diff --git a/.flake8 b/.flake8 index 609fa2c03..41d8799c8 100644 --- a/.flake8 +++ b/.flake8 @@ -1,7 +1,7 @@ [flake8] show-source=true statistics=true -max-line-length = 80 +max-line-length = 88 per-file-ignores = # line too long icefall/diagnostics.py: E501, @@ -11,7 +11,8 @@ per-file-ignores = egs/*/ASR/*/scaling.py: E501, egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203 egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203 - egs/librispeech/ASR/conformer_ctc2/*py: E501, + egs/librispeech/ASR/conformer_ctc*/*py: E501, + egs/librispeech/ASR/zipformer_mmi/*.py: E501, E203 egs/librispeech/ASR/RESULTS.md: E999, # invalid escape sequence (cause by tex formular), W605 diff --git a/.git-blame-ignore-revs b/.git-blame-ignore-revs new file mode 100644 index 000000000..5d65b98e9 --- /dev/null +++ b/.git-blame-ignore-revs @@ -0,0 +1,3 @@ +# Migrate to 88 characters per line (see: https://github.com/lhotse-speech/lhotse/issues/890) +107df3b115a58f1b68a6458c3f94a130004be34c +d31db010371a4128856480382876acdc0d1739ed diff --git a/.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh b/.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh new file mode 100755 index 000000000..df29f188e --- /dev/null +++ b/.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh @@ -0,0 +1,123 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conformer-ctc3-2022-11-27 + +log "Downloading pre-trained model from $repo_url" +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/HLG.pt" +git lfs pull --include "data/lang_bpe_500/L.pt" +git lfs pull --include "data/lang_bpe_500/LG.pt" +git lfs pull --include "data/lang_bpe_500/Linv.pt" +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "data/lm/G_4_gram.pt" +git lfs pull --include "exp/jit_trace.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Decode with models exported by torch.jit.trace()" + +for m in ctc-decoding 1best; do + ./conformer_ctc3/jit_pretrained.py \ + --model-filename $repo/exp/jit_trace.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --G $repo/data/lm/G_4_gram.pt \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +log "Export to torchscript model" + +./conformer_ctc3/export.py \ + --exp-dir $repo/exp \ + --lang-dir $repo/data/lang_bpe_500 \ + --jit-trace 1 \ + --epoch 99 \ + --avg 1 \ + --use-averaged-model 0 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.trace()" + +for m in ctc-decoding 1best; do + ./conformer_ctc3/jit_pretrained.py \ + --model-filename $repo/exp/jit_trace.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --G $repo/data/lm/G_4_gram.pt \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for m in ctc-decoding 1best; do + ./conformer_ctc3/pretrained.py \ + --checkpoint $repo/exp/pretrained.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --G $repo/data/lm/G_4_gram.pt \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p conformer_ctc3/exp + ln -s $PWD/$repo/exp/pretrained.pt conformer_ctc3/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh conformer_ctc3/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in ctc-decoding 1best; do + log "Decoding with $method" + ./conformer_ctc3/decode.py \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --exp-dir conformer_ctc3/exp/ \ + --max-duration $max_duration \ + --decoding-method $method \ + --lm-dir data/lm + done + + rm conformer_ctc3/exp/*.pt +fi diff --git a/.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh b/.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh new file mode 100755 index 000000000..32c939206 --- /dev/null +++ b/.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh @@ -0,0 +1,79 @@ +#!/usr/bin/env bash +# +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 + +log "Downloading pre-trained model from $repo_url" +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) +pushd $repo +git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt" +git lfs pull --include "data/lang_bpe_500/bpe.model" +cd exp +ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-99.pt +popd + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +log "Install ncnn and pnnx" + +# We are using a modified ncnn here. Will try to merge it to the official repo +# of ncnn +git clone https://github.com/csukuangfj/ncnn +pushd ncnn +git submodule init +git submodule update python/pybind11 +python3 setup.py bdist_wheel +ls -lh dist/ +pip install dist/*.whl +cd tools/pnnx +mkdir build +cd build +cmake -D Python3_EXECUTABLE=/opt/hostedtoolcache/Python/3.8.14/x64/bin/python3 .. +make -j4 pnnx + +./src/pnnx || echo "pass" + +popd + +log "Test exporting to pnnx format" + +./conv_emformer_transducer_stateless2/export-for-ncnn.py \ + --exp-dir $repo/exp \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --use-averaged-model 0 \ + \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 + +./ncnn/tools/pnnx/build/src/pnnx $repo/exp/encoder_jit_trace-pnnx.pt +./ncnn/tools/pnnx/build/src/pnnx $repo/exp/decoder_jit_trace-pnnx.pt +./ncnn/tools/pnnx/build/src/pnnx $repo/exp/joiner_jit_trace-pnnx.pt + +./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --encoder-param-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.param \ + --encoder-bin-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.bin \ + --decoder-param-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.param \ + --decoder-bin-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.bin \ + --joiner-param-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.param \ + --joiner-bin-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.bin \ + $repo/test_wavs/1089-134686-0001.wav diff --git a/.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml b/.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh similarity index 71% rename from .github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml rename to .github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh index b89055c72..9b883f889 100755 --- a/.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml +++ b/.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh @@ -16,6 +16,7 @@ log "Downloading pre-trained model from $repo_url" git lfs install git clone $repo_url repo=$(basename $repo_url) +abs_repo=$(realpath $repo) log "Display test files" tree $repo/ @@ -174,6 +175,92 @@ done echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" + +if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then + lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm + log "Download pre-trained RNN-LM model from ${lm_repo_url}" + GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url + lm_repo=$(basename $lm_repo_url) + pushd $lm_repo + git lfs pull --include "exp/pretrained.pt" + mv exp/pretrained.pt exp/epoch-88.pt + popd + + mkdir -p lstm_transducer_stateless2/exp + ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh lstm_transducer_stateless2/exp + + log "Decoding test-clean and test-other with RNN LM" + + ./lstm_transducer_stateless2/decode.py \ + --use-averaged-model 0 \ + --epoch 999 \ + --avg 1 \ + --exp-dir lstm_transducer_stateless2/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --beam 4 \ + --use-shallow-fusion 1 \ + --lm-type rnn \ + --lm-exp-dir $lm_repo/exp \ + --lm-epoch 88 \ + --lm-avg 1 \ + --lm-scale 0.3 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 +fi + +if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then + bigram_repo_url=https://huggingface.co/marcoyang/librispeech_bigram + log "Download bi-gram LM from ${bigram_repo_url}" + GIT_LFS_SKIP_SMUDGE=1 git clone $bigram_repo_url + bigramlm_repo=$(basename $bigram_repo_url) + pushd $bigramlm_repo + git lfs pull --include "2gram.fst.txt" + cp 2gram.fst.txt $abs_repo/data/lang_bpe_500/. + popd + + lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm + log "Download pre-trained RNN-LM model from ${lm_repo_url}" + GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url + lm_repo=$(basename $lm_repo_url) + pushd $lm_repo + git lfs pull --include "exp/pretrained.pt" + mv exp/pretrained.pt exp/epoch-88.pt + popd + + mkdir -p lstm_transducer_stateless2/exp + ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh lstm_transducer_stateless2/exp + + log "Decoding test-clean and test-other" + + ./lstm_transducer_stateless2/decode.py \ + --use-averaged-model 0 \ + --epoch 999 \ + --avg 1 \ + --exp-dir lstm_transducer_stateless2/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_LODR \ + --beam 4 \ + --use-shallow-fusion 1 \ + --lm-type rnn \ + --lm-exp-dir $lm_repo/exp \ + --lm-scale 0.4 \ + --lm-epoch 88 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 \ + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 +fi + if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then mkdir -p lstm_transducer_stateless2/exp ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh index ae2bb6822..c3d07dc0e 100755 --- a/.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh @@ -83,4 +83,5 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == done rm pruned_transducer_stateless2/exp/*.pt + rm -r data/lang_bpe_500 fi diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh index 00580ca1f..22de3b45d 100755 --- a/.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh @@ -82,4 +82,5 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == done rm pruned_transducer_stateless3/exp/*.pt + rm -r data/lang_bpe_500 fi diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh new file mode 100755 index 000000000..999841b80 --- /dev/null +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh @@ -0,0 +1,137 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + +log "Downloading pre-trained model from $repo_url" +git lfs install +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Test exporting to ONNX format" +./pruned_transducer_stateless7/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --onnx 1 + +log "Export to torchscript model" +./pruned_transducer_stateless7/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with ONNX models" + +./pruned_transducer_stateless7/onnx_check.py \ + --jit-filename $repo/exp/cpu_jit.pt \ + --onnx-encoder-filename $repo/exp/encoder.onnx \ + --onnx-decoder-filename $repo/exp/decoder.onnx \ + --onnx-joiner-filename $repo/exp/joiner.onnx \ + --onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \ + --onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx + +./pruned_transducer_stateless7/onnx_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --encoder-model-filename $repo/exp/encoder.onnx \ + --decoder-model-filename $repo/exp/decoder.onnx \ + --joiner-model-filename $repo/exp/joiner.onnx \ + --joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \ + --joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless7/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +for sym in 1 2 3; do + log "Greedy search with --max-sym-per-frame $sym" + + ./pruned_transducer_stateless7/pretrained.py \ + --method greedy_search \ + --max-sym-per-frame $sym \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for method in modified_beam_search beam_search fast_beam_search; do + log "$method" + + ./pruned_transducer_stateless7/pretrained.py \ + --method $method \ + --beam-size 4 \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p pruned_transducer_stateless7/exp + ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh pruned_transducer_stateless7/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in greedy_search fast_beam_search modified_beam_search; do + log "Decoding with $method" + + ./pruned_transducer_stateless7/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --max-duration $max_duration \ + --exp-dir pruned_transducer_stateless7/exp + done + + rm pruned_transducer_stateless7/exp/*.pt +fi diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh new file mode 100755 index 000000000..3cbb480f6 --- /dev/null +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh @@ -0,0 +1,151 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01 + +log "Downloading pre-trained model from $repo_url" +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/HLG.pt" +git lfs pull --include "data/lang_bpe_500/L.pt" +git lfs pull --include "data/lang_bpe_500/LG.pt" +git lfs pull --include "data/lang_bpe_500/Linv.pt" +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "data/lm/G_4_gram.pt" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Export to torchscript model" +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless7_ctc/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --model-filename $repo/exp/cpu_jit.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --G $repo/data/lm/G_4_gram.pt \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for sym in 1 2 3; do + log "Greedy search with --max-sym-per-frame $sym" + + ./pruned_transducer_stateless7_ctc/pretrained.py \ + --method greedy_search \ + --max-sym-per-frame $sym \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for method in modified_beam_search beam_search fast_beam_search; do + log "$method" + + ./pruned_transducer_stateless7_ctc/pretrained.py \ + --method $method \ + --beam-size 4 \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc/pretrained_ctc.py \ + --checkpoint $repo/exp/pretrained.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --G $repo/data/lm/G_4_gram.pt \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p pruned_transducer_stateless7_ctc/exp + ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_ctc/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh pruned_transducer_stateless7_ctc/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in greedy_search fast_beam_search modified_beam_search; do + log "Decoding with $method" + + ./pruned_transducer_stateless7_ctc/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --max-duration $max_duration \ + --exp-dir pruned_transducer_stateless7_ctc/exp + done + + for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 999 \ + --avg 1 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration $max_duration \ + --use-averaged-model 0 \ + --decoding-method $m \ + --hlg-scale 0.6 \ + --lm-dir data/lm + done + + rm pruned_transducer_stateless7_ctc/exp/*.pt +fi \ No newline at end of file diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh new file mode 100755 index 000000000..ed66a728e --- /dev/null +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh @@ -0,0 +1,148 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2022-12-14 + +log "Downloading pre-trained model from $repo_url" +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/HLG.pt" +git lfs pull --include "data/lang_bpe_500/L.pt" +git lfs pull --include "data/lang_bpe_500/LG.pt" +git lfs pull --include "data/lang_bpe_500/Linv.pt" +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Export to torchscript model" +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename $repo/exp/cpu_jit.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for sym in 1 2 3; do + log "Greedy search with --max-sym-per-frame $sym" + + ./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --method greedy_search \ + --max-sym-per-frame $sym \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for method in modified_beam_search beam_search fast_beam_search; do + log "$method" + + ./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --method $method \ + --beam-size 4 \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py \ + --checkpoint $repo/exp/pretrained.pt \ + --words-file $repo/data/lang_bpe_500/words.txt \ + --HLG $repo/data/lang_bpe_500/HLG.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --method $m \ + --sample-rate 16000 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" + +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p pruned_transducer_stateless7_ctc_bs/exp + ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_ctc_bs/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh pruned_transducer_stateless7_ctc_bs/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in greedy_search fast_beam_search modified_beam_search; do + log "Decoding with $method" + + ./pruned_transducer_stateless7_ctc_bs/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --max-duration $max_duration \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp + done + + for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 999 \ + --avg 1 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration $max_duration \ + --use-averaged-model 0 \ + --decoding-method $m \ + --hlg-scale 0.6 + done + + rm pruned_transducer_stateless7_ctc_bs/exp/*.pt +fi diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh new file mode 100755 index 000000000..afb0dc05a --- /dev/null +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh @@ -0,0 +1,148 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29 + +log "Downloading pre-trained model from $repo_url" +git lfs install +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +git lfs pull --include "exp/encoder_jit_trace.pt" +git lfs pull --include "exp/decoder_jit_trace.pt" +git lfs pull --include "exp/joiner_jit_trace.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Export to torchscript model" +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless7_streaming/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + --decode-chunk-len 32 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +log "Export to torchscript model by torch.jit.trace()" +./pruned_transducer_stateless7_streaming/jit_trace_export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + --epoch 99 \ + --avg 1 + +log "Decode with models exported by torch.jit.trace()" + +./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --encoder-model-filename $repo/exp/encoder_jit_trace.pt \ + --decoder-model-filename $repo/exp/decoder_jit_trace.pt \ + --joiner-model-filename $repo/exp/joiner_jit_trace.pt \ + --decode-chunk-len 32 \ + $repo/test_wavs/1089-134686-0001.wav + +for sym in 1 2 3; do + log "Greedy search with --max-sym-per-frame $sym" + + ./pruned_transducer_stateless7_streaming/pretrained.py \ + --method greedy_search \ + --max-sym-per-frame $sym \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for method in modified_beam_search beam_search fast_beam_search; do + log "$method" + + ./pruned_transducer_stateless7_streaming/pretrained.py \ + --method $method \ + --beam-size 4 \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p pruned_transducer_stateless7_streaming/exp + ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_streaming/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh pruned_transducer_stateless7_streaming/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + num_decode_stream=200 + + for method in greedy_search fast_beam_search modified_beam_search; do + log "decoding with $method" + + ./pruned_transducer_stateless7_streaming/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --max-duration $max_duration \ + --decode-chunk-len 32 \ + --exp-dir pruned_transducer_stateless7_streaming/exp + done + + for method in greedy_search fast_beam_search modified_beam_search; do + log "Decoding with $method" + + ./pruned_transducer_stateless7_streaming/streaming_decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --decode-chunk-len 32 \ + --num-decode-streams $num_decode_stream + --exp-dir pruned_transducer_stateless7_streaming/exp + done + + rm pruned_transducer_stateless7_streaming/exp/*.pt +fi diff --git a/.github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh b/.github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh new file mode 100755 index 000000000..e782b8425 --- /dev/null +++ b/.github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh @@ -0,0 +1,116 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14 + +log "Downloading pre-trained model from $repo_url" +git lfs install +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless8/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +log "Export to torchscript model" +./pruned_transducer_stateless8/export.py \ + --exp-dir $repo/exp \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --use-averaged-model false \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.script()" + +./pruned_transducer_stateless8/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +for sym in 1 2 3; do + log "Greedy search with --max-sym-per-frame $sym" + + ./pruned_transducer_stateless8/pretrained.py \ + --method greedy_search \ + --max-sym-per-frame $sym \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +for method in modified_beam_search beam_search fast_beam_search; do + log "$method" + + ./pruned_transducer_stateless8/pretrained.py \ + --method $method \ + --beam-size 4 \ + --checkpoint $repo/exp/pretrained.pt \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p pruned_transducer_stateless8/exp + ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless8/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh pruned_transducer_stateless8/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in greedy_search fast_beam_search modified_beam_search; do + log "Decoding with $method" + + ./pruned_transducer_stateless8/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --max-duration $max_duration \ + --exp-dir pruned_transducer_stateless8/exp + done + + rm pruned_transducer_stateless8/exp/*.pt +fi diff --git a/.github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh b/.github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh new file mode 100755 index 000000000..77f28b054 --- /dev/null +++ b/.github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh @@ -0,0 +1,103 @@ +#!/usr/bin/env bash + +set -e + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +cd egs/librispeech/ASR + +repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08 + +log "Downloading pre-trained model from $repo_url" +GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url +repo=$(basename $repo_url) + +log "Display test files" +tree $repo/ +soxi $repo/test_wavs/*.wav +ls -lh $repo/test_wavs/*.wav + +pushd $repo/exp +git lfs pull --include "data/lang_bpe_500/3gram.pt" +git lfs pull --include "data/lang_bpe_500/4gram.pt" +git lfs pull --include "data/lang_bpe_500/L.pt" +git lfs pull --include "data/lang_bpe_500/LG.pt" +git lfs pull --include "data/lang_bpe_500/Linv.pt" +git lfs pull --include "data/lang_bpe_500/bpe.model" +git lfs pull --include "exp/cpu_jit.pt" +git lfs pull --include "exp/pretrained.pt" +ln -s pretrained.pt epoch-99.pt +ls -lh *.pt +popd + +log "Export to torchscript model" +./zipformer_mmi/export.py \ + --exp-dir $repo/exp \ + --use-averaged-model false \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --epoch 99 \ + --avg 1 \ + --jit 1 + +ls -lh $repo/exp/*.pt + +log "Decode with models exported by torch.jit.script()" + +./zipformer_mmi/jit_pretrained.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --nn-model-filename $repo/exp/cpu_jit.pt \ + --lang-dir $repo/data/lang_bpe_500 \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav + +for method in 1best nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do + log "$method" + + ./zipformer_mmi/pretrained.py \ + --method $method \ + --checkpoint $repo/exp/pretrained.pt \ + --lang-dir $repo/data/lang_bpe_500 \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + $repo/test_wavs/1089-134686-0001.wav \ + $repo/test_wavs/1221-135766-0001.wav \ + $repo/test_wavs/1221-135766-0002.wav +done + + +echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}" +echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}" +if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then + mkdir -p zipformer_mmi/exp + ln -s $PWD/$repo/exp/pretrained.pt zipformer_mmi/exp/epoch-999.pt + ln -s $PWD/$repo/data/lang_bpe_500 data/ + + ls -lh data + ls -lh zipformer_mmi/exp + + log "Decoding test-clean and test-other" + + # use a small value for decoding with CPU + max_duration=100 + + for method in 1best nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do + log "Decoding with $method" + + ./zipformer_mmi/decode.py \ + --decoding-method $method \ + --epoch 999 \ + --avg 1 \ + --use-averaged-model 0 \ + --nbest-scale 1.2 \ + --hp-scale 1.0 \ + --max-duration $max_duration \ + --lang-dir $repo/data/lang_bpe_500 \ + --exp-dir zipformer_mmi/exp + done + + rm zipformer_mmi/exp/*.pt +fi diff --git a/.github/workflows/build-doc.yml b/.github/workflows/build-doc.yml index dd0969f51..d7fe2c964 100644 --- a/.github/workflows/build-doc.yml +++ b/.github/workflows/build-doc.yml @@ -26,6 +26,10 @@ on: pull_request: types: [labeled] +concurrency: + group: build_doc-${{ github.ref }} + cancel-in-progress: true + jobs: build-doc: if: github.event.label.name == 'doc' || github.event_name == 'push' diff --git a/.github/workflows/run-aishell-2022-06-20.yml b/.github/workflows/run-aishell-2022-06-20.yml index e46b01a08..1865a0da8 100644 --- a/.github/workflows/run-aishell-2022-06-20.yml +++ b/.github/workflows/run-aishell-2022-06-20.yml @@ -34,6 +34,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_aishell_2022_06_20-${{ github.ref }} + cancel-in-progress: true + jobs: run_aishell_2022_06_20: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-gigaspeech-2022-05-13.yml b/.github/workflows/run-gigaspeech-2022-05-13.yml index c631927fa..e438c5dba 100644 --- a/.github/workflows/run-gigaspeech-2022-05-13.yml +++ b/.github/workflows/run-gigaspeech-2022-05-13.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_gigaspeech_2022_05_13-${{ github.ref }} + cancel-in-progress: true + jobs: run_gigaspeech_2022_05_13: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-2022-03-12.yml b/.github/workflows/run-librispeech-2022-03-12.yml index 5df710006..3ba6850cd 100644 --- a/.github/workflows/run-librispeech-2022-03-12.yml +++ b/.github/workflows/run-librispeech-2022-03-12.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_2022_03_12-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_2022_03_12: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-2022-04-29.yml b/.github/workflows/run-librispeech-2022-04-29.yml index 24c062442..595b410b8 100644 --- a/.github/workflows/run-librispeech-2022-04-29.yml +++ b/.github/workflows/run-librispeech-2022-04-29.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_2022_04_29-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_2022_04_29: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-2022-05-13.yml b/.github/workflows/run-librispeech-2022-05-13.yml index 29215ec25..eb0b06a2d 100644 --- a/.github/workflows/run-librispeech-2022-05-13.yml +++ b/.github/workflows/run-librispeech-2022-05-13.