Merge remote-tracking branch 'k2-fsa/master'
5
.flake8
@ -1,7 +1,7 @@
|
|||||||
[flake8]
|
[flake8]
|
||||||
show-source=true
|
show-source=true
|
||||||
statistics=true
|
statistics=true
|
||||||
max-line-length = 80
|
max-line-length = 88
|
||||||
per-file-ignores =
|
per-file-ignores =
|
||||||
# line too long
|
# line too long
|
||||||
icefall/diagnostics.py: E501,
|
icefall/diagnostics.py: E501,
|
||||||
@ -11,7 +11,8 @@ per-file-ignores =
|
|||||||
egs/*/ASR/*/scaling.py: E501,
|
egs/*/ASR/*/scaling.py: E501,
|
||||||
egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203
|
egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203
|
||||||
egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203
|
egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203
|
||||||
egs/librispeech/ASR/conformer_ctc2/*py: E501,
|
egs/librispeech/ASR/conformer_ctc*/*py: E501,
|
||||||
|
egs/librispeech/ASR/zipformer_mmi/*.py: E501, E203
|
||||||
egs/librispeech/ASR/RESULTS.md: E999,
|
egs/librispeech/ASR/RESULTS.md: E999,
|
||||||
|
|
||||||
# invalid escape sequence (cause by tex formular), W605
|
# invalid escape sequence (cause by tex formular), W605
|
||||||
|
3
.git-blame-ignore-revs
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# Migrate to 88 characters per line (see: https://github.com/lhotse-speech/lhotse/issues/890)
|
||||||
|
107df3b115a58f1b68a6458c3f94a130004be34c
|
||||||
|
d31db010371a4128856480382876acdc0d1739ed
|
123
.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
vendored
Executable file
@ -0,0 +1,123 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conformer-ctc3-2022-11-27
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/HLG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/LG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "data/lm/G_4_gram.pt"
|
||||||
|
git lfs pull --include "exp/jit_trace.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/jit_pretrained.py \
|
||||||
|
--model-filename $repo/exp/jit_trace.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
|
||||||
|
./conformer_ctc3/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--lang-dir $repo/data/lang_bpe_500 \
|
||||||
|
--jit-trace 1 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/jit_pretrained.py \
|
||||||
|
--model-filename $repo/exp/jit_trace.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p conformer_ctc3/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt conformer_ctc3/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh conformer_ctc3/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in ctc-decoding 1best; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
./conformer_ctc3/decode.py \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--exp-dir conformer_ctc3/exp/ \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--decoding-method $method \
|
||||||
|
--lm-dir data/lm
|
||||||
|
done
|
||||||
|
|
||||||
|
rm conformer_ctc3/exp/*.pt
|
||||||
|
fi
|
79
.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh
vendored
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
#
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
log "Install ncnn and pnnx"
|
||||||
|
|
||||||
|
# We are using a modified ncnn here. Will try to merge it to the official repo
|
||||||
|
# of ncnn
|
||||||
|
git clone https://github.com/csukuangfj/ncnn
|
||||||
|
pushd ncnn
|
||||||
|
git submodule init
|
||||||
|
git submodule update python/pybind11
|
||||||
|
python3 setup.py bdist_wheel
|
||||||
|
ls -lh dist/
|
||||||
|
pip install dist/*.whl
|
||||||
|
cd tools/pnnx
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -D Python3_EXECUTABLE=/opt/hostedtoolcache/Python/3.8.14/x64/bin/python3 ..
|
||||||
|
make -j4 pnnx
|
||||||
|
|
||||||
|
./src/pnnx || echo "pass"
|
||||||
|
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Test exporting to pnnx format"
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
\
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--chunk-length 32 \
|
||||||
|
--cnn-module-kernel 31 \
|
||||||
|
--left-context-length 32 \
|
||||||
|
--right-context-length 8 \
|
||||||
|
--memory-size 32
|
||||||
|
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/encoder_jit_trace-pnnx.pt
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/decoder_jit_trace-pnnx.pt
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
|
||||||
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||||
|
--encoder-param-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--encoder-bin-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--decoder-param-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--decoder-bin-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--joiner-param-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
--joiner-bin-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav
|
@ -16,6 +16,7 @@ log "Downloading pre-trained model from $repo_url"
|
|||||||
git lfs install
|
git lfs install
|
||||||
git clone $repo_url
|
git clone $repo_url
|
||||||
repo=$(basename $repo_url)
|
repo=$(basename $repo_url)
|
||||||
|
abs_repo=$(realpath $repo)
|
||||||
|
|
||||||
log "Display test files"
|
log "Display test files"
|
||||||
tree $repo/
|
tree $repo/
|
||||||
@ -174,6 +175,92 @@ done
|
|||||||
|
|
||||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
|
||||||
|
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||||
|
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||||
|
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||||
|
lm_repo=$(basename $lm_repo_url)
|
||||||
|
pushd $lm_repo
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
mv exp/pretrained.pt exp/epoch-88.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
|
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh lstm_transducer_stateless2/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other with RNN LM"
|
||||||
|
|
||||||
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir lstm_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||||
|
--beam 4 \
|
||||||
|
--use-shallow-fusion 1 \
|
||||||
|
--lm-type rnn \
|
||||||
|
--lm-exp-dir $lm_repo/exp \
|
||||||
|
--lm-epoch 88 \
|
||||||
|
--lm-avg 1 \
|
||||||
|
--lm-scale 0.3 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
|
||||||
|
bigram_repo_url=https://huggingface.co/marcoyang/librispeech_bigram
|
||||||
|
log "Download bi-gram LM from ${bigram_repo_url}"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $bigram_repo_url
|
||||||
|
bigramlm_repo=$(basename $bigram_repo_url)
|
||||||
|
pushd $bigramlm_repo
|
||||||
|
git lfs pull --include "2gram.fst.txt"
|
||||||
|
cp 2gram.fst.txt $abs_repo/data/lang_bpe_500/.
|
||||||
|
popd
|
||||||
|
|
||||||
|
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||||
|
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||||
|
lm_repo=$(basename $lm_repo_url)
|
||||||
|
pushd $lm_repo
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
mv exp/pretrained.pt exp/epoch-88.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
|
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh lstm_transducer_stateless2/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir lstm_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search_LODR \
|
||||||
|
--beam 4 \
|
||||||
|
--use-shallow-fusion 1 \
|
||||||
|
--lm-type rnn \
|
||||||
|
--lm-exp-dir $lm_repo/exp \
|
||||||
|
--lm-scale 0.4 \
|
||||||
|
--lm-epoch 88 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1 \
|
||||||
|
--tokens-ngram 2 \
|
||||||
|
--ngram-lm-scale -0.16
|
||||||
|
fi
|
||||||
|
|
||||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
||||||
mkdir -p lstm_transducer_stateless2/exp
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
@ -83,4 +83,5 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
|
|||||||
done
|
done
|
||||||
|
|
||||||
rm pruned_transducer_stateless2/exp/*.pt
|
rm pruned_transducer_stateless2/exp/*.pt
|
||||||
|
rm -r data/lang_bpe_500
|
||||||
fi
|
fi
|
||||||
|
@ -82,4 +82,5 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
|
|||||||
done
|
done
|
||||||
|
|
||||||
rm pruned_transducer_stateless3/exp/*.pt
|
rm pruned_transducer_stateless3/exp/*.pt
|
||||||
|
rm -r data/lang_bpe_500
|
||||||
fi
|
fi
|
||||||
|
137
.github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh
vendored
Executable file
@ -0,0 +1,137 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Test exporting to ONNX format"
|
||||||
|
./pruned_transducer_stateless7/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--onnx 1
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless7/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with ONNX models"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/onnx_check.py \
|
||||||
|
--jit-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--onnx-encoder-filename $repo/exp/encoder.onnx \
|
||||||
|
--onnx-decoder-filename $repo/exp/decoder.onnx \
|
||||||
|
--onnx-joiner-filename $repo/exp/joiner.onnx \
|
||||||
|
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||||
|
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/onnx_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--encoder-model-filename $repo/exp/encoder.onnx \
|
||||||
|
--decoder-model-filename $repo/exp/decoder.onnx \
|
||||||
|
--joiner-model-filename $repo/exp/joiner.onnx \
|
||||||
|
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||||
|
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless7/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless7/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--exp-dir pruned_transducer_stateless7/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless7/exp/*.pt
|
||||||
|
fi
|
151
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh
vendored
Executable file
@ -0,0 +1,151 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/HLG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/LG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "data/lm/G_4_gram.pt"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless7_ctc/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \
|
||||||
|
--model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained_ctc.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless7_ctc/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_ctc/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless7_ctc/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/ctc_decode.py \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc/exp \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--decoding-method $m \
|
||||||
|
--hlg-scale 0.6 \
|
||||||
|
--lm-dir data/lm
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless7_ctc/exp/*.pt
|
||||||
|
fi
|
148
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh
vendored
Executable file
@ -0,0 +1,148 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2022-12-14
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/HLG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/LG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \
|
||||||
|
--model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless7_ctc_bs/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_ctc_bs/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless7_ctc_bs/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc_bs/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--decoding-method $m \
|
||||||
|
--hlg-scale 0.6
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless7_ctc_bs/exp/*.pt
|
||||||
|
fi
|
148
.github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh
vendored
Executable file
@ -0,0 +1,148 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
git lfs pull --include "exp/encoder_jit_trace.pt"
|
||||||
|
git lfs pull --include "exp/decoder_jit_trace.pt"
|
||||||
|
git lfs pull --include "exp/joiner_jit_trace.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless7_streaming/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
log "Export to torchscript model by torch.jit.trace()"
|
||||||
|
./pruned_transducer_stateless7_streaming/jit_trace_export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--encoder-model-filename $repo/exp/encoder_jit_trace.pt \
|
||||||
|
--decoder-model-filename $repo/exp/decoder_jit_trace.pt \
|
||||||
|
--joiner-model-filename $repo/exp/joiner_jit_trace.pt \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless7_streaming/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_streaming/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless7_streaming/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
num_decode_stream=200
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--num-decode-streams $num_decode_stream
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless7_streaming/exp/*.pt
|
||||||
|
fi
|
116
.github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh
vendored
Executable file
@ -0,0 +1,116 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless8/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless8/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless8/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless8/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless8/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless8/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless8/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless8/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless8/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--exp-dir pruned_transducer_stateless8/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless8/exp/*.pt
|
||||||
|
fi
|
103
.github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh
vendored
Executable file
@ -0,0 +1,103 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/lang_bpe_500/3gram.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/4gram.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/LG.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./zipformer_mmi/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./zipformer_mmi/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--lang-dir $repo/data/lang_bpe_500 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for method in 1best nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./zipformer_mmi/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--lang-dir $repo/data/lang_bpe_500 \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p zipformer_mmi/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt zipformer_mmi/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh zipformer_mmi/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in 1best nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./zipformer_mmi/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--nbest-scale 1.2 \
|
||||||
|
--hp-scale 1.0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--lang-dir $repo/data/lang_bpe_500 \
|
||||||
|
--exp-dir zipformer_mmi/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
rm zipformer_mmi/exp/*.pt
|
||||||
|
fi
|
4
.github/workflows/build-doc.yml
vendored
@ -26,6 +26,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: build_doc-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-doc:
|
build-doc:
|
||||||
if: github.event.label.name == 'doc' || github.event_name == 'push'
|
if: github.event.label.name == 'doc' || github.event_name == 'push'
|
||||||
|
4
.github/workflows/run-aishell-2022-06-20.yml
vendored
@ -34,6 +34,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_aishell_2022_06_20-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_aishell_2022_06_20:
|
run_aishell_2022_06_20:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_gigaspeech_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_gigaspeech_2022_05_13:
|
run_gigaspeech_2022_05_13:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_03_12-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_03_12:
|
run_librispeech_2022_03_12:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_04_29-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_04_29:
|
run_librispeech_2022_04_29:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_05_13:
|
run_librispeech_2022_05_13:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
159
.github/workflows/run-librispeech-2022-11-11-stateless7.yml
vendored
Normal file
@ -0,0 +1,159 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-11-11-stateless7
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_11_zipformer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_11_zipformer:
|
||||||
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless7
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless7/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7
|
||||||
|
echo "results for pruned_transducer_stateless7"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless7
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-2022-11-11
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless7/exp/
|
159
.github/workflows/run-librispeech-2022-11-14-stateless8.yml
vendored
Normal file
@ -0,0 +1,159 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-11-14-stateless8
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_14_zipformer_stateless8-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_14_zipformer_stateless8:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless8
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless8/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless8
|
||||||
|
echo "results for pruned_transducer_stateless8"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless8
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless8-2022-11-14
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless8/exp/
|
163
.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml
vendored
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-12-01-stateless7-ctc
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_11_zipformer:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless7_ctc
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless7_ctc/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_ctc
|
||||||
|
echo "results for pruned_transducer_stateless7_ctc"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===ctc decoding==="
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless7_ctc
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-ctc-2022-12-01
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless7_ctc/exp/
|
167
.github/workflows/run-librispeech-2022-12-08-zipformer-mmi.yml
vendored
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
# Copyright 2022 Zengwei Yao
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-12-08-zipformer-mmi
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_12_08_zipformer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_12_08_zipformer:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech zipformer-mmi
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./zipformer-mmi/exp
|
||||||
|
|
||||||
|
cd zipformer-mmi
|
||||||
|
echo "results for zipformer-mmi"
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===nbest==="
|
||||||
|
find exp/nbest -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/nbest -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===nbest-rescoring-LG==="
|
||||||
|
find exp/nbest-rescoring-LG -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/nbest-rescoring-LG -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===nbest-rescoring-3-gram==="
|
||||||
|
find exp/nbest-rescoring-3-gram -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/nbest-rescoring-3-gram -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===nbest-rescoring-4-gram==="
|
||||||
|
find exp/nbest-rescoring-4-gram -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/nbest-rescoring-4-gram -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech zipformer-mmi
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-zipformer_mmi-2022-12-08
|
||||||
|
path: egs/librispeech/ASR/zipformer_mmi/exp/
|
163
.github/workflows/run-librispeech-2022-12-15-stateless7-ctc-bs.yml
vendored
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-12-15-stateless7-ctc-bs
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_12_15_zipformer_ctc_bs:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event.label.name == 'blank-skip' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless7_ctc_bs
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless7_ctc_bs/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_ctc_bs
|
||||||
|
echo "results for pruned_transducer_stateless7_ctc_bs"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===ctc decoding==="
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless7_ctc_bs
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-ctc-bs-2022-12-15
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/exp/
|
172
.github/workflows/run-librispeech-2022-12-29-stateless7-streaming.yml
vendored
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-12-29-stateless7-streaming
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_12_29_zipformer_streaming-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_12_29_zipformer_streaming:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event.label.name == 'streaming-zipformer' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless7_streaming
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless7_streaming/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_streaming
|
||||||
|
echo "results for pruned_transducer_stateless7_streaming"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===streaming greedy search==="
|
||||||
|
find exp/streaming/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/streaming/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===streaming fast_beam_search==="
|
||||||
|
find exp/streaming/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/streaming/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===streaming modified beam search==="
|
||||||
|
find exp/streaming/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/streaming/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless7_streaming
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-streaming-2022-12-29
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless7_streaming/exp/
|
155
.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml
vendored
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-conformer-ctc3-2022-11-28
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_28_conformer_ctc3-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_28_conformer_ctc3:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech conformer_ctc3
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./conformer_ctc3/exp
|
||||||
|
|
||||||
|
cd conformer_ctc3
|
||||||
|
echo "results for conformer_ctc3"
|
||||||
|
echo "===ctc-decoding==="
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech conformer_ctc3
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-conformer_ctc3-2022-11-28
|
||||||
|
path: egs/librispeech/ASR/conformer_ctc3/exp/
|
77
.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml
vendored
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
name: run-librispeech-conv-emformer-transducer-stateless2-2022-12-05
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_conv_emformer_transducer_stateless2_2022_12_05:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh
|
@ -16,9 +16,13 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_lstm_transducer_stateless2_2022_09_03-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -107,7 +111,7 @@ jobs:
|
|||||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml
|
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh
|
||||||
|
|
||||||
- name: Display decoding results for lstm_transducer_stateless2
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
if: github.event_name == 'schedule'
|
if: github.event_name == 'schedule'
|
||||||
@ -128,9 +132,32 @@ jobs:
|
|||||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
|
if: github.event.label.name == 'shallow-fusion'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
tree lstm_transducer_stateless2/exp
|
||||||
|
cd lstm_transducer_stateless2/exp
|
||||||
|
echo "===modified_beam_search_lm_shallow_fusion==="
|
||||||
|
echo "===Using RNNLM==="
|
||||||
|
find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
|
if: github.event.label.name == 'LODR'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
tree lstm_transducer_stateless2/exp
|
||||||
|
cd lstm_transducer_stateless2/exp
|
||||||
|
echo "===modified_beam_search_rnnlm_LODR==="
|
||||||
|
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Upload decoding results for lstm_transducer_stateless2
|
- name: Upload decoding results for lstm_transducer_stateless2
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v2
|
||||||
if: github.event_name == 'schedule'
|
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR'
|
||||||
with:
|
with:
|
||||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
|
||||||
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_pruned_transducer_stateless3_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_streaming_2022_06_26-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_streaming_2022_06_26:
|
run_librispeech_streaming_2022_06_26:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_04_19-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_04_19:
|
run_librispeech_2022_04_19:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_conformer_ctc-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_conformer_ctc:
|
run_pre_trained_conformer_ctc:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
|
run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h:
|
run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_modified_2_aishell-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_modified_2_aishell:
|
run_pre_trained_transducer_stateless_modified_2_aishell:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_modified_aishell-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_modified_aishell:
|
run_pre_trained_transducer_stateless_modified_aishell:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless:
|
run_pre_trained_transducer_stateless:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer:
|
run_pre_trained_transducer:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
71
.github/workflows/run-ptb-rnn-lm.yml
vendored
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
name: run-ptb-rnn-lm-training
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_ptb_rnn_lm_training-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_ptb_rnn_lm_training:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: ["3.8"]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Prepare data
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/ptb/LM
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
- name: Run training
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/ptb/LM
|
||||||
|
./train-rnn-lm.sh --world-size 1 --num-epochs 5 --use-epoch 4 --use-avg 2
|
||||||
|
|
||||||
|
- name: Upload pretrained models
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
with:
|
||||||
|
name: python-${{ matrix.python-version }}-ubuntu-rnn-lm-ptb
|
||||||
|
path: egs/ptb/LM/my-rnnlm-exp/
|
@ -23,8 +23,12 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_wenetspeech_pruned_transducer_stateless2-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
run_wenetspeech_pruned_transducer_stateless2:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
|
10
.github/workflows/run-yesno-recipe.yml
vendored
@ -21,11 +21,15 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run-yesno-recipe-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run-yesno-recipe:
|
run-yesno-recipe:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -61,7 +65,7 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
pip uninstall -y protobuf
|
pip uninstall -y protobuf
|
||||||
pip install --no-binary protobuf protobuf
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
15
.github/workflows/style_check.yml
vendored
@ -24,6 +24,10 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: style_check-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
style_check:
|
style_check:
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
@ -45,17 +49,18 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2 click==8.0.4
|
python3 -m pip install --upgrade pip black==22.3.0 flake8==5.0.4 click==8.1.0
|
||||||
# See https://github.com/psf/black/issues/2964
|
# Click issue fixed in https://github.com/psf/black/pull/2966
|
||||||
# The version of click should be selected from 8.0.0, 8.0.1, 8.0.2, 8.0.3, and 8.0.4
|
|
||||||
|
|
||||||
- name: Run flake8
|
- name: Run flake8
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: ${{github.workspace}}
|
working-directory: ${{github.workspace}}
|
||||||
run: |
|
run: |
|
||||||
# stop the build if there are Python syntax errors or undefined names
|
# stop the build if there are Python syntax errors or undefined names
|
||||||
flake8 . --count --show-source --statistics
|
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
|
||||||
flake8 .
