mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Zipformer recipe for ReazonSpeech (#1611)
* Add first cut at ReazonSpeech recipe This recipe is mostly based on egs/csj, but tweaked to the point that can be run with ReazonSpeech corpus. Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net> --------- Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net> Co-authored-by: Fujimoto Seiji <fujimoto@ceptord.net> Co-authored-by: Chen <qc@KDM00.cm.cluster> Co-authored-by: root <root@KDA01.cm.cluster>
This commit is contained in:
parent
d5be739639
commit
3b40d9bbb1
29
egs/reazonspeech/ASR/README.md
Normal file
29
egs/reazonspeech/ASR/README.md
Normal file
@ -0,0 +1,29 @@
|
||||
# Introduction
|
||||
|
||||
|
||||
|
||||
**ReazonSpeech** is an open-source dataset that contains a diverse set of natural Japanese speech, collected from terrestrial television streams. It contains more than 35,000 hours of audio.
|
||||
|
||||
|
||||
|
||||
The dataset is available on Hugging Face. For more details, please visit:
|
||||
|
||||
- Dataset: https://huggingface.co/datasets/reazon-research/reazonspeech
|
||||
- Paper: https://research.reazon.jp/_static/reazonspeech_nlp2023.pdf
|
||||
|
||||
|
||||
|
||||
[./RESULTS.md](./RESULTS.md) contains the latest results.
|
||||
|
||||
# Transducers
|
||||
|
||||
|
||||
|
||||
There are various folders containing the name `transducer` in this folder. The following table lists the differences among them.
|
||||
|
||||
| | Encoder | Decoder | Comment |
|
||||
| ---------------------------------------- | -------------------- | ------------------ | ------------------------------------------------- |
|
||||
| `zipformer` | Upgraded Zipformer | Embedding + Conv1d | The latest recipe |
|
||||
|
||||
The decoder in `transducer_stateless` is modified from the paper [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/). We place an additional Conv1d layer right after the input embedding layer.
|
||||
|
49
egs/reazonspeech/ASR/RESULTS.md
Normal file
49
egs/reazonspeech/ASR/RESULTS.md
Normal file
@ -0,0 +1,49 @@
|
||||
## Results
|
||||
|
||||
### Zipformer
|
||||
|
||||
#### Non-streaming
|
||||
|
||||
##### large-scaled model, number of model parameters: 159337842, i.e., 159.34 M
|
||||
|
||||
| decoding method | In-Distribution CER | JSUT | CommonVoice | TEDx | comment |
|
||||
| :------------------: | :-----------------: | :--: | :---------: | :---: | :----------------: |
|
||||
| greedy search | 4.2 | 6.7 | 7.84 | 17.9 | --epoch 39 --avg 7 |
|
||||
| modified beam search | 4.13 | 6.77 | 7.69 | 17.82 | --epoch 39 --avg 7 |
|
||||
|
||||
The training command is:
|
||||
|
||||
```shell
|
||||
./zipformer/train.py \
|
||||
--world-size 8 \
|
||||
--num-epochs 40 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp-large \
|
||||
--causal 0 \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
--lang data/lang_char \
|
||||
--max-duration 1600
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```shell
|
||||
./zipformer/decode.py \
|
||||
--epoch 40 \
|
||||
--avg 16 \
|
||||
--exp-dir zipformer/exp-large \
|
||||
--max-duration 600 \
|
||||
--causal 0 \
|
||||
--decoding-method greedy_search \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
--lang data/lang_char \
|
||||
--blank-penalty 0
|
||||
```
|
||||
|
146
egs/reazonspeech/ASR/local/compute_fbank_reazonspeech.py
Normal file
146
egs/reazonspeech/ASR/local/compute_fbank_reazonspeech.py
Normal file
@ -0,0 +1,146 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
# fmt: off
|
||||
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
RecordingSet,
|
||||
SupervisionSet,
|
||||
)
|
||||
|
||||
# fmt: on
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
RNG_SEED = 42
|
||||
concat_params = {"gap": 1.0, "maxlen": 10.0}
|
||||
|
||||
|
||||
def make_cutset_blueprints(
|
||||
manifest_dir: Path,
|
||||
) -> List[Tuple[str, CutSet]]:
|
||||
cut_sets = []
|
||||
|
||||
# Create test dataset
|
||||
