
||||
|
||||
#### Non-streaming (with CTC head)
|
||||
|
||||
Best results (num of params : ~69M):
|
||||
|
||||
The training command:
|
||||
|
||||
```
|
||||
./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 20 \
|
||||
--use-fp16 1 \
|
||||
--max-duration 600 \
|
||||
--num-workers 8 \
|
||||
--use-ctc 1
|
||||
```
|
||||
|
||||
The decoding command:
|
||||
|
||||
```
|
||||
./zipformer/decode.py \
|
||||
--epoch 20 \
|
||||
--avg 1 \
|
||||
--use-ctc 1
|
||||
```
|
||||
|
||||
Character Error Rates (CERs) listed below are produced by the checkpoint of the 20th epoch using BPE model ( # tokens is 2000, byte fallback enabled).
|
||||
|
||||
| Datasets | aidatatang _200zh | aidatatang _200zh | alimeeting | alimeeting | aishell-1 | aishell-1 | aishell-2 | aishell-2 | aishell-4 | magicdata | magicdata | kespeech-asr | kespeech-asr | kespeech-asr | WenetSpeech | WenetSpeech | WenetSpeech |
|
||||
|--------------------------------|------------------------------|-------------|-------------------|--------------|----------------|-------------|------------------|-------------|------------------|------------------|-------------|-----------------------|-----------------------|-------------|--------------------|-------------------------|---------------------|
|
||||
| Zipformer CER (%) | dev | test | eval | test | dev | test | dev | test | test | dev | test | dev phase1 | dev phase2 | test | dev | test meeting | test net |
|
||||
| CTC Decoding | 2.86 | 3.36 | 22.93 | 24.28 | 2.05 | 2.27 | 3.33 | 3.82 | 15.45 | 3.49 | 2.77 | 6.90 | 2.85 | 8.29 | 9.41 | 6.92 | 8.57 |
|
||||
| Greedy Search | 3.36 | 3.83 | 23.90 | 25.18 | 2.77 | 3.08 | 3.70 | 4.04 | 16.13 | 3.77 | 3.15 | 6.88 | 3.14 | 8.08 | 9.04 | 7.19 | 8.17 |
|
||||
|
||||
Pre-trained model can be found here : https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24/
|
||||
|
||||
#### Non-streaming
|
||||
|
||||
Best results (num of params : ~69M):
|
||||
|
||||
The training command:
|
||||
|
||||
```
|
||||
./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 20 \
|
||||
--use-fp16 1 \
|
||||
--max-duration 600 \
|
||||
--num-workers 8
|
||||
```
|
||||
|
||||
The decoding command:
|
||||
|
||||
```
|
||||
./zipformer/decode.py \
|
||||
--epoch 20 \
|
||||
--avg 1
|
||||
```
|
||||
|
||||
Character Error Rates (CERs) listed below are produced by the checkpoint of the 20th epoch using greedy search and BPE model ( # tokens is 2000, byte fallback enabled).
|
||||
|
||||
| Datasets | aidatatang _200zh | aidatatang _200zh | alimeeting | alimeeting | aishell-1 | aishell-1 | aishell-2 | aishell-2 | aishell-4 | magicdata | magicdata | kespeech-asr | kespeech-asr | kespeech-asr | WenetSpeech | WenetSpeech | WenetSpeech |
|
||||
|--------------------------------|------------------------------|-------------|-------------------|--------------|----------------|-------------|------------------|-------------|------------------|------------------|-------------|-----------------------|-----------------------|-------------|--------------------|-------------------------|---------------------|
|
||||
| Zipformer CER (%) | dev | test | eval| test | dev | test | dev| test | test | dev| test | dev phase1 | dev phase2 | test | dev | test meeting | test net |
|
||||
| Greedy Search | 3.2 | 3.67 | 23.15 | 24.78 | 2.91 | 3.04 | 3.59 | 4.03 | 15.68 | 3.68 | 3.12 | 6.69 | 3.19 | 8.01 | 9.32 | 7.05 | 8.78 |
|
||||
|
||||
|
||||
Pre-trained model can be found here : https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
15
egs/speech_llm/ASR_LLM/run.sh
Executable file
15
egs/speech_llm/ASR_LLM/run.sh
Executable file
@ -0,0 +1,15 @@
|
||||
|
||||
export PYTHONPATH=$PYTHONPATH:/workspace/asr/icefall
|
||||
# pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.io/k2/cuda.html
|
||||
# pip install -r whisper/requirements.txt
|
||||
|
||||
method=mask_predict
|
||||
# method=cif_ar_distill_embedding
|
||||
torchrun --nproc_per_node 8 ./parawhisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir parawhisper/exp_large_v2_${method} \
|
||||
--model-name large-v2 \
|
||||
--manifest-dir data/fbank \
|
||||
--method $method \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./whisper/ds_config_zero1.json
|
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/asr_datamodule.py
Symbolic link
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../multi_zh-hans/ASR/zipformer/asr_datamodule.py
|
567
egs/speech_llm/ASR_LLM/whisper_llm_zh/decode.py
Executable file
567
egs/speech_llm/ASR_LLM/whisper_llm_zh/decode.py
Executable file
@ -0,0 +1,567 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# Command for decoding using fine-tuned models:
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper
|
||||
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
# Command for decoding using pretrained models (before fine-tuning):
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch -1 --avg 1 \
|
||||
--remove-whisper-encoder-input-length-restriction False \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import AsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from tn.chinese.normalizer import Normalizer
|
||||
from whisper.normalizers import BasicTextNormalizer
|
||||
from whisper_decoder_forward_monkey_patch import replace_whisper_decoder_forward
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
from zhconv import convert
|
||||
|
||||
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def average_checkpoints(
|
||||
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||
) -> dict:
|
||||
"""Average a list of checkpoints.