|
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||||
|
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 \
|
||||||
|
--statistics --extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503
|
||||||
|
|
||||||
- name: Run black
|
- name: Run black
|
||||||
shell: bash
|
shell: bash
|
||||||
|
38
.github/workflows/test.yml
vendored
@ -21,26 +21,23 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: test-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
test:
|
test:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
# os: [ubuntu-18.04, macos-10.15]
|
os: [ubuntu-latest]
|
||||||
# disable macOS test for now.
|
python-version: ["3.8"]
|
||||||
os: [ubuntu-18.04]
|
torch: ["1.10.0"]
|
||||||
python-version: [3.7, 3.8]
|
torchaudio: ["0.10.0"]
|
||||||
torch: ["1.8.0", "1.11.0"]
|
k2-version: ["1.23.2.dev20221201"]
|
||||||
torchaudio: ["0.8.0", "0.11.0"]
|
|
||||||
k2-version: ["1.15.1.dev20220427"]
|
|
||||||
exclude:
|
|
||||||
- torch: "1.8.0"
|
|
||||||
torchaudio: "0.11.0"
|
|
||||||
- torch: "1.11.0"
|
|
||||||
torchaudio: "0.8.0"
|
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
@ -67,11 +64,7 @@ jobs:
|
|||||||
# numpy 1.20.x does not support python 3.6
|
# numpy 1.20.x does not support python 3.6
|
||||||
pip install numpy==1.19
|
pip install numpy==1.19
|
||||||
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.11.0" ]]; then
|
|
||||||
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
else
|
|
||||||
pip install torchaudio==${{ matrix.torchaudio }}
|
|
||||||
fi
|
|
||||||
|
|
||||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||||
pip install git+https://github.com/lhotse-speech/lhotse
|
pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
@ -79,6 +72,8 @@ jobs:
|
|||||||
pip uninstall -y protobuf
|
pip uninstall -y protobuf
|
||||||
pip install --no-binary protobuf protobuf
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
pip install kaldifst
|
||||||
|
pip install onnxruntime
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
|
|
||||||
- name: Install graphviz
|
- name: Install graphviz
|
||||||
@ -118,10 +113,12 @@ jobs:
|
|||||||
cd ../pruned_transducer_stateless4
|
cd ../pruned_transducer_stateless4
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
|
cd ../pruned_transducer_stateless7
|
||||||
|
pytest -v -s
|
||||||
|
|
||||||
cd ../transducer_stateless
|
cd ../transducer_stateless
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
|
||||||
cd ../transducer
|
cd ../transducer
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
@ -130,7 +127,6 @@ jobs:
|
|||||||
|
|
||||||
cd ../transducer_lstm
|
cd ../transducer_lstm
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
fi
|
|
||||||
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
if: startsWith(matrix.os, 'macos')
|
if: startsWith(matrix.os, 'macos')
|
||||||
@ -161,7 +157,6 @@ jobs:
|
|||||||
cd ../transducer_stateless
|
cd ../transducer_stateless
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
|
||||||
cd ../transducer
|
cd ../transducer
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
@ -170,4 +165,3 @@ jobs:
|
|||||||
|
|
||||||
cd ../transducer_lstm
|
cd ../transducer_lstm
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
fi
|
|
||||||
|
21
.gitignore
vendored
@ -11,5 +11,26 @@ log
|
|||||||
*.bak
|
*.bak
|
||||||
*-bak
|
*-bak
|
||||||
*bak.py
|
*bak.py
|
||||||
|
|
||||||
|
# Ignore Mac system files
|
||||||
|
.DS_store
|
||||||
|
|
||||||
|
# Ignore node_modules folder
|
||||||
|
node_modules
|
||||||
|
|
||||||
|
# ignore .nfs
|
||||||
|
|
||||||
|
.nfs*
|
||||||
|
|
||||||
|
# Ignore all text files
|
||||||
|
*.txt
|
||||||
|
|
||||||
|
# Ignore files related to API keys
|
||||||
|
.env
|
||||||
|
|
||||||
|
# Ignore SASS config files
|
||||||
|
.sass-cache
|
||||||
|
|
||||||
*.param
|
*.param
|
||||||
*.bin
|
*.bin
|
||||||
|
.DS_Store
|
||||||
|
@ -1,26 +1,38 @@
|
|||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/psf/black
|
- repo: https://github.com/psf/black
|
||||||
rev: 21.6b0
|
rev: 22.3.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
args: [--line-length=80]
|
args: ["--line-length=88"]
|
||||||
additional_dependencies: ['click==8.0.1']
|
additional_dependencies: ['click==8.1.0']
|
||||||
exclude: icefall\/__init__\.py
|
exclude: icefall\/__init__\.py
|
||||||
|
|
||||||
- repo: https://github.com/PyCQA/flake8
|
- repo: https://github.com/PyCQA/flake8
|
||||||
rev: 3.9.2
|
rev: 5.0.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
args: [--max-line-length=80]
|
args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503"]
|
||||||
|
|
||||||
|
# What are we ignoring here?
|
||||||
|
# E203: whitespace before ':'
|
||||||
|
# E266: too many leading '#' for block comment
|
||||||
|
# E501: line too long
|
||||||
|
# F401: module imported but unused
|
||||||
|
# E402: module level import not at top of file
|
||||||
|
# F403: 'from module import *' used; unable to detect undefined names
|
||||||
|
# F841: local variable is assigned to but never used
|
||||||
|
# W503: line break before binary operator
|
||||||
|
# In addition, the default ignore list is:
|
||||||
|
# E121,E123,E126,E226,E24,E704,W503,W504
|
||||||
|
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: https://github.com/pycqa/isort
|
||||||
rev: 5.9.2
|
rev: 5.10.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
args: [--profile=black, --line-length=80]
|
args: ["--profile=black"]
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v4.0.1
|
rev: v4.2.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: check-executables-have-shebangs
|
- id: check-executables-have-shebangs
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
|
@ -82,7 +82,7 @@ The WER for this model is:
|
|||||||
|-----|------------|------------|
|
|-----|------------|------------|
|
||||||
| WER | 6.59 | 17.69 |
|
| WER | 6.59 | 17.69 |
|
||||||
|
|
||||||
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1-iSfQMp2So-We_Uu49N4AAcMInB72u9z?usp=sharing)
|
||||||
|
|
||||||
|
|
||||||
#### Transducer: Conformer encoder + LSTM decoder
|
#### Transducer: Conformer encoder + LSTM decoder
|
||||||
@ -162,7 +162,7 @@ The CER for this model is:
|
|||||||
|-----|-------|
|
|-----|-------|
|
||||||
| CER | 10.16 |
|
| CER | 10.16 |
|
||||||
|
|
||||||
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1qULaGvXq7PCu_P61oubfz9b53JzY4H3z?usp=sharing)
|
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1jbyzYq3ytm6j2nlEt-diQm-6QVWyDDEa?usp=sharing)
|
||||||
|
|
||||||
### TIMIT
|
### TIMIT
|
||||||
|
|
||||||
|
@ -72,14 +72,14 @@ docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all icefall
|
|||||||
```
|
```
|
||||||
|
|
||||||
### Tips:
|
### Tips:
|
||||||
1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/docker}:{/path/in/host/machine}`.
|
1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/host/machine}:{/path/in/docker}`.
|
||||||
|
|
||||||
2. Also, if your environment requires a proxy, this would be a good time to add it in too: `-e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080`.
|
2. Also, if your environment requires a proxy, this would be a good time to add it in too: `-e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080`.
|
||||||
|
|
||||||
Overall, your docker run command should look like this.
|
Overall, your docker run command should look like this.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/docker}:{/path/in/host/machine} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1
|
docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/host/machine}:{/path/in/docker} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1
|
||||||
```
|
```
|
||||||
|
|
||||||
You can explore more docker run options [here](https://docs.docker.com/engine/reference/commandline/run/) to suit your environment.
|
You can explore more docker run options [here](https://docs.docker.com/engine/reference/commandline/run/) to suit your environment.
|
||||||
|
@ -51,8 +51,9 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz &&
|
|||||||
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
|
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
|
||||||
cd -
|
cd -
|
||||||
|
|
||||||
RUN pip install kaldiio graphviz && \
|
RUN conda install -y -c pytorch torchaudio=0.12 && \
|
||||||
conda install -y -c pytorch torchaudio
|
pip install graphviz
|
||||||
|
|
||||||
|
|
||||||
#install k2 from source
|
#install k2 from source
|
||||||
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
|
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
|
||||||
@ -67,6 +68,7 @@ RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
|
|||||||
cd /workspace/icefall && \
|
cd /workspace/icefall && \
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
RUN pip install kaldifeat
|
||||||
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
||||||
|
|
||||||
WORKDIR /workspace/icefall
|
WORKDIR /workspace/icefall
|
@ -69,8 +69,8 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz &&
|
|||||||
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
|
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
|
||||||
cd -
|
cd -
|
||||||
|
|
||||||
RUN pip install kaldiio graphviz && \
|
RUN conda install -y -c pytorch torchaudio=0.7.1 && \
|
||||||
conda install -y -c pytorch torchaudio=0.7.1
|
pip install graphviz
|
||||||
|
|
||||||
#install k2 from source
|
#install k2 from source
|
||||||
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
|
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
|
||||||
@ -88,4 +88,3 @@ RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
|
|||||||
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
||||||
|
|
||||||
WORKDIR /workspace/icefall
|
WORKDIR /workspace/icefall
|
||||||
|
|
||||||
|
24
docs/README.md
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd /path/to/icefall/docs
|
||||||
|
pip install -r requirements.txt
|
||||||
|
make clean
|
||||||
|
make html
|
||||||
|
cd build/html
|
||||||
|
python3 -m http.server 8000
|
||||||
|
```
|
||||||
|
|
||||||
|
It prints:
|
||||||
|
|
||||||
|
```
|
||||||
|
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
|
||||||
|
```
|
||||||
|
|
||||||
|
Open your browser and go to <http://0.0.0.0:8000/> to view the generated
|
||||||
|
documentation.
|
||||||
|
|
||||||
|
Done!
|
||||||
|
|
||||||
|
**Hint**: You can change the port number when starting the server.
|
@ -78,3 +78,12 @@ html_context = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
todo_include_todos = True
|
todo_include_todos = True
|
||||||
|
|
||||||
|
rst_epilog = """
|
||||||
|
.. _sherpa-ncnn: https://github.com/k2-fsa/sherpa-ncnn
|
||||||
|
.. _icefall: https://github.com/k2-fsa/icefall
|
||||||
|
.. _git-lfs: https://git-lfs.com/
|
||||||
|
.. _ncnn: https://github.com/tencent/ncnn
|
||||||
|
.. _LibriSpeech: https://www.openslr.org/12
|
||||||
|
.. _musan: http://www.openslr.org/17/
|
||||||
|
"""
|
||||||
|
@ -11,9 +11,9 @@ We use the following tools to make the code style to be as consistent as possibl
|
|||||||
|
|
||||||
The following versions of the above tools are used:
|
The following versions of the above tools are used:
|
||||||
|
|
||||||
- ``black == 12.6b0``
|
- ``black == 22.3.0``
|
||||||
- ``flake8 == 3.9.2``
|
- ``flake8 == 5.0.4``
|
||||||
- ``isort == 5.9.2``
|
- ``isort == 5.10.1``
|
||||||
|
|
||||||
After running the following commands:
|
After running the following commands:
|
||||||
|
|
||||||
@ -54,10 +54,17 @@ it should succeed this time:
|
|||||||
If you want to check the style of your code before ``git commit``, you
|
If you want to check the style of your code before ``git commit``, you
|
||||||
can do the following:
|
can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ pre-commit install
|
||||||
|
$ pre-commit run
|
||||||
|
|
||||||
|
Or without installing the pre-commit hooks:
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
$ cd icefall
|
$ cd icefall
|
||||||
$ pip install black==21.6b0 flake8==3.9.2 isort==5.9.2
|
$ pip install black==22.3.0 flake8==5.0.4 isort==5.10.1
|
||||||
$ black --check your_changed_file.py
|
$ black --check your_changed_file.py
|
||||||
$ black your_changed_file.py # modify it in-place
|
$ black your_changed_file.py # modify it in-place
|
||||||
$
|
$
|
||||||
|
107
docs/source/faqs.rst
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
Frequently Asked Questions (FAQs)
|
||||||
|
=================================
|
||||||
|
|
||||||
|
In this section, we collect issues reported by users and post the corresponding
|
||||||
|
solutions.
|
||||||
|
|
||||||
|
|
||||||
|
OSError: libtorch_hip.so: cannot open shared object file: no such file or directory
|
||||||
|
-----------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
One user is using the following code to install ``torch`` and ``torchaudio``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip install \
|
||||||
|
torch==1.10.0+cu111 \
|
||||||
|
torchvision==0.11.0+cu111 \
|
||||||
|
torchaudio==0.10.0 \
|
||||||
|
-f https://download.pytorch.org/whl/torch_stable.html
|
||||||
|
|
||||||
|
and it throws the following error when running ``tdnn/train.py``:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
OSError: libtorch_hip.so: cannot open shared object file: no such file or directory
|
||||||
|
|
||||||
|
The fix is to specify the CUDA version while installing ``torchaudio``. That
|
||||||
|
is, change ``torchaudio==0.10.0`` to ``torchaudio==0.10.0+cu11```. Therefore,
|
||||||
|
the correct command is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip install \
|
||||||
|
torch==1.10.0+cu111 \
|
||||||
|
torchvision==0.11.0+cu111 \
|
||||||
|
torchaudio==0.10.0+cu111 \
|
||||||
|
-f https://download.pytorch.org/whl/torch_stable.html
|
||||||
|
|
||||||
|
AttributeError: module 'distutils' has no attribute 'version'
|
||||||
|
-------------------------------------------------------------
|
||||||
|
|
||||||
|
The error log is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "./tdnn/train.py", line 14, in <module>
|
||||||
|
from asr_datamodule import YesNoAsrDataModule
|
||||||
|
File "/home/xxx/code/next-gen-kaldi/icefall/egs/yesno/ASR/tdnn/asr_datamodule.py", line 34, in <module>
|
||||||
|
from icefall.dataset.datamodule import DataModule
|
||||||
|
File "/home/xxx/code/next-gen-kaldi/icefall/icefall/__init__.py", line 3, in <module>
|
||||||
|
from . import (
|
||||||
|
File "/home/xxx/code/next-gen-kaldi/icefall/icefall/decode.py", line 23, in <module>
|
||||||
|
from icefall.utils import add_eos, add_sos, get_texts
|
||||||
|
File "/home/xxx/code/next-gen-kaldi/icefall/icefall/utils.py", line 39, in <module>
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
File "/home/xxx/tool/miniconda3/envs/yyy/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 4, in <module>
|
||||||
|
LooseVersion = distutils.version.LooseVersion
|
||||||
|
AttributeError: module 'distutils' has no attribute 'version'
|
||||||
|
|
||||||
|
The fix is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip uninstall setuptools
|
||||||
|
|
||||||
|
pip install setuptools==58.0.4
|
||||||
|
|
||||||
|
ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
|
||||||
|
--------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
If you are using ``conda`` and encounter the following issue:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 24, in <module>
|
||||||
|
from _k2 import DeterminizeWeightPushingType
|
||||||
|
ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
|
||||||
|
|
||||||
|
During handling of the above exception, another exception occurred:
|
||||||
|
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/k2-dev/yangyifan/icefall/egs/librispeech/ASR/./pruned_transducer_stateless7_ctc_bs/decode.py", line 104, in <module>
|
||||||
|
import k2
|
||||||
|
File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 30, in <module>
|
||||||
|
raise ImportError(
|
||||||
|
ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
|
||||||
|
Note: If you're using anaconda and importing k2 on MacOS,
|
||||||
|
you can probably fix this by setting the environment variable:
|
||||||
|
export DYLD_LIBRARY_PATH=$CONDA_PREFIX/lib/python3.10/site-packages:$DYLD_LIBRARY_PATH
|
||||||
|
|
||||||
|
Please first try to find where ``libpython3.10.so.1.0`` locates.