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_2022_05_13-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_2022_05_13: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-2022-11-11-stateless7.yml b/.github/workflows/run-librispeech-2022-11-11-stateless7.yml new file mode 100644 index 000000000..7694e8bf5 --- /dev/null +++ b/.github/workflows/run-librispeech-2022-11-11-stateless7.yml @@ -0,0 +1,159 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-11-11-stateless7 +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_librispeech_2022_11_11_zipformer-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_librispeech_2022_11_11_zipformer: + if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-pruned-transducer-stateless7-2022-11-11.sh + + - name: Display decoding results for librispeech pruned_transducer_stateless7 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./pruned_transducer_stateless7/exp + + cd pruned_transducer_stateless7 + echo "results for pruned_transducer_stateless7" + echo "===greedy search===" + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===fast_beam_search===" + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===modified beam search===" + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech pruned_transducer_stateless7 + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-2022-11-11 + path: egs/librispeech/ASR/pruned_transducer_stateless7/exp/ diff --git a/.github/workflows/run-librispeech-2022-11-14-stateless8.yml b/.github/workflows/run-librispeech-2022-11-14-stateless8.yml new file mode 100644 index 000000000..acb11a8f4 --- /dev/null +++ b/.github/workflows/run-librispeech-2022-11-14-stateless8.yml @@ -0,0 +1,159 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-11-14-stateless8 +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_librispeech_2022_11_14_zipformer_stateless8-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_librispeech_2022_11_14_zipformer_stateless8: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-pruned-transducer-stateless8-2022-11-14.sh + + - name: Display decoding results for librispeech pruned_transducer_stateless8 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./pruned_transducer_stateless8/exp + + cd pruned_transducer_stateless8 + echo "results for pruned_transducer_stateless8" + echo "===greedy search===" + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===fast_beam_search===" + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===modified beam search===" + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech pruned_transducer_stateless8 + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless8-2022-11-14 + path: egs/librispeech/ASR/pruned_transducer_stateless8/exp/ diff --git a/.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml b/.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml new file mode 100644 index 000000000..ccd8d50d0 --- /dev/null +++ b/.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml @@ -0,0 +1,163 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-12-01-stateless7-ctc +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +jobs: + run_librispeech_2022_11_11_zipformer: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh + + - name: Display decoding results for librispeech pruned_transducer_stateless7_ctc + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./pruned_transducer_stateless7_ctc/exp + + cd pruned_transducer_stateless7_ctc + echo "results for pruned_transducer_stateless7_ctc" + echo "===greedy search===" + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===fast_beam_search===" + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===modified beam search===" + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===ctc decoding===" + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===1best===" + find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech pruned_transducer_stateless7_ctc + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-ctc-2022-12-01 + path: egs/librispeech/ASR/pruned_transducer_stateless7_ctc/exp/ diff --git a/.github/workflows/run-librispeech-2022-12-08-zipformer-mmi.yml b/.github/workflows/run-librispeech-2022-12-08-zipformer-mmi.yml new file mode 100644 index 000000000..5472ca59b --- /dev/null +++ b/.github/workflows/run-librispeech-2022-12-08-zipformer-mmi.yml @@ -0,0 +1,167 @@ +# Copyright 2022 Zengwei Yao + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-12-08-zipformer-mmi +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_librispeech_2022_12_08_zipformer-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_librispeech_2022_12_08_zipformer: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-zipformer-mmi-2022-12-08.sh + + - name: Display decoding results for librispeech zipformer-mmi + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./zipformer-mmi/exp + + cd zipformer-mmi + echo "results for zipformer-mmi" + echo "===1best===" + find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===nbest===" + find exp/nbest -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/nbest -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===nbest-rescoring-LG===" + find exp/nbest-rescoring-LG -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/nbest-rescoring-LG -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===nbest-rescoring-3-gram===" + find exp/nbest-rescoring-3-gram -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/nbest-rescoring-3-gram -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===nbest-rescoring-4-gram===" + find exp/nbest-rescoring-4-gram -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/nbest-rescoring-4-gram -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech zipformer-mmi + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-zipformer_mmi-2022-12-08 + path: egs/librispeech/ASR/zipformer_mmi/exp/ diff --git a/.github/workflows/run-librispeech-2022-12-15-stateless7-ctc-bs.yml b/.github/workflows/run-librispeech-2022-12-15-stateless7-ctc-bs.yml new file mode 100644 index 000000000..6e2b40cf3 --- /dev/null +++ b/.github/workflows/run-librispeech-2022-12-15-stateless7-ctc-bs.yml @@ -0,0 +1,163 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-12-15-stateless7-ctc-bs +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +jobs: + run_librispeech_2022_12_15_zipformer_ctc_bs: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event.label.name == 'blank-skip' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-bs-2022-12-15.sh + + - name: Display decoding results for librispeech pruned_transducer_stateless7_ctc_bs + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./pruned_transducer_stateless7_ctc_bs/exp + + cd pruned_transducer_stateless7_ctc_bs + echo "results for pruned_transducer_stateless7_ctc_bs" + echo "===greedy search===" + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===fast_beam_search===" + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===modified beam search===" + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===ctc decoding===" + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===1best===" + find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech pruned_transducer_stateless7_ctc_bs + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-ctc-bs-2022-12-15 + path: egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/exp/ diff --git a/.github/workflows/run-librispeech-2022-12-29-stateless7-streaming.yml b/.github/workflows/run-librispeech-2022-12-29-stateless7-streaming.yml new file mode 100644 index 000000000..6dd93946a --- /dev/null +++ b/.github/workflows/run-librispeech-2022-12-29-stateless7-streaming.yml @@ -0,0 +1,172 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-2022-12-29-stateless7-streaming +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_librispeech_2022_12_29_zipformer_streaming-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_librispeech_2022_12_29_zipformer_streaming: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event.label.name == 'streaming-zipformer' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.sh + + - name: Display decoding results for librispeech pruned_transducer_stateless7_streaming + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./pruned_transducer_stateless7_streaming/exp + + cd pruned_transducer_stateless7_streaming + echo "results for pruned_transducer_stateless7_streaming" + echo "===greedy search===" + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===fast_beam_search===" + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===modified beam search===" + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===streaming greedy search===" + find exp/streaming/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/streaming/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===streaming fast_beam_search===" + find exp/streaming/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/streaming/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===streaming modified beam search===" + find exp/streaming/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/streaming/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + + - name: Upload decoding results for librispeech pruned_transducer_stateless7_streaming + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-streaming-2022-12-29 + path: egs/librispeech/ASR/pruned_transducer_stateless7_streaming/exp/ diff --git a/.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml b/.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml new file mode 100644 index 000000000..d763fb1c5 --- /dev/null +++ b/.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml @@ -0,0 +1,155 @@ +# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-librispeech-conformer-ctc3-2022-11-28 +# zipformer + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_librispeech_2022_11_28_conformer_ctc3-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_librispeech_2022_11_28_conformer_ctc3: + if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Cache LibriSpeech test-clean and test-other datasets + id: libri-test-clean-and-test-other-data + uses: actions/cache@v2 + with: + path: | + ~/tmp/download + key: cache-libri-test-clean-and-test-other + + - name: Download LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh + + - name: Prepare manifests for LibriSpeech test-clean and test-other + shell: bash + run: | + .github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh + + - name: Cache LibriSpeech test-clean and test-other fbank features + id: libri-test-clean-and-test-other-fbank + uses: actions/cache@v2 + with: + path: | + ~/tmp/fbank-libri + key: cache-libri-fbank-test-clean-and-test-other-v2 + + - name: Compute fbank for LibriSpeech test-clean and test-other + if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh + + - name: Display decoding results for librispeech conformer_ctc3 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + shell: bash + run: | + cd egs/librispeech/ASR/ + tree ./conformer_ctc3/exp + + cd conformer_ctc3 + echo "results for conformer_ctc3" + echo "===ctc-decoding===" + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + echo "===1best===" + find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Upload decoding results for librispeech conformer_ctc3 + uses: actions/upload-artifact@v2 + if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' + with: + name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-conformer_ctc3-2022-11-28 + path: egs/librispeech/ASR/conformer_ctc3/exp/ diff --git a/.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml b/.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml new file mode 100644 index 000000000..b9a1582c4 --- /dev/null +++ b/.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml @@ -0,0 +1,77 @@ +name: run-librispeech-conv-emformer-transducer-stateless2-2022-12-05 + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +jobs: + run_librispeech_conv_emformer_transducer_stateless2_2022_12_05: + if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: [3.8] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Cache kaldifeat + id: my-cache + uses: actions/cache@v2 + with: + path: | + ~/tmp/kaldifeat + key: cache-tmp-${{ matrix.python-version }}-2022-09-25 + + - name: Install kaldifeat + if: steps.my-cache.outputs.cache-hit != 'true' + shell: bash + run: | + .github/scripts/install-kaldifeat.sh + + - name: Inference with pre-trained model + shell: bash + env: + GITHUB_EVENT_NAME: ${{ github.event_name }} + GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} + run: | + mkdir -p egs/librispeech/ASR/data + ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank + ls -lh egs/librispeech/ASR/data/* + + sudo apt-get -qq install git-lfs tree sox + export PYTHONPATH=$PWD:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH + export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH + + .github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh diff --git a/.github/workflows/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml b/.github/workflows/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml index dd67771ba..3752f67e3 100644 --- a/.github/workflows/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml +++ b/.github/workflows/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml @@ -16,9 +16,13 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_lstm_transducer_stateless2_2022_09_03-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_lstm_transducer_stateless2_2022_09_03: - if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule' + if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule' runs-on: ${{ matrix.os }} strategy: matrix: @@ -107,7 +111,7 @@ jobs: export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH - .github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml + .github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh - name: Display decoding results for lstm_transducer_stateless2 if: github.event_name == 'schedule' @@ -128,9 +132,32 @@ jobs: find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + - name: Display decoding results for lstm_transducer_stateless2 + if: github.event.label.name == 'shallow-fusion' + shell: bash + run: | + cd egs/librispeech/ASR + tree lstm_transducer_stateless2/exp + cd lstm_transducer_stateless2/exp + echo "===modified_beam_search_lm_shallow_fusion===" + echo "===Using RNNLM===" + find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + + - name: Display decoding results for lstm_transducer_stateless2 + if: github.event.label.name == 'LODR' + shell: bash + run: | + cd egs/librispeech/ASR + tree lstm_transducer_stateless2/exp + cd lstm_transducer_stateless2/exp + echo "===modified_beam_search_rnnlm_LODR===" + find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 + find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 + - name: Upload decoding results for lstm_transducer_stateless2 uses: actions/upload-artifact@v2 - if: github.event_name == 'schedule' + if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR' with: name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03 path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/ diff --git a/.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml b/.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml index 66a2c240b..2c2bcab0c 100644 --- a/.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml +++ b/.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_pruned_transducer_stateless3_2022_05_13-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_pruned_transducer_stateless3_2022_05_13: if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-streaming-transducer-stateless2-2022-06-26.yml b/.github/workflows/run-librispeech-streaming-transducer-stateless2-2022-06-26.yml index 55428861c..ac7e58b20 100644 --- a/.github/workflows/run-librispeech-streaming-transducer-stateless2-2022-06-26.yml +++ b/.github/workflows/run-librispeech-streaming-transducer-stateless2-2022-06-26.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_streaming_2022_06_26-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_streaming_2022_06_26: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-librispeech-transducer-stateless2-2022-04-19.yml b/.github/workflows/run-librispeech-transducer-stateless2-2022-04-19.yml index f520405e1..575727e22 100644 --- a/.github/workflows/run-librispeech-transducer-stateless2-2022-04-19.yml +++ b/.github/workflows/run-librispeech-transducer-stateless2-2022-04-19.yml @@ -33,6 +33,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_librispeech_2022_04_19-${{ github.ref }} + cancel-in-progress: true + jobs: run_librispeech_2022_04_19: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-pretrained-conformer-ctc.yml b/.github/workflows/run-pretrained-conformer-ctc.yml index 9bc6a481f..7dbfd2bd9 100644 --- a/.github/workflows/run-pretrained-conformer-ctc.yml +++ b/.github/workflows/run-pretrained-conformer-ctc.yml @@ -23,6 +23,10 @@ on: pull_request: types: [labeled] +concurrency: + group: run_pre_trained_conformer_ctc-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_conformer_ctc: if: github.event.label.name == 'ready' || github.event_name == 'push' diff --git a/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml b/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml index 7a0f30b0f..d6b3de8d4 100644 --- a/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml +++ b/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml @@ -32,6 +32,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml b/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml index 797f3fe50..749fb3fca 100644 --- a/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml +++ b/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml @@ -32,6 +32,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml b/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml index 29e665881..92bf6feb8 100644 --- a/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml +++ b/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml @@ -23,6 +23,10 @@ on: pull_request: types: [labeled] +concurrency: + group: run_pre_trained_transducer_stateless_modified_2_aishell-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer_stateless_modified_2_aishell: if: github.event.label.name == 'ready' || github.event_name == 'push' diff --git a/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml b/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml index 6193f28e7..e51da8bd8 100644 --- a/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml +++ b/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml @@ -23,6 +23,10 @@ on: pull_request: types: [labeled] +concurrency: + group: run_pre_trained_transducer_stateless_modified_aishell-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer_stateless_modified_aishell: if: github.event.label.name == 'ready' || github.event_name == 'push' diff --git a/.github/workflows/run-pretrained-transducer-stateless.yml b/.github/workflows/run-pretrained-transducer-stateless.yml index 32208076c..2103d0510 100644 --- a/.github/workflows/run-pretrained-transducer-stateless.yml +++ b/.github/workflows/run-pretrained-transducer-stateless.yml @@ -32,6 +32,10 @@ on: # nightly build at 15:50 UTC time every day - cron: "50 15 * * *" +concurrency: + group: run_pre_trained_transducer_stateless-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer_stateless: if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' diff --git a/.github/workflows/run-pretrained-transducer.yml b/.github/workflows/run-pretrained-transducer.yml index 965d0f655..902319b55 100644 --- a/.github/workflows/run-pretrained-transducer.yml +++ b/.github/workflows/run-pretrained-transducer.yml @@ -23,6 +23,10 @@ on: pull_request: types: [labeled] +concurrency: + group: run_pre_trained_transducer-${{ github.ref }} + cancel-in-progress: true + jobs: run_pre_trained_transducer: if: github.event.label.name == 'ready' || github.event_name == 'push' diff --git a/.github/workflows/run-ptb-rnn-lm.yml b/.github/workflows/run-ptb-rnn-lm.yml new file mode 100644 index 000000000..47ed958f2 --- /dev/null +++ b/.github/workflows/run-ptb-rnn-lm.yml @@ -0,0 +1,71 @@ +name: run-ptb-rnn-lm-training + +on: + push: + branches: + - master + pull_request: + types: [labeled] + + schedule: + # minute (0-59) + # hour (0-23) + # day of the month (1-31) + # month (1-12) + # day of the week (0-6) + # nightly build at 15:50 UTC time every day + - cron: "50 15 * * *" + +concurrency: + group: run_ptb_rnn_lm_training-${{ github.ref }} + cancel-in-progress: true + +jobs: + run_ptb_rnn_lm_training: + if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule' + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + python-version: ["3.8"] + + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + cache-dependency-path: '**/requirements-ci.txt' + + - name: Install Python dependencies + run: | + grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install + pip uninstall -y protobuf + pip install --no-binary protobuf protobuf + + - name: Prepare data + shell: bash + run: | + export PYTHONPATH=$PWD:$PYTHONPATH + cd egs/ptb/LM + ./prepare.sh + + - name: Run training + shell: bash + run: | + export PYTHONPATH=$PWD:$PYTHONPATH + cd egs/ptb/LM + ./train-rnn-lm.sh --world-size 1 --num-epochs 5 --use-epoch 4 --use-avg 2 + + - name: Upload pretrained models + uses: actions/upload-artifact@v2 + if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule' + with: + name: python-${{ matrix.python-version }}-ubuntu-rnn-lm-ptb + path: egs/ptb/LM/my-rnnlm-exp/ diff --git a/.github/workflows/run-wenetspeech-pruned-transducer-stateless2.yml b/.github/workflows/run-wenetspeech-pruned-transducer-stateless2.yml index d96a3bfe6..8a7be0b80 100644 --- a/.github/workflows/run-wenetspeech-pruned-transducer-stateless2.yml +++ b/.github/workflows/run-wenetspeech-pruned-transducer-stateless2.yml @@ -23,8 +23,12 @@ on: pull_request: types: [labeled] +concurrency: + group: run_wenetspeech_pruned_transducer_stateless2-${{ github.ref }} + cancel-in-progress: true + jobs: - run_librispeech_pruned_transducer_stateless3_2022_05_13: + run_wenetspeech_pruned_transducer_stateless2: if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech' runs-on: ${{ matrix.os }} strategy: diff --git a/.github/workflows/run-yesno-recipe.yml b/.github/workflows/run-yesno-recipe.yml index ce77c47df..ed343aee5 100644 --- a/.github/workflows/run-yesno-recipe.yml +++ b/.github/workflows/run-yesno-recipe.yml @@ -21,11 +21,15 @@ on: branches: - master pull_request: - types: [labeled] + branches: + - master + +concurrency: + group: run-yesno-recipe-${{ github.ref }} + cancel-in-progress: true jobs: run-yesno-recipe: - if: github.event.label.name == 'ready' || github.event_name == 'push' runs-on: ${{ matrix.os }} strategy: matrix: @@ -61,7 +65,7 @@ jobs: - name: Install Python dependencies run: | - grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install + grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install pip uninstall -y protobuf pip install --no-binary protobuf protobuf diff --git a/.github/workflows/style_check.yml b/.github/workflows/style_check.yml index 90459bc1c..fc1dcbfd4 100644 --- a/.github/workflows/style_check.yml +++ b/.github/workflows/style_check.yml @@ -24,6 +24,10 @@ on: branches: - master +concurrency: + group: style_check-${{ github.ref }} + cancel-in-progress: true + jobs: style_check: runs-on: ${{ matrix.os }} @@ -45,17 +49,18 @@ jobs: - name: Install Python dependencies run: | - python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2 click==8.0.4 - # See https://github.com/psf/black/issues/2964 - # The version of click should be selected from 8.0.0, 8.0.1, 8.0.2, 8.0.3, and 8.0.4 + python3 -m pip install --upgrade pip black==22.3.0 flake8==5.0.4 click==8.1.0 + # Click issue fixed in https://github.com/psf/black/pull/2966 - name: Run flake8 shell: bash working-directory: ${{github.workspace}} run: | # stop the build if there are Python syntax errors or undefined names - flake8 . --count --show-source --statistics - flake8 . + flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide + flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 \ + --statistics --extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503 - name: Run black shell: bash diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 1583926ec..c062a2a3d 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -21,26 +21,23 @@ on: branches: - master pull_request: - types: [labeled] + branches: + - master + +concurrency: + group: test-${{ github.ref }} + cancel-in-progress: true jobs: test: - if: github.event.label.name == 'ready' || github.event_name == 'push' runs-on: ${{ matrix.os }} strategy: matrix: - # os: [ubuntu-18.04, macos-10.15] - # disable macOS test for now. - os: [ubuntu-18.04] - python-version: [3.7, 3.8] - torch: ["1.8.0", "1.11.0"] - torchaudio: ["0.8.0", "0.11.0"] - k2-version: ["1.15.1.dev20220427"] - exclude: - - torch: "1.8.0" - torchaudio: "0.11.0" - - torch: "1.11.0" - torchaudio: "0.8.0" + os: [ubuntu-latest] + python-version: ["3.8"] + torch: ["1.10.0"] + torchaudio: ["0.10.0"] + k2-version: ["1.23.2.dev20221201"] fail-fast: false @@ -67,11 +64,7 @@ jobs: # numpy 1.20.x does not support python 3.6 pip install numpy==1.19 pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html - if [[ ${{ matrix.torchaudio }} == "0.11.0" ]]; then - pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html - else - pip install torchaudio==${{ matrix.torchaudio }} - fi + pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/ pip install git+https://github.com/lhotse-speech/lhotse @@ -79,6 +72,8 @@ jobs: pip uninstall -y protobuf pip install --no-binary protobuf protobuf + pip install kaldifst + pip install onnxruntime pip install -r requirements.txt - name: Install graphviz @@ -118,19 +113,20 @@ jobs: cd ../pruned_transducer_stateless4 pytest -v -s + cd ../pruned_transducer_stateless7 + pytest -v -s + cd ../transducer_stateless pytest -v -s - if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then - cd ../transducer - pytest -v -s + cd ../transducer + pytest -v -s - cd ../transducer_stateless2 - pytest -v -s + cd ../transducer_stateless2 + pytest -v -s - cd ../transducer_lstm - pytest -v -s - fi + cd ../transducer_lstm + pytest -v -s - name: Run tests if: startsWith(matrix.os, 'macos') @@ -161,13 +157,11 @@ jobs: cd ../transducer_stateless pytest -v -s - if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then - cd ../transducer - pytest -v -s + cd ../transducer + pytest -v -s - cd ../transducer_stateless2 - pytest -v -s + cd ../transducer_stateless2 + pytest -v -s - cd ../transducer_lstm - pytest -v -s - fi + cd ../transducer_lstm + pytest -v -s diff --git a/.gitignore b/.gitignore index 406deff6a..8af05d884 100644 --- a/.gitignore +++ b/.gitignore @@ -11,5 +11,26 @@ log *.bak *-bak *bak.py + +# Ignore Mac system files +.DS_store + +# Ignore node_modules folder +node_modules + +# ignore .nfs + +.nfs* + +# Ignore all text files +*.txt + +# Ignore files related to API keys +.env + +# Ignore SASS config files +.sass-cache + *.param *.bin +.DS_Store diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 446ba0fe7..5cb213327 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,26 +1,38 @@ repos: - repo: https://github.com/psf/black - rev: 21.6b0 + rev: 22.3.0 hooks: - id: black - args: [--line-length=80] - additional_dependencies: ['click==8.0.1'] + args: ["--line-length=88"] + additional_dependencies: ['click==8.1.0'] exclude: icefall\/__init__\.py - repo: https://github.com/PyCQA/flake8 - rev: 3.9.2 + rev: 5.0.4 hooks: - id: flake8 - args: [--max-line-length=80] + args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503"] + + # What are we ignoring here? + # E203: whitespace before ':' + # E266: too many leading '#' for block comment + # E501: line too long + # F401: module imported but unused + # E402: module level import not at top of file + # F403: 'from module import *' used; unable to detect undefined names + # F841: local variable is assigned to but never used + # W503: line break before binary operator + # In addition, the default ignore list is: + # E121,E123,E126,E226,E24,E704,W503,W504 - repo: https://github.com/pycqa/isort - rev: 5.9.2 + rev: 5.10.1 hooks: - id: isort - args: [--profile=black, --line-length=80] + args: ["--profile=black"] - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.0.1 + rev: v4.2.0 hooks: - id: check-executables-have-shebangs - id: end-of-file-fixer diff --git a/README.md b/README.md index 7213d8460..83ce0ac16 100644 --- a/README.md +++ b/README.md @@ -82,7 +82,7 @@ The WER for this model is: |-----|------------|------------| | WER | 6.59 | 17.69 | -We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing) +We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-iSfQMp2So-We_Uu49N4AAcMInB72u9z?usp=sharing) #### Transducer: Conformer encoder + LSTM decoder @@ -162,7 +162,7 @@ The CER for this model is: |-----|-------| | CER | 10.16 | -We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qULaGvXq7PCu_P61oubfz9b53JzY4H3z?usp=sharing) +We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jbyzYq3ytm6j2nlEt-diQm-6QVWyDDEa?usp=sharing) ### TIMIT diff --git a/docker/README.md b/docker/README.md index 0a39b7a49..c14b9bf75 100644 --- a/docker/README.md +++ b/docker/README.md @@ -2,7 +2,7 @@ 2 sets of configuration are provided - (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8, and (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8. -If your NVIDIA driver supports CUDA Version: 11.3, please go for case (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8. +If your NVIDIA driver supports CUDA Version: 11.3, please go for case (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8. Otherwise, since the older PyTorch images are not updated with the [apt-key rotation by NVIDIA](https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key), you have to go for case (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8. Ensure that your NVDIA driver supports at least CUDA 11.0. @@ -10,7 +10,7 @@ You can check the highest CUDA version within your NVIDIA driver's support with ```bash $ nvidia-smi -Tue Sep 20 00:26:13 2022 +Tue Sep 20 00:26:13 2022 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.119.03 Driver Version: 450.119.03 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ @@ -26,7 +26,7 @@ Tue Sep 20 00:26:13 2022 | 41% 30C P8 11W / 280W | 6MiB / 24220MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ - + +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | @@ -40,15 +40,15 @@ Tue Sep 20 00:26:13 2022 ``` ## Building images locally -If your environment requires a proxy to access the Internet, remember to add those information into the Dockerfile directly. -For most cases, you can uncomment these lines in the Dockerfile and add in your proxy details. +If your environment requires a proxy to access the Internet, remember to add those information into the Dockerfile directly. +For most cases, you can uncomment these lines in the Dockerfile and add in your proxy details. ```dockerfile ENV http_proxy=http://aaa.bb.cc.net:8080 \ https_proxy=http://aaa.bb.cc.net:8080 ``` -Then, proceed with these commands. +Then, proceed with these commands. ### If you are case (a), i.e. your NVIDIA driver supports CUDA version >= 11.3: @@ -72,23 +72,23 @@ docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all icefall ``` ### Tips: -1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/docker}:{/path/in/host/machine}`. +1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/host/machine}:{/path/in/docker}`. 2. Also, if your environment requires a proxy, this would be a good time to add it in too: `-e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080`. -Overall, your docker run command should look like this. +Overall, your docker run command should look like this. ```bash -docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/docker}:{/path/in/host/machine} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1 +docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/host/machine}:{/path/in/docker} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1 ``` You can explore more docker run options [here](https://docs.docker.com/engine/reference/commandline/run/) to suit your environment. ### Linking to icefall in your host machine -If you already have icefall downloaded onto your host machine, you can use that repository instead so that changes in your code are visible inside and outside of the container. +If you already have icefall downloaded onto your host machine, you can use that repository instead so that changes in your code are visible inside and outside of the container. -Note: Remember to set the -v flag above during the first run of the container, as that is the only way for your container to access your host machine. +Note: Remember to set the -v flag above during the first run of the container, as that is the only way for your container to access your host machine. Warning: Check that the icefall in your host machine is visible from within your container before proceeding to the commands below. Use these commands once you are inside the container. @@ -103,7 +103,7 @@ ln -s {/path/in/docker/to/icefall} /workspace/icefall docker exec -it icefall /bin/bash ``` -## Restarting a killed container that has been run before. +## Restarting a killed container that has been run before. ```bash docker start -ai icefall ``` @@ -111,4 +111,4 @@ docker start -ai icefall ## Sample usage of the CPU based images: ```bash docker run -it icefall /bin/bash -``` +``` diff --git a/docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8/Dockerfile b/docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8/Dockerfile index db4dda864..ff9e40604 100644 --- a/docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8/Dockerfile +++ b/docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8/Dockerfile @@ -1,7 +1,7 @@ FROM pytorch/pytorch:1.12.1-cuda11.3-cudnn8-devel # ENV http_proxy=http://aaa.bbb.cc.net:8080 \ -# https_proxy=http://aaa.bbb.cc.net:8080 +# https_proxy=http://aaa.bbb.cc.net:8080 # install normal source RUN apt-get update && \ @@ -38,10 +38,10 @@ RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \ rm -rf cmake-3.18.0.tar.gz && \ find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ cd - - -# flac + +# flac RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \ - cd /opt && \ + cd /opt && \ xz -d flac-1.3.2.tar.xz && \ tar -xvf flac-1.3.2.tar && \ cd flac-1.3.2 && \ @@ -49,10 +49,11 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && make && make install && \ rm -rf flac-1.3.2.tar && \ find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ - cd - + cd - + +RUN conda install -y -c pytorch torchaudio=0.12 && \ + pip install graphviz -RUN pip install kaldiio graphviz && \ - conda install -y -c pytorch torchaudio #install k2 from source RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \ @@ -67,6 +68,7 @@ RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \ cd /workspace/icefall && \ pip install -r requirements.txt +RUN pip install kaldifeat ENV PYTHONPATH /workspace/icefall:$PYTHONPATH -WORKDIR /workspace/icefall \ No newline at end of file +WORKDIR /workspace/icefall diff --git a/docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8/Dockerfile b/docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8/Dockerfile index 7a14a00ad..5c7423fa5 100644 --- a/docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8/Dockerfile +++ b/docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8/Dockerfile @@ -1,12 +1,12 @@ FROM pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel # ENV http_proxy=http://aaa.bbb.cc.net:8080 \ -# https_proxy=http://aaa.bbb.cc.net:8080 +# https_proxy=http://aaa.bbb.cc.net:8080 RUN rm /etc/apt/sources.list.d/cuda.list && \ rm /etc/apt/sources.list.d/nvidia-ml.list && \ apt-key del 7fa2af80 - + # install normal source RUN apt-get update && \ apt-get install -y --no-install-recommends \ @@ -36,7 +36,7 @@ RUN curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu18 curl -fsSL https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \ echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \ echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \ - rm -rf /var/lib/apt/lists/* && \ + rm -rf /var/lib/apt/lists/* && \ mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \ mv /opt/conda/lib/libcurand.so.10 /opt/libcurand.so.10.bak && \ mv /opt/conda/lib/libcublas.so.11 /opt/libcublas.so.11.bak && \ @@ -56,10 +56,10 @@ RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \ rm -rf cmake-3.18.0.tar.gz && \ find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ cd - - -# flac + +# flac RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \ - cd /opt && \ + cd /opt && \ xz -d flac-1.3.2.tar.xz && \ tar -xvf flac-1.3.2.tar && \ cd flac-1.3.2 && \ @@ -67,10 +67,10 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && make && make install && \ rm -rf flac-1.3.2.tar && \ find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ - cd - + cd - -RUN pip install kaldiio graphviz && \ - conda install -y -c pytorch torchaudio=0.7.1 +RUN conda install -y -c pytorch torchaudio=0.7.1 && \ + pip install graphviz #install k2 from source RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \ @@ -79,7 +79,7 @@ RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \ cd - # install lhotse -RUN pip install git+https://github.com/lhotse-speech/lhotse +RUN pip install git+https://github.com/lhotse-speech/lhotse RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \ cd /workspace/icefall && \ @@ -88,4 +88,3 @@ RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \ ENV PYTHONPATH /workspace/icefall:$PYTHONPATH WORKDIR /workspace/icefall - diff --git a/docs/README.md b/docs/README.md new file mode 100644 index 000000000..3abb38f8b --- /dev/null +++ b/docs/README.md @@ -0,0 +1,24 @@ + +## Usage + +```bash +cd /path/to/icefall/docs +pip install -r requirements.txt +make clean +make html +cd build/html +python3 -m http.server 8000 +``` + +It prints: + +``` +Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ... +``` + +Open your browser and go to to view the generated +documentation. + +Done! + +**Hint**: You can change the port number when starting the server. diff --git a/docs/source/conf.py b/docs/source/conf.py index 221d9d734..ef9fe1445 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -78,3 +78,12 @@ html_context = { } todo_include_todos = True + +rst_epilog = """ +.. _sherpa-ncnn: https://github.com/k2-fsa/sherpa-ncnn +.. _icefall: https://github.com/k2-fsa/icefall +.. _git-lfs: https://git-lfs.com/ +.. _ncnn: https://github.com/tencent/ncnn +.. _LibriSpeech: https://www.openslr.org/12 +.. _musan: http://www.openslr.org/17/ +""" diff --git a/docs/source/contributing/code-style.rst b/docs/source/contributing/code-style.rst index 7d61a3ba1..3baaaeec2 100644 --- a/docs/source/contributing/code-style.rst +++ b/docs/source/contributing/code-style.rst @@ -11,9 +11,9 @@ We use the following tools to make the code style to be as consistent as possibl The following versions of the above tools are used: - - ``black == 12.6b0`` - - ``flake8 == 3.9.2`` - - ``isort == 5.9.2`` + - ``black == 22.3.0`` + - ``flake8 == 5.0.4`` + - ``isort == 5.10.1`` After running the following commands: @@ -54,10 +54,17 @@ it should succeed this time: If you want to check the style of your code before ``git commit``, you can do the following: + .. code-block:: bash + + $ pre-commit install + $ pre-commit run + +Or without installing the pre-commit hooks: + .. code-block:: bash $ cd icefall - $ pip install black==21.6b0 flake8==3.9.2 isort==5.9.2 + $ pip install black==22.3.0 flake8==5.0.4 isort==5.10.1 $ black --check your_changed_file.py $ black your_changed_file.py # modify it in-place $ diff --git a/docs/source/faqs.rst b/docs/source/faqs.rst new file mode 100644 index 000000000..72b0302d7 --- /dev/null +++ b/docs/source/faqs.rst @@ -0,0 +1,107 @@ +Frequently Asked Questions (FAQs) +================================= + +In this section, we collect issues reported by users and post the corresponding +solutions. + + +OSError: libtorch_hip.so: cannot open shared object file: no such file or directory +----------------------------------------------------------------------------------- + +One user is using the following code to install ``torch`` and ``torchaudio``: + +.. code-block:: bash + + pip install \ + torch==1.10.0+cu111 \ + torchvision==0.11.0+cu111 \ + torchaudio==0.10.0 \ + -f https://download.pytorch.org/whl/torch_stable.html + +and it throws the following error when running ``tdnn/train.py``: + +.. code-block:: + + OSError: libtorch_hip.so: cannot open shared object file: no such file or directory + +The fix is to specify the CUDA version while installing ``torchaudio``. That +is, change ``torchaudio==0.10.0`` to ``torchaudio==0.10.0+cu11```. Therefore, +the correct command is: + +.. code-block:: bash + + pip install \ + torch==1.10.0+cu111 \ + torchvision==0.11.0+cu111 \ + torchaudio==0.10.0+cu111 \ + -f https://download.pytorch.org/whl/torch_stable.html + +AttributeError: module 'distutils' has no attribute 'version' +------------------------------------------------------------- + +The error log is: + +.. code-block:: + + Traceback (most recent call last): + File "./tdnn/train.py", line 14, in + from asr_datamodule import YesNoAsrDataModule + File "/home/xxx/code/next-gen-kaldi/icefall/egs/yesno/ASR/tdnn/asr_datamodule.py", line 34, in + from icefall.dataset.datamodule import DataModule + File "/home/xxx/code/next-gen-kaldi/icefall/icefall/__init__.py", line 3, in + from . import ( + File "/home/xxx/code/next-gen-kaldi/icefall/icefall/decode.py", line 23, in + from icefall.utils import add_eos, add_sos, get_texts + File "/home/xxx/code/next-gen-kaldi/icefall/icefall/utils.py", line 39, in + from torch.utils.tensorboard import SummaryWriter + File "/home/xxx/tool/miniconda3/envs/yyy/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 4, in + LooseVersion = distutils.version.LooseVersion + AttributeError: module 'distutils' has no attribute 'version' + +The fix is: + +.. code-block:: bash + + pip uninstall setuptools + + pip install setuptools==58.0.4 + +ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory +-------------------------------------------------------------------------------------------- + +If you are using ``conda`` and encounter the following issue: + +.. code-block:: + + Traceback (most recent call last): + File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 24, in + from _k2 import DeterminizeWeightPushingType + ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory + + During handling of the above exception, another exception occurred: + + Traceback (most recent call last): + File "/k2-dev/yangyifan/icefall/egs/librispeech/ASR/./pruned_transducer_stateless7_ctc_bs/decode.py", line 104, in + import k2 + File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 30, in + raise ImportError( + ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory + Note: If you're using anaconda and importing k2 on MacOS, + you can probably fix this by setting the environment variable: + export DYLD_LIBRARY_PATH=$CONDA_PREFIX/lib/python3.10/site-packages:$DYLD_LIBRARY_PATH + +Please first try to find where ``libpython3.10.so.1.0`` locates. + +For instance, + +.. code-block:: bash + + cd $CONDA_PREFIX/lib + find . -name "libpython*" + +If you are able to find it inside ``$CODNA_PREFIX/lib``, please set the +following environment variable: + +.. code-block:: bash + + export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH diff --git a/docs/source/index.rst b/docs/source/index.rst index be9977ca9..8d76eb68b 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -21,7 +21,16 @@ speech recognition recipes using `k2 `_. :caption: Contents: installation/index + faqs model-export/index + +.. toctree:: + :maxdepth: 3 + recipes/index + +.. toctree:: + :maxdepth: 2 + contributing/index huggingface/index diff --git a/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg b/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg index 534b2e534..3019ff03d 100644 --- a/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg +++ b/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg @@ -1 +1 @@ -k2: >= v1.9k2>= v1.9 \ No newline at end of file +k2: >= v1.9k2>= v1.9 diff --git a/docs/source/installation/images/python-gt-v3.6-blue.svg b/docs/source/installation/images/python-gt-v3.6-blue.svg index 4254dc58a..df677ad09 100644 --- a/docs/source/installation/images/python-gt-v3.6-blue.svg +++ b/docs/source/installation/images/python-gt-v3.6-blue.svg @@ -1 +1 @@ -python: >= 3.6python>= 3.6 \ No newline at end of file +python: >= 3.6python>= 3.6 diff --git a/docs/source/installation/images/torch-gt-v1.6.0-green.svg b/docs/source/installation/images/torch-gt-v1.6.0-green.svg index d3ece9a17..d7007d742 100644 --- a/docs/source/installation/images/torch-gt-v1.6.0-green.svg +++ b/docs/source/installation/images/torch-gt-v1.6.0-green.svg @@ -1 +1 @@ -torch: >= 1.6.0torch>= 1.6.0 \ No newline at end of file +torch: >= 1.6.0torch>= 1.6.0 diff --git a/docs/source/installation/index.rst b/docs/source/installation/index.rst index c4474c3d9..5b9fb2664 100644 --- a/docs/source/installation/index.rst +++ b/docs/source/installation/index.rst @@ -393,6 +393,17 @@ Now let us run the training part: We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU even if there are GPUs available. +.. hint:: + + In case you get a ``Segmentation fault (core dump)`` error, please use: + + .. code-block:: bash + + export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + + See more at `` if you are + interested. + The training log is given below: .. code-block:: diff --git a/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt b/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt new file mode 100644 index 000000000..ecbdd4b31 --- /dev/null +++ b/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt @@ -0,0 +1,21 @@ +2023-01-11 12:15:38,677 INFO [export-for-ncnn.py:220] device: cpu +2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:229] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_v +alid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampl +ing_factor': 4, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type': +'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a34171ed85605b0926eebbd0463d059431f4f74a', 'k2-git-date': 'Wed Dec 14 00:06:38 2022', + 'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-vers +ion': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'fix-stateless3-train-2022-12-27', 'icefall-git-sha1': '530e8a1-dirty', ' +icefall-git-date': 'Tue Dec 27 13:59:18 2022', 'icefall-path': '/star-fj/fangjun/open-source/icefall', 'k2-path': '/star-fj/fangjun/op +en-source/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279 +-k2-train-3-1220120619-7695ff496b-s9n4w', 'IP address': '127.0.0.1'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'exp_dir': PosixPath('icefa +ll-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp'), 'bpe_model': './icefall-asr-librispeech-conv-emformer-transdu +cer-stateless2-2022-07-05//data/lang_bpe_500/bpe.model', 'jit': False, 'context_size': 2, 'use_averaged_model': False, 'encoder_dim': +512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'cnn_module_kernel': 31, 'left_context_length': 32, 'chunk_length' +: 32, 'right_context_length': 8, 'memory_size': 32, 'blank_id': 0, 'vocab_size': 500} +2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:231] About to create model +2023-01-11 12:15:40,053 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-librispeech-conv-emformer-transducer-stateless2-2 +022-07-05/exp/epoch-30.pt +2023-01-11 12:15:40,708 INFO [export-for-ncnn.py:315] Number of model parameters: 75490012 +2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:318] Using torch.jit.trace() +2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:320] Exporting encoder +2023-01-11 12:15:41,682 INFO [export-for-ncnn.py:149] chunk_length: 32, right_context_length: 8 diff --git a/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt b/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt new file mode 100644 index 000000000..347e7e51a --- /dev/null +++ b/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt @@ -0,0 +1,104 @@ +Don't Use GPU. has_gpu: 0, config.use_vulkan_compute: 1 +num encoder conv layers: 88 +num joiner conv layers: 3 +num files: 3 +Processing ../test_wavs/1089-134686-0001.wav +Processing ../test_wavs/1221-135766-0001.wav +Processing ../test_wavs/1221-135766-0002.wav +Processing ../test_wavs/1089-134686-0001.wav +Processing ../test_wavs/1221-135766-0001.wav +Processing ../test_wavs/1221-135766-0002.wav +----------encoder---------- +conv_87 : max = 15.942385 threshold = 15.938493 scale = 7.968131 +conv_88 : max = 35.442448 threshold = 15.549335 scale = 8.167552 +conv_89 : max = 23.228289 threshold = 8.001738 scale = 15.871552 +linear_90 : max = 3.976146 threshold = 1.101789 scale = 115.267128 +linear_91 : max = 6.962030 threshold = 5.162033 scale = 24.602713 +linear_92 : max = 12.323041 threshold = 3.853959 scale = 32.953129 +linear_94 : max = 6.905416 threshold = 4.648006 scale = 27.323545 +linear_93 : max = 6.905416 threshold = 5.474093 scale = 23.200188 +linear_95 : max = 1.888012 threshold = 1.403563 scale = 90.483986 +linear_96 : max = 6.856741 threshold = 5.398679 scale = 23.524273 +linear_97 : max = 9.635942 threshold = 2.613655 scale = 48.590950 +linear_98 : max = 6.460340 threshold = 5.670146 scale = 22.398010 +linear_99 : max = 9.532276 threshold = 2.585537 scale = 49.119396 +linear_101 : max = 6.585871 threshold = 5.719224 scale = 22.205809 +linear_100 : max = 6.585871 threshold = 5.751382 scale = 22.081648 +linear_102 : max = 1.593344 threshold = 1.450581 scale = 87.551147 +linear_103 : max = 6.592681 threshold = 5.705824 scale = 22.257959 +linear_104 : max = 8.752957 threshold = 1.980955 scale = 64.110489 +linear_105 : max = 6.696240 threshold = 5.877193 scale = 21.608953 +linear_106 : max = 9.059659 threshold = 2.643138 scale = 48.048950 +linear_108 : max = 6.975461 threshold = 4.589567 scale = 27.671457 +linear_107 : max = 6.975461 threshold = 6.190381 scale = 20.515701 +linear_109 : max = 3.710759 threshold = 2.305635 scale = 55.082436 +linear_110 : max = 7.531228 threshold = 5.731162 scale = 22.159557 +linear_111 : max = 10.528083 threshold = 2.259322 scale = 56.211544 +linear_112 : max = 8.148807 threshold = 5.500842 scale = 23.087374 +linear_113 : max = 8.592566 threshold = 1.948851 scale = 65.166611 +linear_115 : max = 8.437109 threshold = 5.608947 scale = 22.642395 +linear_114 : max = 8.437109 threshold = 6.193942 scale = 20.503904 +linear_116 : max = 3.966980 threshold = 3.200896 scale = 39.676392 +linear_117 : max = 9.451303 threshold = 6.061664 scale = 20.951344 +linear_118 : max = 12.077262 threshold = 3.965800 scale = 32.023804 +linear_119 : max = 9.671615 threshold = 4.847613 scale = 26.198460 +linear_120 : max = 8.625638 threshold = 3.131427 scale = 40.556595 +linear_122 : max = 10.274080 threshold = 4.888716 scale = 25.978189 +linear_121 : max = 10.274080 threshold = 5.420480 scale = 23.429659 +linear_123 : max = 4.826197 threshold = 3.599617 scale = 35.281532 +linear_124 : max = 11.396383 threshold = 7.325849 scale = 17.335875 +linear_125 : max = 9.337198 threshold = 3.941410 scale = 32.221970 +linear_126 : max = 9.699965 threshold = 4.842878 scale = 26.224073 +linear_127 : max = 8.775370 threshold = 3.884215 scale = 32.696438 +linear_129 : max = 9.872276 threshold = 4.837319 scale = 26.254213 +linear_128 : max = 9.872276 threshold = 7.180057 scale = 17.687883 +linear_130 : max = 4.150427 threshold = 3.454298 scale = 36.765789 +linear_131 : max = 11.112692 threshold = 7.924847 scale = 16.025545 +linear_132 : max = 11.852893 threshold = 3.116593 scale = 40.749626 +linear_133 : max = 11.517084 threshold = 5.024665 scale = 25.275314 +linear_134 : max = 10.683807 threshold = 3.878618 scale = 32.743618 +linear_136 : max = 12.421055 threshold = 6.322729 scale = 20.086264 +linear_135 : max = 12.421055 threshold = 5.309880 scale = 23.917679 +linear_137 : max = 4.827781 threshold = 3.744595 scale = 33.915554 +linear_138 : max = 14.422395 threshold = 7.742882 scale = 16.402161 +linear_139 : max = 8.527538 threshold = 3.866123 scale = 32.849449 +linear_140 : max = 12.128619 threshold = 4.657793 scale = 27.266134 +linear_141 : max = 9.839593 threshold = 3.845993 scale = 33.021378 +linear_143 : max = 12.442304 threshold = 7.099039 scale = 17.889746 +linear_142 : max = 12.442304 threshold = 5.325038 scale = 23.849592 +linear_144 : max = 5.929444 threshold = 5.618206 scale = 22.605080 +linear_145 : max = 13.382126 threshold = 9.321095 scale = 13.625010 +linear_146 : max = 9.894987 threshold = 3.867645 scale = 32.836517 +linear_147 : max = 10.915313 threshold = 4.906028 scale = 25.886522 +linear_148 : max = 9.614287 threshold = 3.908151 scale = 32.496181 +linear_150 : max = 11.724932 threshold = 4.485588 scale = 28.312899 +linear_149 : max = 11.724932 threshold = 5.161146 scale = 24.606939 +linear_151 : max = 7.164453 threshold = 5.847355 scale = 21.719223 +linear_152 : max = 13.086471 threshold = 5.984121 scale = 21.222834 +linear_153 : max = 11.099524 threshold = 3.991601 scale = 31.816805 +linear_154 : max = 10.054585 threshold = 4.489706 scale = 28.286930 +linear_155 : max = 12.389185 threshold = 3.100321 scale = 40.963501 +linear_157 : max = 9.982999 threshold = 5.154796 scale = 24.637253 +linear_156 : max = 9.982999 threshold = 8.537706 scale = 14.875190 +linear_158 : max = 8.420287 threshold = 6.502287 scale = 19.531588 +linear_159 : max = 25.014746 threshold = 9.423280 scale = 13.477261 +linear_160 : max = 45.633553 threshold = 5.715335 scale = 22.220921 +linear_161 : max = 20.371849 threshold = 5.117830 scale = 24.815203 +linear_162 : max = 12.492933 threshold = 3.126283 scale = 40.623318 +linear_164 : max = 20.697504 threshold = 4.825712 scale = 26.317358 +linear_163 : max = 20.697504 threshold = 5.078367 scale = 25.008038 +linear_165 : max = 9.023975 threshold = 6.836278 scale = 18.577358 +linear_166 : max = 34.860619 threshold = 7.259792 scale = 17.493614 +linear_167 : max = 30.380934 threshold = 5.496160 scale = 23.107042 +linear_168 : max = 20.691216 threshold = 4.733317 scale = 26.831076 +linear_169 : max = 9.723948 threshold = 3.952728 scale = 32.129707 +linear_171 : max = 21.034811 threshold = 5.366547 scale = 23.665123 +linear_170 : max = 21.034811 threshold = 5.356277 scale = 23.710501 +linear_172 : max = 10.556884 threshold = 5.729481 scale = 22.166058 +linear_173 : max = 20.033039 threshold = 10.207264 scale = 12.442120 +linear_174 : max = 11.597379 threshold = 2.658676 scale = 47.768131 +----------joiner---------- +linear_2 : max = 19.293503 threshold = 14.305265 scale = 8.877850 +linear_1 : max = 10.812222 threshold = 8.766452 scale = 14.487047 +linear_3 : max = 0.999999 threshold = 0.999755 scale = 127.031174 +ncnn int8 calibration table create success, best wish for your int8 inference has a low accuracy loss...