logging.info("Creating test cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"test",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_test.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_test.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Create dev dataset
|
||||
logging.info("Creating dev cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"dev",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_dev.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_dev.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Create train dataset
|
||||
logging.info("Creating train cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"train",
|
||||
CutSet.from_manifests(
|
||||
recordings=RecordingSet.from_file(
|
||||
manifest_dir / "reazonspeech_recordings_train.jsonl.gz"
|
||||
),
|
||||
supervisions=SupervisionSet.from_file(
|
||||
manifest_dir / "reazonspeech_supervisions_train.jsonl.gz"
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
return cut_sets
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument("-m", "--manifest-dir", type=Path)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||
num_jobs = min(16, os.cpu_count())
|
||||
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
if (args.manifest_dir / ".reazonspeech-fbank.done").exists():
|
||||
logging.info(
|
||||
"Previous fbank computed for ReazonSpeech found. "
|
||||
f"Delete {args.manifest_dir / '.reazonspeech-fbank.done'} to allow recomputing fbank."
|
||||
)
|
||||
return
|
||||
else:
|
||||
cut_sets = make_cutset_blueprints(args.manifest_dir)
|
||||
for part, cut_set in cut_sets:
|
||||
logging.info(f"Processing {part}")
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
num_jobs=num_jobs,
|
||||
storage_path=(args.manifest_dir / f"feats_{part}").as_posix(),
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cut_set.to_file(args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz")
|
||||
|
||||
logging.info("All fbank computed for ReazonSpeech.")
|
||||
(args.manifest_dir / ".reazonspeech-fbank.done").touch()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
58
egs/reazonspeech/ASR/local/display_manifest_statistics.py
Normal file
58
egs/reazonspeech/ASR/local/display_manifest_statistics.py
Normal file
@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2022 The University of Electro-Communications (author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
ARGPARSE_DESCRIPTION = """
|
||||
This file displays duration statistics of utterances in a manifest.
|
||||
You can use the displayed value to choose minimum/maximum duration
|
||||
to remove short and long utterances during the training.
|
||||
|
||||
See the function `remove_short_and_long_utt()` in
|
||||
pruned_transducer_stateless5/train.py for usage.
|
||||
"""
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=ARGPARSE_DESCRIPTION,
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--manifest-dir", type=Path, help="Path to cutset manifests")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser()
|
||||
|
||||
for part in ["train", "dev"]:
|
||||
path = args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz"
|
||||
cuts: CutSet = load_manifest(path)
|
||||
|
||||
print("\n---------------------------------\n")
|
||||
print(path.name + ":")
|
||||
cuts.describe()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
75
egs/reazonspeech/ASR/local/prepare_lang_char.py
Normal file
75
egs/reazonspeech/ASR/local/prepare_lang_char.py
Normal file
@ -0,0 +1,75 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"train_cut", metavar="train-cut", type=Path, help="Path to the train cut"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default=Path("data/lang_char"),
|
||||
help=(
|
||||
"Name of lang dir. "
|
||||
"If not set, this will default to lang_char_{trans-mode}"
|
||||
),
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(
|
||||
format=("%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"),
|
||||
level=logging.INFO,
|
||||
)
|
||||
|
||||
sysdef_string = set(["<blk>", "<unk>", "<sos/eos>", " "])
|
||||
|
||||
token_set = set()
|
||||
logging.info(f"Creating vocabulary from {args.train_cut}.")