|
||||||
|
|
||||||
|
For instance,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd $CONDA_PREFIX/lib
|
||||||
|
find . -name "libpython*"
|
||||||
|
|
||||||
|
If you are able to find it inside ``$CODNA_PREFIX/lib``, please set the
|
||||||
|
following environment variable:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
|
@ -21,7 +21,16 @@ speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
|
|||||||
:caption: Contents:
|
:caption: Contents:
|
||||||
|
|
||||||
installation/index
|
installation/index
|
||||||
|
faqs
|
||||||
model-export/index
|
model-export/index
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 3
|
||||||
|
|
||||||
recipes/index
|
recipes/index
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
contributing/index
|
contributing/index
|
||||||
huggingface/index
|
huggingface/index
|
||||||
|
@ -393,6 +393,17 @@ Now let us run the training part:
|
|||||||
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
||||||
even if there are GPUs available.
|
even if there are GPUs available.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
In case you get a ``Segmentation fault (core dump)`` error, please use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
See more at `<https://github.com/k2-fsa/icefall/issues/674>` if you are
|
||||||
|
interested.
|
||||||
|
|
||||||
The training log is given below:
|
The training log is given below:
|
||||||
|
|
||||||
.. code-block::
|
.. code-block::
|
||||||
|
@ -0,0 +1,21 @@
|
|||||||
|
2023-01-11 12:15:38,677 INFO [export-for-ncnn.py:220] device: cpu
|
||||||
|
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:229] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_v
|
||||||
|
alid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampl
|
||||||
|
ing_factor': 4, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type':
|
||||||
|
'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a34171ed85605b0926eebbd0463d059431f4f74a', 'k2-git-date': 'Wed Dec 14 00:06:38 2022',
|
||||||
|
'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-vers
|
||||||
|
ion': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'fix-stateless3-train-2022-12-27', 'icefall-git-sha1': '530e8a1-dirty', '
|
||||||
|
icefall-git-date': 'Tue Dec 27 13:59:18 2022', 'icefall-path': '/star-fj/fangjun/open-source/icefall', 'k2-path': '/star-fj/fangjun/op
|
||||||
|
en-source/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279
|
||||||
|
-k2-train-3-1220120619-7695ff496b-s9n4w', 'IP address': '127.0.0.1'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'exp_dir': PosixPath('icefa
|
||||||
|
ll-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp'), 'bpe_model': './icefall-asr-librispeech-conv-emformer-transdu
|
||||||
|
cer-stateless2-2022-07-05//data/lang_bpe_500/bpe.model', 'jit': False, 'context_size': 2, 'use_averaged_model': False, 'encoder_dim':
|
||||||
|
512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'cnn_module_kernel': 31, 'left_context_length': 32, 'chunk_length'
|
||||||
|
: 32, 'right_context_length': 8, 'memory_size': 32, 'blank_id': 0, 'vocab_size': 500}
|
||||||
|
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:231] About to create model
|
||||||
|
2023-01-11 12:15:40,053 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-librispeech-conv-emformer-transducer-stateless2-2
|
||||||
|
022-07-05/exp/epoch-30.pt
|
||||||
|
2023-01-11 12:15:40,708 INFO [export-for-ncnn.py:315] Number of model parameters: 75490012
|
||||||
|
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:318] Using torch.jit.trace()
|
||||||
|
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:320] Exporting encoder
|
||||||
|
2023-01-11 12:15:41,682 INFO [export-for-ncnn.py:149] chunk_length: 32, right_context_length: 8
|
@ -0,0 +1,104 @@
|
|||||||
|
Don't Use GPU. has_gpu: 0, config.use_vulkan_compute: 1
|
||||||
|
num encoder conv layers: 88
|
||||||
|
num joiner conv layers: 3
|
||||||
|
num files: 3
|
||||||
|
Processing ../test_wavs/1089-134686-0001.wav
|
||||||
|
Processing ../test_wavs/1221-135766-0001.wav
|
||||||
|
Processing ../test_wavs/1221-135766-0002.wav
|
||||||
|
Processing ../test_wavs/1089-134686-0001.wav
|
||||||
|
Processing ../test_wavs/1221-135766-0001.wav
|
||||||
|
Processing ../test_wavs/1221-135766-0002.wav
|
||||||
|
----------encoder----------
|
||||||
|
conv_87 : max = 15.942385 threshold = 15.938493 scale = 7.968131
|
||||||
|
conv_88 : max = 35.442448 threshold = 15.549335 scale = 8.167552
|
||||||
|
conv_89 : max = 23.228289 threshold = 8.001738 scale = 15.871552
|
||||||
|
linear_90 : max = 3.976146 threshold = 1.101789 scale = 115.267128
|
||||||
|
linear_91 : max = 6.962030 threshold = 5.162033 scale = 24.602713
|
||||||
|
linear_92 : max = 12.323041 threshold = 3.853959 scale = 32.953129
|
||||||
|
linear_94 : max = 6.905416 threshold = 4.648006 scale = 27.323545
|
||||||
|
linear_93 : max = 6.905416 threshold = 5.474093 scale = 23.200188
|
||||||
|
linear_95 : max = 1.888012 threshold = 1.403563 scale = 90.483986
|
||||||
|
linear_96 : max = 6.856741 threshold = 5.398679 scale = 23.524273
|
||||||
|
linear_97 : max = 9.635942 threshold = 2.613655 scale = 48.590950
|
||||||
|
linear_98 : max = 6.460340 threshold = 5.670146 scale = 22.398010
|
||||||
|
linear_99 : max = 9.532276 threshold = 2.585537 scale = 49.119396
|
||||||
|
linear_101 : max = 6.585871 threshold = 5.719224 scale = 22.205809
|
||||||
|
linear_100 : max = 6.585871 threshold = 5.751382 scale = 22.081648
|
||||||
|
linear_102 : max = 1.593344 threshold = 1.450581 scale = 87.551147
|
||||||
|
linear_103 : max = 6.592681 threshold = 5.705824 scale = 22.257959
|
||||||
|
linear_104 : max = 8.752957 threshold = 1.980955 scale = 64.110489
|
||||||
|
linear_105 : max = 6.696240 threshold = 5.877193 scale = 21.608953
|
||||||
|
linear_106 : max = 9.059659 threshold = 2.643138 scale = 48.048950
|
||||||
|
linear_108 : max = 6.975461 threshold = 4.589567 scale = 27.671457
|
||||||
|
linear_107 : max = 6.975461 threshold = 6.190381 scale = 20.515701
|
||||||
|
linear_109 : max = 3.710759 threshold = 2.305635 scale = 55.082436
|
||||||
|
linear_110 : max = 7.531228 threshold = 5.731162 scale = 22.159557
|
||||||
|
linear_111 : max = 10.528083 threshold = 2.259322 scale = 56.211544
|
||||||
|
linear_112 : max = 8.148807 threshold = 5.500842 scale = 23.087374
|
||||||
|
linear_113 : max = 8.592566 threshold = 1.948851 scale = 65.166611
|
||||||
|
linear_115 : max = 8.437109 threshold = 5.608947 scale = 22.642395
|
||||||
|
linear_114 : max = 8.437109 threshold = 6.193942 scale = 20.503904
|
||||||
|
linear_116 : max = 3.966980 threshold = 3.200896 scale = 39.676392
|
||||||
|
linear_117 : max = 9.451303 threshold = 6.061664 scale = 20.951344
|
||||||
|
linear_118 : max = 12.077262 threshold = 3.965800 scale = 32.023804
|
||||||
|
linear_119 : max = 9.671615 threshold = 4.847613 scale = 26.198460
|
||||||
|
linear_120 : max = 8.625638 threshold = 3.131427 scale = 40.556595
|
||||||
|
linear_122 : max = 10.274080 threshold = 4.888716 scale = 25.978189
|
||||||
|
linear_121 : max = 10.274080 threshold = 5.420480 scale = 23.429659
|
||||||
|
linear_123 : max = 4.826197 threshold = 3.599617 scale = 35.281532
|
||||||
|
linear_124 : max = 11.396383 threshold = 7.325849 scale = 17.335875
|
||||||
|
linear_125 : max = 9.337198 threshold = 3.941410 scale = 32.221970
|
||||||
|
linear_126 : max = 9.699965 threshold = 4.842878 scale = 26.224073
|
||||||
|
linear_127 : max = 8.775370 threshold = 3.884215 scale = 32.696438
|
||||||
|
linear_129 : max = 9.872276 threshold = 4.837319 scale = 26.254213
|
||||||
|
linear_128 : max = 9.872276 threshold = 7.180057 scale = 17.687883
|
||||||
|
linear_130 : max = 4.150427 threshold = 3.454298 scale = 36.765789
|
||||||
|
linear_131 : max = 11.112692 threshold = 7.924847 scale = 16.025545
|
||||||
|
linear_132 : max = 11.852893 threshold = 3.116593 scale = 40.749626
|
||||||
|
linear_133 : max = 11.517084 threshold = 5.024665 scale = 25.275314
|
||||||
|
linear_134 : max = 10.683807 threshold = 3.878618 scale = 32.743618
|
||||||
|
linear_136 : max = 12.421055 threshold = 6.322729 scale = 20.086264
|
||||||
|
linear_135 : max = 12.421055 threshold = 5.309880 scale = 23.917679
|
||||||
|
linear_137 : max = 4.827781 threshold = 3.744595 scale = 33.915554
|
||||||
|
linear_138 : max = 14.422395 threshold = 7.742882 scale = 16.402161
|
||||||
|
linear_139 : max = 8.527538 threshold = 3.866123 scale = 32.849449
|
||||||
|
linear_140 : max = 12.128619 threshold = 4.657793 scale = 27.266134
|
||||||
|
linear_141 : max = 9.839593 threshold = 3.845993 scale = 33.021378
|
||||||
|
linear_143 : max = 12.442304 threshold = 7.099039 scale = 17.889746
|
||||||
|
linear_142 : max = 12.442304 threshold = 5.325038 scale = 23.849592
|
||||||
|
linear_144 : max = 5.929444 threshold = 5.618206 scale = 22.605080
|
||||||
|
linear_145 : max = 13.382126 threshold = 9.321095 scale = 13.625010
|
||||||
|
linear_146 : max = 9.894987 threshold = 3.867645 scale = 32.836517
|
||||||
|
linear_147 : max = 10.915313 threshold = 4.906028 scale = 25.886522
|
||||||
|
linear_148 : max = 9.614287 threshold = 3.908151 scale = 32.496181
|
||||||
|
linear_150 : max = 11.724932 threshold = 4.485588 scale = 28.312899
|
||||||
|
linear_149 : max = 11.724932 threshold = 5.161146 scale = 24.606939
|
||||||
|
linear_151 : max = 7.164453 threshold = 5.847355 scale = 21.719223
|
||||||
|
linear_152 : max = 13.086471 threshold = 5.984121 scale = 21.222834
|
||||||
|
linear_153 : max = 11.099524 threshold = 3.991601 scale = 31.816805
|
||||||
|
linear_154 : max = 10.054585 threshold = 4.489706 scale = 28.286930
|
||||||
|
linear_155 : max = 12.389185 threshold = 3.100321 scale = 40.963501
|
||||||
|
linear_157 : max = 9.982999 threshold = 5.154796 scale = 24.637253
|
||||||
|
linear_156 : max = 9.982999 threshold = 8.537706 scale = 14.875190
|
||||||
|
linear_158 : max = 8.420287 threshold = 6.502287 scale = 19.531588
|
||||||
|
linear_159 : max = 25.014746 threshold = 9.423280 scale = 13.477261
|
||||||
|
linear_160 : max = 45.633553 threshold = 5.715335 scale = 22.220921
|
||||||
|
linear_161 : max = 20.371849 threshold = 5.117830 scale = 24.815203
|
||||||
|
linear_162 : max = 12.492933 threshold = 3.126283 scale = 40.623318
|
||||||
|
linear_164 : max = 20.697504 threshold = 4.825712 scale = 26.317358
|
||||||
|
linear_163 : max = 20.697504 threshold = 5.078367 scale = 25.008038
|
||||||
|
linear_165 : max = 9.023975 threshold = 6.836278 scale = 18.577358
|
||||||
|
linear_166 : max = 34.860619 threshold = 7.259792 scale = 17.493614
|
||||||
|
linear_167 : max = 30.380934 threshold = 5.496160 scale = 23.107042
|
||||||
|
linear_168 : max = 20.691216 threshold = 4.733317 scale = 26.831076
|
||||||
|
linear_169 : max = 9.723948 threshold = 3.952728 scale = 32.129707
|
||||||
|
linear_171 : max = 21.034811 threshold = 5.366547 scale = 23.665123
|
||||||
|
linear_170 : max = 21.034811 threshold = 5.356277 scale = 23.710501
|
||||||
|
linear_172 : max = 10.556884 threshold = 5.729481 scale = 22.166058
|
||||||
|
linear_173 : max = 20.033039 threshold = 10.207264 scale = 12.442120
|
||||||
|
linear_174 : max = 11.597379 threshold = 2.658676 scale = 47.768131
|
||||||
|
----------joiner----------
|
||||||
|
linear_2 : max = 19.293503 threshold = 14.305265 scale = 8.877850
|
||||||
|
linear_1 : max = 10.812222 threshold = 8.766452 scale = 14.487047
|
||||||
|
linear_3 : max = 0.999999 threshold = 0.999755 scale = 127.031174
|
||||||
|
ncnn int8 calibration table create success, best wish for your int8 inference has a low accuracy loss...\(^0^)/...233...
|
@ -0,0 +1,7 @@
|
|||||||
|
2023-01-11 14:02:12,216 INFO [streaming-ncnn-decode.py:320] {'tokens': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt', 'encoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin', 'sound_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav'}
|
||||||
|
T 51 32
|
||||||
|
2023-01-11 14:02:13,141 INFO [streaming-ncnn-decode.py:328] Constructing Fbank computer
|
||||||
|
2023-01-11 14:02:13,151 INFO [streaming-ncnn-decode.py:331] Reading sound files: ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
|
||||||
|
2023-01-11 14:02:13,176 INFO [streaming-ncnn-decode.py:336] torch.Size([106000])
|
||||||
|
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:380] ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
|
||||||
|
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:381] AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
@ -1,12 +1,771 @@
|
|||||||
Export to ncnn
|
Export to ncnn
|
||||||
==============
|
==============
|
||||||
|
|
||||||
We support exporting LSTM transducer models to `ncnn <https://github.com/tencent/ncnn>`_.
|
We support exporting both
|
||||||
|
`LSTM transducer models <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2>`_
|
||||||
Please refer to :ref:`export-model-for-ncnn` for details.
|
and
|
||||||
|
`ConvEmformer transducer models <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conv_emformer_transducer_stateless2>`_
|
||||||
|
to `ncnn <https://github.com/tencent/ncnn>`_.
|
||||||
|
|
||||||
We also provide `<https://github.com/k2-fsa/sherpa-ncnn>`_
|
We also provide `<https://github.com/k2-fsa/sherpa-ncnn>`_
|
||||||
performing speech recognition using ``ncnn`` with exported models.
|
performing speech recognition using ``ncnn`` with exported models.
|
||||||
It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is
|
It has been tested on Linux, macOS, Windows, ``Android``, and ``Raspberry Pi``.
|
||||||
self-contained and can be statically linked to produce a binary containing
|
|
||||||
everything needed.
|
`sherpa-ncnn`_ is self-contained and can be statically linked to produce
|
||||||
|
a binary containing everything needed. Please refer
|
||||||
|
to its documentation for details:
|
||||||
|
|
||||||
|
- `<https://k2-fsa.github.io/sherpa/ncnn/index.html>`_
|
||||||
|
|
||||||
|
|
||||||
|
Export LSTM transducer models
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
Please refer to :ref:`export-lstm-transducer-model-for-ncnn` for details.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Export ConvEmformer transducer models
|
||||||
|
-------------------------------------
|
||||||
|
|
||||||
|
We use the pre-trained model from the following repository as an example:
|
||||||
|
|
||||||
|
- `<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_
|
||||||
|
|
||||||
|
We will show you step by step how to export it to `ncnn`_ and run it with `sherpa-ncnn`_.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
We use ``Ubuntu 18.04``, ``torch 1.10``, and ``Python 3.8`` for testing.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
|
||||||
|
may ``not`` work.
|
||||||
|
|
||||||
|
1. Download the pre-trained model
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
You can also refer to `<https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_ to download the pre-trained model.
|
||||||
|
|
||||||
|
You have to install `git-lfs`_ before you continue.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
||||||
|
|
||||||
|
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
|
||||||
|
cd ..