\(^0^)/...233... diff --git a/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt b/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt new file mode 100644 index 000000000..114fe7342 --- /dev/null +++ b/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt @@ -0,0 +1,7 @@ +2023-01-11 14:02:12,216 INFO [streaming-ncnn-decode.py:320] {'tokens': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt', 'encoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin', 'sound_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav'} +T 51 32 +2023-01-11 14:02:13,141 INFO [streaming-ncnn-decode.py:328] Constructing Fbank computer +2023-01-11 14:02:13,151 INFO [streaming-ncnn-decode.py:331] Reading sound files: ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav +2023-01-11 14:02:13,176 INFO [streaming-ncnn-decode.py:336] torch.Size([106000]) +2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:380] ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav +2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:381] AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS diff --git a/docs/source/model-export/export-ncnn.rst b/docs/source/model-export/export-ncnn.rst index 3dbb8b514..ed0264089 100644 --- a/docs/source/model-export/export-ncnn.rst +++ b/docs/source/model-export/export-ncnn.rst @@ -1,12 +1,771 @@ Export to ncnn ============== -We support exporting LSTM transducer models to `ncnn `_. - -Please refer to :ref:`export-model-for-ncnn` for details. +We support exporting both +`LSTM transducer models `_ +and +`ConvEmformer transducer models `_ +to `ncnn `_. We also provide ``_ performing speech recognition using ``ncnn`` with exported models. -It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is -self-contained and can be statically linked to produce a binary containing -everything needed. +It has been tested on Linux, macOS, Windows, ``Android``, and ``Raspberry Pi``. + +`sherpa-ncnn`_ is self-contained and can be statically linked to produce +a binary containing everything needed. Please refer +to its documentation for details: + + - ``_ + + +Export LSTM transducer models +----------------------------- + +Please refer to :ref:`export-lstm-transducer-model-for-ncnn` for details. + + + +Export ConvEmformer transducer models +------------------------------------- + +We use the pre-trained model from the following repository as an example: + + - ``_ + +We will show you step by step how to export it to `ncnn`_ and run it with `sherpa-ncnn`_. + +.. hint:: + + We use ``Ubuntu 18.04``, ``torch 1.10``, and ``Python 3.8`` for testing. + +.. caution:: + + Please use a more recent version of PyTorch. For instance, ``torch 1.8`` + may ``not`` work. + +1. Download the pre-trained model +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. hint:: + + You can also refer to ``_ to download the pre-trained model. + + You have to install `git-lfs`_ before you continue. + +.. code-block:: bash + + cd egs/librispeech/ASR + + GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 + + git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt" + git lfs pull --include "data/lang_bpe_500/bpe.model" + + cd .. + +.. note:: + + We download ``exp/pretrained-xxx.pt``, not ``exp/cpu-jit_xxx.pt``. + + +In the above code, we download the pre-trained model into the directory +``egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05``. + +2. Install ncnn and pnnx +^^^^^^^^^^^^^^^^^^^^^^^^ + +.. code-block:: bash + + # We put ncnn into $HOME/open-source/ncnn + # You can change it to anywhere you like + + cd $HOME + mkdir -p open-source + cd open-source + + git clone https://github.com/csukuangfj/ncnn + cd ncnn + git submodule update --recursive --init + + # Note: We don't use "python setup.py install" or "pip install ." here + + mkdir -p build-wheel + cd build-wheel + + cmake \ + -DCMAKE_BUILD_TYPE=Release \ + -DNCNN_PYTHON=ON \ + -DNCNN_BUILD_BENCHMARK=OFF \ + -DNCNN_BUILD_EXAMPLES=OFF \ + -DNCNN_BUILD_TOOLS=ON \ + .. + + make -j4 + + cd .. + + # Note: $PWD here is $HOME/open-source/ncnn + + export PYTHONPATH=$PWD/python:$PYTHONPATH + export PATH=$PWD/tools/pnnx/build/src:$PATH + export PATH=$PWD/build-wheel/tools/quantize:$PATH + + # Now build pnnx + cd tools/pnnx + mkdir build + cd build + cmake .. + make -j4 + + ./src/pnnx + +Congratulations! You have successfully installed the following components: + + - ``pnxx``, which is an executable located in + ``$HOME/open-source/ncnn/tools/pnnx/build/src``. We will use + it to convert models exported by ``torch.jit.trace()``. + - ``ncnn2int8``, which is an executable located in + ``$HOME/open-source/ncnn/build-wheel/tools/quantize``. We will use + it to quantize our models to ``int8``. + - ``ncnn.cpython-38-x86_64-linux-gnu.so``, which is a Python module located + in ``$HOME/open-source/ncnn/python/ncnn``. + + .. note:: + + I am using ``Python 3.8``, so it + is ``ncnn.cpython-38-x86_64-linux-gnu.so``. If you use a different + version, say, ``Python 3.9``, the name would be + ``ncnn.cpython-39-x86_64-linux-gnu.so``. + + Also, if you are not using Linux, the file name would also be different. + But that does not matter. As long as you can compile it, it should work. + +We have set up ``PYTHONPATH`` so that you can use ``import ncnn`` in your +Python code. We have also set up ``PATH`` so that you can use +``pnnx`` and ``ncnn2int8`` later in your terminal. + +.. caution:: + + Please don't use ``_. + We have made some modifications to the offical `ncnn`_. + + We will synchronize ``_ periodically + with the official one. + +3. Export the model via torch.jit.trace() +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +First, let us rename our pre-trained model: + +.. code-block:: + + cd egs/librispeech/ASR + + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp + + ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt + + cd ../.. + +Next, we use the following code to export our model: + +.. code-block:: bash + + dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/ + + ./conv_emformer_transducer_stateless2/export-for-ncnn.py \ + --exp-dir $dir/exp \ + --bpe-model $dir/data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 1 \ + --use-averaged-model 0 \ + \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --encoder-dim 512 + +.. hint:: + + We have renamed our model to ``epoch-30.pt`` so that we can use ``--epoch 30``. + There is only one pre-trained model, so we use ``--avg 1 --use-averaged-model 0``. + + If you have trained a model by yourself and if you have all checkpoints + available, please first use ``decode.py`` to tune ``--epoch --avg`` + and select the best combination with with ``--use-averaged-model 1``. + +.. note:: + + You will see the following log output: + + .. literalinclude:: ./code/export-conv-emformer-transducer-for-ncnn-output.txt + + The log shows the model has ``75490012`` parameters, i.e., ``~75 M``. + + .. code-block:: + + ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt + + -rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt + + You can see that the file size of the pre-trained model is ``289 MB``, which + is roughly ``75490012*4/1024/1024 = 287.97 MB``. + +After running ``conv_emformer_transducer_stateless2/export-for-ncnn.py``, +we will get the following files: + +.. code-block:: bash + + ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx* + + -rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt + -rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt + -rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt + + +.. _conv-emformer-step-3-export-torchscript-model-via-pnnx: + +3. Export torchscript model via pnnx +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. hint:: + + Make sure you have set up the ``PATH`` environment variable. Otherwise, + it will throw an error saying that ``pnnx`` could not be found. + +Now, it's time to export our models to `ncnn`_ via ``pnnx``. + +.. code-block:: + + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + pnnx ./encoder_jit_trace-pnnx.pt + pnnx ./decoder_jit_trace-pnnx.pt + pnnx ./joiner_jit_trace-pnnx.pt + +It will generate the following files: + +.. code-block:: bash + + ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param} + + -rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param + -rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param + -rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param + +There are two types of files: + +- ``param``: It is a text file containing the model architectures. You can + use a text editor to view its content. +- ``bin``: It is a binary file containing the model parameters. + +We compare the file sizes of the models below before and after converting via ``pnnx``: + +.. see https://tableconvert.com/restructuredtext-generator + ++----------------------------------+------------+ +| File name | File size | ++==================================+============+ +| encoder_jit_trace-pnnx.pt | 283 MB | ++----------------------------------+------------+ +| decoder_jit_trace-pnnx.pt | 1010 KB | ++----------------------------------+------------+ +| joiner_jit_trace-pnnx.pt | 3.0 MB | ++----------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.bin | 142 MB | ++----------------------------------+------------+ +| decoder_jit_trace-pnnx.ncnn.bin | 503 KB | ++----------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.bin | 1.5 MB | ++----------------------------------+------------+ + +You can see that the file sizes of the models after conversion are about one half +of the models before conversion: + + - encoder: 283 MB vs 142 MB + - decoder: 1010 KB vs 503 KB + - joiner: 3.0 MB vs 1.5 MB + +The reason is that by default ``pnnx`` converts ``float32`` parameters +to ``float16``. A ``float32`` parameter occupies 4 bytes, while it is 2 bytes +for ``float16``. Thus, it is ``twice smaller`` after conversion. + +.. hint:: + + If you use ``pnnx ./encoder_jit_trace-pnnx.pt fp16=0``, then ``pnnx`` + won't convert ``float32`` to ``float16``. + +4. Test the exported models in icefall +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. note:: + + We assume you have set up the environment variable ``PYTHONPATH`` when + building `ncnn`_. + +Now we have successfully converted our pre-trained model to `ncnn`_ format. +The generated 6 files are what we need. You can use the following code to +test the converted models: + +.. code-block:: bash + + ./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \ + --tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \ + --encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \ + --encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \ + --decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \ + --decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \ + --joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \ + --joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \ + ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav + +.. hint:: + + `ncnn`_ supports only ``batch size == 1``, so ``streaming-ncnn-decode.py`` accepts + only 1 wave file as input. + +The output is given below: + +.. literalinclude:: ./code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt + +Congratulations! You have successfully exported a model from PyTorch to `ncnn`_! + + +.. _conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn: + +5. Modify the exported encoder for sherpa-ncnn +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In order to use the exported models in `sherpa-ncnn`_, we have to modify +``encoder_jit_trace-pnnx.ncnn.param``. + +Let us have a look at the first few lines of ``encoder_jit_trace-pnnx.ncnn.param``: + +.. code-block:: + + 7767517 + 1060 1342 + Input in0 0 1 in0 + +**Explanation** of the above three lines: + + 1. ``7767517``, it is a magic number and should not be changed. + 2. ``1060 1342``, the first number ``1060`` specifies the number of layers + in this file, while ``1342`` specifies the number of intermediate outputs + of this file + 3. ``Input in0 0 1 in0``, ``Input`` is the layer type of this layer; ``in0`` + is the layer name of this layer; ``0`` means this layer has no input; + ``1`` means this layer has one output; ``in0`` is the output name of + this layer. + +We need to add 1 extra line and also increment the number of layers. +The result looks like below: + +.. code-block:: bash + + 7767517 + 1061 1342 + SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512 + Input in0 0 1 in0 + +**Explanation** + + 1. ``7767517``, it is still the same + 2. ``1061 1342``, we have added an extra layer, so we need to update ``1060`` to ``1061``. + We don't need to change ``1342`` since the newly added layer has no inputs or outputs. + 3. ``SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512`` + This line is newly added. Its explanation is given below: + + - ``SherpaMetaData`` is the type of this layer. Must be ``SherpaMetaData``. + - ``sherpa_meta_data1`` is the name of this layer. Must be ``sherpa_meta_data1``. + - ``0 0`` means this layer has no inputs or output. Must be ``0 0`` + - ``0=1``, 0 is the key and 1 is the value. MUST be ``0=1`` + - ``1=12``, 1 is the key and 12 is the value of the + parameter ``--num-encoder-layers`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``2=32``, 2 is the key and 32 is the value of the + parameter ``--memory-size`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``3=31``, 3 is the key and 31 is the value of the + parameter ``--cnn-module-kernel`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``4=8``, 4 is the key and 8 is the value of the + parameter ``--left-context-length`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``5=32``, 5 is the key and 32 is the value of the + parameter ``--chunk-length`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``6=8``, 6 is the key and 8 is the value of the + parameter ``--right-context-length`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + - ``7=512``, 7 is the key and 512 is the value of the + parameter ``--encoder-dim`` that you provided when running + ``conv_emformer_transducer_stateless2/export-for-ncnn.py``. + + For ease of reference, we list the key-value pairs that you need to add + in the following table. If your model has a different setting, please + change the values for ``SherpaMetaData`` accordingly. Otherwise, you + will be ``SAD``. + + +------+-----------------------------+ + | key | value | + +======+=============================+ + | 0 | 1 (fixed) | + +------+-----------------------------+ + | 1 | ``--num-encoder-layers`` | + +------+-----------------------------+ + | 2 | ``--memory-size`` | + +------+-----------------------------+ + | 3 | ``--cnn-module-kernel`` | + +------+-----------------------------+ + | 4 | ``--left-context-length`` | + +------+-----------------------------+ + | 5 | ``--chunk-length`` | + +------+-----------------------------+ + | 6 | ``--right-context-length`` | + +------+-----------------------------+ + | 7 | ``--encoder-dim`` | + +------+-----------------------------+ + + 4. ``Input in0 0 1 in0``. No need to change it. + +.. caution:: + + When you add a new layer ``SherpaMetaData``, please remember to update the + number of layers. In our case, update ``1060`` to ``1061``. Otherwise, + you will be SAD later. + +.. hint:: + + After adding the new layer ``SherpaMetaData``, you cannot use this model + with ``streaming-ncnn-decode.py`` anymore since ``SherpaMetaData`` is + supported only in `sherpa-ncnn`_. + +.. hint:: + + `ncnn`_ is very flexible. You can add new layers to it just by text-editing + the ``param`` file! You don't need to change the ``bin`` file. + +Now you can use this model in `sherpa-ncnn`_. +Please refer to the following documentation: + + - Linux/macOS/Windows/arm/aarch64: ``_ + - Android: ``_ + - Python: ``_ + +We have a list of pre-trained models that have been exported for `sherpa-ncnn`_: + + - ``_ + + You can find more usages there. + +6. (Optional) int8 quantization with sherpa-ncnn +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This step is optional. + +In this step, we describe how to quantize our model with ``int8``. + +Change :ref:`conv-emformer-step-3-export-torchscript-model-via-pnnx` to +disable ``fp16`` when using ``pnnx``: + +.. code-block:: + + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + pnnx ./encoder_jit_trace-pnnx.pt fp16=0 + pnnx ./decoder_jit_trace-pnnx.pt + pnnx ./joiner_jit_trace-pnnx.pt fp16=0 + +.. note:: + + We add ``fp16=0`` when exporting the encoder and joiner. `ncnn`_ does not + support quantizing the decoder model yet. We will update this documentation + once `ncnn`_ supports it. (Maybe in this year, 2023). + +It will generate the following files + +.. code-block:: bash + + ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*_jit_trace-pnnx.ncnn.{param,bin} + + -rw-r--r-- 1 kuangfangjun root 503K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 437 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param + -rw-r--r-- 1 kuangfangjun root 283M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 79K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param + -rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin + -rw-r--r-- 1 kuangfangjun root 488 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param + +Let us compare again the file sizes: + ++----------------------------------------+------------+ +| File name | File size | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.pt | 283 MB | ++----------------------------------------+------------+ +| decoder_jit_trace-pnnx.pt | 1010 KB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.pt | 3.0 MB | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB | ++----------------------------------------+------------+ +| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB | ++----------------------------------------+------------+ + +You can see that the file sizes are doubled when we disable ``fp16``. + +.. note:: + + You can again use ``streaming-ncnn-decode.py`` to test the exported models. + +Next, follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn` +to modify ``encoder_jit_trace-pnnx.ncnn.param``. + +Change + +.. code-block:: bash + + 7767517 + 1060 1342 + Input in0 0 1 in0 + +to + +.. code-block:: bash + + 7767517 + 1061 1342 + SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512 + Input in0 0 1 in0 + +.. caution:: + + Please follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn` + to change the values for ``SherpaMetaData`` if your model uses a different setting. + + +Next, let us compile `sherpa-ncnn`_ since we will quantize our models within +`sherpa-ncnn`_. + +.. code-block:: bash + + # We will download sherpa-ncnn to $HOME/open-source/ + # You can change it to anywhere you like. + cd $HOME + mkdir -p open-source + + cd open-source + git clone https://github.com/k2-fsa/sherpa-ncnn + cd sherpa-ncnn + mkdir build + cd build + cmake .. + make -j 4 + + ./bin/generate-int8-scale-table + + export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH + +The output of the above commands are: + +.. code-block:: bash + + (py38) kuangfangjun:build$ generate-int8-scale-table + Please provide 10 arg. Currently given: 1 + Usage: + generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt + + Each line in wave_filenames.txt is a path to some 16k Hz mono wave file. + +We need to create a file ``wave_filenames.txt``, in which we need to put +some calibration wave files. For testing purpose, we put the ``test_wavs`` +from the pre-trained model repository ``_ + +.. code-block:: bash + + cd egs/librispeech/ASR + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + cat < wave_filenames.txt + ../test_wavs/1089-134686-0001.wav + ../test_wavs/1221-135766-0001.wav + ../test_wavs/1221-135766-0002.wav + EOF + +Now we can calculate the scales needed for quantization with the calibration data: + +.. code-block:: bash + + cd egs/librispeech/ASR + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + generate-int8-scale-table \ + ./encoder_jit_trace-pnnx.ncnn.param \ + ./encoder_jit_trace-pnnx.ncnn.bin \ + ./decoder_jit_trace-pnnx.ncnn.param \ + ./decoder_jit_trace-pnnx.ncnn.bin \ + ./joiner_jit_trace-pnnx.ncnn.param \ + ./joiner_jit_trace-pnnx.ncnn.bin \ + ./encoder-scale-table.txt \ + ./joiner-scale-table.txt \ + ./wave_filenames.txt + +The output logs are in the following: + +.. literalinclude:: ./code/generate-int-8-scale-table-for-conv-emformer.txt + +It generates the following two files: + +.. code-block:: bash + + $ ls -lh encoder-scale-table.txt joiner-scale-table.txt + -rw-r--r-- 1 kuangfangjun root 955K Jan 11 17:28 encoder-scale-table.txt + -rw-r--r-- 1 kuangfangjun root 18K Jan 11 17:28 joiner-scale-table.txt + +.. caution:: + + Definitely, you need more calibration data to compute the scale table. + +Finally, let us use the scale table to quantize our models into ``int8``. + +.. code-block:: bash + + ncnn2int8 + + usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table] + +First, we quantize the encoder model: + +.. code-block:: bash + + cd egs/librispeech/ASR + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + ncnn2int8 \ + ./encoder_jit_trace-pnnx.ncnn.param \ + ./encoder_jit_trace-pnnx.ncnn.bin \ + ./encoder_jit_trace-pnnx.ncnn.int8.param \ + ./encoder_jit_trace-pnnx.ncnn.int8.bin \ + ./encoder-scale-table.txt + +Next, we quantize the joiner model: + +.. code-block:: bash + + ncnn2int8 \ + ./joiner_jit_trace-pnnx.ncnn.param \ + ./joiner_jit_trace-pnnx.ncnn.bin \ + ./joiner_jit_trace-pnnx.ncnn.int8.param \ + ./joiner_jit_trace-pnnx.ncnn.int8.bin \ + ./joiner-scale-table.txt + +The above two commands generate the following 4 files: + +.. code-block:: bash + + -rw-r--r-- 1 kuangfangjun root 99M Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.bin + -rw-r--r-- 1 kuangfangjun root 78K Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.param + -rw-r--r-- 1 kuangfangjun root 774K Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.bin + -rw-r--r-- 1 kuangfangjun root 496 Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.param + +Congratulations! You have successfully quantized your model from ``float32`` to ``int8``. + +.. caution:: + + ``ncnn.int8.param`` and ``ncnn.int8.bin`` must be used in pairs. + + You can replace ``ncnn.param`` and ``ncnn.bin`` with ``ncnn.int8.param`` + and ``ncnn.int8.bin`` in `sherpa-ncnn`_ if you like. + + For instance, to use only the ``int8`` encoder in ``sherpa-ncnn``, you can + replace the following invocation: + + .. code-block:: + + cd egs/librispeech/ASR + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + sherpa-ncnn \ + ../data/lang_bpe_500/tokens.txt \ + ./encoder_jit_trace-pnnx.ncnn.param \ + ./encoder_jit_trace-pnnx.ncnn.bin \ + ./decoder_jit_trace-pnnx.ncnn.param \ + ./decoder_jit_trace-pnnx.ncnn.bin \ + ./joiner_jit_trace-pnnx.ncnn.param \ + ./joiner_jit_trace-pnnx.ncnn.bin \ + ../test_wavs/1089-134686-0001.wav + + with + + .. code-block:: + + cd egs/librispeech/ASR + cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/ + + sherpa-ncnn \ + ../data/lang_bpe_500/tokens.txt \ + ./encoder_jit_trace-pnnx.ncnn.int8.param \ + ./encoder_jit_trace-pnnx.ncnn.int8.bin \ + ./decoder_jit_trace-pnnx.ncnn.param \ + ./decoder_jit_trace-pnnx.ncnn.bin \ + ./joiner_jit_trace-pnnx.ncnn.param \ + ./joiner_jit_trace-pnnx.ncnn.bin \ + ../test_wavs/1089-134686-0001.wav + + +The following table compares again the file