|
||||
train_cut: CutSet = CutSet.from_file(args.train_cut)
|
||||
for cut in train_cut:
|
||||
for sup in cut.supervisions:
|
||||
token_set.update(sup.text)
|
||||
|
||||
token_set = ["<blk>"] + sorted(token_set - sysdef_string) + ["<unk>", "<sos/eos>"]
|
||||
args.lang_dir.mkdir(parents=True, exist_ok=True)
|
||||
(args.lang_dir / "tokens.txt").write_text(
|
||||
"\n".join(f"{t}\t{i}" for i, t in enumerate(token_set))
|
||||
)
|
||||
|
||||
(args.lang_dir / "lang_type").write_text("char")
|
||||
logging.info("Done.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
355
egs/reazonspeech/ASR/local/utils/asr_datamodule.py
Normal file
355
egs/reazonspeech/ASR/local/utils/asr_datamodule.py
Normal file
@ -0,0 +1,355 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class ReazonSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/manifests"),
|
||||
help="Path to directory with train/dev/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
|
||||
transforms = []
|
||||
input_transforms = []
|
||||
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.info("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "reazonspeech_cuts_test.jsonl.gz"
|
||||
)
|
253
egs/reazonspeech/ASR/local/utils/tokenizer.py
Normal file
253
egs/reazonspeech/ASR/local/utils/tokenizer.py
Normal file
@ -0,0 +1,253 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Callable, List, Union
|
||||
|
||||
import sentencepiece as spm
|
||||
from k2 import SymbolTable
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
text2word: Callable[[str], List[str]]
|
||||
|
||||
@staticmethod
|
||||
def add_arguments(parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(title="Lang related options")
|
||||
|
||||
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||
|
||||
group.add_argument(
|
||||
"--lang-type",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Either 'bpe' or 'char'. If not provided, it expects lang_dir/lang_type to exists. "
|
||||
"Note: 'bpe' directly loads sentencepiece.SentencePieceProcessor"
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def Load(lang_dir: Path, lang_type="", oov="<unk>"):
|
||||
|
||||
if not lang_type:
|
||||
assert (lang_dir / "lang_type").exists(), "lang_type not specified."
|
||||
lang_type = (lang_dir / "lang_type").read_text().strip()
|
||||
|
||||
tokenizer = None
|
||||
|
||||
if lang_type == "bpe":
|
||||
assert (
|
||||
lang_dir / "bpe.model"
|
||||
).exists(), f"No BPE .model could be found in {lang_dir}."
|
||||
tokenizer = spm.SentencePieceProcessor()
|
||||
tokenizer.Load(str(lang_dir / "bpe.model"))
|
||||
elif lang_type == "char":
|
||||
tokenizer = CharTokenizer(lang_dir, oov=oov)
|
||||
else:
|
||||
raise NotImplementedError(f"{lang_type} not supported at the moment.")
|
||||
|
||||
return tokenizer
|
||||
|
||||
load = Load
|
||||
|
||||
def PieceToId(self, piece: str) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
piece_to_id = PieceToId
|
||||
|
||||
def IdToPiece(self, id: int) -> str:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
id_to_piece = IdToPiece
|
||||
|
||||
def GetPieceSize(self) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
get_piece_size = GetPieceSize
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.get_piece_size()
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsIds(self, input: str) -> List[int]:
|
||||
return self.EncodeAsIdsBatch([input])[0]
|
||||
|
||||
def EncodeAsPieces(self, input: str) -> List[str]:
|
||||
return self.EncodeAsPiecesBatch([input])[0]
|
||||
|
||||
def Encode(
|
||||
self, input: Union[str, List[str]], out_type=int
|
||||
) -> Union[List, List[List]]:
|
||||
if not input:
|
||||
return []
|
||||
|
||||
if isinstance(input, list):
|
||||
if out_type is int:
|
||||
return self.EncodeAsIdsBatch(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPiecesBatch(input)
|
||||
|
||||
if out_type is int:
|
||||
return self.EncodeAsIds(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPieces(input)
|
||||
|
||||
encode = Encode
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodeIds(self, input: List[int]) -> str:
|
||||
return self.DecodeIdsBatch([input])[0]
|
||||
|
||||
def DecodePieces(self, input: List[str]) -> str:
|
||||
return self.DecodePiecesBatch([input])[0]
|
||||
|
||||
def Decode(
|
||||
self,
|
||||
input: Union[int, List[int], List[str], List[List[int]], List[List[str]]],
|
||||
) -> Union[List[str], str]:
|
||||
|
||||
if not input:
|
||||
return ""
|
||||
|
||||
if isinstance(input, int):
|
||||
return self.id_to_piece(input)
|
||||
elif isinstance(input, str):
|
||||
raise TypeError(
|
||||
"Unlike spm.SentencePieceProcessor, cannot decode from type str."