|
||||
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||
|
||||
Args:
|
||||
filenames:
|
||||
Filenames of the checkpoints to be averaged. We assume all
|
||||
checkpoints are saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
Returns:
|
||||
Return a dict (i.e., state_dict) which is the average of all
|
||||
model state dicts contained in the checkpoints.
|
||||
"""
|
||||
n = len(filenames)
|
||||
|
||||
if "model" in torch.load(filenames[0], map_location=device):
|
||||
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||
else:
|
||||
avg = torch.load(filenames[0], map_location=device)
|
||||
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
uniqued: Dict[int, str] = dict()
|
||||
|
||||
for k, v in avg.items():
|
||||
v_data_ptr = v.data_ptr()
|
||||
if v_data_ptr in uniqued:
|
||||
continue
|
||||
uniqued[v_data_ptr] = k
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
|
||||
for i in range(1, n):
|
||||
if "model" in torch.load(filenames[i], map_location=device):
|
||||
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||
else:
|
||||
state_dict = torch.load(filenames[i], map_location=device)
|
||||
for k in uniqued_names:
|
||||
avg[k] += state_dict[k]
|
||||
|
||||
for k in uniqued_names:
|
||||
if avg[k].is_floating_point():
|
||||
avg[k] /= n
|
||||
else:
|
||||
avg[k] //= n
|
||||
|
||||
return avg
|
||||
|
||||
|
||||
def remove_punctuation(text: str or List[str]):
|
||||
"""Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
||||
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings without any punctuation.
|
||||
"""
|
||||
punctuation = "!,.;:?、!,。;:?《》 "
|
||||
if isinstance(text, str):
|
||||
text = re.sub(r"[{}]+".format(punctuation), "", text).strip()
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = re.sub(r"[{}]+".format(punctuation), "", t).strip()
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type {type(text)}")
|
||||
|
||||
|
||||
def to_simple(text: str or List[str]):
|
||||
"""Convert traditional Chinese to simplified Chinese.
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings converted to simplified Chinese.
|
||||
"""
|
||||
if isinstance(text, str):
|
||||
text = convert(text, "zh-cn")
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = convert(t, "zh-cn")
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type{type(text)}")
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="beam-search",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- beam-search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="beam size for beam search decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "base", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--remove-whisper-encoder-input-length-restriction",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="replace whisper encoder forward method to remove input length restriction",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-distill-whisper",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use architecture of distill whisper.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: "beam-search"
|
||||
- value: A list of lists. Each sublist is a list of token IDs.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = torch.device("cuda")
|
||||
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||
if not params.remove_whisper_encoder_input_length_restriction:
|
||||
T = 3000
|
||||
if feature.shape[2] < T:
|
||||
feature = torch.cat(
|
||||
[
|
||||
feature,
|
||||
torch.zeros(
|
||||
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||
).to(device, dtype=dtype),
|
||||
],
|
||||
2,
|
||||
)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_len = supervisions["num_frames"]
|
||||
feature_len = feature_len.to(device, dtype=dtype)
|
||||
results = model.decode(feature, params.decoding_options)
|
||||
hyps = [result.text for result in results]
|
||||
|
||||
hyps = remove_punctuation(hyps)
|
||||
hyps = to_simple(hyps)
|
||||
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
||||
print(hyps)
|
||||
return {"beam-search": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
The dataloader.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
|
||||
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||||
"""
|
||||
Text normalization similar to M2MeT challenge baseline.