sizes: + + ++----------------------------------------+------------+ +| File name | File size | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.pt | 283 MB | ++----------------------------------------+------------+ +| decoder_jit_trace-pnnx.pt | 1010 KB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.pt | 3.0 MB | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB | ++----------------------------------------+------------+ +| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB | ++----------------------------------------+------------+ +| encoder_jit_trace-pnnx.ncnn.int8.bin | 99 MB | ++----------------------------------------+------------+ +| joiner_jit_trace-pnnx.ncnn.int8.bin | 774 KB | ++----------------------------------------+------------+ + +You can see that the file sizes of the model after ``int8`` quantization +are much smaller. + +.. hint:: + + Currently, only linear layers and convolutional layers are quantized + with ``int8``, so you don't see an exact ``4x`` reduction in file sizes. + +.. note:: + + You need to test the recognition accuracy after ``int8`` quantization. + +You can find the speed comparison at ``_. + + +That's it! Have fun with `sherpa-ncnn`_! diff --git a/docs/source/model-export/export-with-torch-jit-script.rst b/docs/source/model-export/export-with-torch-jit-script.rst index a041dc1d5..efd7dc2e1 100644 --- a/docs/source/model-export/export-with-torch-jit-script.rst +++ b/docs/source/model-export/export-with-torch-jit-script.rst @@ -1,7 +1,7 @@ .. _export-model-with-torch-jit-script: Export model with torch.jit.script() -=================================== +==================================== In this section, we describe how to export a model via ``torch.jit.script()``. diff --git a/docs/source/recipes/aishell/conformer_ctc.rst b/docs/source/recipes/Non-streaming-ASR/aishell/conformer_ctc.rst similarity index 99% rename from docs/source/recipes/aishell/conformer_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/aishell/conformer_ctc.rst index 72690e102..6e30ce397 100644 --- a/docs/source/recipes/aishell/conformer_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/aishell/conformer_ctc.rst @@ -703,7 +703,7 @@ It will show you the following message: HLG decoding -^^^^^^^^^^^^ +~~~~~~~~~~~~ .. code-block:: bash diff --git a/docs/source/recipes/aishell/images/aishell-conformer-ctc-tensorboard-log.jpg b/docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-conformer-ctc-tensorboard-log.jpg similarity index 100% rename from docs/source/recipes/aishell/images/aishell-conformer-ctc-tensorboard-log.jpg rename to docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-conformer-ctc-tensorboard-log.jpg diff --git a/docs/source/recipes/aishell/images/aishell-tdnn-lstm-ctc-tensorboard-log.jpg b/docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-tdnn-lstm-ctc-tensorboard-log.jpg similarity index 100% rename from docs/source/recipes/aishell/images/aishell-tdnn-lstm-ctc-tensorboard-log.jpg rename to docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-tdnn-lstm-ctc-tensorboard-log.jpg diff --git a/docs/source/recipes/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png b/docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png similarity index 100% rename from docs/source/recipes/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png rename to docs/source/recipes/Non-streaming-ASR/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png diff --git a/docs/source/recipes/aishell/index.rst b/docs/source/recipes/Non-streaming-ASR/aishell/index.rst similarity index 99% rename from docs/source/recipes/aishell/index.rst rename to docs/source/recipes/Non-streaming-ASR/aishell/index.rst index d072d6e9c..b77d59bca 100644 --- a/docs/source/recipes/aishell/index.rst +++ b/docs/source/recipes/Non-streaming-ASR/aishell/index.rst @@ -19,4 +19,3 @@ It can be downloaded from ``_ tdnn_lstm_ctc conformer_ctc stateless_transducer - diff --git a/docs/source/recipes/aishell/stateless_transducer.rst b/docs/source/recipes/Non-streaming-ASR/aishell/stateless_transducer.rst similarity index 100% rename from docs/source/recipes/aishell/stateless_transducer.rst rename to docs/source/recipes/Non-streaming-ASR/aishell/stateless_transducer.rst diff --git a/docs/source/recipes/aishell/tdnn_lstm_ctc.rst b/docs/source/recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc.rst similarity index 99% rename from docs/source/recipes/aishell/tdnn_lstm_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc.rst index 275931698..9eb3b11f7 100644 --- a/docs/source/recipes/aishell/tdnn_lstm_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/aishell/tdnn_lstm_ctc.rst @@ -498,7 +498,7 @@ We do provide a colab notebook for this recipe showing how to use a pre-trained |aishell asr conformer ctc colab notebook| .. |aishell asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/drive/1qULaGvXq7PCu_P61oubfz9b53JzY4H3z + :target: https://colab.research.google.com/drive/1jbyzYq3ytm6j2nlEt-diQm-6QVWyDDEa?usp=sharing **Congratulations!** You have finished the aishell ASR recipe with TDNN-LSTM CTC models in ``icefall``. diff --git a/docs/source/recipes/Non-streaming-ASR/index.rst b/docs/source/recipes/Non-streaming-ASR/index.rst new file mode 100644 index 000000000..67123a648 --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/index.rst @@ -0,0 +1,10 @@ +Non Streaming ASR +================= + +.. toctree:: + :maxdepth: 2 + + aishell/index + librispeech/index + timit/index + yesno/index diff --git a/docs/source/recipes/librispeech/conformer_ctc.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/conformer_ctc.rst similarity index 99% rename from docs/source/recipes/librispeech/conformer_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/librispeech/conformer_ctc.rst index 4656acfd6..b7f89c89f 100644 --- a/docs/source/recipes/librispeech/conformer_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/conformer_ctc.rst @@ -888,7 +888,7 @@ It will show you the following message: CTC decoding -^^^^^^^^^^^^ +~~~~~~~~~~~~ .. code-block:: bash @@ -926,7 +926,7 @@ Its output is: YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION HLG decoding -^^^^^^^^^^^^ +~~~~~~~~~~~~ .. code-block:: bash @@ -966,7 +966,7 @@ The output is: HLG decoding + n-gram LM rescoring -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash @@ -1012,7 +1012,7 @@ The output is: HLG decoding + n-gram LM rescoring + attention decoder rescoring -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst new file mode 100644 index 000000000..ea9f350cd --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst @@ -0,0 +1,223 @@ +Distillation with HuBERT +======================== + +This tutorial shows you how to perform knowledge distillation in `icefall`_ +with the `LibriSpeech`_ dataset. The distillation method +used here is called "Multi Vector Quantization Knowledge Distillation" (MVQ-KD). +Please have a look at our paper `Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation `_ +for more details about MVQ-KD. + +.. note:: + + This tutorial is based on recipe + `pruned_transducer_stateless4 `_. + Currently, we only implement MVQ-KD in this recipe. However, MVQ-KD is theoretically applicable to all recipes + with only minor changes needed. Feel free to try out MVQ-KD in different recipes. If you + encounter any problems, please open an issue here `icefall `_. + +.. note:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for `icefall`_. + +.. HINT:: + + We recommend you to use a GPU or several GPUs to run this recipe. + +Data preparation +---------------- + +We first prepare necessary training data for `LibriSpeech`_. +This is the same as in :ref:`non_streaming_librispeech_pruned_transducer_stateless`. + +.. hint:: + + The data preparation is the same as other recipes on LibriSpeech dataset, + if you have finished this step, you can skip to :ref:`codebook_index_preparation` directly. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 # run only stage 0 + $ ./prepare.sh --stage 2 --stop-stage 5 # run from stage 2 to stage 5 + +.. HINT:: + + If you have pre-downloaded the `LibriSpeech`_ + dataset and the `musan`_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. NOTE:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + + +.. _codebook_index_preparation: + +Codebook index preparation +-------------------------- + +Here, we prepare necessary data for MVQ-KD. This requires the generation +of codebook indexes (please read our `paper `_. +if you are interested in details). In this tutorial, we use the pre-computed +codebook indexes for convenience. The only thing you need to do is to +run `./distillation_with_hubert.sh `_. + +.. note:: + + There are 5 stages in total, the first and second stage will be automatically skipped + when choosing to downloaded codebook indexes prepared by `icefall`_. + Of course, you can extract and compute the codebook indexes by yourself. This + will require you downloading a HuBERT-XL model and it can take a while for + the extraction of codebook indexes. + + +As usual, you can control the stages you want to run by specifying the following +two options: + + - ``--stage`` + - ``--stop-stage`` + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./distillation_with_hubert.sh --stage 0 --stop-stage 0 # run only stage 0 + $ ./distillation_with_hubert.sh --stage 2 --stop-stage 4 # run from stage 2 to stage 5 + +Here are a few options in `./distillation_with_hubert.sh `_ +you need to know before you proceed. + +- ``--full_libri`` If True, use full 960h data. Otherwise only ``train-clean-100`` will be used +- ``--use_extracted_codebook`` If True, the first two stages will be skipped and the codebook + indexes uploaded by us will be downloaded. + +Since we are using the pre-computed codebook indexes, we set +``use_extracted_codebook=True``. If you want to do full `LibriSpeech`_ +experiments, please set ``full_libri=True``. + +The following command downloads the pre-computed codebook indexes +and prepares MVQ-augmented training manifests. + +.. code-block:: bash + + $ ./distillation_with_hubert.sh --stage 2 --stop-stage 2 # run only stage 2 + +Please see the +following screenshot for the output of an example execution. + +.. figure:: ./images/distillation_codebook.png + :width: 800 + :alt: Downloading codebook indexes and preparing training manifest. + :align: center + + Downloading codebook indexes and preparing training manifest. + +.. hint:: + + The codebook indexes we prepared for you in this tutorial + are extracted from the 36-th layer of a fine-tuned HuBERT-XL model + with 8 codebooks. If you want to try other configurations, please + set ``use_extracted_codebook=False`` and set ``embedding_layer`` and + ``num_codebooks`` by yourself. + +Now, you should see the following files under the directory ``./data/vq_fbank_layer36_cb8``. + +.. figure:: ./images/distillation_directory.png + :width: 800 + :alt: MVQ-augmented training manifests + :align: center + + MVQ-augmented training manifests. + +Whola! You are ready to perform knowledge distillation training now! + +Training +-------- + +To perform training, please run stage 3 by executing the following command. + +.. code-block:: bash + + $ ./prepare.sh --stage 3 --stop-stage 3 # run MVQ training + +Here is the code snippet for training: + +.. code-block:: bash + + WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}') + + ./pruned_transducer_stateless6/train.py \ + --manifest-dir ./data/vq_fbank_layer36_cb8 \ + --master-port 12359 \ + --full-libri $full_libri \ + --spec-aug-time-warp-factor -1 \ + --max-duration 300 \ + --world-size ${WORLD_SIZE} \ + --num-epochs 30 \ + --exp-dir $exp_dir \ + --enable-distillation True \ + --codebook-loss-scale 0.01 + +There are a few training arguments in the following +training commands that should be paid attention to. + + - ``--enable-distillation`` If True, knowledge distillation training is enabled. + - ``--codebook-loss-scale`` The scale of the knowledge distillation loss. + - ``--manifest-dir`` The path to the MVQ-augmented manifest. + + +Decoding +-------- + +After training finished, you can test the performance on using +the following command. + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES=0 + ./pruned_transducer_stateless6/train.py \ + --decoding-method "modified_beam_search" \ + --epoch 30 \ + --avg 10 \ + --max-duration 200 \ + --exp-dir $exp_dir \ + --enable-distillation True + +You should get similar results as `here `_. + +That's all! Feel free to experiment with your own setups and report your results. +If you encounter any problems during training, please open up an issue `here `_. diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png new file mode 100644 index 000000000..1a40d6c6e Binary files /dev/null and b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png differ diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png new file mode 100644 index 000000000..30763046f Binary files /dev/null and b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png differ diff --git a/docs/source/recipes/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png b/docs/source/recipes/Non-streaming-ASR/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png similarity index 100% rename from docs/source/recipes/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png rename to docs/source/recipes/Non-streaming-ASR/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/images/librispeech-pruned-transducer-tensorboard-log.jpg b/docs/source/recipes/Non-streaming-ASR/librispeech/images/librispeech-pruned-transducer-tensorboard-log.jpg new file mode 100644 index 000000000..800835749 Binary files /dev/null and b/docs/source/recipes/Non-streaming-ASR/librispeech/images/librispeech-pruned-transducer-tensorboard-log.jpg differ diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst new file mode 100644 index 000000000..bf439861a --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst @@ -0,0 +1,12 @@ +LibriSpeech +=========== + +.. toctree:: + :maxdepth: 1 + + tdnn_lstm_ctc + conformer_ctc + pruned_transducer_stateless + zipformer_mmi + zipformer_ctc_blankskip + distillation diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst new file mode 100644 index 000000000..42fd3df77 --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst @@ -0,0 +1,548 @@ +.. _non_streaming_librispeech_pruned_transducer_stateless: + +Pruned transducer statelessX +============================ + +This tutorial shows you how to run a conformer transducer model +with the `LibriSpeech `_ dataset. + +.. Note:: + + The tutorial is suitable for `pruned_transducer_stateless `_, + `pruned_transducer_stateless2 `_, + `pruned_transducer_stateless4 `_, + `pruned_transducer_stateless5 `_, + We will take pruned_transducer_stateless4 as an example in this tutorial. + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + +.. HINT:: + + We recommend you to use a GPU or several GPUs to run this recipe. + +.. hint:: + + Please scroll down to the bottom of this page to find download links + for pretrained models if you don't want to train a model from scratch. + + +We use pruned RNN-T to compute the loss. + +.. note:: + + You can find the paper about pruned RNN-T at the following address: + + ``_ + +The transducer model consists of 3 parts: + + - Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey) + - Decoder, a.k.a, the prediction network. We use a stateless model consisting of + ``nn.Embedding`` and ``nn.Conv1d`` + - Joiner, a.k.a, the joint network. + +.. caution:: + + Contrary to the conventional RNN-T models, we use a stateless decoder. + That is, it has no recurrent connections. + + +Data preparation +---------------- + +.. hint:: + + The data preparation is the same as other recipes on LibriSpeech dataset, + if you have finished this step, you can skip to ``Training`` directly. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. HINT:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. NOTE:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + + +Training +-------- + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/train.py --help + + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--exp-dir`` + + The directory to save checkpoints, training logs and tensorboard. + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./pruned_transducer_stateless4/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt`` + in the folder ``./pruned_transducer_stateless4/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./pruned_transducer_stateless4/train.py --start-epoch 10`` loads the + checkpoint ``./pruned_transducer_stateless4/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./pruned_transducer_stateless4/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./pruned_transducer_stateless4/train.py --world-size 1 + + .. caution:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + - ``--use-fp16`` + + If it is True, the model will train with half precision, from our experiment + results, by using half precision you can train with two times larger ``--max-duration`` + so as to get almost 2X speed up. + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., number of encoder layers, +encoder dimension, decoder dimension, number of warmup steps etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`pruned_transducer_stateless4/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./pruned_transducer_stateless4/train.py`` directly. + + +.. NOTE:: + + The options for `pruned_transducer_stateless5 `_ are a little different from + other recipes. It allows you to configure ``--num-encoder-layers``, ``--dim-feedforward``, ``--nhead``, ``--encoder-dim``, ``--decoder-dim``, ``--joiner-dim`` from commandline, so that you can train models with different size with pruned_transducer_stateless5. + + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless4/exp``. +You will find the following files in that directory: + + - ``epoch-1.pt``, ``epoch-2.pt``, ... + + These are checkpoint files saved at the end of each epoch, containing model + ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless4/train.py --start-epoch 11 + + - ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ... + + These are checkpoint files saved every ``--save-every-n`` batches, + containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``checkpoint-436000``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless4/train.py --start-batch 436000 + + - ``tensorboard/`` + + This folder contains tensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd pruned_transducer_stateless4/exp/tensorboard + $ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/ + + [2022-11-20T15:50:50] Started scanning logdir. + Uploading 4468 scalars... + [2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects + Listening for new data in logdir... + + Note there is a URL in the above output. Click it and you will see + the following screenshot: + + .. figure:: images/librispeech-pruned-transducer-tensorboard-log.jpg + :width: 600 + :alt: TensorBoard screenshot + :align: center + :target: https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/ + + TensorBoard screenshot. + + .. hint:: + + If you don't have access to google, you can use the following command + to view the tensorboard log locally: + + .. code-block:: bash + + cd pruned_transducer_stateless4/exp/tensorboard + tensorboard --logdir . --port 6008 + + It will print the following message: + + .. code-block:: + + Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all + TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit) + + Now start your browser and go to ``_ to view the tensorboard + logs. + + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage example +~~~~~~~~~~~~~ + +You can use the following command to start the training using 6 GPUs: + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5" + ./pruned_transducer_stateless4/train.py \ + --world-size 6 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless4/exp \ + --full-libri 1 \ + --max-duration 300 + + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. hint:: + + There are two kinds of checkpoints: + + - (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end + of each epoch. You can pass ``--epoch`` to + ``pruned_transducer_stateless4/decode.py`` to use them. + + - (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved + every ``--save-every-n`` batches. You can pass ``--iter`` to + ``pruned_transducer_stateless4/decode.py`` to use them. + + We suggest that you try both types of checkpoints and choose the one + that produces the lowest WERs. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/decode.py --help + +shows the options for decoding. + +The following shows two examples (for two types of checkpoints): + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in 25 20; do + for avg in 7 5 3 1; do + ./pruned_transducer_stateless4/decode.py \ + --epoch $epoch \ + --avg $avg \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for iter in 474000; do + for avg in 8 10 12 14 16 18; do + ./pruned_transducer_stateless4/decode.py \ + --iter $iter \ + --avg $avg \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. Note:: + + Supporting decoding methods are as follows: + + - ``greedy_search`` : It takes the symbol with largest posterior probability + of each frame as the decoding result. + + - ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and + `espnet/nets/beam_search_transducer.py `_ + is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to + next frame. + + - ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it + runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded. + + - ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and + given ``FSAs``. It is hard to describe the details in several lines of texts, you can read + our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 `_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently. + + - ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses + an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph + (with N-gram LM). + + - ``fast_beam_search_nbest`` : It produces the decoding results as follows: + + - (1) Use ``fast_beam_search`` to get a lattice + - (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()`` + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + - ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the + only difference is that it uses ``fast_beam_search_LG`` to generate the lattice. + + +Export Model +------------ + +`pruned_transducer_stateless4/export.py `_ supports exporting checkpoints from ``pruned_transducer_stateless4/exp`` in the following ways. + +Export ``model.state_dict()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Checkpoints saved by ``pruned_transducer_stateless4/train.py`` also include +``optimizer.state_dict()``. It is useful for resuming training. But after training, +we are interested only in ``model.state_dict()``. You can use the following +command to extract ``model.state_dict()``. + +.. code-block:: bash + + # Assume that --epoch 25 --avg 3 produces the smallest WER + # (You can get such information after running ./pruned_transducer_stateless4/decode.py) + + epoch=25 + avg=3 + + ./pruned_transducer_stateless4/export.py \ + --exp-dir ./pruned_transducer_stateless4/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch $epoch \ + --avg $avg + +It will generate a file ``./pruned_transducer_stateless4/exp/pretrained.pt``. + +.. hint:: + + To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless4/decode.py``, + you can run: + + .. code-block:: bash + + cd pruned_transducer_stateless4/exp + ln -s pretrained.pt epoch-999.pt + + And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to + ``./pruned_transducer_stateless4/decode.py``. + +To use the exported model with ``./pruned_transducer_stateless4/pretrained.py``, you +can run: + +.. code-block:: bash + + ./pruned_transducer_stateless4/pretrained.py \ + --checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + + +Export model using ``torch.jit.script()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + ./pruned_transducer_stateless4/export.py \ + --exp-dir ./pruned_transducer_stateless4/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 25 \ + --avg 3 \ + --jit 1 + +It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later +load it by ``torch.jit.load("cpu_jit.pt")``. + +Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python +are on CPU. You can use ``to("cuda")`` to move them to a CUDA device. + +.. NOTE:: + + You will need this ``cpu_jit.pt`` when deploying with Sherpa framework. + + +Download pretrained models +-------------------------- + +If you don't want to train from scratch, you can download the pretrained models +by visiting the following links: + + - `pruned_transducer_stateless `_ + + - `pruned_transducer_stateless2 `_ + + - `pruned_transducer_stateless4 `_ + + - `pruned_transducer_stateless5 `_ + + See ``_ + for the details of the above pretrained models + + +Deploy with Sherpa +------------------ + +Please see ``_ +for how to deploy the models in ``sherpa``. diff --git a/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst similarity index 99% rename from docs/source/recipes/librispeech/tdnn_lstm_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst index ca477fbaa..aa380396a 100644 --- a/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst @@ -398,7 +398,7 @@ We provide a colab notebook for decoding with pre-trained model. |librispeech tdnn_lstm_ctc colab notebook| .. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd + :target: https://colab.research.google.com/drive/1-iSfQMp2So-We_Uu49N4AAcMInB72u9z?usp=sharing **Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``. diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.rst new file mode 100644 index 000000000..aa73bfe33 --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_ctc_blankskip.rst @@ -0,0 +1,454 @@ +Zipformer CTC Blank Skip +======================== + +.. hint:: + + Please scroll down to the bottom of this page to find download links + for pretrained models if you don't want to train a model from scratch. + + +This tutorial shows you how to train a Zipformer model based on the guidance from +a co-trained CTC model using `blank skip method `_ +with the `LibriSpeech `_ dataset. + +.. note:: + + We use both CTC and RNN-T loss to train. During the forward pass, the encoder output + is first used to calculate the CTC posterior probability; then for each output frame, + if its blank posterior is bigger than some threshold, it will be simply discarded + from the encoder output. To prevent information loss, we also put a convolution module + similar to the one used in conformer (referred to as “LConv”) before the frame reduction. + + +Data preparation +---------------- + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +.. note:: + + We encourage you to read ``./prepare.sh``. + +The data preparation contains several stages. You can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. hint:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. note:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + +Training +-------- + +For stability, it doesn`t use blank skip method until model warm-up. + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_ctc_bs/train.py --help + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./pruned_transducer_stateless7_ctc_bs/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt`` + in the folder ``./pruned_transducer_stateless7_ctc_bs/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 10`` loads the + checkpoint ``./pruned_transducer_stateless7_ctc_bs/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 1 + + .. caution:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., weight decay, +number of warmup steps, results dir, etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`pruned_transducer_stateless7_ctc_bs/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./pruned_transducer_stateless7_ctc_bs/train.py`` directly. + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``pruned_transducer_stateless7_ctc_bs/exp``. +You will find the following files in that directory: + + - ``epoch-1.pt``, ``epoch-2.pt``, ... + + These are checkpoint files saved at the end of each epoch, containing model + ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 11 + + - ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ... + + These are checkpoint files saved every ``--save-every-n`` batches, + containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``checkpoint-436000``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless7_ctc_bs/train.py --start-batch 436000 + + - ``tensorboard/`` + + This folder contains tensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard + $ tensorboard dev upload --logdir . --description "Zipformer-CTC co-training using blank skip for LibriSpeech with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/ + + Note there is a URL in the above output. Click it and you will see + tensorboard. + + .. hint:: + + If you don't have access to google, you can use the following command + to view the tensorboard log locally: + + .. code-block:: bash + + cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard + tensorboard --logdir . --port 6008 + + It will print the following message: + + .. code-block:: + + Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all + TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit) + + Now start your browser and go to ``_ to view the tensorboard + logs. + + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage example +~~~~~~~~~~~~~ + +You can use the following command to start the training using 4 GPUs: + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES="0,1,2,3" + ./pruned_transducer_stateless7_ctc_bs/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --full-libri 1 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --use-fp16 1 + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. hint:: + + There are two kinds of checkpoints: + + - (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end + of each epoch. You can pass ``--epoch`` to + ``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py`` to use them. + + - (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved + every ``--save-every-n`` batches. You can pass ``--iter`` to + ``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py`` to use them. + + We suggest that you try both types of checkpoints and choose the one + that produces the lowest WERs. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py --help + +shows the options for decoding. + +The following shows the example using ``epoch-*.pt``: + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 30 \ + --avg 13 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method $m + done + +To test CTC branch, you can use the following command: + +.. code-block:: bash + + for m in ctc-decoding 1best; do + ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 30 \ + --avg 13 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method $m + done + +Export models +------------- + +`pruned_transducer_stateless7_ctc_bs/export.py `_ supports exporting checkpoints from ``pruned_transducer_stateless7_ctc_bs/exp`` in the following ways. + +Export ``model.state_dict()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Checkpoints saved by ``pruned_transducer_stateless7_ctc_bs/train.py`` also include +``optimizer.state_dict()``. It is useful for resuming training. But after training, +we are interested only in ``model.state_dict()``. You can use the following +command to extract ``model.state_dict()``. + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 \ + --jit 0 + +It will generate a file ``./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt``. + +.. hint:: + + To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py``, + you can run: + + .. code-block:: bash + + cd pruned_transducer_stateless7_ctc_bs/exp + ln -s pretrained epoch-9999.pt + + And then pass ``--epoch 9999 --avg 1 --use-averaged-model 0`` to + ``./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py``. + +To use the exported model with ``./pruned_transducer_stateless7_ctc_bs/pretrained.py``, you +can run: + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +To test CTC branch using the exported model with ``./pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py``: + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +Export model using ``torch.jit.script()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 \ + --jit 1 + +It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later +load it by ``torch.jit.load("cpu_jit.pt")``. + +Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python +are on CPU. You can use ``to("cuda")`` to move them to a CUDA device. + +To use the generated files with ``./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py``: + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + /path/to/foo.wav \ + /path/to/bar.wav + +To test CTC branch using the generated files with ``./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py``: + +.. code-block:: bash + + ./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +Download pretrained models +-------------------------- + +If you don't want to train from scratch, you can download the pretrained models +by visiting the following links: + + - trained on LibriSpeech 100h: ``_ + - trained on LibriSpeech 960h: ``_ + + See ``_ + for the details of the above pretrained models diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.rst new file mode 100644 index 000000000..a7b59a992 --- /dev/null +++ b/docs/source/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.rst @@ -0,0 +1,422 @@ +Zipformer MMI +=============== + +.. hint:: + + Please scroll down to the bottom of this page to find download links + for pretrained models if you don't want to train a model from scratch. + + +This tutorial shows you how to train an Zipformer MMI model +with the `LibriSpeech `_ dataset. + +We use LF-MMI to compute the loss. + +.. note:: + + You can find the document about LF-MMI training at the following address: + + ``_ + + +Data preparation +---------------- + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +.. note:: + + We encourage you to read ``./prepare.sh``. + +The data preparation contains several stages. You can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. hint:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. note:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + +Training +-------- + +For stability, it uses CTC loss for model warm-up and then switches to MMI loss. + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./zipformer_mmi/train.py --help + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./zipformer_mmi/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt`` + in the folder ``./zipformer_mmi/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./zipformer_mmi/train.py --start-epoch 10`` loads the + checkpoint ``./zipformer_mmi/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./zipformer_mmi/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./zipformer_mmi/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./zipformer_mmi/train.py --world-size 1 + + .. caution:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., weight decay, +number of warmup steps, results dir, etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`zipformer_mmi/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./zipformer_mmi/train.py`` directly. + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``zipformer_mmi/exp``. +You will find the following files in that directory: + + - ``epoch-1.pt``, ``epoch-2.pt``, ... + + These are checkpoint files saved at the end of each epoch, containing model + ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./zipformer_mmi/train.py --start-epoch 11 + + - ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ... + + These are checkpoint files saved every ``--save-every-n`` batches, + containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``checkpoint-436000``, you can use: + + .. code-block:: bash + + $ ./zipformer_mmi/train.py --start-batch 436000 + + - ``tensorboard/`` + + This folder contains tensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd zipformer_mmi/exp/tensorboard + $ tensorboard dev upload --logdir . --description "Zipformer MMI training for LibriSpeech with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/ + + Note there is a URL in the above output. Click it and you will see + tensorboard. + + .. hint:: + + If you don't have access to google, you can use the following command + to view the tensorboard log locally: + + .. code-block:: bash + + cd zipformer_mmi/exp/tensorboard + tensorboard --logdir . --port 6008 + + It will print the following message: + + .. code-block:: + + Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all + TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit) + + Now start your browser and go to ``_ to view the tensorboard + logs. + + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage example +~~~~~~~~~~~~~ + +You can use the following command to start the training using 4 GPUs: + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES="0,1,2,3" + ./zipformer_mmi/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --full-libri 1 \ + --exp-dir zipformer_mmi/exp \ + --max-duration 500 \ + --use-fp16 1 \ + --num-workers 2 + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. hint:: + + There are two kinds of checkpoints: + + - (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end + of each epoch. You can pass ``--epoch`` to + ``zipformer_mmi/decode.py`` to use them. + + - (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved + every ``--save-every-n`` batches. You can pass ``--iter`` to + ``zipformer_mmi/decode.py`` to use them. + + We suggest that you try both types of checkpoints and choose the one + that produces the lowest WERs. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./zipformer_mmi/decode.py --help + +shows the options for decoding. + +The following shows the example using ``epoch-*.pt``: + +.. code-block:: bash + + for m in nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do + ./zipformer_mmi/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir ./zipformer_mmi/exp/ \ + --max-duration 100 \ + --lang-dir data/lang_bpe_500 \ + --nbest-scale 1.2 \ + --hp-scale 1.0 \ + --decoding-method $m + done + + +Export models +------------- + +`zipformer_mmi/export.py `_ supports exporting checkpoints from ``zipformer_mmi/exp`` in the following ways. + +Export ``model.state_dict()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Checkpoints saved by ``zipformer_mmi/train.py`` also include +``optimizer.state_dict()``. It is useful for resuming training. But after training, +we are interested only in ``model.state_dict()``. You can use the following +command to extract ``model.state_dict()``. + +.. code-block:: bash + + ./zipformer_mmi/export.py \ + --exp-dir ./zipformer_mmi/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 0 + +It will generate a file ``./zipformer_mmi/exp/pretrained.pt``. + +.. hint:: + + To use the generated ``pretrained.pt`` for ``zipformer_mmi/decode.py``, + you can run: + + .. code-block:: bash + + cd zipformer_mmi/exp + ln -s pretrained epoch-9999.pt + + And then pass ``--epoch 9999 --avg 1 --use-averaged-model 0`` to + ``./zipformer_mmi/decode.py``. + +To use the exported model with ``./zipformer_mmi/pretrained.py``, you +can run: + +.. code-block:: bash + + ./zipformer_mmi/pretrained.py \ + --checkpoint ./zipformer_mmi/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method 1best \ + /path/to/foo.wav \ + /path/to/bar.wav + +Export model using ``torch.jit.script()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + ./zipformer_mmi/export.py \ + --exp-dir ./zipformer_mmi/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later +load it by ``torch.jit.load("cpu_jit.pt")``. + +Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python +are on CPU. You can use ``to("cuda")`` to move them to a CUDA device. + +To use the generated files with ``./zipformer_mmi/jit_pretrained.py``: + +.. code-block:: bash + + ./zipformer_mmi/jit_pretrained.py \ + --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method 1best \ + /path/to/foo.wav \ + /path/to/bar.wav + +Download pretrained models +-------------------------- + +If you don't want to train from scratch, you can download the pretrained models +by visiting the following links: + + - ``_ + + See ``_ + for the details of the above pretrained models diff --git a/docs/source/recipes/timit/index.rst b/docs/source/recipes/Non-streaming-ASR/timit/index.rst similarity index 98% rename from docs/source/recipes/timit/index.rst rename to docs/source/recipes/Non-streaming-ASR/timit/index.rst index 17f40cdb7..5ee147be7 100644 --- a/docs/source/recipes/timit/index.rst +++ b/docs/source/recipes/Non-streaming-ASR/timit/index.rst @@ -6,4 +6,3 @@ TIMIT tdnn_ligru_ctc tdnn_lstm_ctc - diff --git a/docs/source/recipes/timit/tdnn_ligru_ctc.rst b/docs/source/recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc.rst similarity index 97% rename from docs/source/recipes/timit/tdnn_ligru_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc.rst index 186420ee7..3d7aefe02 100644 --- a/docs/source/recipes/timit/tdnn_ligru_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/timit/tdnn_ligru_ctc.rst @@ -148,10 +148,10 @@ Some commonly used options are: $ ./tdnn_ligru_ctc/decode.py --epoch 25 --avg 17 - uses the average of ``epoch-9.pt``, ``epoch-10.pt``, ``epoch-11.pt``, - ``epoch-12.pt``, ``epoch-13.pt``, ``epoch-14.pt``, ``epoch-15.pt``, - ``epoch-16.pt``, ``epoch-17.pt``, ``epoch-18.pt``, ``epoch-19.pt``, - ``epoch-20.pt``, ``epoch-21.pt``, ``epoch-22.pt``, ``epoch-23.pt``, + uses the average of ``epoch-9.pt``, ``epoch-10.pt``, ``epoch-11.pt``, + ``epoch-12.pt``, ``epoch-13.pt``, ``epoch-14.pt``, ``epoch-15.pt``, + ``epoch-16.pt``, ``epoch-17.pt``, ``epoch-18.pt``, ``epoch-19.pt``, + ``epoch-20.pt``, ``epoch-21.pt``, ``epoch-22.pt``, ``epoch-23.pt``, ``epoch-24.pt`` and ``epoch-25.pt`` for decoding. @@ -317,13 +317,13 @@ To decode with ``1best`` method, we can use: .. code-block:: bash - ./tdnn_ligru_ctc/pretrained.py + ./tdnn_ligru_ctc/pretrained.py --method 1best - --checkpoint ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/exp/pretrained_average_9_25.pt - --words-file ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/words.txt - --HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt - ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV - ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV + --checkpoint ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/exp/pretrained_average_9_25.pt + --words-file ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/words.txt + --HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt + ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV + ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV The output is: @@ -337,7 +337,7 @@ The output is: 2021-11-08 20:41:38,697 INFO [pretrained.py:210] Reading sound files: ['./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV', './tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV'] 2021-11-08 20:41:38,704 INFO [pretrained.py:216] Decoding started 2021-11-08 20:41:39,819 INFO [pretrained.py:246] Use HLG decoding - 2021-11-08 20:41:39,829 INFO [pretrained.py:267] + 2021-11-08 20:41:39,829 INFO [pretrained.py:267] ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV: sil dh ih sh uw ah l iy v iy z ih sil p r aa sil k s ih m ey dx ih sil d w uh dx ih w ih s f iy l ih ng w ih th ih n ih m s eh l f sil jh @@ -362,8 +362,8 @@ To decode with ``whole-lattice-rescoring`` methond, you can use --HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt \ --G ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lm/G_4_gram.pt \ --ngram-lm-scale 0.1 \ - ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV - ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV + ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV + ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV The decoding output is: @@ -378,7 +378,7 @@ The decoding output is: 2021-11-08 20:37:54,715 INFO [pretrained.py:210] Reading sound files: ['./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV', './tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV'] 2021-11-08 20:37:54,720 INFO [pretrained.py:216] Decoding started 2021-11-08 20:37:55,808 INFO [pretrained.py:251] Use HLG decoding + LM rescoring - 2021-11-08 20:37:56,348 INFO [pretrained.py:267] + 2021-11-08 20:37:56,348 INFO [pretrained.py:267] ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV: sil dh ih sh uw ah l iy v iy z ah sil p r aa sil k s ih m ey dx ih sil d w uh dx iy w ih s f iy l iy ng w ih th ih n ih m s eh l f sil jh diff --git a/docs/source/recipes/timit/tdnn_lstm_ctc.rst b/docs/source/recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc.rst similarity index 97% rename from docs/source/recipes/timit/tdnn_lstm_ctc.rst rename to docs/source/recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc.rst index 6f760a9ce..ee67a6edc 100644 --- a/docs/source/recipes/timit/tdnn_lstm_ctc.rst +++ b/docs/source/recipes/Non-streaming-ASR/timit/tdnn_lstm_ctc.rst @@ -148,8 +148,8 @@ Some commonly used options are: $ ./tdnn_lstm_ctc/decode.py --epoch 25 --avg 10 - uses the average of ``epoch-16.pt``, ``epoch-17.pt``, ``epoch-18.pt``, - ``epoch-19.pt``, ``epoch-20.pt``, ``epoch-21.pt``, ``epoch-22.pt``, + uses the average of ``epoch-16.pt``, ``epoch-17.pt``, ``epoch-18.pt``, + ``epoch-19.pt``, ``epoch-20.pt``, ``epoch-21.pt``, ``epoch-22.pt``, ``epoch-23.pt``, ``epoch-24.pt`` and ``epoch-25.pt`` for decoding. @@ -315,13 +315,13 @@ To decode with ``1best`` method, we can use: .. code-block:: bash - ./tdnn_lstm_ctc/pretrained.py + ./tdnn_lstm_ctc/pretrained.py --method 1best - --checkpoint ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/exp/pretrained_average_16_25.pt - --words-file ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/words.txt - --HLG ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt - ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV - ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV + --checkpoint ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/exp/pretrained_average_16_25.pt + --words-file ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/words.txt + --HLG ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt + ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV + ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV The output is: @@ -335,7 +335,7 @@ The output is: 2021-11-08 21:02:53,827 INFO [pretrained.py:210] Reading sound files: ['./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV', './tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV'] 2021-11-08 21:02:53,831 INFO [pretrained.py:216] Decoding started 2021-11-08 21:02:54,380 INFO [pretrained.py:246] Use HLG decoding - 2021-11-08 21:02:54,387 INFO [pretrained.py:267] + 2021-11-08 21:02:54,387 INFO [pretrained.py:267] ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV: sil dh ih sh uw ah l iy v iy z ih sil p r aa sil k s ih m ey dx ih sil d w uh dx iy w ih s f iy l iy w ih th ih n ih m s eh l f sil jh @@ -360,8 +360,8 @@ To decode with ``whole-lattice-rescoring`` methond, you can use --HLG ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt \ --G ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lm/G_4_gram.pt \ --ngram-lm-scale 0.08 \ - ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV - ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV + ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV + ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV The decoding output is: @@ -376,7 +376,7 @@ The decoding output is: 2021-11-08 20:05:26,978 INFO [pretrained.py:210] Reading sound files: ['./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV', './tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV'] 2021-11-08 20:05:26,981 INFO [pretrained.py:216] Decoding started 2021-11-08 20:05:27,519 INFO [pretrained.py:251] Use HLG decoding + LM rescoring - 2021-11-08 20:05:27,878 INFO [pretrained.py:267] + 2021-11-08 20:05:27,878 INFO [pretrained.py:267] ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV: sil dh ih sh uw l iy v iy z ih sil p r aa sil k s ah m ey dx ih sil w uh dx iy w ih s f iy l ih ng w ih th ih n ih m s eh l f sil jh diff --git a/docs/source/recipes/yesno/images/tdnn-tensorboard-log.png b/docs/source/recipes/Non-streaming-ASR/yesno/images/tdnn-tensorboard-log.png similarity index 100% rename from docs/source/recipes/yesno/images/tdnn-tensorboard-log.png rename to docs/source/recipes/Non-streaming-ASR/yesno/images/tdnn-tensorboard-log.png diff --git a/docs/source/recipes/yesno/index.rst b/docs/source/recipes/Non-streaming-ASR/yesno/index.rst similarity index 100% rename from docs/source/recipes/yesno/index.rst rename to docs/source/recipes/Non-streaming-ASR/yesno/index.rst diff --git a/docs/source/recipes/yesno/tdnn.rst b/docs/source/recipes/Non-streaming-ASR/yesno/tdnn.rst similarity index 100% rename from docs/source/recipes/yesno/tdnn.rst rename to docs/source/recipes/Non-streaming-ASR/yesno/tdnn.rst diff --git a/docs/source/recipes/Streaming-ASR/index.rst b/docs/source/recipes/Streaming-ASR/index.rst new file mode 100644 index 000000000..8c0ffe447 --- /dev/null +++ b/docs/source/recipes/Streaming-ASR/index.rst @@ -0,0 +1,12 @@ +Streaming ASR +============= + +.. toctree:: + :maxdepth: 1 + + introduction + +.. toctree:: + :maxdepth: 2 + + librispeech/index diff --git a/docs/source/recipes/Streaming-ASR/introduction.rst b/docs/source/recipes/Streaming-ASR/introduction.rst new file mode 100644 index 000000000..e1382e77d --- /dev/null +++ b/docs/source/recipes/Streaming-ASR/introduction.rst @@ -0,0 +1,53 @@ +Introduction +============ + +This page shows you how we implement streaming **X-former transducer** models for ASR. + +.. HINT:: + X-former transducer here means the encoder of the transducer model uses Multi-Head Attention, + like `Conformer `_, `EmFormer `_ etc. + +Currently we have implemented two types of streaming models, one uses Conformer as encoder, the other uses Emformer as encoder. + +Streaming Conformer +------------------- + +The main idea of training a streaming model is to make the model see limited contexts +in training time, we can achieve this by applying a mask to the output of self-attention. +In icefall, we implement the streaming conformer the way just like what `WeNet `_ did. + +.. NOTE:: + The conformer-transducer recipes in LibriSpeech datasets, like, `pruned_transducer_stateless `_, + `pruned_transducer_stateless2 `_, + `pruned_transducer_stateless3 `_, + `pruned_transducer_stateless4 `_, + `pruned_transducer_stateless5 `_ + all support streaming. + +.. NOTE:: + Training a streaming conformer model in ``icefall`` is almost the same as training a + non-streaming model, all you need to do is passing several extra arguments. + See :doc:`Pruned transducer statelessX ` for more details. + +.. HINT:: + If you want to modify a non-streaming conformer recipe to support both streaming and non-streaming, please refer + to `this pull request `_. After adding the code needed by streaming training, + you have to re-train it with the extra arguments metioned in the docs above to get a streaming model. + + +Streaming Emformer +------------------ + +The Emformer model proposed `here `_ uses more +complicated techniques. It has a memory bank component to memorize history information, +what' more, it also introduces right context in training time by hard-copying part of +the input features. + +We have three variants of Emformer models in ``icefall``. + + - ``pruned_stateless_emformer_rnnt2`` using Emformer from torchaudio, see `LibriSpeech recipe `_. + - ``conv_emformer_transducer_stateless`` using ConvEmformer implemented by ourself. Different from the Emformer in torchaudio, + ConvEmformer has a convolution in each layer and uses the mechanisms in our reworked conformer model. + See `LibriSpeech recipe `_. + - ``conv_emformer_transducer_stateless2`` using ConvEmformer implemented by ourself. The only difference from the above one is that + it uses a simplified memory bank. See `LibriSpeech recipe `_. diff --git a/docs/source/recipes/librispeech/images/librispeech-lstm-transducer-tensorboard-log.png