|
||||
)
|
||||
|
||||
if isinstance(input[0], list):
|
||||
if not input[0] or isinstance(input[0][0], int):
|
||||
return self.DecodeIdsBatch(input)
|
||||
|
||||
if isinstance(input[0][0], str):
|
||||
return self.DecodePiecesBatch(input)
|
||||
|
||||
if isinstance(input[0], int):
|
||||
return self.DecodeIds(input)
|
||||
if isinstance(input[0], str):
|
||||
return self.DecodePieces(input)
|
||||
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
decode = Decode
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def Split(self, input: Union[List[str], str]) -> Union[List[List[str]], List[str]]:
|
||||
if isinstance(input, list):
|
||||
return self.SplitBatch(input)
|
||||
elif isinstance(input, str):
|
||||
return self.SplitBatch([input])[0]
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
split = Split
|
||||
|
||||
|
||||
class CharTokenizer(Tokenizer):
|
||||
def __init__(self, lang_dir: Path, oov="<unk>", sep=""):
|
||||
assert (
|
||||
lang_dir / "tokens.txt"
|
||||
).exists(), f"tokens.txt could not be found in {lang_dir}."
|
||||
token_table = SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
assert (
|
||||
"#0" not in token_table
|
||||
), "This tokenizer does not support disambig symbols."
|
||||
self._id2sym = token_table._id2sym
|
||||
self._sym2id = token_table._sym2id
|
||||
self.oov = oov
|
||||
self.oov_id = self._sym2id[oov]
|
||||
self.sep = sep
|
||||
if self.sep:
|
||||
self.text2word = lambda x: x.split(self.sep)
|
||||
else:
|
||||
self.text2word = lambda x: list(x.replace(" ", ""))
|
||||
|
||||
def piece_to_id(self, piece: str) -> int:
|
||||
try:
|
||||
return self._sym2id[piece]
|
||||
except KeyError:
|
||||
return self.oov_id
|
||||
|
||||
def id_to_piece(self, id: int) -> str:
|
||||
return self._id2sym[id]
|
||||
|
||||
def get_piece_size(self) -> int:
|
||||
return len(self._sym2id)
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
return [[self.piece_to_id(i) for i in self.text2word(text)] for text in input]
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [
|
||||
[i if i in self._sym2id else self.oov for i in self.text2word(text)]
|
||||
for text in input
|
||||
]
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
return [self.sep.join(self.id_to_piece(i) for i in text) for text in input]
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
return [self.sep.join(text) for text in input]
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [self.text2word(text) for text in input]
|
||||
|
||||
|
||||
def test_CharTokenizer():
|
||||
test_single_string = "こんにちは"
|
||||
test_multiple_string = [
|
||||
"今日はいい天気ですよね",
|
||||
"諏訪湖は綺麗でしょう",
|
||||
"这在词表外",
|
||||
"分かち 書き に し た 文章 です",
|
||||
"",
|
||||
]
|
||||
test_empty_string = ""
|
||||
sp = Tokenizer.load(Path("lang_char"), "char", oov="<unk>")
|
||||
splitter = sp.split
|
||||
print(sp.encode(test_single_string, out_type=str))
|
||||
print(sp.encode(test_single_string, out_type=int))
|
||||
print(sp.encode(test_multiple_string, out_type=str))
|
||||
print(sp.encode(test_multiple_string, out_type=int))
|
||||
print(sp.encode(test_empty_string, out_type=str))
|
||||
print(sp.encode(test_empty_string, out_type=int))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=int)))
|
||||
print(splitter(test_single_string))
|
||||
print(splitter(test_multiple_string))
|
||||
print(splitter(test_empty_string))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_CharTokenizer()
|
96
egs/reazonspeech/ASR/local/validate_manifest.py
Normal file
96
egs/reazonspeech/ASR/local/validate_manifest.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script checks the following assumptions of the generated manifest:
|
||||
|
||||
- Single supervision per cut
|
||||
- Supervision time bounds are within cut time bounds
|
||||
|
||||
We will add more checks later if needed.