|
||||
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||||
"""
|
||||
if normalize == "none":
|
||||
return text
|
||||
elif normalize == "m2met":
|
||||
import re
|
||||
|
||||
text = text.replace(" ", "")
|
||||
text = text.replace("<sil>", "")
|
||||
text = text.replace("<%>", "")
|
||||
text = text.replace("<->", "")
|
||||
text = text.replace("<$>", "")
|
||||
text = text.replace("<#>", "")
|
||||
text = text.replace("<_>", "")
|
||||
text = text.replace("<space>", "")
|
||||
text = text.replace("`", "")
|
||||
text = text.replace("&", "")
|
||||
text = text.replace(",", "")
|
||||
if re.search("[a-zA-Z]", text):
|
||||
text = text.upper()
|
||||
text = text.replace("A", "A")
|
||||
text = text.replace("a", "A")
|
||||
text = text.replace("b", "B")
|
||||
text = text.replace("c", "C")
|
||||
text = text.replace("k", "K")
|
||||
text = text.replace("t", "T")
|
||||
text = text.replace(",", "")
|
||||
text = text.replace("丶", "")
|
||||
text = text.replace("。", "")
|
||||
text = text.replace("、", "")
|
||||
text = text.replace("?", "")
|
||||
return text
|
||||
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_text = normalize_text_alimeeting(ref_text)
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
# we compute CER for aishell dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tCER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
||||
)
|
||||
|
||||
options = whisper.DecodingOptions(
|
||||
task="transcribe",
|
||||
language="zh",
|
||||
without_timestamps=True,
|
||||
beam_size=params.beam_size,
|
||||
)
|
||||
params.decoding_options = options
|
||||
params.cleaner = BasicTextNormalizer()
|
||||
params.normalizer = Normalizer()
|
||||
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
if params.use_distill_whisper:
|
||||
replace_whisper_decoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
if params.epoch > 0:
|
||||
if params.avg > 1:
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
# deepspeed converted checkpoint only contains model state_dict
|
||||
filenames = [
|
||||
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||||
for epoch in range(start, params.epoch + 1)
|
||||
]
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
else:
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
# save checkpoints
|
||||
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||
torch.save(model.state_dict(), filename)
|
||||
else:
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
else:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir)
|
||||
|
||||
def remove_long_utt(c: Cut):
|
||||
# Keep only utterances with duration in 30 seconds
|
||||
#
|
||||
if c.duration > 30.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dls = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Symbolic link
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/ds_config_zero1.json
|
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/label_smoothing.py
Symbolic link
1
egs/speech_llm/ASR_LLM/whisper_llm_zh/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
145
egs/speech_llm/ASR_LLM/whisper_llm_zh/model.py
Normal file
145
egs/speech_llm/ASR_LLM/whisper_llm_zh/model.py
Normal file
@ -0,0 +1,145 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
DEFAULT_SPEECH_TOKEN = -1997 # "<speech>"
|
||||
|
||||
class EncoderProjector(nn.Module):
|
||||
|
||||
def __init__(self, encoder_dim, llm_dim):
|
||||
super().__init__()
|
||||
self.linear1 = nn.Linear(encoder_dim, llm_dim)
|
||||
self.relu = nn.ReLU()
|
||||
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.relu(x)
|
||||
x = self.linear2(x)
|
||||
return x
|
||||
|
||||
class SPEECH_LLM(nn.Module):
|
||||
# https://github.com/ddlBoJack/SLAM-LLM/blob/main/src/slam_llm/models/slam_model.py
|
||||
def __init__(
|
||||
self,
|
||||
encoder: nn.Module,
|
||||
llm: nn.Module,
|
||||
encoder_projector: nn.Module,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder = encoder
|
||||
self.encoder.eval()
|
||||
self.llm = llm
|
||||
self.llm.eval()
|
||||
self.encoder_projector = encoder_projector
|
||||
self.encoder_outputs_downsample_rate = 4
|
||||
|
||||
def _merge_input_ids_with_speech_features(self, speech_features, inputs_embeds, input_ids, attention_mask, labels):
|
||||
num_speechs, speech_len, embed_dim = speech_features.shape
|
||||
batch_size, sequence_length = input_ids.shape
|
||||
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id))
|
||||
# 1. Create a mask to know where special speech tokens are
|
||||
special_speech_token_mask = input_ids == DEFAULT_SPEECH_TOKEN
|
||||
num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1)
|
||||
# Compute the maximum embed dimension
|
||||
max_embed_dim = (num_special_speech_tokens.max() * (speech_len - 1)) + sequence_length
|
||||
batch_indices, non_speech_indices = torch.where(input_ids != DEFAULT_SPEECH_TOKEN)