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We download ``exp/pretrained-xxx.pt``, not ``exp/cpu-jit_xxx.pt``.
|
||||||
|
|
||||||
|
|
||||||
|
In the above code, we download the pre-trained model into the directory
|
||||||
|
``egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05``.
|
||||||
|
|
||||||
|
2. Install ncnn and pnnx
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
# We put ncnn into $HOME/open-source/ncnn
|
||||||
|
# You can change it to anywhere you like
|
||||||
|
|
||||||
|
cd $HOME
|
||||||
|
mkdir -p open-source
|
||||||
|
cd open-source
|
||||||
|
|
||||||
|
git clone https://github.com/csukuangfj/ncnn
|
||||||
|
cd ncnn
|
||||||
|
git submodule update --recursive --init
|
||||||
|
|
||||||
|
# Note: We don't use "python setup.py install" or "pip install ." here
|
||||||
|
|
||||||
|
mkdir -p build-wheel
|
||||||
|
cd build-wheel
|
||||||
|
|
||||||
|
cmake \
|
||||||
|
-DCMAKE_BUILD_TYPE=Release \
|
||||||
|
-DNCNN_PYTHON=ON \
|
||||||
|
-DNCNN_BUILD_BENCHMARK=OFF \
|
||||||
|
-DNCNN_BUILD_EXAMPLES=OFF \
|
||||||
|
-DNCNN_BUILD_TOOLS=ON \
|
||||||
|
..
|
||||||
|
|
||||||
|
make -j4
|
||||||
|
|
||||||
|
cd ..
|
||||||
|
|
||||||
|
# Note: $PWD here is $HOME/open-source/ncnn
|
||||||
|
|
||||||
|
export PYTHONPATH=$PWD/python:$PYTHONPATH
|
||||||
|
export PATH=$PWD/tools/pnnx/build/src:$PATH
|
||||||
|
export PATH=$PWD/build-wheel/tools/quantize:$PATH
|
||||||
|
|
||||||
|
# Now build pnnx
|
||||||
|
cd tools/pnnx
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake ..
|
||||||
|
make -j4
|
||||||
|
|
||||||
|
./src/pnnx
|
||||||
|
|
||||||
|
Congratulations! You have successfully installed the following components:
|
||||||
|
|
||||||
|
- ``pnxx``, which is an executable located in
|
||||||
|
``$HOME/open-source/ncnn/tools/pnnx/build/src``. We will use
|
||||||
|
it to convert models exported by ``torch.jit.trace()``.
|
||||||
|
- ``ncnn2int8``, which is an executable located in
|
||||||
|
``$HOME/open-source/ncnn/build-wheel/tools/quantize``. We will use
|
||||||
|
it to quantize our models to ``int8``.
|
||||||
|
- ``ncnn.cpython-38-x86_64-linux-gnu.so``, which is a Python module located
|
||||||
|
in ``$HOME/open-source/ncnn/python/ncnn``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
I am using ``Python 3.8``, so it
|
||||||
|
is ``ncnn.cpython-38-x86_64-linux-gnu.so``. If you use a different
|
||||||
|
version, say, ``Python 3.9``, the name would be
|
||||||
|
``ncnn.cpython-39-x86_64-linux-gnu.so``.
|
||||||
|
|
||||||
|
Also, if you are not using Linux, the file name would also be different.
|
||||||
|
But that does not matter. As long as you can compile it, it should work.
|
||||||
|
|
||||||
|
We have set up ``PYTHONPATH`` so that you can use ``import ncnn`` in your
|
||||||
|
Python code. We have also set up ``PATH`` so that you can use
|
||||||
|
``pnnx`` and ``ncnn2int8`` later in your terminal.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Please don't use `<https://github.com/tencent/ncnn>`_.
|
||||||
|
We have made some modifications to the offical `ncnn`_.
|
||||||
|
|
||||||
|
We will synchronize `<https://github.com/csukuangfj/ncnn>`_ periodically
|
||||||
|
with the official one.
|
||||||
|
|
||||||
|
3. Export the model via torch.jit.trace()
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
First, let us rename our pre-trained model:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp
|
||||||
|
|
||||||
|
ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt
|
||||||
|
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
Next, we use the following code to export our model:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir $dir/exp \
|
||||||
|
--bpe-model $dir/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
\
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--chunk-length 32 \
|
||||||
|
--cnn-module-kernel 31 \
|
||||||
|
--left-context-length 32 \
|
||||||
|
--right-context-length 8 \
|
||||||
|
--memory-size 32 \
|
||||||
|
--encoder-dim 512
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
We have renamed our model to ``epoch-30.pt`` so that we can use ``--epoch 30``.
|
||||||
|
There is only one pre-trained model, so we use ``--avg 1 --use-averaged-model 0``.
|
||||||
|
|
||||||
|
If you have trained a model by yourself and if you have all checkpoints
|
||||||
|
available, please first use ``decode.py`` to tune ``--epoch --avg``
|
||||||
|
and select the best combination with with ``--use-averaged-model 1``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You will see the following log output:
|
||||||
|
|
||||||
|
.. literalinclude:: ./code/export-conv-emformer-transducer-for-ncnn-output.txt
|
||||||
|
|
||||||
|
The log shows the model has ``75490012`` parameters, i.e., ``~75 M``.
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
|
||||||
|
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
|
||||||
|
|
||||||
|
You can see that the file size of the pre-trained model is ``289 MB``, which
|
||||||
|
is roughly ``75490012*4/1024/1024 = 287.97 MB``.
|
||||||
|
|
||||||
|
After running ``conv_emformer_transducer_stateless2/export-for-ncnn.py``,
|
||||||
|
we will get the following files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*
|
||||||
|
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
|
||||||
|
.. _conv-emformer-step-3-export-torchscript-model-via-pnnx:
|
||||||
|
|
||||||
|
3. Export torchscript model via pnnx
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Make sure you have set up the ``PATH`` environment variable. Otherwise,
|
||||||
|
it will throw an error saying that ``pnnx`` could not be found.
|
||||||
|
|
||||||
|
Now, it's time to export our models to `ncnn`_ via ``pnnx``.
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
pnnx ./encoder_jit_trace-pnnx.pt
|
||||||
|
pnnx ./decoder_jit_trace-pnnx.pt
|
||||||
|
pnnx ./joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
It will generate the following files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param}
|
||||||
|
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
|
||||||
|
|
||||||
|
There are two types of files:
|
||||||
|
|
||||||
|
- ``param``: It is a text file containing the model architectures. You can
|
||||||
|
use a text editor to view its content.
|
||||||
|
- ``bin``: It is a binary file containing the model parameters.
|
||||||
|
|
||||||
|
We compare the file sizes of the models below before and after converting via ``pnnx``:
|
||||||
|
|
||||||
|
.. see https://tableconvert.com/restructuredtext-generator
|
||||||
|
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| File name | File size |
|
||||||
|
+==================================+============+
|
||||||
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.bin | 142 MB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.ncnn.bin | 503 KB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.bin | 1.5 MB |
|
||||||
|
+----------------------------------+------------+
|
||||||
|
|
||||||
|
You can see that the file sizes of the models after conversion are about one half
|
||||||
|
of the models before conversion:
|
||||||
|
|
||||||
|
- encoder: 283 MB vs 142 MB
|
||||||
|
- decoder: 1010 KB vs 503 KB
|
||||||
|
- joiner: 3.0 MB vs 1.5 MB
|
||||||
|
|
||||||
|
The reason is that by default ``pnnx`` converts ``float32`` parameters
|
||||||
|
to ``float16``. A ``float32`` parameter occupies 4 bytes, while it is 2 bytes
|
||||||
|
for ``float16``. Thus, it is ``twice smaller`` after conversion.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you use ``pnnx ./encoder_jit_trace-pnnx.pt fp16=0``, then ``pnnx``
|
||||||
|
won't convert ``float32`` to ``float16``.
|
||||||
|
|
||||||
|
4. Test the exported models in icefall
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We assume you have set up the environment variable ``PYTHONPATH`` when
|
||||||
|
building `ncnn`_.
|
||||||
|
|
||||||
|
Now we have successfully converted our pre-trained model to `ncnn`_ format.
|
||||||
|
The generated 6 files are what we need. You can use the following code to
|
||||||
|
test the converted models:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
|
||||||
|
--tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \
|
||||||
|
--encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
--joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
`ncnn`_ supports only ``batch size == 1``, so ``streaming-ncnn-decode.py`` accepts
|
||||||
|
only 1 wave file as input.
|
||||||
|
|
||||||
|
The output is given below:
|
||||||
|
|
||||||
|
.. literalinclude:: ./code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt
|
||||||
|
|
||||||
|
Congratulations! You have successfully exported a model from PyTorch to `ncnn`_!
|
||||||
|
|
||||||
|
|
||||||
|
.. _conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn:
|
||||||
|
|
||||||
|
5. Modify the exported encoder for sherpa-ncnn
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
In order to use the exported models in `sherpa-ncnn`_, we have to modify
|
||||||
|
``encoder_jit_trace-pnnx.ncnn.param``.
|
||||||
|
|
||||||
|
Let us have a look at the first few lines of ``encoder_jit_trace-pnnx.ncnn.param``:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
7767517
|
||||||
|
1060 1342
|
||||||
|
Input in0 0 1 in0
|
||||||
|
|
||||||
|
**Explanation** of the above three lines:
|
||||||
|
|
||||||
|
1. ``7767517``, it is a magic number and should not be changed.
|
||||||
|
2. ``1060 1342``, the first number ``1060`` specifies the number of layers
|
||||||
|
in this file, while ``1342`` specifies the number of intermediate outputs
|
||||||
|
of this file
|
||||||
|
3. ``Input in0 0 1 in0``, ``Input`` is the layer type of this layer; ``in0``
|
||||||
|
is the layer name of this layer; ``0`` means this layer has no input;
|
||||||
|
``1`` means this layer has one output; ``in0`` is the output name of
|
||||||
|
this layer.
|
||||||
|
|
||||||
|
We need to add 1 extra line and also increment the number of layers.
|
||||||
|
The result looks like below:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
7767517
|
||||||
|
1061 1342
|
||||||
|
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
|
||||||
|
Input in0 0 1 in0
|
||||||
|
|
||||||
|
**Explanation**
|
||||||
|
|
||||||
|
1. ``7767517``, it is still the same
|
||||||
|
2. ``1061 1342``, we have added an extra layer, so we need to update ``1060`` to ``1061``.
|
||||||
|
We don't need to change ``1342`` since the newly added layer has no inputs or outputs.
|
||||||
|
3. ``SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512``
|
||||||
|
This line is newly added. Its explanation is given below:
|
||||||
|
|
||||||
|
- ``SherpaMetaData`` is the type of this layer. Must be ``SherpaMetaData``.
|
||||||
|
- ``sherpa_meta_data1`` is the name of this layer. Must be ``sherpa_meta_data1``.
|
||||||
|
- ``0 0`` means this layer has no inputs or output. Must be ``0 0``
|
||||||
|
- ``0=1``, 0 is the key and 1 is the value. MUST be ``0=1``
|
||||||
|
- ``1=12``, 1 is the key and 12 is the value of the
|
||||||
|
parameter ``--num-encoder-layers`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``2=32``, 2 is the key and 32 is the value of the
|
||||||
|
parameter ``--memory-size`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``3=31``, 3 is the key and 31 is the value of the
|
||||||
|
parameter ``--cnn-module-kernel`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``4=8``, 4 is the key and 8 is the value of the
|
||||||
|
parameter ``--left-context-length`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``5=32``, 5 is the key and 32 is the value of the
|
||||||
|
parameter ``--chunk-length`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``6=8``, 6 is the key and 8 is the value of the
|
||||||
|
parameter ``--right-context-length`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
- ``7=512``, 7 is the key and 512 is the value of the
|
||||||
|
parameter ``--encoder-dim`` that you provided when running
|
||||||
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
||||||
|
|
||||||
|
For ease of reference, we list the key-value pairs that you need to add
|
||||||
|
in the following table. If your model has a different setting, please
|
||||||
|
change the values for ``SherpaMetaData`` accordingly. Otherwise, you
|
||||||
|
will be ``SAD``.
|
||||||
|
|
||||||
|
+------+-----------------------------+
|
||||||
|
| key | value |
|
||||||
|
+======+=============================+
|
||||||
|
| 0 | 1 (fixed) |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 1 | ``--num-encoder-layers`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 2 | ``--memory-size`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 3 | ``--cnn-module-kernel`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 4 | ``--left-context-length`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 5 | ``--chunk-length`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 6 | ``--right-context-length`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
| 7 | ``--encoder-dim`` |
|
||||||
|
+------+-----------------------------+
|
||||||
|
|
||||||
|
4. ``Input in0 0 1 in0``. No need to change it.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
When you add a new layer ``SherpaMetaData``, please remember to update the
|
||||||
|
number of layers. In our case, update ``1060`` to ``1061``. Otherwise,
|
||||||
|
you will be SAD later.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
After adding the new layer ``SherpaMetaData``, you cannot use this model
|
||||||
|
with ``streaming-ncnn-decode.py`` anymore since ``SherpaMetaData`` is
|
||||||
|
supported only in `sherpa-ncnn`_.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
`ncnn`_ is very flexible. You can add new layers to it just by text-editing
|
||||||
|
the ``param`` file! You don't need to change the ``bin`` file.
|
||||||
|
|
||||||
|
Now you can use this model in `sherpa-ncnn`_.
|
||||||
|
Please refer to the following documentation:
|
||||||
|
|
||||||
|
- Linux/macOS/Windows/arm/aarch64: `<https://k2-fsa.github.io/sherpa/ncnn/install/index.html>`_
|
||||||
|
- Android: `<https://k2-fsa.github.io/sherpa/ncnn/android/index.html>`_
|
||||||
|
- Python: `<https://k2-fsa.github.io/sherpa/ncnn/python/index.html>`_
|
||||||
|
|
||||||
|
We have a list of pre-trained models that have been exported for `sherpa-ncnn`_:
|
||||||
|
|
||||||
|
- `<https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html>`_
|
||||||
|
|
||||||
|
You can find more usages there.
|
||||||
|
|
||||||
|
6. (Optional) int8 quantization with sherpa-ncnn
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
This step is optional.
|
||||||
|
|
||||||
|
In this step, we describe how to quantize our model with ``int8``.
|
||||||
|
|
||||||
|
Change :ref:`conv-emformer-step-3-export-torchscript-model-via-pnnx` to
|
||||||
|
disable ``fp16`` when using ``pnnx``:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
pnnx ./encoder_jit_trace-pnnx.pt fp16=0
|
||||||
|
pnnx ./decoder_jit_trace-pnnx.pt
|
||||||
|
pnnx ./joiner_jit_trace-pnnx.pt fp16=0
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We add ``fp16=0`` when exporting the encoder and joiner. `ncnn`_ does not
|
||||||
|
support quantizing the decoder model yet. We will update this documentation
|
||||||
|
once `ncnn`_ supports it. (Maybe in this year, 2023).
|
||||||
|
|
||||||
|
It will generate the following files
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*_jit_trace-pnnx.ncnn.{param,bin}
|
||||||
|
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 503K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
|
||||||
|
|
||||||
|
Let us compare again the file sizes:
|
||||||
|
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| File name | File size |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
|
||||||
|
You can see that the file sizes are doubled when we disable ``fp16``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You can again use ``streaming-ncnn-decode.py`` to test the exported models.
|
||||||
|
|
||||||
|
Next, follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
|
||||||
|
to modify ``encoder_jit_trace-pnnx.ncnn.param``.
|
||||||
|
|
||||||
|
Change
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
7767517
|
||||||
|
1060 1342
|
||||||
|
Input in0 0 1 in0
|
||||||
|
|
||||||
|
to
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
7767517
|
||||||
|
1061 1342
|
||||||
|
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
|
||||||
|
Input in0 0 1 in0
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Please follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
|
||||||
|
to change the values for ``SherpaMetaData`` if your model uses a different setting.
|
||||||
|
|
||||||
|
|
||||||
|
Next, let us compile `sherpa-ncnn`_ since we will quantize our models within
|
||||||
|
`sherpa-ncnn`_.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
# We will download sherpa-ncnn to $HOME/open-source/
|
||||||
|
# You can change it to anywhere you like.
|
||||||
|
cd $HOME
|
||||||
|
mkdir -p open-source
|
||||||
|
|
||||||
|
cd open-source
|
||||||
|
git clone https://github.com/k2-fsa/sherpa-ncnn
|
||||||
|
cd sherpa-ncnn
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake ..
|
||||||
|
make -j 4
|
||||||
|
|
||||||
|
./bin/generate-int8-scale-table
|
||||||
|
|
||||||
|
export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH
|
||||||
|
|
||||||
|
The output of the above commands are:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
(py38) kuangfangjun:build$ generate-int8-scale-table
|
||||||
|
Please provide 10 arg. Currently given: 1
|
||||||
|
Usage:
|
||||||
|
generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt
|
||||||
|
|
||||||
|
Each line in wave_filenames.txt is a path to some 16k Hz mono wave file.
|
||||||
|
|
||||||
|
We need to create a file ``wave_filenames.txt``, in which we need to put
|
||||||
|
some calibration wave files. For testing purpose, we put the ``test_wavs``
|
||||||
|
from the pre-trained model repository `<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
cat <<EOF > wave_filenames.txt
|
||||||
|
../test_wavs/1089-134686-0001.wav
|
||||||
|
../test_wavs/1221-135766-0001.wav
|
||||||
|
../test_wavs/1221-135766-0002.wav
|
||||||
|
EOF
|
||||||
|
|
||||||
|
Now we can calculate the scales needed for quantization with the calibration data:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
generate-int8-scale-table \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./encoder-scale-table.txt \
|
||||||
|
./joiner-scale-table.txt \
|
||||||
|
./wave_filenames.txt
|
||||||
|
|
||||||
|
The output logs are in the following:
|
||||||
|
|
||||||
|
.. literalinclude:: ./code/generate-int-8-scale-table-for-conv-emformer.txt
|
||||||
|
|
||||||
|
It generates the following two files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ls -lh encoder-scale-table.txt joiner-scale-table.txt
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 955K Jan 11 17:28 encoder-scale-table.txt
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 18K Jan 11 17:28 joiner-scale-table.txt
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Definitely, you need more calibration data to compute the scale table.
|
||||||
|
|
||||||
|
Finally, let us use the scale table to quantize our models into ``int8``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
ncnn2int8
|
||||||
|
|
||||||
|
usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]
|
||||||
|
|
||||||
|
First, we quantize the encoder model:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
ncnn2int8 \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.int8.param \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.int8.bin \
|
||||||
|
./encoder-scale-table.txt
|
||||||
|
|
||||||
|
Next, we quantize the joiner model:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
ncnn2int8 \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.int8.param \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.int8.bin \
|
||||||
|
./joiner-scale-table.txt
|
||||||
|
|
||||||
|
The above two commands generate the following 4 files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 99M Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 78K Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.param
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 774K Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.bin
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 496 Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.param
|
||||||
|
|
||||||
|
Congratulations! You have successfully quantized your model from ``float32`` to ``int8``.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
``ncnn.int8.param`` and ``ncnn.int8.bin`` must be used in pairs.
|
||||||
|
|
||||||
|
You can replace ``ncnn.param`` and ``ncnn.bin`` with ``ncnn.int8.param``
|
||||||
|
and ``ncnn.int8.bin`` in `sherpa-ncnn`_ if you like.
|
||||||
|
|
||||||
|
For instance, to use only the ``int8`` encoder in ``sherpa-ncnn``, you can
|
||||||
|
replace the following invocation:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
sherpa-ncnn \
|
||||||
|
../data/lang_bpe_500/tokens.txt \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
../test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
with
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
||||||
|
|
||||||
|
sherpa-ncnn \
|
||||||
|
../data/lang_bpe_500/tokens.txt \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.int8.param \
|
||||||
|
./encoder_jit_trace-pnnx.ncnn.int8.bin \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
../test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
|
||||||
|
The following table compares again the file sizes:
|
||||||
|
|
||||||
|
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| File name | File size |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| encoder_jit_trace-pnnx.ncnn.int8.bin | 99 MB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
| joiner_jit_trace-pnnx.ncnn.int8.bin | 774 KB |
|
||||||
|
+----------------------------------------+------------+
|
||||||
|
|
||||||
|
You can see that the file sizes of the model after ``int8`` quantization
|
||||||
|
are much smaller.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Currently, only linear layers and convolutional layers are quantized
|
||||||
|
with ``int8``, so you don't see an exact ``4x`` reduction in file sizes.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You need to test the recognition accuracy after ``int8`` quantization.
|
||||||
|
|
||||||
|
You can find the speed comparison at `<https://github.com/k2-fsa/sherpa-ncnn/issues/44>`_.
|
||||||
|
|
||||||
|
|
||||||
|
That's it! Have fun with `sherpa-ncnn`_!