|
||||
|
||||
Usage example:
|
||||
|
||||
python3 ./local/validate_manifest.py \
|
||||
./data/fbank/librispeech_cuts_train-clean-100.jsonl.gz
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest",
|
||||
type=Path,
|
||||
help="Path to the manifest file",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def validate_one_supervision_per_cut(c: Cut):
|
||||
if len(c.supervisions) != 1:
|
||||
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
||||
|
||||
|
||||
def validate_supervision_and_cut_time_bounds(c: Cut):
|
||||
s = c.supervisions[0]
|
||||
|
||||
# Removed because when the cuts were trimmed from supervisions,
|
||||
# the start time of the supervision can be lesser than cut start time.
|
||||
# https://github.com/lhotse-speech/lhotse/issues/813
|
||||
# if s.start < c.start:
|
||||
# raise ValueError(
|
||||
# f"{c.id}: Supervision start time {s.start} is less "
|
||||
# f"than cut start time {c.start}"
|
||||
# )
|
||||
|
||||
if s.end > c.end:
|
||||
raise ValueError(
|
||||
f"{c.id}: Supervision end time {s.end} is larger "
|
||||
f"than cut end time {c.end}"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
manifest = Path(args.manifest)
|
||||
logging.info(f"Validating {manifest}")
|
||||
|
||||
assert manifest.is_file(), f"{manifest} does not exist"
|
||||
cut_set = load_manifest(manifest)
|
||||
assert isinstance(cut_set, CutSet)
|
||||
|
||||
for c in cut_set:
|
||||
validate_one_supervision_per_cut(c)
|
||||
validate_supervision_and_cut_time_bounds(c)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
86
egs/reazonspeech/ASR/prepare.sh
Executable file
86
egs/reazonspeech/ASR/prepare.sh
Executable file
@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/ReazonSpeech
|
||||
# You can find FLAC files in this directory.
|
||||
# You can download them from https://huggingface.co/datasets/reazon-research/reazonspeech
|
||||
#
|
||||
# - $dl_dir/dataset.json
|
||||
# The metadata of the ReazonSpeech dataset.
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "Running prepare.sh"
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/ReazonSpeech,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/ReazonSpeech $dl_dir/ReazonSpeech
|
||||
#
|
||||
if [ ! -d $dl_dir/ReazonSpeech/downloads ]; then
|
||||
# Download small-v1 by default.
|
||||
lhotse download reazonspeech --subset small-v1 $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare ReazonSpeech manifest"
|
||||
# We assume that you have downloaded the ReazonSpeech corpus
|
||||
# to $dl_dir/ReazonSpeech
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.reazonspeech.done ]; then
|
||||
lhotse prepare reazonspeech -j $nj $dl_dir/ReazonSpeech data/manifests
|
||||
touch data/manifests/.reazonspeech.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Compute ReazonSpeech fbank"
|
||||
if [ ! -e data/manifests/.reazonspeech-validated.done ]; then
|
||||
python local/compute_fbank_reazonspeech.py --manifest-dir data/manifests
|
||||
python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_train.jsonl.gz
|
||||
python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_dev.jsonl.gz
|
||||
python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_test.jsonl.gz
|
||||
touch data/manifests/.reazonspeech-validated.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare ReazonSpeech lang_char"
|
||||
python local/prepare_lang_char.py data/manifests/reazonspeech_cuts_train.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Show manifest statistics"
|
||||
python local/display_manifest_statistics.py --manifest-dir data/manifests > data/manifests/manifest_statistics.txt
|
||||
cat data/manifests/manifest_statistics.txt
|
||||
fi
|
1
egs/reazonspeech/ASR/shared
Symbolic link
1
egs/reazonspeech/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
1
egs/reazonspeech/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../local/utils/asr_datamodule.py
|
1
egs/reazonspeech/ASR/zipformer/beam_search.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/beam_search.py
|
1
egs/reazonspeech/ASR/zipformer/ctc_decode.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/ctc_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/ctc_decode.py
|
1076
egs/reazonspeech/ASR/zipformer/decode.py
Executable file
1076
egs/reazonspeech/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/reazonspeech/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/reazonspeech/ASR/zipformer/decoder.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1261
egs/reazonspeech/ASR/zipformer/do_not_use_it_directly.py
Executable file
1261
egs/reazonspeech/ASR/zipformer/do_not_use_it_directly.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/reazonspeech/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/reazonspeech/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/reazonspeech/ASR/zipformer/export.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/reazonspeech/ASR/zipformer/generate_averaged_model.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/generate_averaged_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/generate_averaged_model.py