|
||||
|
||||
# 2. Compute the positions where text should be written
|
||||
# Calculate new positions for text tokens in merged speech-text sequence.
|
||||
# `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens.
|
||||
# `torch.cumsum` computes how each speech token shifts subsequent text token positions.
|
||||
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
||||
new_token_positions = torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1
|
||||
nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
||||
if left_padding:
|
||||
new_token_positions += nb_speech_pad[:, None] # offset for left padding
|
||||
text_to_overwrite = new_token_positions[batch_indices, non_speech_indices]
|
||||
|
||||
# 3. Create the full embedding, already padded to the maximum position
|
||||
final_embedding = torch.zeros(
|
||||
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
||||
)
|
||||
final_attention_mask = torch.zeros(
|
||||
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
||||
)
|
||||
if labels is not None:
|
||||
final_labels = torch.full(
|
||||
(batch_size, max_embed_dim), self., dtype=input_ids.dtype, device=input_ids.device
|
||||
)
|
||||
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
||||
# set the corresponding tensors into their correct target device.
|
||||
target_device = inputs_embeds.device
|
||||
batch_indices, non_speech_indices, text_to_overwrite = (
|
||||
batch_indices.to(target_device),
|
||||
non_speech_indices.to(target_device),
|
||||
text_to_overwrite.to(target_device),
|
||||
)
|
||||
attention_mask = attention_mask.to(target_device)
|
||||
|
||||
# 4. Fill the embeddings based on the mask. If we have ["hey" "<speech>", "how", "are"]
|
||||
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features
|
||||
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_speech_indices]
|
||||
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_speech_indices]
|
||||
if labels is not None:
|
||||
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_speech_indices]
|
||||
|
||||
# 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835)
|
||||
speech_to_overwrite = torch.full(
|
||||
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
||||
)
|
||||
speech_to_overwrite[batch_indices, text_to_overwrite] = False
|
||||
speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[:, None].to(target_device)
|
||||
|
||||
if speech_to_overwrite.sum() != speech_features.shape[:-1].numel():
|
||||
raise ValueError(
|
||||
f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while"
|
||||
f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation."
|
||||
)
|
||||
|
||||
final_embedding[speech_to_overwrite] = speech_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
||||
final_attention_mask |= speech_to_overwrite
|
||||
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
||||
|
||||
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
||||
batch_indices, pad_indices = torch.where(input_ids == self.llm.config.pad_token_id)
|
||||
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
||||
|
||||
final_embedding[batch_indices, indices_to_mask] = 0
|
||||
|
||||
if labels is None:
|
||||
final_labels = None
|
||||
|
||||
return final_embedding, final_attention_mask, final_labels, position_ids
|
||||
|
||||
def forward(self,
|
||||
fbank: torch.Tensor = None,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
labels: torch.LongTensor = None,
|
||||
):
|
||||
encoder_outs = self.encoder(fbank)
|
||||
# downsample encoder_outs by 4
|
||||
encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
|
||||
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_speech_features(
|
||||
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||
)
|
||||
|
||||
outputs = self.language_model(
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
logits = outputs[0]
|
||||
|
||||
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
||||
|
||||
return model_outputs
|
258
egs/speech_llm/ASR_LLM/whisper_llm_zh/multi_dataset.py
Normal file
258
egs/speech_llm/ASR_LLM/whisper_llm_zh/multi_dataset.py
Normal file
@ -0,0 +1,258 @@
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import lhotse
|
||||
from lhotse import CutSet, load_manifest_lazy
|
||||
|
||||
|
||||
class MultiDataset:
|
||||
def __init__(self, fbank_dir: str):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files:
|
||||
- aishell_cuts_train.jsonl.gz
|
||||
- aishell2_cuts_train.jsonl.gz
|
||||
- aishell4_cuts_train_L.jsonl.gz
|
||||
- aishell4_cuts_train_M.jsonl.gz
|
||||
- aishell4_cuts_train_S.jsonl.gz
|
||||
- alimeeting-far_cuts_train.jsonl.gz
|
||||
- magicdata_cuts_train.jsonl.gz
|
||||
- primewords_cuts_train.jsonl.gz
|
||||
- stcmds_cuts_train.jsonl.gz
|
||||
- thchs_30_cuts_train.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
|
||||
- wenetspeech/cuts_L_fixed.jsonl.gz