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
.. _export-model-with-torch-jit-script:
|
.. _export-model-with-torch-jit-script:
|
||||||
|
|
||||||
Export model with torch.jit.script()
|
Export model with torch.jit.script()
|
||||||
===================================
|
====================================
|
||||||
|
|
||||||
In this section, we describe how to export a model via
|
In this section, we describe how to export a model via
|
||||||
``torch.jit.script()``.
|
``torch.jit.script()``.
|
||||||
|
@ -703,7 +703,7 @@ It will show you the following message:
|
|||||||
|
|
||||||
|
|
||||||
HLG decoding
|
HLG decoding
|
||||||
^^^^^^^^^^^^
|
~~~~~~~~~~~~
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
Before Width: | Height: | Size: 334 KiB After Width: | Height: | Size: 334 KiB |
Before Width: | Height: | Size: 426 KiB After Width: | Height: | Size: 426 KiB |
Before Width: | Height: | Size: 441 KiB After Width: | Height: | Size: 441 KiB |
@ -19,4 +19,3 @@ It can be downloaded from `<https://www.openslr.org/33/>`_
|
|||||||
tdnn_lstm_ctc
|
tdnn_lstm_ctc
|
||||||
conformer_ctc
|
conformer_ctc
|
||||||
stateless_transducer
|
stateless_transducer
|
||||||
|
|
@ -498,7 +498,7 @@ We do provide a colab notebook for this recipe showing how to use a pre-trained
|
|||||||
|aishell asr conformer ctc colab notebook|
|
|aishell asr conformer ctc colab notebook|
|
||||||
|
|
||||||
.. |aishell asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
.. |aishell asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||||
:target: https://colab.research.google.com/drive/1qULaGvXq7PCu_P61oubfz9b53JzY4H3z
|
:target: https://colab.research.google.com/drive/1jbyzYq3ytm6j2nlEt-diQm-6QVWyDDEa?usp=sharing
|
||||||
|
|
||||||
**Congratulations!** You have finished the aishell ASR recipe with
|
**Congratulations!** You have finished the aishell ASR recipe with
|
||||||
TDNN-LSTM CTC models in ``icefall``.
|
TDNN-LSTM CTC models in ``icefall``.
|
10
docs/source/recipes/Non-streaming-ASR/index.rst
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
Non Streaming ASR
|
||||||
|
=================
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
|
aishell/index
|
||||||
|
librispeech/index
|
||||||
|
timit/index
|
||||||
|
yesno/index
|
@ -888,7 +888,7 @@ It will show you the following message:
|
|||||||
|
|
||||||
|
|
||||||
CTC decoding
|
CTC decoding
|
||||||
^^^^^^^^^^^^
|
~~~~~~~~~~~~
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
@ -926,7 +926,7 @@ Its output is:
|
|||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
HLG decoding
|
HLG decoding
|
||||||
^^^^^^^^^^^^
|
~~~~~~~~~~~~
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
@ -966,7 +966,7 @@ The output is:
|
|||||||
|
|
||||||
|
|
||||||
HLG decoding + n-gram LM rescoring
|
HLG decoding + n-gram LM rescoring
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
@ -1012,7 +1012,7 @@ The output is:
|
|||||||
|
|
||||||
|
|
||||||
HLG decoding + n-gram LM rescoring + attention decoder rescoring
|
HLG decoding + n-gram LM rescoring + attention decoder rescoring
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
@ -0,0 +1,223 @@
|
|||||||
|
Distillation with HuBERT
|
||||||
|
========================
|
||||||
|
|
||||||
|
This tutorial shows you how to perform knowledge distillation in `icefall`_
|
||||||
|
with the `LibriSpeech`_ dataset. The distillation method
|
||||||
|
used here is called "Multi Vector Quantization Knowledge Distillation" (MVQ-KD).
|
||||||
|
Please have a look at our paper `Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation <https://arxiv.org/abs/2211.00508>`_
|
||||||
|
for more details about MVQ-KD.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
This tutorial is based on recipe
|
||||||
|
`pruned_transducer_stateless4 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless4>`_.
|
||||||
|
Currently, we only implement MVQ-KD in this recipe. However, MVQ-KD is theoretically applicable to all recipes
|
||||||
|
with only minor changes needed. Feel free to try out MVQ-KD in different recipes. If you
|
||||||
|
encounter any problems, please open an issue here `icefall <https://github.com/k2-fsa/icefall/issues>`_.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for `icefall`_.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
We first prepare necessary training data for `LibriSpeech`_.
|
||||||
|
This is the same as in :ref:`non_streaming_librispeech_pruned_transducer_stateless`.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
The data preparation is the same as other recipes on LibriSpeech dataset,
|
||||||
|
if you have finished this step, you can skip to :ref:`codebook_index_preparation` directly.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0 # run only stage 0
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5 # run from stage 2 to stage 5
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech`_
|
||||||
|
dataset and the `musan`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
|
||||||
|
.. _codebook_index_preparation:
|
||||||
|
|
||||||
|
Codebook index preparation
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
Here, we prepare necessary data for MVQ-KD. This requires the generation
|
||||||
|
of codebook indexes (please read our `paper <https://arxiv.org/abs/2211.00508>`_.
|
||||||
|
if you are interested in details). In this tutorial, we use the pre-computed
|
||||||
|
codebook indexes for convenience. The only thing you need to do is to
|
||||||
|
run `./distillation_with_hubert.sh <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/distillation_with_hubert.sh>`_.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
There are 5 stages in total, the first and second stage will be automatically skipped
|
||||||
|
when choosing to downloaded codebook indexes prepared by `icefall`_.
|
||||||
|
Of course, you can extract and compute the codebook indexes by yourself. This
|
||||||
|
will require you downloading a HuBERT-XL model and it can take a while for
|
||||||
|
the extraction of codebook indexes.
|
||||||
|
|
||||||
|
|
||||||
|
As usual, you can control the stages you want to run by specifying the following
|
||||||
|
two options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./distillation_with_hubert.sh --stage 0 --stop-stage 0 # run only stage 0
|
||||||
|
$ ./distillation_with_hubert.sh --stage 2 --stop-stage 4 # run from stage 2 to stage 5
|
||||||
|
|
||||||
|
Here are a few options in `./distillation_with_hubert.sh <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/distillation_with_hubert.sh>`_
|
||||||
|
you need to know before you proceed.
|
||||||
|
|
||||||
|
- ``--full_libri`` If True, use full 960h data. Otherwise only ``train-clean-100`` will be used
|
||||||
|
- ``--use_extracted_codebook`` If True, the first two stages will be skipped and the codebook
|
||||||
|
indexes uploaded by us will be downloaded.
|
||||||
|
|
||||||
|
Since we are using the pre-computed codebook indexes, we set
|
||||||
|
``use_extracted_codebook=True``. If you want to do full `LibriSpeech`_
|
||||||
|
experiments, please set ``full_libri=True``.
|
||||||
|
|
||||||
|
The following command downloads the pre-computed codebook indexes
|
||||||
|
and prepares MVQ-augmented training manifests.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./distillation_with_hubert.sh --stage 2 --stop-stage 2 # run only stage 2
|
||||||
|
|
||||||
|
Please see the
|
||||||
|
following screenshot for the output of an example execution.
|
||||||
|
|
||||||
|
.. figure:: ./images/distillation_codebook.png
|
||||||
|
:width: 800
|
||||||
|
:alt: Downloading codebook indexes and preparing training manifest.
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
Downloading codebook indexes and preparing training manifest.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
The codebook indexes we prepared for you in this tutorial
|
||||||
|
are extracted from the 36-th layer of a fine-tuned HuBERT-XL model
|
||||||
|
with 8 codebooks. If you want to try other configurations, please
|
||||||
|
set ``use_extracted_codebook=False`` and set ``embedding_layer`` and
|
||||||
|
``num_codebooks`` by yourself.
|
||||||
|
|
||||||
|
Now, you should see the following files under the directory ``./data/vq_fbank_layer36_cb8``.
|
||||||
|
|
||||||
|
.. figure:: ./images/distillation_directory.png
|
||||||
|
:width: 800
|
||||||
|
:alt: MVQ-augmented training manifests
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
MVQ-augmented training manifests.
|
||||||
|
|
||||||
|
Whola! You are ready to perform knowledge distillation training now!
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
To perform training, please run stage 3 by executing the following command.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 3 --stop-stage 3 # run MVQ training
|
||||||
|
|
||||||
|
Here is the code snippet for training:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}')
|
||||||
|
|
||||||
|
./pruned_transducer_stateless6/train.py \
|
||||||
|
--manifest-dir ./data/vq_fbank_layer36_cb8 \
|
||||||
|
--master-port 12359 \
|
||||||
|
--full-libri $full_libri \
|
||||||
|
--spec-aug-time-warp-factor -1 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--world-size ${WORLD_SIZE} \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--enable-distillation True \
|
||||||
|
--codebook-loss-scale 0.01
|
||||||
|
|
||||||
|
There are a few training arguments in the following
|
||||||
|
training commands that should be paid attention to.
|
||||||
|
|
||||||
|
- ``--enable-distillation`` If True, knowledge distillation training is enabled.
|
||||||
|
- ``--codebook-loss-scale`` The scale of the knowledge distillation loss.
|
||||||
|
- ``--manifest-dir`` The path to the MVQ-augmented manifest.
|
||||||
|
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
After training finished, you can test the performance on using
|
||||||
|
the following command.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES=0
|
||||||
|
./pruned_transducer_stateless6/train.py \
|
||||||
|
--decoding-method "modified_beam_search" \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 10 \
|
||||||
|
--max-duration 200 \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--enable-distillation True
|
||||||
|
|
||||||
|
You should get similar results as `here <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS-100hours.md#distillation-with-hubert>`_.
|
||||||
|
|
||||||
|
That's all! Feel free to experiment with your own setups and report your results.
|
||||||
|
If you encounter any problems during training, please open up an issue `here <https://github.com/k2-fsa/icefall/issues>`_.
|
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 43 KiB |
Before Width: | Height: | Size: 422 KiB After Width: | Height: | Size: 422 KiB |
After Width: | Height: | Size: 554 KiB |
12
docs/source/recipes/Non-streaming-ASR/librispeech/index.rst
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
LibriSpeech
|
||||||
|
===========
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
tdnn_lstm_ctc
|
||||||
|
conformer_ctc
|
||||||
|
pruned_transducer_stateless
|
||||||
|
zipformer_mmi
|
||||||
|
zipformer_ctc_blankskip
|
||||||
|
distillation
|
@ -0,0 +1,548 @@
|
|||||||
|
.. _non_streaming_librispeech_pruned_transducer_stateless:
|
||||||
|
|
||||||
|
Pruned transducer statelessX
|
||||||
|
============================
|
||||||
|
|
||||||
|
This tutorial shows you how to run a conformer transducer model
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
.. Note::
|
||||||
|
|
||||||
|
The tutorial is suitable for `pruned_transducer_stateless <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless>`_,
|
||||||
|
`pruned_transducer_stateless2 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless2>`_,
|
||||||
|
`pruned_transducer_stateless4 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless4>`_,
|
||||||
|
`pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless5>`_,
|
||||||
|
We will take pruned_transducer_stateless4 as an example in this tutorial.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Please scroll down to the bottom of this page to find download links
|
||||||
|
for pretrained models if you don't want to train a model from scratch.
|
||||||
|
|
||||||
|
|
||||||
|
We use pruned RNN-T to compute the loss.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You can find the paper about pruned RNN-T at the following address:
|
||||||
|
|
||||||
|
`<https://arxiv.org/abs/2206.13236>`_
|
||||||
|
|
||||||
|
The transducer model consists of 3 parts:
|
||||||
|
|
||||||
|
- Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey)
|
||||||
|
- Decoder, a.k.a, the prediction network. We use a stateless model consisting of
|
||||||
|
``nn.Embedding`` and ``nn.Conv1d``
|
||||||
|
- Joiner, a.k.a, the joint network.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Contrary to the conventional RNN-T models, we use a stateless decoder.
|
||||||
|
That is, it has no recurrent connections.
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
The data preparation is the same as other recipes on LibriSpeech dataset,
|
||||||
|
if you have finished this step, you can skip to ``Training`` directly.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --help
|
||||||
|
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--exp-dir``
|
||||||
|
|
||||||
|
The directory to save checkpoints, training logs and tensorboard.
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./pruned_transducer_stateless4/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
|
||||||
|
in the folder ``./pruned_transducer_stateless4/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./pruned_transducer_stateless4/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./pruned_transducer_stateless4/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
- ``--use-fp16``
|
||||||
|
|
||||||
|
If it is True, the model will train with half precision, from our experiment
|
||||||
|
results, by using half precision you can train with two times larger ``--max-duration``
|
||||||
|
so as to get almost 2X speed up.
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., number of encoder layers,
|
||||||
|
encoder dimension, decoder dimension, number of warmup steps etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`pruned_transducer_stateless4/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./pruned_transducer_stateless4/train.py`` directly.
|
||||||
|
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
The options for `pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless5/train.py>`_ are a little different from
|
||||||
|
other recipes. It allows you to configure ``--num-encoder-layers``, ``--dim-feedforward``, ``--nhead``, ``--encoder-dim``, ``--decoder-dim``, ``--joiner-dim`` from commandline, so that you can train models with different size with pruned_transducer_stateless5.
|
||||||
|
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless4/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-1.pt``, ``epoch-2.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved at the end of each epoch, containing model
|
||||||
|
``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved every ``--save-every-n`` batches,
|
||||||
|
containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --start-batch 436000
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains tensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd pruned_transducer_stateless4/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/
|
||||||
|
|
||||||
|
[2022-11-20T15:50:50] Started scanning logdir.
|
||||||
|
Uploading 4468 scalars...
|
||||||
|
[2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects
|
||||||
|
Listening for new data in logdir...
|
||||||
|
|
||||||
|
Note there is a URL in the above output. Click it and you will see
|
||||||
|
the following screenshot:
|
||||||
|
|
||||||
|
.. figure:: images/librispeech-pruned-transducer-tensorboard-log.jpg
|
||||||
|
:width: 600
|
||||||
|
:alt: TensorBoard screenshot
|
||||||
|
:align: center
|
||||||
|
:target: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/
|
||||||
|
|
||||||
|
TensorBoard screenshot.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you don't have access to google, you can use the following command
|
||||||
|
to view the tensorboard log locally:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless4/exp/tensorboard
|
||||||
|
tensorboard --logdir . --port 6008
|
||||||
|
|
||||||
|
It will print the following message:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
|
||||||
|
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
|
||||||
|
|
||||||
|
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
|
||||||
|
logs.
|
||||||
|
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage example
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
You can use the following command to start the training using 6 GPUs:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
|
||||||
|
./pruned_transducer_stateless4/train.py \
|
||||||
|
--world-size 6 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300
|
||||||
|
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
There are two kinds of checkpoints:
|
||||||
|
|
||||||
|
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
|
||||||
|
of each epoch. You can pass ``--epoch`` to
|
||||||
|
``pruned_transducer_stateless4/decode.py`` to use them.
|
||||||
|
|
||||||
|
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
|
||||||
|
every ``--save-every-n`` batches. You can pass ``--iter`` to
|
||||||
|
``pruned_transducer_stateless4/decode.py`` to use them.
|
||||||
|
|
||||||
|
We suggest that you try both types of checkpoints and choose the one
|
||||||
|
that produces the lowest WERs.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
|
||||||
|
The following shows two examples (for two types of checkpoints):
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for epoch in 25 20; do
|
||||||
|
for avg in 7 5 3 1; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for iter in 474000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. Note::
|
||||||
|
|
||||||
|
Supporting decoding methods are as follows:
|
||||||
|
|
||||||
|
- ``greedy_search`` : It takes the symbol with largest posterior probability
|
||||||
|
of each frame as the decoding result.
|
||||||
|
|
||||||
|
- ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and
|
||||||
|
`espnet/nets/beam_search_transducer.py <https://github.com/espnet/espnet/blob/master/espnet/nets/beam_search_transducer.py#L247>`_
|
||||||
|
is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to
|
||||||
|
next frame.
|
||||||
|
|
||||||
|
- ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it
|
||||||
|
runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded.
|
||||||
|
|
||||||
|
- ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and
|
||||||
|
given ``FSAs``. It is hard to describe the details in several lines of texts, you can read
|
||||||
|
our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 <https://github.com/k2-fsa/k2/blob/master/k2/csrc/rnnt_decode.h>`_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently.
|
||||||
|
|
||||||
|
- ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses
|
||||||
|
an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph
|
||||||
|
(with N-gram LM).