|
1
egs/reazonspeech/ASR/zipformer/joiner.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/reazonspeech/ASR/zipformer/model.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/reazonspeech/ASR/zipformer/my_profile.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/my_profile.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/my_profile.py
|
1
egs/reazonspeech/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/reazonspeech/ASR/zipformer/optim.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/reazonspeech/ASR/zipformer/pretrained.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/reazonspeech/ASR/zipformer/scaling.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/reazonspeech/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/reazonspeech/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
597
egs/reazonspeech/ASR/zipformer/streaming_decode.py
Executable file
597
egs/reazonspeech/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,597 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--decode-chunk-len 32 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--decoding_method greedy_search \
|
||||
--lang data/lang_char \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||
from decode import save_results
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from tokenizer import Tokenizer
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
from zipformer import stack_states, unstack_states
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--gpu",
|
||||
type=int,
|
||||
default=0,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-graph",
|
||||
type=str,
|
||||
default="",
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--res-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="The path to save results.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = []
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
||||
# factor in encoders is 8.
|
||||
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
||||
tail_length = 23
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
states=states,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: Tokenizer,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 50
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = model.encoder.get_init_state(device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
||||
decode_stream.ground_truth = cut.supervisions[0].custom[params.transcript_mode]
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
sp.text2word(decode_streams[i].ground_truth),
|
||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
sp.text2word(decode_streams[i].ground_truth),
|
||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||
Tokenizer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
if not params.res_dir:
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
# for streaming
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", params.gpu)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = Tokenizer.load(params.lang, params.lang_type)
|
||||
|
||||
# <blk> and <unk> is defined in local/prepare_lang_char.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_graph:
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(params.decoding_graph, map_location=device)
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
args.return_cuts = True
|
||||
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||
|
||||
for subdir in ["valid"]:
|
||||
results_dict = decode_dataset(
|
||||
cuts=getattr(reazonspeech_corpus, f"{subdir}_cuts")(),
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
tot_err = save_results(
|
||||
params=params, test_set_name=subdir, results_dict=results_dict
|
||||
)
|
||||
|
||||
with (
|
||||
params.res_dir
|
||||
/ (
|
||||
f"{subdir}-{params.decode_chunk_len}"
|
||||
f"_{params.avg}_{params.epoch}.cer"
|
||||
)
|
||||
).open("w") as fout:
|
||||
if len(tot_err) == 1:
|
||||
fout.write(f"{tot_err[0][1]}")
|
||||
else:
|
||||
fout.write("\n".join(f"{k}\t{v}") for k, v in tot_err)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/reazonspeech/ASR/zipformer/subsampling.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1
egs/reazonspeech/ASR/zipformer/test_scaling.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/test_scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_scaling.py
|
1
egs/reazonspeech/ASR/zipformer/test_subsampling.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/test_subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_subsampling.py
|
1
egs/reazonspeech/ASR/zipformer/tokenizer.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/tokenizer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../local/utils/tokenizer.py
|
1383
egs/reazonspeech/ASR/zipformer/train.py
Executable file
1383
egs/reazonspeech/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/reazonspeech/ASR/zipformer/zipformer.py
Symbolic link
1
egs/reazonspeech/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user