|
||||
"""
|
||||
self.fbank_dir = Path(fbank_dir)
|
||||
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset train cuts")
|
||||
|
||||
# THCHS-30
|
||||
logging.info("Loading THCHS-30 in lazy mode")
|
||||
thchs_30_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-1
|
||||
logging.info("Loading Aishell-1 in lazy mode")
|
||||
aishell_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 in lazy mode")
|
||||
aishell_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 in lazy mode")
|
||||
aishell_4_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
|
||||
)
|
||||
aishell_4_M_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
|
||||
)
|
||||
aishell_4_S_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
|
||||
)
|
||||
|
||||
# ST-CMDS
|
||||
logging.info("Loading ST-CMDS in lazy mode")
|
||||
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
|
||||
|
||||
# Primewords
|
||||
logging.info("Loading Primewords in lazy mode")
|
||||
primewords_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData in lazy mode")
|
||||
magicdata_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting in lazy mode")
|
||||
alimeeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech in lazy mode")
|
||||
wenetspeech_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_L_fixed.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech in lazy mode")
|
||||
kespeech_1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
return CutSet.mux(
|
||||
thchs_30_cuts,
|
||||
aishell_cuts,
|
||||
aishell_2_cuts,
|
||||
aishell_4_L_cuts,
|
||||
aishell_4_M_cuts,
|
||||
aishell_4_S_cuts,
|
||||
alimeeting_cuts,
|
||||
stcmds_cuts,
|
||||
primewords_cuts,
|
||||
magicdata_cuts,
|
||||
wenetspeech_L_cuts,
|
||||
kespeech_1_cuts,
|
||||
kespeech_2_cuts,
|
||||
weights=[
|
||||
len(thchs_30_cuts),
|
||||
len(aishell_cuts),
|
||||
len(aishell_2_cuts),
|
||||
len(aishell_4_L_cuts),
|
||||
len(aishell_4_M_cuts),
|
||||
len(aishell_4_S_cuts),
|
||||
len(alimeeting_cuts),
|
||||
len(stcmds_cuts),
|
||||
len(primewords_cuts),
|
||||
len(magicdata_cuts),
|
||||
len(wenetspeech_L_cuts),
|
||||
len(kespeech_1_cuts),
|
||||
len(kespeech_2_cuts),
|
||||
],
|
||||
)
|
||||
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset dev cuts")
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech DEV set in lazy mode")
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV_fixed.jsonl.gz"
|
||||
)
|
||||
|
||||
return wenetspeech_dev_cuts
|
||||
|
||||
def test_cuts(self) -> Dict[str, CutSet]:
|
||||
logging.info("About to get multidataset test cuts")
|
||||
|
||||
# AISHELL
|
||||
logging.info("Loading Aishell set in lazy mode")
|
||||
aishell_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
|
||||
)
|
||||
aishell_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 set in lazy mode")
|
||||
aishell2_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
|
||||
)
|
||||
aishell2_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 TEST set in lazy mode")
|
||||
aishell4_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting set in lazy mode")
|
||||
alimeeting_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
|
||||
)
|
||||
alimeeting_eval_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData set in lazy mode")
|
||||
magicdata_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
|
||||
)
|
||||
magicdata_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech set in lazy mode")
|
||||
kespeech_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech set in lazy mode")
|
||||
wenetspeech_test_meeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
|
||||
)
|
||||
wenetspeech_test_net_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
|
||||
)
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV_fixed.jsonl.gz"
|
||||
)
|
||||
|
||||
return {
|
||||
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
|
||||
# "aishell_test": aishell_test_cuts,
|
||||
# "aishell_dev": aishell_dev_cuts,
|
||||
# "ali-meeting_test": alimeeting_test_cuts,
|
||||
# "ali-meeting_eval": alimeeting_eval_cuts,
|
||||
# "aishell-4_test": aishell4_test_cuts,
|
||||
# "aishell-2_test": aishell2_test_cuts,
|
||||
# "aishell-2_dev": aishell2_dev_cuts,
|
||||
# "magicdata_test": magicdata_test_cuts,
|
||||
# "magicdata_dev": magicdata_dev_cuts,
|
||||
# "kespeech-asr_test": kespeech_test_cuts,
|
||||
# "kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
|
||||
# "kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
|
||||
# "wenetspeech-net_test": wenetspeech_test_net_cuts,
|
||||
# "wenetspeech_dev": wenetspeech_dev_cuts,
|
||||
}
|
||||
|
||||
def aishell_train_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset train cuts")
|
||||
|
||||
# AISHELL-1
|
||||
logging.info("Loading Aishell-1 in lazy mode")
|
||||
aishell_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