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest`` : It produces the decoding results as follows:
|
||||||
|
|
||||||
|
- (1) Use ``fast_beam_search`` to get a lattice
|
||||||
|
- (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()``
|
||||||
|
- (3) Unique the selected paths
|
||||||
|
- (4) Intersect the selected paths with the lattice and compute the
|
||||||
|
shortest path from the intersection result
|
||||||
|
- (5) The path with the largest score is used as the decoding output.
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the
|
||||||
|
only difference is that it uses ``fast_beam_search_LG`` to generate the lattice.
|
||||||
|
|
||||||
|
|
||||||
|
Export Model
|
||||||
|
------------
|
||||||
|
|
||||||
|
`pruned_transducer_stateless4/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/export.py>`_ supports exporting checkpoints from ``pruned_transducer_stateless4/exp`` in the following ways.
|
||||||
|
|
||||||
|
Export ``model.state_dict()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Checkpoints saved by ``pruned_transducer_stateless4/train.py`` also include
|
||||||
|
``optimizer.state_dict()``. It is useful for resuming training. But after training,
|
||||||
|
we are interested only in ``model.state_dict()``. You can use the following
|
||||||
|
command to extract ``model.state_dict()``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
# Assume that --epoch 25 --avg 3 produces the smallest WER
|
||||||
|
# (You can get such information after running ./pruned_transducer_stateless4/decode.py)
|
||||||
|
|
||||||
|
epoch=25
|
||||||
|
avg=3
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg
|
||||||
|
|
||||||
|
It will generate a file ``./pruned_transducer_stateless4/exp/pretrained.pt``.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless4/decode.py``,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless4/exp
|
||||||
|
ln -s pretrained.pt epoch-999.pt
|
||||||
|
|
||||||
|
And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to
|
||||||
|
``./pruned_transducer_stateless4/decode.py``.
|
||||||
|
|
||||||
|
To use the exported model with ``./pruned_transducer_stateless4/pretrained.py``, you
|
||||||
|
can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
Export model using ``torch.jit.script()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 3 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
|
||||||
|
load it by ``torch.jit.load("cpu_jit.pt")``.
|
||||||
|
|
||||||
|
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
|
||||||
|
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
You will need this ``cpu_jit.pt`` when deploying with Sherpa framework.
|
||||||
|
|
||||||
|
|
||||||
|
Download pretrained models
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
If you don't want to train from scratch, you can download the pretrained models
|
||||||
|
by visiting the following links:
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless <https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless2 <https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless4 <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless4-2022-06-03>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless5 <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless5-2022-07-07>`_
|
||||||
|
|
||||||
|
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
|
||||||
|
for the details of the above pretrained models
|
||||||
|
|
||||||
|
|
||||||
|
Deploy with Sherpa
|
||||||
|
------------------
|
||||||
|
|
||||||
|
Please see `<https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/librispeech.html#>`_
|
||||||
|
for how to deploy the models in ``sherpa``.
|
@ -398,7 +398,7 @@ We provide a colab notebook for decoding with pre-trained model.
|
|||||||
|librispeech tdnn_lstm_ctc colab notebook|
|
|librispeech tdnn_lstm_ctc colab notebook|
|
||||||
|
|
||||||
.. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
.. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||||
:target: https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd
|
:target: https://colab.research.google.com/drive/1-iSfQMp2So-We_Uu49N4AAcMInB72u9z?usp=sharing
|
||||||
|
|
||||||
|
|
||||||
**Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``.
|
**Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``.
|
@ -0,0 +1,454 @@
|
|||||||
|
Zipformer CTC Blank Skip
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Please scroll down to the bottom of this page to find download links
|
||||||
|
for pretrained models if you don't want to train a model from scratch.
|
||||||
|
|
||||||
|
|
||||||
|
This tutorial shows you how to train a Zipformer model based on the guidance from
|
||||||
|
a co-trained CTC model using `blank skip method <https://arxiv.org/pdf/2210.16481.pdf>`_
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We use both CTC and RNN-T loss to train. During the forward pass, the encoder output
|
||||||
|
is first used to calculate the CTC posterior probability; then for each output frame,
|
||||||
|
if its blank posterior is bigger than some threshold, it will be simply discarded
|
||||||
|
from the encoder output. To prevent information loss, we also put a convolution module
|
||||||
|
similar to the one used in conformer (referred to as “LConv”) before the frame reduction.
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We encourage you to read ``./prepare.sh``.
|
||||||
|
|
||||||
|
The data preparation contains several stages. You can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
For stability, it doesn`t use blank skip method until model warm-up.
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --help
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./pruned_transducer_stateless7_ctc_bs/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
|
||||||
|
in the folder ``./pruned_transducer_stateless7_ctc_bs/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./pruned_transducer_stateless7_ctc_bs/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., weight decay,
|
||||||
|
number of warmup steps, results dir, etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`pruned_transducer_stateless7_ctc_bs/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./pruned_transducer_stateless7_ctc_bs/train.py`` directly.
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``pruned_transducer_stateless7_ctc_bs/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-1.pt``, ``epoch-2.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved at the end of each epoch, containing model
|
||||||
|
``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved every ``--save-every-n`` batches,
|
||||||
|
containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/train.py --start-batch 436000
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains tensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "Zipformer-CTC co-training using blank skip for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/
|
||||||
|
|
||||||
|
Note there is a URL in the above output. Click it and you will see
|
||||||
|
tensorboard.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you don't have access to google, you can use the following command
|
||||||
|
to view the tensorboard log locally:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard
|
||||||
|
tensorboard --logdir . --port 6008
|
||||||
|
|
||||||
|
It will print the following message:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
|
||||||
|
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
|
||||||
|
|
||||||
|
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
|
||||||
|
logs.
|
||||||
|
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage example
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
You can use the following command to start the training using 4 GPUs:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--use-fp16 1
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
There are two kinds of checkpoints:
|
||||||
|
|
||||||
|
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
|
||||||
|
of each epoch. You can pass ``--epoch`` to
|
||||||
|
``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py`` to use them.
|
||||||
|
|
||||||
|
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
|
||||||
|
every ``--save-every-n`` batches. You can pass ``--iter`` to
|
||||||
|
``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py`` to use them.
|
||||||
|
|
||||||
|
We suggest that you try both types of checkpoints and choose the one
|
||||||
|
that produces the lowest WERs.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
|
||||||
|
The following shows the example using ``epoch-*.pt``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 13 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
|
||||||
|
To test CTC branch, you can use the following command:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 13 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
|
||||||
|
Export models
|
||||||
|
-------------
|
||||||
|
|
||||||
|
`pruned_transducer_stateless7_ctc_bs/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export.py>`_ supports exporting checkpoints from ``pruned_transducer_stateless7_ctc_bs/exp`` in the following ways.
|
||||||
|
|
||||||
|
Export ``model.state_dict()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Checkpoints saved by ``pruned_transducer_stateless7_ctc_bs/train.py`` also include
|
||||||
|
``optimizer.state_dict()``. It is useful for resuming training. But after training,
|
||||||
|
we are interested only in ``model.state_dict()``. You can use the following
|
||||||
|
command to extract ``model.state_dict()``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 13 \
|
||||||
|
--jit 0
|
||||||
|
|
||||||
|
It will generate a file ``./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt``.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py``,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_ctc_bs/exp
|
||||||
|
ln -s pretrained epoch-9999.pt
|
||||||
|
|
||||||
|
And then pass ``--epoch 9999 --avg 1 --use-averaged-model 0`` to
|
||||||
|
``./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py``.
|
||||||
|
|
||||||
|
To use the exported model with ``./pruned_transducer_stateless7_ctc_bs/pretrained.py``, you
|
||||||
|
can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
To test CTC branch using the exported model with ``./pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
Export model using ``torch.jit.script()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 13 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
|
||||||
|
load it by ``torch.jit.load("cpu_jit.pt")``.
|
||||||
|
|
||||||
|
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
|
||||||
|
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
|
||||||
|
|
||||||
|
To use the generated files with ``./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \
|
||||||
|
--nn-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
To test CTC branch using the generated files with ``./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \
|
||||||
|
--model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
Download pretrained models
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
If you don't want to train from scratch, you can download the pretrained models
|
||||||
|
by visiting the following links:
|
||||||
|
|
||||||
|
- trained on LibriSpeech 100h: `<https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2022-12-14>`_
|
||||||
|
- trained on LibriSpeech 960h: `<https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29>`_
|
||||||
|
|
||||||
|
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
|
||||||
|
for the details of the above pretrained models
|
@ -0,0 +1,422 @@
|
|||||||
|
Zipformer MMI
|
||||||
|
===============
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Please scroll down to the bottom of this page to find download links
|
||||||
|
for pretrained models if you don't want to train a model from scratch.
|
||||||
|
|
||||||
|
|
||||||
|
This tutorial shows you how to train an Zipformer MMI model
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
We use LF-MMI to compute the loss.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You can find the document about LF-MMI training at the following address:
|
||||||
|
|
||||||
|
`<https://github.com/k2-fsa/next-gen-kaldi-wechat/blob/master/pdf/LF-MMI-training-and-decoding-in-k2-Part-I.pdf>`_
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
We encourage you to read ``./prepare.sh``.
|
||||||
|
|
||||||
|
The data preparation contains several stages. You can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
For stability, it uses CTC loss for model warm-up and then switches to MMI loss.
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./zipformer_mmi/train.py --help
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./zipformer_mmi/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
|
||||||
|
in the folder ``./zipformer_mmi/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./zipformer_mmi/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./zipformer_mmi/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./zipformer_mmi/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./zipformer_mmi/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./zipformer_mmi/train.py --world-size 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., weight decay,
|
||||||
|
number of warmup steps, results dir, etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`zipformer_mmi/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/zipformer_mmi/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./zipformer_mmi/train.py`` directly.
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``zipformer_mmi/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-1.pt``, ``epoch-2.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved at the end of each epoch, containing model
|
||||||
|
``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./zipformer_mmi/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved every ``--save-every-n`` batches,
|
||||||
|
containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./zipformer_mmi/train.py --start-batch 436000
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains tensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd zipformer_mmi/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "Zipformer MMI training for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/
|
||||||
|
|
||||||
|
Note there is a URL in the above output. Click it and you will see
|
||||||
|
tensorboard.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you don't have access to google, you can use the following command
|
||||||
|
to view the tensorboard log locally:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd zipformer_mmi/exp/tensorboard
|
||||||
|
tensorboard --logdir . --port 6008
|
||||||
|
|
||||||
|
It will print the following message:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
|
||||||
|
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
|
||||||
|
|
||||||
|
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
|
||||||
|
logs.
|
||||||
|
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage example
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
You can use the following command to start the training using 4 GPUs:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
./zipformer_mmi/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--exp-dir zipformer_mmi/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--num-workers 2
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
There are two kinds of checkpoints:
|
||||||
|
|
||||||
|
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
|
||||||
|
of each epoch. You can pass ``--epoch`` to
|
||||||
|
``zipformer_mmi/decode.py`` to use them.
|
||||||
|
|
||||||
|
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
|
||||||
|
every ``--save-every-n`` batches. You can pass ``--iter`` to
|
||||||
|
``zipformer_mmi/decode.py`` to use them.
|
||||||
|
|
||||||
|
We suggest that you try both types of checkpoints and choose the one
|
||||||
|
that produces the lowest WERs.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./zipformer_mmi/decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
|
||||||
|
The following shows the example using ``epoch-*.pt``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do
|
||||||
|
./zipformer_mmi/decode.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./zipformer_mmi/exp/ \
|
||||||
|
--max-duration 100 \
|
||||||
|
--lang-dir data/lang_bpe_500 \
|
||||||
|
--nbest-scale 1.2 \
|
||||||
|
--hp-scale 1.0 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
Export models
|
||||||
|
-------------
|
||||||
|
|
||||||
|
`zipformer_mmi/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/zipformer_mmi/export.py>`_ supports exporting checkpoints from ``zipformer_mmi/exp`` in the following ways.
|
||||||
|
|
||||||
|
Export ``model.state_dict()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Checkpoints saved by ``zipformer_mmi/train.py`` also include
|
||||||
|
``optimizer.state_dict()``. It is useful for resuming training. But after training,
|
||||||
|
we are interested only in ``model.state_dict()``. You can use the following
|
||||||
|
command to extract ``model.state_dict()``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./zipformer_mmi/export.py \
|
||||||
|
--exp-dir ./zipformer_mmi/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9 \
|
||||||
|
--jit 0
|
||||||
|
|
||||||
|
It will generate a file ``./zipformer_mmi/exp/pretrained.pt``.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
To use the generated ``pretrained.pt`` for ``zipformer_mmi/decode.py``,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd zipformer_mmi/exp
|
||||||
|
ln -s pretrained epoch-9999.pt
|
||||||
|
|
||||||
|
And then pass ``--epoch 9999 --avg 1 --use-averaged-model 0`` to
|
||||||
|
``./zipformer_mmi/decode.py``.
|
||||||
|
|
||||||
|
To use the exported model with ``./zipformer_mmi/pretrained.py``, you
|
||||||
|
can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./zipformer_mmi/pretrained.py \
|
||||||
|
--checkpoint ./zipformer_mmi/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method 1best \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
Export model using ``torch.jit.script()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./zipformer_mmi/export.py \
|
||||||
|
--exp-dir ./zipformer_mmi/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
|
||||||
|
load it by ``torch.jit.load("cpu_jit.pt")``.
|
||||||
|
|
||||||
|
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
|
||||||
|
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
|
||||||
|
|
||||||
|
To use the generated files with ``./zipformer_mmi/jit_pretrained.py``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./zipformer_mmi/jit_pretrained.py \
|
||||||
|
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method 1best \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
Download pretrained models
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
If you don't want to train from scratch, you can download the pretrained models
|
||||||
|
by visiting the following links:
|
||||||
|
|
||||||
|
- `<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08>`_
|
||||||
|
|
||||||
|
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
|
||||||
|
for the details of the above pretrained models
|
@ -6,4 +6,3 @@ TIMIT
|
|||||||
|
|
||||||
tdnn_ligru_ctc
|
tdnn_ligru_ctc
|
||||||
tdnn_lstm_ctc
|
tdnn_lstm_ctc
|
||||||
|
|
Before Width: | Height: | Size: 121 KiB After Width: | Height: | Size: 121 KiB |
12
docs/source/recipes/Streaming-ASR/index.rst
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
Streaming ASR
|
||||||
|
=============
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
introduction
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
|
librispeech/index
|
53
docs/source/recipes/Streaming-ASR/introduction.rst
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
Introduction
|
||||||
|
============
|
||||||
|
|
||||||
|
This page shows you how we implement streaming **X-former transducer** models for ASR.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
X-former transducer here means the encoder of the transducer model uses Multi-Head Attention,
|
||||||
|
like `Conformer <https://arxiv.org/pdf/2005.08100.pdf>`_, `EmFormer <https://arxiv.org/pdf/2010.10759.pdf>`_ etc.
|
||||||
|
|
||||||
|
Currently we have implemented two types of streaming models, one uses Conformer as encoder, the other uses Emformer as encoder.
|
||||||
|
|
||||||
|
Streaming Conformer
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
The main idea of training a streaming model is to make the model see limited contexts
|
||||||
|
in training time, we can achieve this by applying a mask to the output of self-attention.
|
||||||
|
In icefall, we implement the streaming conformer the way just like what `WeNet <https://arxiv.org/pdf/2012.05481.pdf>`_ did.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
The conformer-transducer recipes in LibriSpeech datasets, like, `pruned_transducer_stateless <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless>`_,
|
||||||
|
`pruned_transducer_stateless2 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless2>`_,
|
||||||
|
`pruned_transducer_stateless3 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless3>`_,
|
||||||
|
`pruned_transducer_stateless4 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless4>`_,
|
||||||
|
`pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless5>`_
|
||||||
|
all support streaming.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
Training a streaming conformer model in ``icefall`` is almost the same as training a
|
||||||
|
non-streaming model, all you need to do is passing several extra arguments.
|
||||||
|
See :doc:`Pruned transducer statelessX <librispeech/pruned_transducer_stateless>` for more details.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
If you want to modify a non-streaming conformer recipe to support both streaming and non-streaming, please refer
|
||||||
|
to `this pull request <https://github.com/k2-fsa/icefall/pull/454>`_. After adding the code needed by streaming training,
|
||||||
|
you have to re-train it with the extra arguments metioned in the docs above to get a streaming model.
|
||||||
|
|
||||||
|
|
||||||
|
Streaming Emformer
|
||||||
|
------------------
|
||||||
|
|
||||||
|
The Emformer model proposed `here <https://arxiv.org/pdf/2010.10759.pdf>`_ uses more
|
||||||
|
complicated techniques. It has a memory bank component to memorize history information,
|
||||||
|
what' more, it also introduces right context in training time by hard-copying part of
|
||||||
|
the input features.
|
||||||
|
|
||||||
|
We have three variants of Emformer models in ``icefall``.
|
||||||
|
|
||||||
|
- ``pruned_stateless_emformer_rnnt2`` using Emformer from torchaudio, see `LibriSpeech recipe <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2>`_.
|
||||||
|
- ``conv_emformer_transducer_stateless`` using ConvEmformer implemented by ourself. Different from the Emformer in torchaudio,
|
||||||
|
ConvEmformer has a convolution in each layer and uses the mechanisms in our reworked conformer model.
|
||||||
|
See `LibriSpeech recipe <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conv_emformer_transducer_stateless>`_.