return aishell_cuts
|
874
egs/speech_llm/ASR_LLM/whisper_llm_zh/train.py
Executable file
874
egs/speech_llm/ASR_LLM/whisper_llm_zh/train.py
Executable file
@ -0,0 +1,874 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
#fine-tuning with deepspeed zero stage 1
|
||||
torchrun --nproc-per-node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./whisper/ds_config_zero1.json
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import deepspeed
|
||||
import k2
|
||||
import optim
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import AsrDataModule
|
||||
from model import SPEECH_LLM, EncoderProjector
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from multi_dataset import MultiDataset
|
||||
# from optim import Eden, ScaledAdam
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.functional import pad as pad_tensor
|
||||
# from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from whisper_decoder_forward_monkey_patch import replace_whisper_decoder_forward
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import update_averaged_model
|
||||
from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
filter_uneven_sized_batch,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||
|
||||
|
||||
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
for module in model.modules():
|
||||
if hasattr(module, "batch_count"):
|
||||
module.batch_count = batch_count
|
||||
|
||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument(
|
||||
"--llm-path-or-name",
|
||||
type=str,
|
||||
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||
help="Path or name of the large language model.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--speech-encoder-path-or-name",
|
||||
type=str,
|
||||
default="whisper-large-v2",
|
||||
help="Path or name of the speech encoder.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-projector-ds-rate",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Downsample rate for the encoder projector.",
|
||||
)
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Resume training from this epoch. It should be positive.
|
||||
If larger than 1, it will load checkpoint from
|
||||
exp-dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper_qwen/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--pretrained-model-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""The path to the pretrained model if it is not None. Training will
|
||||
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr", type=float, default=1e-5, help="The base learning rate."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-batches",
|
||||
type=float,
|
||||
default=5000,
|
||||
help="""Number of steps that affects how rapidly the learning rate
|
||||
decreases. We suggest not to change this.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-epochs",
|
||||
type=float,
|
||||
default=6,
|
||||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--print-diagnostics",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Accumulate stats on activations, print them and exit.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--inf-check",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Add hooks to check for infinite module outputs and gradients.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--keep-last-k",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""Only keep this number of checkpoints on disk.
|
||||
For instance, if it is 3, there are only 3 checkpoints
|
||||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--average-period",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Update the averaged model, namely `model_avg`, after processing
|
||||
this number of batches. `model_avg` is a separate version of model,
|
||||
in which each floating-point parameter is the average of all the
|
||||
parameters from the start of training. Each time we take the average,
|
||||
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||||
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- frame_shift_ms: The frame shift in milliseconds.
|
||||
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||
- best_train_loss: The best training loss so far.
|
||||
- best_valid_loss: The best validation loss so far.
|
||||
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||
- batch_idx_train: The batch index of the current batch.
|
||||
- log_interval: Log training stats every `log_interval` batches.
|
||||
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||
- valid_interval: Run validation every `valid_interval` batches.
|
||||
- env_info: The environment information.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"allowed_excess_duration_ratio": 0.1,
|
||||
"frame_shift_ms": 10,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 10000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
# def load_checkpoint_if_available(
|
||||
# params: AttributeDict,
|
||||
# model: nn.Module,
|
||||
# model_avg: nn.Module = None,
|
||||
# optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
# scheduler: Optional[LRSchedulerType] = None,
|
||||
# ) -> Optional[Dict[str, Any]]:
|
||||
# """Load checkpoint from file.
|
||||
|
||||
# If params.start_batch is positive, it will load the checkpoint from
|
||||
# `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
# params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
# `params.start_epoch - 1`.
|
||||
|
||||
# Apart from loading state dict for `model` and `optimizer` it also updates
|
||||
# `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
# and `best_valid_loss` in `params`.
|
||||
|
||||
# Args:
|
||||
# params:
|
||||
# The return value of :func:`get_params`.
|
||||
# model:
|
||||
# The training model.
|
||||
# model_avg:
|
||||
# The stored model averaged from the start of training.
|
||||
# optimizer:
|
||||
# The optimizer that we are using.
|
||||
# scheduler:
|
||||
# The scheduler that we are using.
|
||||
# Returns:
|
||||
# Return a dict containing previously saved training info.
|
||||
# """
|
||||
# if params.start_batch > 0:
|
||||
# filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
# elif params.start_epoch > 1:
|
||||
# filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
# else:
|
||||
# return None
|
||||
|
||||
# assert filename.is_file(), f"{filename} does not exist!"
|
||||
|
||||
# saved_params = load_checkpoint(
|
||||
# filename,
|
||||
# model=model,
|
||||
# model_avg=model_avg,
|
||||
# optimizer=optimizer,
|
||||
# scheduler=scheduler,
|
||||
# )
|
||||
|
||||
# keys = [
|
||||
# "best_train_epoch",
|
||||
# "best_valid_epoch",
|
||||
# "batch_idx_train",
|
||||
# "best_train_loss",
|
||||
# "best_valid_loss",
|
||||
# ]
|
||||
# for k in keys:
|
||||
# params[k] = saved_params[k]
|
||||
|
||||
# if params.start_batch > 0:
|
||||
# if "cur_epoch" in saved_params:
|
||||
# params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
# return saved_params
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: AutoTokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute the loss for the given batch.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
tokenizer:
|
||||
The tokenizer used to encode the text.
|
||||
model:
|
||||
The model for training.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
Whether it is training.
|
||||
Returns:
|
||||
Return a tuple of two elements. The first element is the loss tensor.
|
||||
"""
|
||||
# For the uneven-sized batch, the total duration after padding would possibly
|
||||
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||||
# we simply drop the last few shortest samples, so that the retained total frames
|
||||
# (after padding) would not exceed `allowed_max_frames`:
|
||||
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||||
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||||
# We set allowed_excess_duration_ratio=0.1.
|
||||
|
||||
def preprocess(
|
||||
messages,
|
||||
tokenizer: transformers.PreTrainedTokenizer,
|
||||
max_len: int,
|
||||
) -> Dict:
|
||||
"""Preprocesses the data for supervised fine-tuning."""
|
||||
texts = []
|
||||
for i, msg in enumerate(messages):
|
||||
texts.append(
|
||||
tokenizer.apply_chat_template(
|
||||
msg,
|
||||
chat_template=TEMPLATE,
|
||||
tokenize=True,
|
||||
add_generation_prompt=False,
|
||||
padding="max_length",
|
||||
max_length=max_len,
|
||||
truncation=True,
|
||||
)
|
||||
)
|
||||
# model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
||||
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||
target_ids = input_ids.clone()
|
||||
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||
|
||||
return input_ids, attention_mask, target_ids
|
||||
|
||||
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||||
"""
|
||||
Text normalization similar to M2MeT challenge baseline.
|
||||
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||||
"""
|
||||
if normalize == "none":
|
||||
return text
|
||||
elif normalize == "m2met":
|
||||
import re
|
||||
|
||||
text = text.replace(" ", "")
|
||||
text = text.replace("<sil>", "")
|
||||
text = text.replace("<%>", "")
|
||||
text = text.replace("<->", "")
|
||||
text = text.replace("<$>", "")
|
||||
text = text.replace("<#>", "")
|
||||
text = text.replace("<_>", "")
|
||||
text = text.replace("<space>", "")
|
||||
text = text.replace("`", "")
|
||||
text = text.replace("&", "")
|
||||
text = text.replace(",", "")
|
||||
if re.search("[a-zA-Z]", text):
|
||||
text = text.upper()
|
||||
text = text.replace("A", "A")
|
||||
text = text.replace("a", "A")
|
||||
text = text.replace("b", "B")
|
||||
text = text.replace("c", "C")
|
||||
text = text.replace("k", "K")
|
||||
text = text.replace("t", "T")
|
||||
text = text.replace(",", "")
|
||||
text = text.replace("丶", "")
|
||||
text = text.replace("。", "")
|
||||
text = text.replace("、", "")
|
||||
text = text.replace("?", "")
|
||||
return text
|
||||
|
||||
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||
|
||||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
feature = feature.transpose(1, 2) # (N, C, T)
|
||||
|
||||
# feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
batch_idx_train = params.batch_idx_train
|
||||
supervisions = batch["supervisions"]
|
||||
texts = batch["supervisions"]["text"]