|
||||||
|
- ``conv_emformer_transducer_stateless2`` using ConvEmformer implemented by ourself. The only difference from the above one is that
|
||||||
|
it uses a simplified memory bank. See `LibriSpeech recipe <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conv_emformer_transducer_stateless2>`_.
|
Before Width: | Height: | Size: 413 KiB After Width: | Height: | Size: 413 KiB |
After Width: | Height: | Size: 547 KiB |
@ -4,6 +4,8 @@ LibriSpeech
|
|||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 1
|
:maxdepth: 1
|
||||||
|
|
||||||
tdnn_lstm_ctc
|
pruned_transducer_stateless
|
||||||
conformer_ctc
|
|
||||||
lstm_pruned_stateless_transducer
|
lstm_pruned_stateless_transducer
|
||||||
|
|
||||||
|
zipformer_transducer
|
@ -515,10 +515,10 @@ To use the generated files with ``./lstm_transducer_stateless2/jit_pretrained``:
|
|||||||
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/english/server.html>`_
|
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/english/server.html>`_
|
||||||
for how to use the exported models in ``sherpa``.
|
for how to use the exported models in ``sherpa``.
|
||||||
|
|
||||||
.. _export-model-for-ncnn:
|
.. _export-lstm-transducer-model-for-ncnn:
|
||||||
|
|
||||||
Export model for ncnn
|
Export LSTM transducer models for ncnn
|
||||||
~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
We support exporting pretrained LSTM transducer models to
|
We support exporting pretrained LSTM transducer models to
|
||||||
`ncnn <https://github.com/tencent/ncnn>`_ using
|
`ncnn <https://github.com/tencent/ncnn>`_ using
|
||||||
@ -531,16 +531,36 @@ First, let us install a modified version of ``ncnn``:
|
|||||||
git clone https://github.com/csukuangfj/ncnn
|
git clone https://github.com/csukuangfj/ncnn
|
||||||
cd ncnn
|
cd ncnn
|
||||||
git submodule update --recursive --init
|
git submodule update --recursive --init
|
||||||
python3 setup.py bdist_wheel
|
|
||||||
ls -lh dist/
|
# Note: We don't use "python setup.py install" or "pip install ." here
|
||||||
pip install ./dist/*.whl
|
|
||||||
|
mkdir -p build-wheel
|
||||||
|
cd build-wheel
|
||||||
|
|
||||||
|
cmake \
|
||||||
|
-DCMAKE_BUILD_TYPE=Release \
|
||||||
|
-DNCNN_PYTHON=ON \
|
||||||
|
-DNCNN_BUILD_BENCHMARK=OFF \
|
||||||
|
-DNCNN_BUILD_EXAMPLES=OFF \
|
||||||
|
-DNCNN_BUILD_TOOLS=ON \
|
||||||
|
..
|
||||||
|
|
||||||
|
make -j4
|
||||||
|
|
||||||
|
cd ..
|
||||||
|
|
||||||
|
# Note: $PWD here is /path/to/ncnn
|
||||||
|
|
||||||
|
export PYTHONPATH=$PWD/python:$PYTHONPATH
|
||||||
|
export PATH=$PWD/tools/pnnx/build/src:$PATH
|
||||||
|
export PATH=$PWD/build-wheel/tools/quantize:$PATH
|
||||||
|
|
||||||
# now build pnnx
|
# now build pnnx
|
||||||
cd tools/pnnx
|
cd tools/pnnx
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
|
cmake ..
|
||||||
make -j4
|
make -j4
|
||||||
export PATH=$PWD/src:$PATH
|
|
||||||
|
|
||||||
./src/pnnx
|
./src/pnnx
|
||||||
|
|
||||||
@ -549,6 +569,9 @@ First, let us install a modified version of ``ncnn``:
|
|||||||
We assume that you have added the path to the binary ``pnnx`` to the
|
We assume that you have added the path to the binary ``pnnx`` to the
|
||||||
environment variable ``PATH``.
|
environment variable ``PATH``.
|
||||||
|
|
||||||
|
We also assume that you have added ``build/tools/quantize`` to the environment
|
||||||
|
variable ``PATH`` so that you are able to use ``ncnn2int8`` later.
|
||||||
|
|
||||||
Second, let us export the model using ``torch.jit.trace()`` that is suitable
|
Second, let us export the model using ``torch.jit.trace()`` that is suitable
|
||||||
for ``pnnx``:
|
for ``pnnx``:
|
||||||
|
|
||||||
@ -634,3 +657,6 @@ by visiting the following links:
|
|||||||
|
|
||||||
You can find more usages of the pretrained models in
|
You can find more usages of the pretrained models in
|
||||||
`<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_
|
`<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_
|
||||||
|
|
||||||
|
Export ConvEmformer transducer models for ncnn
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
@ -0,0 +1,735 @@
|
|||||||
|
Pruned transducer statelessX
|
||||||
|
============================
|
||||||
|
|
||||||
|
This tutorial shows you how to run a **streaming** conformer transducer model
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
.. Note::
|
||||||
|
|
||||||
|
The tutorial is suitable for `pruned_transducer_stateless <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless>`_,
|
||||||
|
`pruned_transducer_stateless2 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless2>`_,
|
||||||
|
`pruned_transducer_stateless4 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless4>`_,
|
||||||
|
`pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless5>`_,
|
||||||
|
We will take pruned_transducer_stateless4 as an example in this tutorial.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Please scroll down to the bottom of this page to find download links
|
||||||
|
for pretrained models if you don't want to train a model from scratch.
|
||||||
|
|
||||||
|
|
||||||
|
We use pruned RNN-T to compute the loss.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You can find the paper about pruned RNN-T at the following address:
|
||||||
|
|
||||||
|
`<https://arxiv.org/abs/2206.13236>`_
|
||||||
|
|
||||||
|
The transducer model consists of 3 parts:
|
||||||
|
|
||||||
|
- Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey)
|
||||||
|
- Decoder, a.k.a, the prediction network. We use a stateless model consisting of
|
||||||
|
``nn.Embedding`` and ``nn.Conv1d``
|
||||||
|
- Joiner, a.k.a, the joint network.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Contrary to the conventional RNN-T models, we use a stateless decoder.
|
||||||
|
That is, it has no recurrent connections.
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
The data preparation is the same as other recipes on LibriSpeech dataset,
|
||||||
|
if you have finished this step, you can skip to ``Training`` directly.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
We put the streaming and non-streaming model in one recipe, to train a streaming model you only
|
||||||
|
need to add **4** extra options comparing with training a non-streaming model. These options are
|
||||||
|
``--dynamic-chunk-training``, ``--num-left-chunks``, ``--causal-convolution``, ``--short-chunk-size``.
|
||||||
|
You can see the configurable options below for their meanings or read https://arxiv.org/pdf/2012.05481.pdf for more details.
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --help
|
||||||
|
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--exp-dir``
|
||||||
|
|
||||||
|
The directory to save checkpoints, training logs and tensorboard.
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./pruned_transducer_stateless4/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
|
||||||
|
in the folder ``./pruned_transducer_stateless4/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./pruned_transducer_stateless4/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./pruned_transducer_stateless4/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --world-size 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
- ``--use-fp16``
|
||||||
|
|
||||||
|
If it is True, the model will train with half precision, from our experiment
|
||||||
|
results, by using half precision you can train with two times larger ``--max-duration``
|
||||||
|
so as to get almost 2X speed up.
|
||||||
|
|
||||||
|
- ``--dynamic-chunk-training``
|
||||||
|
|
||||||
|
The flag that indicates whether to train a streaming model or not, it
|
||||||
|
**MUST** be True if you want to train a streaming model.
|
||||||
|
|
||||||
|
- ``--short-chunk-size``
|
||||||
|
|
||||||
|
When training a streaming attention model with chunk masking, the chunk size
|
||||||
|
would be either max sequence length of current batch or uniformly sampled from
|
||||||
|
(1, short_chunk_size). The default value is 25, you don't have to change it most of the time.
|
||||||
|
|
||||||
|
- ``--num-left-chunks``
|
||||||
|
|
||||||
|
It indicates how many left context (in chunks) that can be seen when calculating attention.
|
||||||
|
The default value is 4, you don't have to change it most of the time.
|
||||||
|
|
||||||
|
|
||||||
|
- ``--causal-convolution``
|
||||||
|
|
||||||
|
Whether to use causal convolution in conformer encoder layer, this requires
|
||||||
|
to be True when training a streaming model.
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., number of encoder layers,
|
||||||
|
encoder dimension, decoder dimension, number of warmup steps etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`pruned_transducer_stateless4/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./pruned_transducer_stateless4/train.py`` directly.
|
||||||
|
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
The options for `pruned_transducer_stateless5 <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless5/train.py>`_ are a little different from
|
||||||
|
other recipes. It allows you to configure ``--num-encoder-layers``, ``--dim-feedforward``, ``--nhead``, ``--encoder-dim``, ``--decoder-dim``, ``--joiner-dim`` from commandline, so that you can train models with different size with pruned_transducer_stateless5.
|
||||||
|
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless4/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-1.pt``, ``epoch-2.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved at the end of each epoch, containing model
|
||||||
|
``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved every ``--save-every-n`` batches,
|
||||||
|
containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless4/train.py --start-batch 436000
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains tensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd pruned_transducer_stateless4/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/97VKXf80Ru61CnP2ALWZZg/
|
||||||
|
|
||||||
|
[2022-11-20T15:50:50] Started scanning logdir.
|
||||||
|
Uploading 4468 scalars...
|
||||||
|
[2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects
|
||||||
|
Listening for new data in logdir...
|
||||||
|
|
||||||
|
Note there is a URL in the above output. Click it and you will see
|
||||||
|
the following screenshot:
|
||||||
|
|
||||||
|
.. figure:: images/streaming-librispeech-pruned-transducer-tensorboard-log.jpg
|
||||||
|
:width: 600
|
||||||
|
:alt: TensorBoard screenshot
|
||||||
|
:align: center
|
||||||
|
:target: https://tensorboard.dev/experiment/97VKXf80Ru61CnP2ALWZZg/
|
||||||
|
|
||||||
|
TensorBoard screenshot.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you don't have access to google, you can use the following command
|
||||||
|
to view the tensorboard log locally:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless4/exp/tensorboard
|
||||||
|
tensorboard --logdir . --port 6008
|
||||||
|
|
||||||
|
It will print the following message:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
|
||||||
|
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
|
||||||
|
|
||||||
|
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
|
||||||
|
logs.
|
||||||
|
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage example
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
You can use the following command to start the training using 4 GPUs:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
./pruned_transducer_stateless4/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--dynamic-chunk-training 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
Comparing with training a non-streaming model, you only need to add two extra options,
|
||||||
|
``--dynamic-chunk-training 1`` and ``--causal-convolution 1`` .
|
||||||
|
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
There are two kinds of checkpoints:
|
||||||
|
|
||||||
|
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
|
||||||
|
of each epoch. You can pass ``--epoch`` to
|
||||||
|
``pruned_transducer_stateless4/decode.py`` to use them.
|
||||||
|
|
||||||
|
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
|
||||||
|
every ``--save-every-n`` batches. You can pass ``--iter`` to
|
||||||
|
``pruned_transducer_stateless4/decode.py`` to use them.
|
||||||
|
|
||||||
|
We suggest that you try both types of checkpoints and choose the one
|
||||||
|
that produces the lowest WERs.
|
||||||
|
|
||||||
|
.. tip::
|
||||||
|
|
||||||
|
To decode a streaming model, you can use either ``simulate streaming decoding`` in ``decode.py`` or
|
||||||
|
``real streaming decoding`` in ``streaming_decode.py``, the difference between ``decode.py`` and
|
||||||
|
``streaming_decode.py`` is that, ``decode.py`` processes the whole acoustic frames at one time with masking (i.e. same as training),
|
||||||
|
but ``streaming_decode.py`` processes the acoustic frames chunk by chunk (so it can only see limited context).
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
``simulate streaming decoding`` in ``decode.py`` and ``real streaming decoding`` in ``streaming_decode.py`` should
|
||||||
|
produce almost the same results given the same ``--decode-chunk-size`` and ``--left-context``.
|
||||||
|
|
||||||
|
|
||||||
|
Simulate streaming decoding
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
The following options are important for streaming models:
|
||||||
|
|
||||||
|
``--simulate-streaming``
|
||||||
|
|
||||||
|
If you want to decode a streaming model with ``decode.py``, you **MUST** set
|
||||||
|
``--simulate-streaming`` to ``True``. ``simulate`` here means the acoustic frames
|
||||||
|
are not processed frame by frame (or chunk by chunk), instead, the whole sequence
|
||||||
|
is processed at one time with masking (the same as training).
|
||||||
|
|
||||||
|
``--causal-convolution``
|
||||||
|
|
||||||
|
If True, the convolution module in encoder layers will be causal convolution.
|
||||||
|
This is **MUST** be True when decoding with a streaming model.
|
||||||
|
|
||||||
|
``--decode-chunk-size``
|
||||||
|
|
||||||
|
For streaming models, we will calculate the chunk-wise attention, ``--decode-chunk-size``
|
||||||
|
indicates the chunk length (in frames after subsampling) for chunk-wise attention.
|
||||||
|
For ``simulate streaming decoding`` the ``decode-chunk-size`` is used to generate
|
||||||
|
the attention mask.
|
||||||
|
|
||||||
|
``--left-context``
|
||||||
|
|
||||||
|
``--left-context`` indicates how many left context frames (after subsampling) can be seen
|
||||||
|
for current chunk when calculating chunk-wise attention. Normally, ``left-context`` should equal
|
||||||
|
to ``decode-chunk-size * num-left-chunks``, where ``num-left-chunks`` is the option used
|
||||||
|
to train this model. For ``simulate streaming decoding`` the ``left-context`` is used to generate
|
||||||
|
the attention mask.
|
||||||
|
|
||||||
|
|
||||||
|
The following shows two examples (for the two types of checkpoints):
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for epoch in 25 20; do
|
||||||
|
for avg in 7 5 3 1; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for iter in 474000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
Real streaming decoding
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless4/streaming_decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
The following options are important for streaming models:
|
||||||
|
|
||||||
|
``--decode-chunk-size``
|
||||||
|
|
||||||
|
For streaming models, we will calculate the chunk-wise attention, ``--decode-chunk-size``
|
||||||
|
indicates the chunk length (in frames after subsampling) for chunk-wise attention.
|
||||||
|
For ``real streaming decoding``, we will process ``decode-chunk-size`` acoustic frames at each time.
|
||||||
|
|
||||||
|
``--left-context``
|
||||||
|
|
||||||
|
``--left-context`` indicates how many left context frames (after subsampling) can be seen
|
||||||
|
for current chunk when calculating chunk-wise attention. Normally, ``left-context`` should equal
|
||||||
|
to ``decode-chunk-size * num-left-chunks``, where ``num-left-chunks`` is the option used
|
||||||
|
to train this model.
|
||||||
|
|
||||||
|
``--num-decode-streams``
|
||||||
|
|
||||||
|
The number of decoding streams that can be run in parallel (very similar to the ``bath size``).
|
||||||
|
For ``real streaming decoding``, the batches will be packed dynamically, for example, if the
|
||||||
|
``num-decode-streams`` equals to 10, then, sequence 1 to 10 will be decoded at first, after a while,
|
||||||
|
suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in a batch.
|
||||||
|
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
We also try adding ``--right-context`` in the real streaming decoding, but it seems not to benefit
|
||||||
|
the performance for all the models, the reasons might be the training and decoding mismatch. You
|
||||||
|
can try decoding with ``--right-context`` to see if it helps. The default value is 0.
|
||||||
|
|
||||||
|
|
||||||
|
The following shows two examples (for the two types of checkpoints):
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for epoch in 25 20; do
|
||||||
|
for avg in 7 5 3 1; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--num-decode-streams 100 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for iter in 474000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./pruned_transducer_stateless4/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--num-decode-streams 100 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. tip::
|
||||||
|
|
||||||
|
Supporting decoding methods are as follows:
|
||||||
|
|
||||||
|
- ``greedy_search`` : It takes the symbol with largest posterior probability
|
||||||
|
of each frame as the decoding result.
|
||||||
|
|
||||||
|
- ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and
|
||||||
|
`espnet/nets/beam_search_transducer.py <https://github.com/espnet/espnet/blob/master/espnet/nets/beam_search_transducer.py#L247>`_
|
||||||
|
is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to
|
||||||
|
next frame.
|
||||||
|
|
||||||
|
- ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it
|
||||||
|
runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded.
|
||||||
|
|
||||||
|
- ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and
|
||||||
|
given ``FSAs``. It is hard to describe the details in several lines of texts, you can read
|
||||||
|
our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 <https://github.com/k2-fsa/k2/blob/master/k2/csrc/rnnt_decode.h>`_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently.
|
||||||
|
|
||||||
|
- ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses
|
||||||
|
an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph
|
||||||
|
(with N-gram LM).
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest`` : It produces the decoding results as follows:
|
||||||
|
|
||||||
|
- (1) Use ``fast_beam_search`` to get a lattice
|
||||||
|
- (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()``
|
||||||
|
- (3) Unique the selected paths
|
||||||
|
- (4) Intersect the selected paths with the lattice and compute the
|
||||||
|
shortest path from the intersection result
|
||||||
|
- (5) The path with the largest score is used as the decoding output.