|
||||
# remove spaces in texts
|
||||
texts = [normalize_text_alimeeting(text) for text in texts]
|
||||
|
||||
# messages = [
|
||||
# {"role": "system", "content": "You are a helpful assistant."},
|
||||
# {"role": "user", "content": prompt}
|
||||
# ]
|
||||
input_ids, attention_mask, target_ids = preprocess(
|
||||
texts, tokenizer, max_len=512
|
||||
)
|
||||
|
||||
# decoder_criterion = LabelSmoothingLoss(
|
||||
# ignore_index=50256, label_smoothing=0.1, reduction="sum"
|
||||
# )
|
||||
|
||||
# # ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|>
|
||||
# ignore_prefix_size = 3
|
||||
# with torch.set_grad_enabled(is_training):
|
||||
# encoder_out = model.encoder(feature)
|
||||
# text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out)
|
||||
# text_logits = text_logits[:, ignore_prefix_size:, :]
|
||||
# target_tokens = target_tokens[:, ignore_prefix_size:]
|
||||
# loss = decoder_criterion(text_logits, target_tokens.to(device))
|
||||
|
||||
# assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
tokenizer: AutoTokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: LRSchedulerType,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.encoder_projector.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
client_state={"sampler": train_dl.sampler.state_dict()},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
)
|
||||
os.system(
|
||||
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||||
)
|
||||
|
||||
try:
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
# deepspeed's backward() is different from torch's backward()
|
||||
# in that it does not accept a loss tensor as input.
|
||||
# It computes the loss internally.
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
|
||||
except: # noqa
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
try:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
except: # noqa
|
||||
cur_lr = 0.0
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
|
||||
if 'whisper' in params.speech_encoder_path_or_name:
|
||||
replace_whisper_encoder_forward()
|
||||
# TODO: directly loading from whisper-ft checkpoint
|
||||
# whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||||
speech_encoder = whisper.load_model(params.model_name, "cpu").encoder
|
||||
speech_encoder_dim = speech_encoder.dims.n_audio_ctx
|
||||
|
||||
llm = AutoModelForCausalLM.from_pretrained(
|
||||
params.llm_path_or_name,
|
||||
attn_implemented="flash_attention_2",
|
||||
device_map="cpu"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||
|
||||
encoder_projector = EncoderProjector(speech_encoder_dim, llm.config.hidden_size)
|
||||
|
||||
model = SPEECH_LLM(
|
||||
speech_encoder,
|
||||
llm,
|
||||
encoder_projector,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
model.to(device)
|
||||
|
||||
# assert params.start_epoch > 0, params.start_epoch
|
||||
# checkpoints = load_checkpoint_if_available(
|
||||
# params=params, model=model, model_avg=model_avg
|
||||
# )
|
||||
|
||||
assert params.deepspeed and world_size > 1
|
||||
logging.info("Using DeepSpeed")
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=params, model=model, model_parameters=model.parameters()
|
||||
)
|
||||
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir)
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
if c.duration < 1.0 or c.duration > 20.0:
|
||||
logging.warning(
|
||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
|
||||
# train_cuts = multi_dataset.train_cuts()
|
||||
train_cuts = multi_dataset.aishell_train_cuts()
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
# if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# # We only load the sampler's state dict when it loads a checkpoint
|
||||
# # saved in the middle of an epoch
|
||||
# sampler_state_dict = checkpoints["sampler"]
|
||||
# else:
|
||||
# sampler_state_dict = None
|
||||
# TODO: load sampler state dict
|
||||
train_dl = data_module.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
|
||||
valid_cuts = multi_dataset.dev_cuts()
|
||||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
# if params.pretrained_model_path:
|
||||
# checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
||||
# if "model" not in checkpoint:
|
||||
# model.load_state_dict(checkpoint, strict=True)
|
||||
# else:
|
||||
# load_checkpoint(params.pretrained_model_path, model)
|
||||
|
||||
logging.info(f"start training from epoch {params.start_epoch}")
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
client_state={"sampler": train_dl.sampler.state_dict()},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
)
|
||||
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
||||
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
) -> None:
|
||||
"""Display the batch statistics and save the batch into disk.
|
||||
|
||||
Args:
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
"""
|
||||
from lhotse.utils import uuid4
|
||||
|
||||
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||
logging.info(f"Saving batch to {filename}")
|
||||
torch.save(batch, filename)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
features = batch["inputs"]
|
||||
|
||||
logging.info(f"features shape: {features.shape}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = get_world_size()
|
||||
rank = get_rank()
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py
|
Loading…
x
Reference in New Issue
Block a user