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the
|
||||||
|
only difference is that it uses ``fast_beam_search_LG`` to generate the lattice.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
The supporting decoding methods in ``streaming_decode.py`` might be less than that in ``decode.py``, if needed,
|
||||||
|
you can implement them by yourself or file a issue in `icefall <https://github.com/k2-fsa/icefall/issues>`_ .
|
||||||
|
|
||||||
|
|
||||||
|
Export Model
|
||||||
|
------------
|
||||||
|
|
||||||
|
`pruned_transducer_stateless4/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless4/export.py>`_ supports exporting checkpoints from ``pruned_transducer_stateless4/exp`` in the following ways.
|
||||||
|
|
||||||
|
Export ``model.state_dict()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Checkpoints saved by ``pruned_transducer_stateless4/train.py`` also include
|
||||||
|
``optimizer.state_dict()``. It is useful for resuming training. But after training,
|
||||||
|
we are interested only in ``model.state_dict()``. You can use the following
|
||||||
|
command to extract ``model.state_dict()``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
# Assume that --epoch 25 --avg 3 produces the smallest WER
|
||||||
|
# (You can get such information after running ./pruned_transducer_stateless4/decode.py)
|
||||||
|
|
||||||
|
epoch=25
|
||||||
|
avg=3
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||||
|
--streaming-model 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
``--streaming-model`` and ``--causal-convolution`` require to be True to export
|
||||||
|
a streaming mdoel.
|
||||||
|
|
||||||
|
It will generate a file ``./pruned_transducer_stateless4/exp/pretrained.pt``.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless4/decode.py``,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless4/exp
|
||||||
|
ln -s pretrained.pt epoch-999.pt
|
||||||
|
|
||||||
|
And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to
|
||||||
|
``./pruned_transducer_stateless4/decode.py``.
|
||||||
|
|
||||||
|
To use the exported model with ``./pruned_transducer_stateless4/pretrained.py``, you
|
||||||
|
can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
Export model using ``torch.jit.script()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||||
|
--streaming-model 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 3 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
``--streaming-model`` and ``--causal-convolution`` require to be True to export
|
||||||
|
a streaming mdoel.
|
||||||
|
|
||||||
|
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
|
||||||
|
load it by ``torch.jit.load("cpu_jit.pt")``.
|
||||||
|
|
||||||
|
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
|
||||||
|
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
You will need this ``cpu_jit.pt`` when deploying with Sherpa framework.
|
||||||
|
|
||||||
|
|
||||||
|
Download pretrained models
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
If you don't want to train from scratch, you can download the pretrained models
|
||||||
|
by visiting the following links:
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless <https://huggingface.co/pkufool/icefall_librispeech_streaming_pruned_transducer_stateless_20220625>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless2 <https://huggingface.co/pkufool/icefall_librispeech_streaming_pruned_transducer_stateless2_20220625>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless4 <https://huggingface.co/pkufool/icefall_librispeech_streaming_pruned_transducer_stateless4_20220625>`_
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless5 <https://huggingface.co/pkufool/icefall_librispeech_streaming_pruned_transducer_stateless5_20220729>`_
|
||||||
|
|
||||||
|
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
|
||||||
|
for the details of the above pretrained models
|
||||||
|
|
||||||
|
|
||||||
|
Deploy with Sherpa
|
||||||
|
------------------
|
||||||
|
|
||||||
|
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html#>`_
|
||||||
|
for how to deploy the models in ``sherpa``.
|
@ -0,0 +1,654 @@
|
|||||||
|
Zipformer Transducer
|
||||||
|
====================
|
||||||
|
|
||||||
|
This tutorial shows you how to run a **streaming** zipformer transducer model
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
.. Note::
|
||||||
|
|
||||||
|
The tutorial is suitable for `pruned_transducer_stateless7_streaming <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7_streaming>`_,
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
Please scroll down to the bottom of this page to find download links
|
||||||
|
for pretrained models if you don't want to train a model from scratch.
|
||||||
|
|
||||||
|
|
||||||
|
We use pruned RNN-T to compute the loss.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
You can find the paper about pruned RNN-T at the following address:
|
||||||
|
|
||||||
|
`<https://arxiv.org/abs/2206.13236>`_
|
||||||
|
|
||||||
|
The transducer model consists of 3 parts:
|
||||||
|
|
||||||
|
- Encoder, a.k.a, the transcription network. We use a Zipformer model (proposed by Daniel Povey)
|
||||||
|
- Decoder, a.k.a, the prediction network. We use a stateless model consisting of
|
||||||
|
``nn.Embedding`` and ``nn.Conv1d``
|
||||||
|
- Joiner, a.k.a, the joint network.
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Contrary to the conventional RNN-T models, we use a stateless decoder.
|
||||||
|
That is, it has no recurrent connections.
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
The data preparation is the same as other recipes on LibriSpeech dataset,
|
||||||
|
if you have finished this step, you can skip to ``Training`` directly.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
We provide the following YouTube video showing how to run ``./prepare.sh``.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
|
||||||
|
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
|
||||||
|
|
||||||
|
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
|
||||||
|
|
||||||
|
.. youtube:: ofEIoJL-mGM
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --help
|
||||||
|
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--exp-dir``
|
||||||
|
|
||||||
|
The directory to save checkpoints, training logs and tensorboard.
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./pruned_transducer_stateless7_streaming/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
|
||||||
|
in the folder ``./pruned_transducer_stateless7_streaming/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./pruned_transducer_stateless7_streaming/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./pruned_transducer_stateless7_streaming/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
- ``--use-fp16``
|
||||||
|
|
||||||
|
If it is True, the model will train with half precision, from our experiment
|
||||||
|
results, by using half precision you can train with two times larger ``--max-duration``
|
||||||
|
so as to get almost 2X speed up.
|
||||||
|
|
||||||
|
We recommend using ``--use-fp16 True``.
|
||||||
|
|
||||||
|
- ``--short-chunk-size``
|
||||||
|
|
||||||
|
When training a streaming attention model with chunk masking, the chunk size
|
||||||
|
would be either max sequence length of current batch or uniformly sampled from
|
||||||
|
(1, short_chunk_size). The default value is 50, you don't have to change it most of the time.
|
||||||
|
|
||||||
|
- ``--num-left-chunks``
|
||||||
|
|
||||||
|
It indicates how many left context (in chunks) that can be seen when calculating attention.
|
||||||
|
The default value is 4, you don't have to change it most of the time.
|
||||||
|
|
||||||
|
|
||||||
|
- ``--decode-chunk-len``
|
||||||
|
|
||||||
|
The chunk size for decoding (in frames before subsampling). It is used for validation.
|
||||||
|
The default value is 32 (i.e., 320ms).
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., number of encoder layers,
|
||||||
|
encoder dimension, decoder dimension, number of warmup steps etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`pruned_transducer_stateless7_streaming/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./pruned_transducer_stateless7_streaming/train.py`` directly.
|
||||||
|
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless7_streaming/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-1.pt``, ``epoch-2.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved at the end of each epoch, containing model
|
||||||
|
``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files saved every ``--save-every-n`` batches,
|
||||||
|
containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/train.py --start-batch 436000
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains tensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd pruned_transducer_stateless7_streaming/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
If you don't have access to google, you can use the following command
|
||||||
|
to view the tensorboard log locally:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_streaming/exp/tensorboard
|
||||||
|
tensorboard --logdir . --port 6008
|
||||||
|
|
||||||
|
It will print the following message:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
|
||||||
|
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
|
||||||
|
|
||||||
|
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
|
||||||
|
logs.
|
||||||
|
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage example
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
You can use the following command to start the training using 4 GPUs:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
./pruned_transducer_stateless7_streaming/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 550
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
There are two kinds of checkpoints:
|
||||||
|
|
||||||
|
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
|
||||||
|
of each epoch. You can pass ``--epoch`` to
|
||||||
|
``pruned_transducer_stateless7_streaming/decode.py`` to use them.
|
||||||
|
|
||||||
|
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
|
||||||
|
every ``--save-every-n`` batches. You can pass ``--iter`` to
|
||||||
|
``pruned_transducer_stateless7_streaming/decode.py`` to use them.
|
||||||
|
|
||||||
|
We suggest that you try both types of checkpoints and choose the one
|
||||||
|
that produces the lowest WERs.
|
||||||
|
|
||||||
|
.. tip::
|
||||||
|
|
||||||
|
To decode a streaming model, you can use either ``simulate streaming decoding`` in ``decode.py`` or
|
||||||
|
``real chunk-wise streaming decoding`` in ``streaming_decode.py``. The difference between ``decode.py`` and
|
||||||
|
``streaming_decode.py`` is that, ``decode.py`` processes the whole acoustic frames at one time with masking (i.e. same as training),
|
||||||
|
but ``streaming_decode.py`` processes the acoustic frames chunk by chunk.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
``simulate streaming decoding`` in ``decode.py`` and ``real chunk-size streaming decoding`` in ``streaming_decode.py`` should
|
||||||
|
produce almost the same results given the same ``--decode-chunk-len``.
|
||||||
|
|
||||||
|
|
||||||
|
Simulate streaming decoding
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
The following options are important for streaming models:
|
||||||
|
|
||||||
|
``--decode-chunk-len``
|
||||||
|
|
||||||
|
It is same as in ``train.py``, which specifies the chunk size for decoding (in frames before subsampling).
|
||||||
|
The default value is 32 (i.e., 320ms).
|
||||||
|
|
||||||
|
|
||||||
|
The following shows two examples (for the two types of checkpoints):
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for epoch in 30; do
|
||||||
|
for avg in 12 11 10 9 8; do
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for iter in 474000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
Real streaming decoding
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./pruned_transducer_stateless7_streaming/streaming_decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
The following options are important for streaming models:
|
||||||
|
|
||||||
|
``--decode-chunk-len``
|
||||||
|
|
||||||
|
It is same as in ``train.py``, which specifies the chunk size for decoding (in frames before subsampling).
|
||||||
|
The default value is 32 (i.e., 320ms).
|
||||||
|
For ``real streaming decoding``, we will process ``decode-chunk-len`` acoustic frames at each time.
|
||||||
|
|
||||||
|
``--num-decode-streams``
|
||||||
|
|
||||||
|
The number of decoding streams that can be run in parallel (very similar to the ``bath size``).
|
||||||
|
For ``real streaming decoding``, the batches will be packed dynamically, for example, if the
|
||||||
|
``num-decode-streams`` equals to 10, then, sequence 1 to 10 will be decoded at first, after a while,
|
||||||
|
suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in a batch.
|
||||||
|
|
||||||
|
|
||||||
|
The following shows two examples (for the two types of checkpoints):
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for epoch in 30; do
|
||||||
|
for avg in 12 11 10 9 8; do
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--num-decode-streams 100 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
for iter in 474000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--decode-chunk-len 16 \
|
||||||
|
--num-decode-streams 100 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
|
||||||
|
.. tip::
|
||||||
|
|
||||||
|
Supporting decoding methods are as follows:
|
||||||
|
|
||||||
|
- ``greedy_search`` : It takes the symbol with largest posterior probability
|
||||||
|
of each frame as the decoding result.
|
||||||
|
|
||||||
|
- ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and
|
||||||
|
`espnet/nets/beam_search_transducer.py <https://github.com/espnet/espnet/blob/master/espnet/nets/beam_search_transducer.py#L247>`_
|
||||||
|
is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to
|
||||||
|
next frame.
|
||||||
|
|
||||||
|
- ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it
|
||||||
|
runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded.
|
||||||
|
|
||||||
|
- ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and
|
||||||
|
given ``FSAs``. It is hard to describe the details in several lines of texts, you can read
|
||||||
|
our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 <https://github.com/k2-fsa/k2/blob/master/k2/csrc/rnnt_decode.h>`_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently.
|
||||||
|
|
||||||
|
- ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses
|
||||||
|
an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph
|
||||||
|
(with N-gram LM).
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest`` : It produces the decoding results as follows:
|
||||||
|
|
||||||
|
- (1) Use ``fast_beam_search`` to get a lattice
|
||||||
|
- (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()``
|
||||||
|
- (3) Unique the selected paths
|
||||||
|
- (4) Intersect the selected paths with the lattice and compute the
|
||||||
|
shortest path from the intersection result
|
||||||
|
- (5) The path with the largest score is used as the decoding output.
|
||||||
|
|
||||||
|
- ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the
|
||||||
|
only difference is that it uses ``fast_beam_search_LG`` to generate the lattice.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
The supporting decoding methods in ``streaming_decode.py`` might be less than that in ``decode.py``, if needed,
|
||||||
|
you can implement them by yourself or file a issue in `icefall <https://github.com/k2-fsa/icefall/issues>`_ .
|
||||||
|
|
||||||
|
|
||||||
|
Export Model
|
||||||
|
------------
|
||||||
|
|
||||||
|
Currently it supports exporting checkpoints from ``pruned_transducer_stateless7_streaming/exp`` in the following ways.
|
||||||
|
|
||||||
|
Export ``model.state_dict()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Checkpoints saved by ``pruned_transducer_stateless7_streaming/train.py`` also include
|
||||||
|
``optimizer.state_dict()``. It is useful for resuming training. But after training,
|
||||||
|
we are interested only in ``model.state_dict()``. You can use the following
|
||||||
|
command to extract ``model.state_dict()``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
# Assume that --epoch 30 --avg 9 produces the smallest WER
|
||||||
|
# (You can get such information after running ./pruned_transducer_stateless7_streaming/decode.py)
|
||||||
|
|
||||||
|
epoch=30
|
||||||
|
avg=9
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--use-averaged-model=True \
|
||||||
|
--decode-chunk-len 32
|
||||||
|
|
||||||
|
It will generate a file ``./pruned_transducer_stateless7_streaming/exp/pretrained.pt``.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless7_streaming/decode.py``,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_streaming/exp
|
||||||
|
ln -s pretrained.pt epoch-999.pt
|
||||||
|
|
||||||
|
And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to
|
||||||
|
``./pruned_transducer_stateless7_streaming/decode.py``.
|
||||||
|
|
||||||
|
To use the exported model with ``./pruned_transducer_stateless7_streaming/pretrained.py``, you
|
||||||
|
can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
Export model using ``torch.jit.script()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 9 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
``--decode-chunk-len`` is required to export a ScriptModule.
|
||||||
|
|
||||||
|
It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later
|
||||||
|
load it by ``torch.jit.load("cpu_jit.pt")``.
|
||||||
|
|
||||||
|
Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python
|
||||||
|
are on CPU. You can use ``to("cuda")`` to move them to a CUDA device.
|
||||||
|
|
||||||
|
Export model using ``torch.jit.trace()``
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
epoch=30
|
||||||
|
avg=9
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/jit_trace_export.py \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--use-averaged-model=True \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
``--decode-chunk-len`` is required to export a ScriptModule.
|
||||||
|
|
||||||
|
It will generate 3 files:
|
||||||
|
|
||||||
|
- ``./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt``
|
||||||
|
- ``./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt``
|
||||||
|
- ``./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt``
|
||||||
|
|
||||||
|
To use the generated files with ``./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py``:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \
|
||||||
|
--encoder-model-filename ./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt \
|
||||||
|
--decoder-model-filename ./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt \
|
||||||
|
--joiner-model-filename ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
/path/to/foo.wav
|
||||||
|
|
||||||
|
|
||||||
|
Download pretrained models
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
If you don't want to train from scratch, you can download the pretrained models
|
||||||
|
by visiting the following links:
|
||||||
|
|
||||||
|
- `pruned_transducer_stateless7_streaming <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29>`_
|
||||||
|
|
||||||
|
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
|
||||||
|
for the details of the above pretrained models
|
||||||
|
|
||||||
|
Deploy with Sherpa
|
||||||
|
------------------
|
||||||
|
|
||||||
|
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html#>`_
|
||||||
|
for how to deploy the models in ``sherpa``.
|
@ -13,7 +13,5 @@ We may add recipes for other tasks as well in the future.
|
|||||||
:maxdepth: 2
|
:maxdepth: 2
|
||||||
:caption: Table of Contents
|
:caption: Table of Contents
|
||||||
|
|
||||||
aishell/index
|
Non-streaming-ASR/index
|
||||||
librispeech/index
|
Streaming-ASR/index
|
||||||
timit/index
|
|
||||||
yesno/index
|
|
||||||
|
@ -87,9 +87,7 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -116,9 +114,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
pieces = [
|
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
|
||||||
]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||||
token_sym_table: Dict[str, int], words: List[str]
|
|
||||||
) -> Lexicon:
|
|
||||||
"""Generate a lexicon from a word list and token_sym_table.
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -317,9 +317,7 @@ def lexicon_to_fst(
|
|||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
|
||||||
"--lang-dir", type=str, help="The lang dir, data/lang_phone"
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
|
|||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa.draw("L.pdf", title="L")
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
@ -56,9 +56,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||||
"--space", default="<space>", type=str, help="space symbol"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--non-lang-syms",
|
"--non-lang-syms",
|
||||||
"-l",
|
"-l",
|
||||||
@ -66,9 +64,7 @@ def get_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||||
"text", type=str, default=False, nargs="?", help="input text"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--trans_type",
|
"--trans_type",
|
||||||
"-t",
|
"-t",
|
||||||
@ -108,8 +104,7 @@ def token2id(
|
|||||||
if token_type == "lazy_pinyin":
|
if token_type == "lazy_pinyin":
|
||||||
text = lazy_pinyin(chars_list)
|
text = lazy_pinyin(chars_list)
|
||||||
sub_ids = [
|
sub_ids = [
|
||||||
token_table[txt] if txt in token_table else oov_id
|
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||||
for txt in text
|
|
||||||
]
|
]
|
||||||
ids.append(sub_ids)
|
ids.append(sub_ids)
|
||||||
else: # token_type = "pinyin"
|
else: # token_type = "pinyin"
|
||||||
@ -135,9 +130,7 @@ def main():
|
|||||||
if args.text:
|
if args.text:
|
||||||
f = codecs.open(args.text, encoding="utf-8")
|
f = codecs.open(args.text, encoding="utf-8")
|
||||||
else:
|
else:
|
||||||
f = codecs.getreader("utf-8")(
|
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||||
sys.stdin if is_python2 else sys.stdin.buffer
|
|
||||||
)
|
|
||||||
|
|
||||||
sys.stdout = codecs.getwriter("utf-8")(
|
sys.stdout = codecs.getwriter("utf-8")(
|
||||||
sys.stdout if is_python2 else sys.stdout.buffer
|
sys.stdout if is_python2 else sys.stdout.buffer
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
@ -113,4 +116,3 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
./local/prepare_char.py
|
./local/prepare_char.py
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|