b/docs/source/recipes/Streaming-ASR/librispeech/images/librispeech-lstm-transducer-tensorboard-log.png similarity index 100% rename from docs/source/recipes/librispeech/images/librispeech-lstm-transducer-tensorboard-log.png rename to docs/source/recipes/Streaming-ASR/librispeech/images/librispeech-lstm-transducer-tensorboard-log.png diff --git a/docs/source/recipes/Streaming-ASR/librispeech/images/streaming-librispeech-pruned-transducer-tensorboard-log.jpg b/docs/source/recipes/Streaming-ASR/librispeech/images/streaming-librispeech-pruned-transducer-tensorboard-log.jpg new file mode 100644 index 000000000..9c77b8bae Binary files /dev/null and b/docs/source/recipes/Streaming-ASR/librispeech/images/streaming-librispeech-pruned-transducer-tensorboard-log.jpg differ diff --git a/docs/source/recipes/librispeech/index.rst b/docs/source/recipes/Streaming-ASR/librispeech/index.rst similarity index 61% rename from docs/source/recipes/librispeech/index.rst rename to docs/source/recipes/Streaming-ASR/librispeech/index.rst index 6c91b6750..d52e08058 100644 --- a/docs/source/recipes/librispeech/index.rst +++ b/docs/source/recipes/Streaming-ASR/librispeech/index.rst @@ -4,6 +4,8 @@ LibriSpeech .. toctree:: :maxdepth: 1 - tdnn_lstm_ctc - conformer_ctc + pruned_transducer_stateless + lstm_pruned_stateless_transducer + + zipformer_transducer diff --git a/docs/source/recipes/librispeech/lstm_pruned_stateless_transducer.rst b/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst similarity index 95% rename from docs/source/recipes/librispeech/lstm_pruned_stateless_transducer.rst rename to docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst index 643855cc2..ce8ba1453 100644 --- a/docs/source/recipes/librispeech/lstm_pruned_stateless_transducer.rst +++ b/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst @@ -515,10 +515,10 @@ To use the generated files with ``./lstm_transducer_stateless2/jit_pretrained``: Please see ``_ for how to use the exported models in ``sherpa``. -.. _export-model-for-ncnn: +.. _export-lstm-transducer-model-for-ncnn: -Export model for ncnn -~~~~~~~~~~~~~~~~~~~~~ +Export LSTM transducer models for ncnn +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We support exporting pretrained LSTM transducer models to `ncnn `_ using @@ -531,16 +531,36 @@ First, let us install a modified version of ``ncnn``: git clone https://github.com/csukuangfj/ncnn cd ncnn git submodule update --recursive --init - python3 setup.py bdist_wheel - ls -lh dist/ - pip install ./dist/*.whl + + # Note: We don't use "python setup.py install" or "pip install ." here + + mkdir -p build-wheel + cd build-wheel + + cmake \ + -DCMAKE_BUILD_TYPE=Release \ + -DNCNN_PYTHON=ON \ + -DNCNN_BUILD_BENCHMARK=OFF \ + -DNCNN_BUILD_EXAMPLES=OFF \ + -DNCNN_BUILD_TOOLS=ON \ + .. + + make -j4 + + cd .. + + # Note: $PWD here is /path/to/ncnn + + export PYTHONPATH=$PWD/python:$PYTHONPATH + export PATH=$PWD/tools/pnnx/build/src:$PATH + export PATH=$PWD/build-wheel/tools/quantize:$PATH # now build pnnx cd tools/pnnx mkdir build cd build + cmake .. make -j4 - export PATH=$PWD/src:$PATH ./src/pnnx @@ -549,6 +569,9 @@ First, let us install a modified version of ``ncnn``: We assume that you have added the path to the binary ``pnnx`` to the environment variable ``PATH``. + We also assume that you have added ``build/tools/quantize`` to the environment + variable ``PATH`` so that you are able to use ``ncnn2int8`` later. + Second, let us export the model using ``torch.jit.trace()`` that is suitable for ``pnnx``: @@ -634,3 +657,6 @@ by visiting the following links: You can find more usages of the pretrained models in ``_ + +Export ConvEmformer transducer models for ncnn +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/source/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.rst b/docs/source/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.rst new file mode 100644 index 000000000..de7102ba8 --- /dev/null +++ b/docs/source/recipes/Streaming-ASR/librispeech/pruned_transducer_stateless.rst @@ -0,0 +1,735 @@ +Pruned transducer statelessX +============================ + +This tutorial shows you how to run a **streaming** conformer transducer model +with the `LibriSpeech `_ dataset. + +.. Note:: + + The tutorial is suitable for `pruned_transducer_stateless `_, + `pruned_transducer_stateless2 `_, + `pruned_transducer_stateless4 `_, + `pruned_transducer_stateless5 `_, + We will take pruned_transducer_stateless4 as an example in this tutorial. + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + +.. HINT:: + + We recommend you to use a GPU or several GPUs to run this recipe. + +.. hint:: + + Please scroll down to the bottom of this page to find download links + for pretrained models if you don't want to train a model from scratch. + + +We use pruned RNN-T to compute the loss. + +.. note:: + + You can find the paper about pruned RNN-T at the following address: + + ``_ + +The transducer model consists of 3 parts: + + - Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey) + - Decoder, a.k.a, the prediction network. We use a stateless model consisting of + ``nn.Embedding`` and ``nn.Conv1d`` + - Joiner, a.k.a, the joint network. + +.. caution:: + + Contrary to the conventional RNN-T models, we use a stateless decoder. + That is, it has no recurrent connections. + + +Data preparation +---------------- + +.. hint:: + + The data preparation is the same as other recipes on LibriSpeech dataset, + if you have finished this step, you can skip to ``Training`` directly. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. HINT:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. NOTE:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + + +Training +-------- + +.. NOTE:: + + We put the streaming and non-streaming model in one recipe, to train a streaming model you only + need to add **4** extra options comparing with training a non-streaming model. These options are + ``--dynamic-chunk-training``, ``--num-left-chunks``, ``--causal-convolution``, ``--short-chunk-size``. + You can see the configurable options below for their meanings or read https://arxiv.org/pdf/2012.05481.pdf for more details. + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/train.py --help + + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--exp-dir`` + + The directory to save checkpoints, training logs and tensorboard. + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./pruned_transducer_stateless4/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt`` + in the folder ``./pruned_transducer_stateless4/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./pruned_transducer_stateless4/train.py --start-epoch 10`` loads the + checkpoint ``./pruned_transducer_stateless4/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./pruned_transducer_stateless4/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./pruned_transducer_stateless4/train.py --world-size 1 + + .. caution:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + - ``--use-fp16`` + + If it is True, the model will train with half precision, from our experiment + results, by using half precision you can train with two times larger ``--max-duration`` + so as to get almost 2X speed up. + + - ``--dynamic-chunk-training`` + + The flag that indicates whether to train a streaming model or not, it + **MUST** be True if you want to train a streaming model. + + - ``--short-chunk-size`` + + When training a streaming attention model with chunk masking, the chunk size + would be either max sequence length of current batch or uniformly sampled from + (1, short_chunk_size). The default value is 25, you don't have to change it most of the time. + + - ``--num-left-chunks`` + + It indicates how many left context (in chunks) that can be seen when calculating attention. + The default value is 4, you don't have to change it most of the time. + + + - ``--causal-convolution`` + + Whether to use causal convolution in conformer encoder layer, this requires + to be True when training a streaming model. + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., number of encoder layers, +encoder dimension, decoder dimension, number of warmup steps etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`pruned_transducer_stateless4/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./pruned_transducer_stateless4/train.py`` directly. + + +.. NOTE:: + + The options for `pruned_transducer_stateless5 `_ are a little different from + other recipes. It allows you to configure ``--num-encoder-layers``, ``--dim-feedforward``, ``--nhead``, ``--encoder-dim``, ``--decoder-dim``, ``--joiner-dim`` from commandline, so that you can train models with different size with pruned_transducer_stateless5. + + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless4/exp``. +You will find the following files in that directory: + + - ``epoch-1.pt``, ``epoch-2.pt``, ... + + These are checkpoint files saved at the end of each epoch, containing model + ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless4/train.py --start-epoch 11 + + - ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ... + + These are checkpoint files saved every ``--save-every-n`` batches, + containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``checkpoint-436000``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless4/train.py --start-batch 436000 + + - ``tensorboard/`` + + This folder contains tensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd pruned_transducer_stateless4/exp/tensorboard + $ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/97VKXf80Ru61CnP2ALWZZg/ + + [2022-11-20T15:50:50] Started scanning logdir. + Uploading 4468 scalars... + [2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects + Listening for new data in logdir... + + Note there is a URL in the above output. Click it and you will see + the following screenshot: + + .. figure:: images/streaming-librispeech-pruned-transducer-tensorboard-log.jpg + :width: 600 + :alt: TensorBoard screenshot + :align: center + :target: https://tensorboard.dev/experiment/97VKXf80Ru61CnP2ALWZZg/ + + TensorBoard screenshot. + + .. hint:: + + If you don't have access to google, you can use the following command + to view the tensorboard log locally: + + .. code-block:: bash + + cd pruned_transducer_stateless4/exp/tensorboard + tensorboard --logdir . --port 6008 + + It will print the following message: + + .. code-block:: + + Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all + TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit) + + Now start your browser and go to ``_ to view the tensorboard + logs. + + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage example +~~~~~~~~~~~~~ + +You can use the following command to start the training using 4 GPUs: + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES="0,1,2,3" + ./pruned_transducer_stateless4/train.py \ + --world-size 4 \ + --dynamic-chunk-training 1 \ + --causal-convolution 1 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless4/exp \ + --full-libri 1 \ + --max-duration 300 + +.. NOTE:: + + Comparing with training a non-streaming model, you only need to add two extra options, + ``--dynamic-chunk-training 1`` and ``--causal-convolution 1`` . + + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. hint:: + + There are two kinds of checkpoints: + + - (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end + of each epoch. You can pass ``--epoch`` to + ``pruned_transducer_stateless4/decode.py`` to use them. + + - (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved + every ``--save-every-n`` batches. You can pass ``--iter`` to + ``pruned_transducer_stateless4/decode.py`` to use them. + + We suggest that you try both types of checkpoints and choose the one + that produces the lowest WERs. + +.. tip:: + + To decode a streaming model, you can use either ``simulate streaming decoding`` in ``decode.py`` or + ``real streaming decoding`` in ``streaming_decode.py``, the difference between ``decode.py`` and + ``streaming_decode.py`` is that, ``decode.py`` processes the whole acoustic frames at one time with masking (i.e. same as training), + but ``streaming_decode.py`` processes the acoustic frames chunk by chunk (so it can only see limited context). + +.. NOTE:: + + ``simulate streaming decoding`` in ``decode.py`` and ``real streaming decoding`` in ``streaming_decode.py`` should + produce almost the same results given the same ``--decode-chunk-size`` and ``--left-context``. + + +Simulate streaming decoding +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/decode.py --help + +shows the options for decoding. +The following options are important for streaming models: + + ``--simulate-streaming`` + + If you want to decode a streaming model with ``decode.py``, you **MUST** set + ``--simulate-streaming`` to ``True``. ``simulate`` here means the acoustic frames + are not processed frame by frame (or chunk by chunk), instead, the whole sequence + is processed at one time with masking (the same as training). + + ``--causal-convolution`` + + If True, the convolution module in encoder layers will be causal convolution. + This is **MUST** be True when decoding with a streaming model. + + ``--decode-chunk-size`` + + For streaming models, we will calculate the chunk-wise attention, ``--decode-chunk-size`` + indicates the chunk length (in frames after subsampling) for chunk-wise attention. + For ``simulate streaming decoding`` the ``decode-chunk-size`` is used to generate + the attention mask. + + ``--left-context`` + + ``--left-context`` indicates how many left context frames (after subsampling) can be seen + for current chunk when calculating chunk-wise attention. Normally, ``left-context`` should equal + to ``decode-chunk-size * num-left-chunks``, where ``num-left-chunks`` is the option used + to train this model. For ``simulate streaming decoding`` the ``left-context`` is used to generate + the attention mask. + + +The following shows two examples (for the two types of checkpoints): + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in 25 20; do + for avg in 7 5 3 1; do + ./pruned_transducer_stateless4/decode.py \ + --epoch $epoch \ + --avg $avg \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --decode-chunk-size 16 \ + --left-context 64 \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for iter in 474000; do + for avg in 8 10 12 14 16 18; do + ./pruned_transducer_stateless4/decode.py \ + --iter $iter \ + --avg $avg \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --decode-chunk-size 16 \ + --left-context 64 \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +Real streaming decoding +~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless4/streaming_decode.py --help + +shows the options for decoding. +The following options are important for streaming models: + + ``--decode-chunk-size`` + + For streaming models, we will calculate the chunk-wise attention, ``--decode-chunk-size`` + indicates the chunk length (in frames after subsampling) for chunk-wise attention. + For ``real streaming decoding``, we will process ``decode-chunk-size`` acoustic frames at each time. + + ``--left-context`` + + ``--left-context`` indicates how many left context frames (after subsampling) can be seen + for current chunk when calculating chunk-wise attention. Normally, ``left-context`` should equal + to ``decode-chunk-size * num-left-chunks``, where ``num-left-chunks`` is the option used + to train this model. + + ``--num-decode-streams`` + + The number of decoding streams that can be run in parallel (very similar to the ``bath size``). + For ``real streaming decoding``, the batches will be packed dynamically, for example, if the + ``num-decode-streams`` equals to 10, then, sequence 1 to 10 will be decoded at first, after a while, + suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in a batch. + + +.. NOTE:: + + We also try adding ``--right-context`` in the real streaming decoding, but it seems not to benefit + the performance for all the models, the reasons might be the training and decoding mismatch. You + can try decoding with ``--right-context`` to see if it helps. The default value is 0. + + +The following shows two examples (for the two types of checkpoints): + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in 25 20; do + for avg in 7 5 3 1; do + ./pruned_transducer_stateless4/decode.py \ + --epoch $epoch \ + --avg $avg \ + --decode-chunk-size 16 \ + --left-context 64 \ + --num-decode-streams 100 \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for iter in 474000; do + for avg in 8 10 12 14 16 18; do + ./pruned_transducer_stateless4/decode.py \ + --iter $iter \ + --avg $avg \ + --decode-chunk-size 16 \ + --left-context 64 \ + --num-decode-streams 100 \ + --exp-dir pruned_transducer_stateless4/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. tip:: + + Supporting decoding methods are as follows: + + - ``greedy_search`` : It takes the symbol with largest posterior probability + of each frame as the decoding result. + + - ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and + `espnet/nets/beam_search_transducer.py `_ + is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to + next frame. + + - ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it + runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded. + + - ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and + given ``FSAs``. It is hard to describe the details in several lines of texts, you can read + our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 `_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently. + + - ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses + an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph + (with N-gram LM). + + - ``fast_beam_search_nbest`` : It produces the decoding results as follows: + + - (1) Use ``fast_beam_search`` to get a lattice + - (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()`` + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + - ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the + only difference is that it uses ``fast_beam_search_LG`` to generate the lattice. + +.. NOTE:: + + The supporting decoding methods in ``streaming_decode.py`` might be less than that in ``decode.py``, if needed, + you can implement them by yourself or file a issue in `icefall `_ . + + +Export Model +------------ + +`pruned_transducer_stateless4/export.py `_ supports exporting checkpoints from ``pruned_transducer_stateless4/exp`` in the following ways. + +Export ``model.state_dict()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Checkpoints saved by ``pruned_transducer_stateless4/train.py`` also include +``optimizer.state_dict()``. It is useful for resuming training. But after training, +we are interested only in ``model.state_dict()``. You can use the following +command to extract ``model.state_dict()``. + +.. code-block:: bash + + # Assume that --epoch 25 --avg 3 produces the smallest WER + # (You can get such information after running ./pruned_transducer_stateless4/decode.py) + + epoch=25 + avg=3 + + ./pruned_transducer_stateless4/export.py \ + --exp-dir ./pruned_transducer_stateless4/exp \ + --streaming-model 1 \ + --causal-convolution 1 \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch $epoch \ + --avg $avg + +.. caution:: + + ``--streaming-model`` and ``--causal-convolution`` require to be True to export + a streaming mdoel. + +It will generate a file ``./pruned_transducer_stateless4/exp/pretrained.pt``. + +.. hint:: + + To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless4/decode.py``, + you can run: + + .. code-block:: bash + + cd pruned_transducer_stateless4/exp + ln -s pretrained.pt epoch-999.pt + + And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to + ``./pruned_transducer_stateless4/decode.py``. + +To use the exported model with ``./pruned_transducer_stateless4/pretrained.py``, you +can run: + +.. code-block:: bash + + ./pruned_transducer_stateless4/pretrained.py \ + --checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + + +Export model using ``torch.jit.script()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + ./pruned_transducer_stateless4/export.py \ + --exp-dir ./pruned_transducer_stateless4/exp \ + --streaming-model 1 \ + --causal-convolution 1 \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 25 \ + --avg 3 \ + --jit 1 + +.. caution:: + + ``--streaming-model`` and ``--causal-convolution`` require to be True to export + a streaming mdoel. + +It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later +load it by ``torch.jit.load("cpu_jit.pt")``. + +Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python +are on CPU. You can use ``to("cuda")`` to move them to a CUDA device. + +.. NOTE:: + + You will need this ``cpu_jit.pt`` when deploying with Sherpa framework. + + +Download pretrained models +-------------------------- + +If you don't want to train from scratch, you can download the pretrained models +by visiting the following links: + + - `pruned_transducer_stateless `_ + + - `pruned_transducer_stateless2 `_ + + - `pruned_transducer_stateless4 `_ + + - `pruned_transducer_stateless5 `_ + + See ``_ + for the details of the above pretrained models + + +Deploy with Sherpa +------------------ + +Please see ``_ +for how to deploy the models in ``sherpa``. diff --git a/docs/source/recipes/Streaming-ASR/librispeech/zipformer_transducer.rst b/docs/source/recipes/Streaming-ASR/librispeech/zipformer_transducer.rst new file mode 100644 index 000000000..f0e8961d7 --- /dev/null +++ b/docs/source/recipes/Streaming-ASR/librispeech/zipformer_transducer.rst @@ -0,0 +1,654 @@ +Zipformer Transducer +==================== + +This tutorial shows you how to run a **streaming** zipformer transducer model +with the `LibriSpeech `_ dataset. + +.. Note:: + + The tutorial is suitable for `pruned_transducer_stateless7_streaming `_, + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + +.. HINT:: + + We recommend you to use a GPU or several GPUs to run this recipe. + +.. hint:: + + Please scroll down to the bottom of this page to find download links + for pretrained models if you don't want to train a model from scratch. + + +We use pruned RNN-T to compute the loss. + +.. note:: + + You can find the paper about pruned RNN-T at the following address: + + ``_ + +The transducer model consists of 3 parts: + + - Encoder, a.k.a, the transcription network. We use a Zipformer model (proposed by Daniel Povey) + - Decoder, a.k.a, the prediction network. We use a stateless model consisting of + ``nn.Embedding`` and ``nn.Conv1d`` + - Joiner, a.k.a, the joint network. + +.. caution:: + + Contrary to the conventional RNN-T models, we use a stateless decoder. + That is, it has no recurrent connections. + + +Data preparation +---------------- + +.. hint:: + + The data preparation is the same as other recipes on LibriSpeech dataset, + if you have finished this step, you can skip to ``Training`` directly. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. HINT:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. NOTE:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + +We provide the following YouTube video showing how to run ``./prepare.sh``. + +.. note:: + + To get the latest news of `next-gen Kaldi `_, please subscribe + the following YouTube channel by `Nadira Povey `_: + + ``_ + +.. youtube:: ofEIoJL-mGM + + +Training +-------- + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_streaming/train.py --help + + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--exp-dir`` + + The directory to save checkpoints, training logs and tensorboard. + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./pruned_transducer_stateless7_streaming/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt`` + in the folder ``./pruned_transducer_stateless7_streaming/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./pruned_transducer_stateless7_streaming/train.py --start-epoch 10`` loads the + checkpoint ``./pruned_transducer_stateless7_streaming/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./pruned_transducer_stateless7_streaming/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_streaming/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./pruned_transducer_stateless7_streaming/train.py --world-size 1 + + .. caution:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + - ``--use-fp16`` + + If it is True, the model will train with half precision, from our experiment + results, by using half precision you can train with two times larger ``--max-duration`` + so as to get almost 2X speed up. + + We recommend using ``--use-fp16 True``. + + - ``--short-chunk-size`` + + When training a streaming attention model with chunk masking, the chunk size + would be either max sequence length of current batch or uniformly sampled from + (1, short_chunk_size). The default value is 50, you don't have to change it most of the time. + + - ``--num-left-chunks`` + + It indicates how many left context (in chunks) that can be seen when calculating attention. + The default value is 4, you don't have to change it most of the time. + + + - ``--decode-chunk-len`` + + The chunk size for decoding (in frames before subsampling). It is used for validation. + The default value is 32 (i.e., 320ms). + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., number of encoder layers, +encoder dimension, decoder dimension, number of warmup steps etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`pruned_transducer_stateless7_streaming/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./pruned_transducer_stateless7_streaming/train.py`` directly. + + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``--exp-dir`` (e.g. ``pruned_transducer_stateless7_streaming/exp``. +You will find the following files in that directory: + + - ``epoch-1.pt``, ``epoch-2.pt``, ... + + These are checkpoint files saved at the end of each epoch, containing model + ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless7_streaming/train.py --start-epoch 11 + + - ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ... + + These are checkpoint files saved every ``--save-every-n`` batches, + containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``checkpoint-436000``, you can use: + + .. code-block:: bash + + $ ./pruned_transducer_stateless7_streaming/train.py --start-batch 436000 + + - ``tensorboard/`` + + This folder contains tensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd pruned_transducer_stateless7_streaming/exp/tensorboard + $ tensorboard dev upload --logdir . --description "pruned transducer training for LibriSpeech with icefall" + + .. hint:: + + If you don't have access to google, you can use the following command + to view the tensorboard log locally: + + .. code-block:: bash + + cd pruned_transducer_stateless7_streaming/exp/tensorboard + tensorboard --logdir . --port 6008 + + It will print the following message: + + .. code-block:: + + Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all + TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit) + + Now start your browser and go to ``_ to view the tensorboard + logs. + + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage example +~~~~~~~~~~~~~ + +You can use the following command to start the training using 4 GPUs: + +.. code-block:: bash + + export CUDA_VISIBLE_DEVICES="0,1,2,3" + ./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --full-libri 1 \ + --max-duration 550 + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. hint:: + + There are two kinds of checkpoints: + + - (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end + of each epoch. You can pass ``--epoch`` to + ``pruned_transducer_stateless7_streaming/decode.py`` to use them. + + - (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved + every ``--save-every-n`` batches. You can pass ``--iter`` to + ``pruned_transducer_stateless7_streaming/decode.py`` to use them. + + We suggest that you try both types of checkpoints and choose the one + that produces the lowest WERs. + +.. tip:: + + To decode a streaming model, you can use either ``simulate streaming decoding`` in ``decode.py`` or + ``real chunk-wise streaming decoding`` in ``streaming_decode.py``. The difference between ``decode.py`` and + ``streaming_decode.py`` is that, ``decode.py`` processes the whole acoustic frames at one time with masking (i.e. same as training), + but ``streaming_decode.py`` processes the acoustic frames chunk by chunk. + +.. NOTE:: + + ``simulate streaming decoding`` in ``decode.py`` and ``real chunk-size streaming decoding`` in ``streaming_decode.py`` should + produce almost the same results given the same ``--decode-chunk-len``. + + +Simulate streaming decoding +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_streaming/decode.py --help + +shows the options for decoding. +The following options are important for streaming models: + + ``--decode-chunk-len`` + + It is same as in ``train.py``, which specifies the chunk size for decoding (in frames before subsampling). + The default value is 32 (i.e., 320ms). + + +The following shows two examples (for the two types of checkpoints): + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in 30; do + for avg in 12 11 10 9 8; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --epoch $epoch \ + --avg $avg \ + --decode-chunk-len 32 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for iter in 474000; do + for avg in 8 10 12 14 16 18; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --iter $iter \ + --avg $avg \ + --decode-chunk-len 32 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decoding-method $m + done + done + done + + +Real streaming decoding +~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./pruned_transducer_stateless7_streaming/streaming_decode.py --help + +shows the options for decoding. +The following options are important for streaming models: + + ``--decode-chunk-len`` + + It is same as in ``train.py``, which specifies the chunk size for decoding (in frames before subsampling). + The default value is 32 (i.e., 320ms). + For ``real streaming decoding``, we will process ``decode-chunk-len`` acoustic frames at each time. + + ``--num-decode-streams`` + + The number of decoding streams that can be run in parallel (very similar to the ``bath size``). + For ``real streaming decoding``, the batches will be packed dynamically, for example, if the + ``num-decode-streams`` equals to 10, then, sequence 1 to 10 will be decoded at first, after a while, + suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in a batch. + + +The following shows two examples (for the two types of checkpoints): + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in 30; do + for avg in 12 11 10 9 8; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --epoch $epoch \ + --avg $avg \ + --decode-chunk-len 32 \ + --num-decode-streams 100 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --decoding-method $m + done + done + done + + +.. code-block:: bash + + for m in greedy_search fast_beam_search modified_beam_search; do + for iter in 474000; do + for avg in 8 10 12 14 16 18; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --iter $iter \ + --avg $avg \ + --decode-chunk-len 16 \ + --num-decode-streams 100 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --decoding-method $m + done + done + done + + +.. tip:: + + Supporting decoding methods are as follows: + + - ``greedy_search`` : It takes the symbol with largest posterior probability + of each frame as the decoding result. + + - ``beam_search`` : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and + `espnet/nets/beam_search_transducer.py `_ + is used as a reference. Basicly, it keeps topk states for each frame, and expands the kept states with their own contexts to + next frame. + + - ``modified_beam_search`` : It implements the same algorithm as ``beam_search`` above, but it + runs in batch mode with ``--max-sym-per-frame=1`` being hardcoded. + + - ``fast_beam_search`` : It implements graph composition between the output ``log_probs`` and + given ``FSAs``. It is hard to describe the details in several lines of texts, you can read + our paper in https://arxiv.org/pdf/2211.00484.pdf or our `rnnt decode code in k2 `_. ``fast_beam_search`` can decode with ``FSAs`` on GPU efficiently. + + - ``fast_beam_search_LG`` : The same as ``fast_beam_search`` above, ``fast_beam_search`` uses + an trivial graph that has only one state, while ``fast_beam_search_LG`` uses an LG graph + (with N-gram LM). + + - ``fast_beam_search_nbest`` : It produces the decoding results as follows: + + - (1) Use ``fast_beam_search`` to get a lattice + - (2) Select ``num_paths`` paths from the lattice using ``k2.random_paths()`` + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + - ``fast_beam_search_nbest_LG`` : It implements same logic as ``fast_beam_search_nbest``, the + only difference is that it uses ``fast_beam_search_LG`` to generate the lattice. + +.. NOTE:: + + The supporting decoding methods in ``streaming_decode.py`` might be less than that in ``decode.py``, if needed, + you can implement them by yourself or file a issue in `icefall `_ . + + +Export Model +------------ + +Currently it supports exporting checkpoints from ``pruned_transducer_stateless7_streaming/exp`` in the following ways. + +Export ``model.state_dict()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Checkpoints saved by ``pruned_transducer_stateless7_streaming/train.py`` also include +``optimizer.state_dict()``. It is useful for resuming training. But after training, +we are interested only in ``model.state_dict()``. You can use the following +command to extract ``model.state_dict()``. + +.. code-block:: bash + + # Assume that --epoch 30 --avg 9 produces the smallest WER + # (You can get such information after running ./pruned_transducer_stateless7_streaming/decode.py) + + epoch=30 + avg=9 + + ./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model=True \ + --decode-chunk-len 32 + +It will generate a file ``./pruned_transducer_stateless7_streaming/exp/pretrained.pt``. + +.. hint:: + + To use the generated ``pretrained.pt`` for ``pruned_transducer_stateless7_streaming/decode.py``, + you can run: + + .. code-block:: bash + + cd pruned_transducer_stateless7_streaming/exp + ln -s pretrained.pt epoch-999.pt + + And then pass ``--epoch 999 --avg 1 --use-averaged-model 0`` to + ``./pruned_transducer_stateless7_streaming/decode.py``. + +To use the exported model with ``./pruned_transducer_stateless7_streaming/pretrained.py``, you +can run: + +.. code-block:: bash + + ./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + --decode-chunk-len 32 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +Export model using ``torch.jit.script()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + ./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --decode-chunk-len 32 \ + --jit 1 + +.. caution:: + + ``--decode-chunk-len`` is required to export a ScriptModule. + +It will generate a file ``cpu_jit.pt`` in the given ``exp_dir``. You can later +load it by ``torch.jit.load("cpu_jit.pt")``. + +Note ``cpu`` in the name ``cpu_jit.pt`` means the parameters when loaded into Python +are on CPU. You can use ``to("cuda")`` to move them to a CUDA device. + +Export model using ``torch.jit.trace()`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + epoch=30 + avg=9 + + ./pruned_transducer_stateless7_streaming/jit_trace_export.py \ + --bpe-model data/lang_bpe_500/bpe.model \ + --use-averaged-model=True \ + --decode-chunk-len 32 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --epoch $epoch \ + --avg $avg + +.. caution:: + + ``--decode-chunk-len`` is required to export a ScriptModule. + +It will generate 3 files: + + - ``./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt`` + - ``./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt`` + - ``./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt`` + +To use the generated files with ``./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py``: + +.. code-block:: bash + + ./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \ + --encoder-model-filename ./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt \ + --decoder-model-filename ./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt \ + --joiner-model-filename ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + /path/to/foo.wav + + +Download pretrained models +-------------------------- + +If you don't want to train from scratch, you can download the pretrained models +by visiting the following links: + + - `pruned_transducer_stateless7_streaming `_ + + See ``_ + for the details of the above pretrained models + +Deploy with Sherpa +------------------ + +Please see ``_ +for how to deploy the models in ``sherpa``. diff --git a/docs/source/recipes/index.rst b/docs/source/recipes/index.rst index 9d1d83d29..63793275c 100644 --- a/docs/source/recipes/index.rst +++ b/docs/source/recipes/index.rst @@ -13,7 +13,5 @@ We may add recipes for other tasks as well in the future. :maxdepth: 2 :caption: Table of Contents - aishell/index - librispeech/index - timit/index - yesno/index + Non-streaming-ASR/index + Streaming-ASR/index diff --git a/egs/aidatatang_200zh/ASR/local/compute_fbank_aidatatang_200zh.py b/egs/aidatatang_200zh/ASR/local/compute_fbank_aidatatang_200zh.py index fb2751c0f..387c14acf 100755 --- a/egs/aidatatang_200zh/ASR/local/compute_fbank_aidatatang_200zh.py +++ b/egs/aidatatang_200zh/ASR/local/compute_fbank_aidatatang_200zh.py @@ -87,9 +87,7 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -116,9 +114,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/aidatatang_200zh/ASR/local/prepare_char.py b/egs/aidatatang_200zh/ASR/local/prepare_char.py index d9e47d17a..6b440dfb3 100755 --- a/egs/aidatatang_200zh/ASR/local/prepare_char.py +++ b/egs/aidatatang_200zh/ASR/local/prepare_char.py @@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil( cur_state = loop_state word = word2id[word] - pieces = [ - token2id[i] if i in token2id else token2id[""] for i in pieces - ] + pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces] for i in range(len(pieces) - 1): w = word if i == 0 else eps @@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool: return False -def generate_lexicon( - token_sym_table: Dict[str, int], words: List[str] -) -> Lexicon: +def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon: """Generate a lexicon from a word list and token_sym_table. Args: diff --git a/egs/aidatatang_200zh/ASR/local/prepare_lang.py b/egs/aidatatang_200zh/ASR/local/prepare_lang.py index e5ae89ec4..c8cf9b881 100755 --- a/egs/aidatatang_200zh/ASR/local/prepare_lang.py +++ b/egs/aidatatang_200zh/ASR/local/prepare_lang.py @@ -317,9 +317,7 @@ def lexicon_to_fst( def get_args(): parser = argparse.ArgumentParser() - parser.add_argument( - "--lang-dir", type=str, help="The lang dir, data/lang_phone" - ) + parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone") return parser.parse_args() diff --git a/egs/aidatatang_200zh/ASR/local/test_prepare_lang.py b/egs/aidatatang_200zh/ASR/local/test_prepare_lang.py index d4cf62bba..74e025ad7 100755 --- a/egs/aidatatang_200zh/ASR/local/test_prepare_lang.py +++ b/egs/aidatatang_200zh/ASR/local/test_prepare_lang.py @@ -88,9 +88,7 @@ def test_read_lexicon(filename: str): fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa.draw("L.pdf", title="L") - fsa_disambig = lexicon_to_fst( - lexicon_disambig, phone2id=phone2id, word2id=word2id - ) + fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id) fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt") fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa_disambig.draw("L_disambig.pdf", title="L_disambig") diff --git a/egs/aidatatang_200zh/ASR/local/text2token.py b/egs/aidatatang_200zh/ASR/local/text2token.py index 71be2a613..85047c367 100755 --- a/egs/aidatatang_200zh/ASR/local/text2token.py +++ b/egs/aidatatang_200zh/ASR/local/text2token.py @@ -56,9 +56,7 @@ def get_parser(): parser.add_argument( "--skip-ncols", "-s", default=0, type=int, help="skip first n columns" ) - parser.add_argument( - "--space", default="", type=str, help="space symbol" - ) + parser.add_argument("--space", default="", type=str, help="space symbol") parser.add_argument( "--non-lang-syms", "-l", @@ -66,9 +64,7 @@ def get_parser(): type=str, help="list of non-linguistic symobles, e.g., etc.", ) - parser.add_argument( - "text", type=str, default=False, nargs="?", help="input text" - ) + parser.add_argument("text", type=str, default=False, nargs="?", help="input text") parser.add_argument( "--trans_type", "-t", @@ -108,8 +104,7 @@ def token2id( if token_type == "lazy_pinyin": text = lazy_pinyin(chars_list) sub_ids = [ - token_table[txt] if txt in token_table else oov_id - for txt in text + token_table[txt] if txt in token_table else oov_id for txt in text ] ids.append(sub_ids) else: # token_type = "pinyin" @@ -135,9 +130,7 @@ def main(): if args.text: f = codecs.open(args.text, encoding="utf-8") else: - f = codecs.getreader("utf-8")( - sys.stdin if is_python2 else sys.stdin.buffer - ) + f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer) sys.stdout = codecs.getwriter("utf-8")( sys.stdout if is_python2 else sys.stdout.buffer diff --git a/egs/aidatatang_200zh/ASR/prepare.sh b/egs/aidatatang_200zh/ASR/prepare.sh index 039951354..46ecd5769 100755 --- a/egs/aidatatang_200zh/ASR/prepare.sh +++ b/egs/aidatatang_200zh/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail stage=-1 @@ -106,11 +109,10 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then if [ ! -f $lang_char_dir/words.txt ]; then ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ - --output-file $lang_char_dir/words.txt + --output-file $lang_char_dir/words.txt fi if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py fi fi - diff --git a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/asr_datamodule.py b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/asr_datamodule.py index 6a5b57e24..167d5e15e 100644 --- a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/asr_datamodule.py +++ b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/asr_datamodule.py @@ -205,17 +205,13 @@ class Aidatatang_200zhAsrDataModule: The state dict for the training sampler. """ logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -237,9 +233,7 @@ class Aidatatang_200zhAsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -282,9 +276,7 @@ class Aidatatang_200zhAsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -340,9 +332,7 @@ class Aidatatang_200zhAsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: diff --git a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/decode.py b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/decode.py index f0407f429..d0f118959 100755 --- a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/decode.py +++ b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/decode.py @@ -69,11 +69,7 @@ from beam_search import ( ) from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, @@ -192,8 +188,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -249,9 +244,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -266,10 +259,7 @@ def decode_one_batch( ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -390,9 +380,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -425,8 +413,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) diff --git a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/export.py b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/export.py index 00b54c39f..e348f7b2b 100644 --- a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/export.py +++ b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/export.py @@ -103,8 +103,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -173,9 +172,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/pretrained.py b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/pretrained.py index eb5e6b0d4..75c316eaf 100644 --- a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/pretrained.py +++ b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/pretrained.py @@ -162,8 +162,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -193,10 +192,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -257,9 +255,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -284,10 +280,7 @@ def main(): ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -339,9 +332,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/train.py b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/train.py index d46838b68..c9d9c4aa8 100644 --- a/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/train.py +++ b/egs/aidatatang_200zh/ASR/pruned_transducer_stateless2/train.py @@ -81,9 +81,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] os.environ["CUDA_LAUNCH_BLOCKING"] = "1" @@ -187,8 +185,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -211,8 +208,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -542,22 +538,15 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -711,9 +700,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -813,7 +800,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) diff --git a/egs/aishell/ASR/README.md b/egs/aishell/ASR/README.md index 75fc6326e..f4a59e552 100644 --- a/egs/aishell/ASR/README.md +++ b/egs/aishell/ASR/README.md @@ -1,7 +1,7 @@ # Introduction -Please refer to +Please refer to for how to run models in this recipe. diff --git a/egs/aishell/ASR/conformer_ctc/conformer.py b/egs/aishell/ASR/conformer_ctc/conformer.py index cb7205e51..ab1cbbae4 100644 --- a/egs/aishell/ASR/conformer_ctc/conformer.py +++ b/egs/aishell/ASR/conformer_ctc/conformer.py @@ -157,9 +157,7 @@ class ConformerEncoderLayer(nn.Module): normalize_before: bool = True, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -177,18 +175,14 @@ class ConformerEncoderLayer(nn.Module): self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -222,9 +216,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -343,9 +335,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -361,9 +351,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -633,9 +621,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -703,31 +691,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -766,9 +745,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -780,9 +757,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -816,13 +791,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -845,9 +816,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/aishell/ASR/conformer_ctc/decode.py b/egs/aishell/ASR/conformer_ctc/decode.py index 751b7d5b5..74a7b5933 100755 --- a/egs/aishell/ASR/conformer_ctc/decode.py +++ b/egs/aishell/ASR/conformer_ctc/decode.py @@ -401,9 +401,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -431,9 +429,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=enable_log @@ -441,9 +437,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt" @@ -562,9 +556,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/aishell/ASR/conformer_ctc/export.py b/egs/aishell/ASR/conformer_ctc/export.py index 42b8c29e7..1df3cfdc2 100644 --- a/egs/aishell/ASR/conformer_ctc/export.py +++ b/egs/aishell/ASR/conformer_ctc/export.py @@ -157,9 +157,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/conformer_ctc/pretrained.py b/egs/aishell/ASR/conformer_ctc/pretrained.py index 27776bc24..66d583396 100755 --- a/egs/aishell/ASR/conformer_ctc/pretrained.py +++ b/egs/aishell/ASR/conformer_ctc/pretrained.py @@ -210,10 +210,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -274,9 +273,7 @@ def main(): logging.info("Decoding started") features = fbank(waves) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) # Note: We don't use key padding mask for attention during decoding with torch.no_grad(): @@ -371,9 +368,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/conformer_ctc/subsampling.py b/egs/aishell/ASR/conformer_ctc/subsampling.py index 542fb0364..8e0f73d05 100644 --- a/egs/aishell/ASR/conformer_ctc/subsampling.py +++ b/egs/aishell/ASR/conformer_ctc/subsampling.py @@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module): assert idim >= 7 super().__init__() self.conv = nn.Sequential( - nn.Conv2d( - in_channels=1, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), - nn.Conv2d( - in_channels=odim, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), ) self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim) @@ -132,17 +128,13 @@ class VggSubsampling(nn.Module): ) ) layers.append( - torch.nn.MaxPool2d( - kernel_size=2, stride=2, padding=0, ceil_mode=True - ) + torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) ) cur_channels = block_dim self.layers = nn.Sequential(*layers) - self.out = nn.Linear( - block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim - ) + self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. diff --git a/egs/aishell/ASR/conformer_ctc/test_subsampling.py b/egs/aishell/ASR/conformer_ctc/test_subsampling.py index e3361d0c9..81fa234dd 100755 --- a/egs/aishell/ASR/conformer_ctc/test_subsampling.py +++ b/egs/aishell/ASR/conformer_ctc/test_subsampling.py @@ -16,9 +16,8 @@ # limitations under the License. -from subsampling import Conv2dSubsampling -from subsampling import VggSubsampling import torch +from subsampling import Conv2dSubsampling, VggSubsampling def test_conv2d_subsampling(): diff --git a/egs/aishell/ASR/conformer_ctc/train.py b/egs/aishell/ASR/conformer_ctc/train.py index a228cc1fe..c2cbe6e3b 100755 --- a/egs/aishell/ASR/conformer_ctc/train.py +++ b/egs/aishell/ASR/conformer_ctc/train.py @@ -382,9 +382,7 @@ def compute_loss( # # See https://github.com/k2-fsa/icefall/issues/97 # for more details - unsorted_token_ids = graph_compiler.texts_to_ids( - supervisions["text"] - ) + unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"]) att_loss = mmodel.decoder_forward( encoder_memory, memory_mask, @@ -520,9 +518,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -630,9 +626,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/aishell/ASR/conformer_ctc/transformer.py b/egs/aishell/ASR/conformer_ctc/transformer.py index f93914aaa..a3e50e385 100644 --- a/egs/aishell/ASR/conformer_ctc/transformer.py +++ b/egs/aishell/ASR/conformer_ctc/transformer.py @@ -149,9 +149,7 @@ class Transformer(nn.Module): norm=decoder_norm, ) - self.decoder_output_layer = torch.nn.Linear( - d_model, self.decoder_num_class - ) + self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class) self.decoder_criterion = LabelSmoothingLoss() else: @@ -183,9 +181,7 @@ class Transformer(nn.Module): x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) - encoder_memory, memory_key_padding_mask = self.run_encoder( - x, supervision - ) + encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision) x = self.ctc_output(encoder_memory) return x, encoder_memory, memory_key_padding_mask @@ -266,23 +262,17 @@ class Transformer(nn.Module): """ ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -343,23 +333,17 @@ class Transformer(nn.Module): ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -632,9 +616,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): @@ -836,9 +818,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -859,9 +839,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/aishell/ASR/conformer_mmi/conformer.py b/egs/aishell/ASR/conformer_mmi/conformer.py index cb7205e51..ab1cbbae4 100644 --- a/egs/aishell/ASR/conformer_mmi/conformer.py +++ b/egs/aishell/ASR/conformer_mmi/conformer.py @@ -157,9 +157,7 @@ class ConformerEncoderLayer(nn.Module): normalize_before: bool = True, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -177,18 +175,14 @@ class ConformerEncoderLayer(nn.Module): self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -222,9 +216,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -343,9 +335,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -361,9 +351,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -633,9 +621,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -703,31 +691,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -766,9 +745,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -780,9 +757,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -816,13 +791,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -845,9 +816,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/aishell/ASR/conformer_mmi/decode.py b/egs/aishell/ASR/conformer_mmi/decode.py index 4db367e36..20a855e7f 100755 --- a/egs/aishell/ASR/conformer_mmi/decode.py +++ b/egs/aishell/ASR/conformer_mmi/decode.py @@ -413,9 +413,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -443,9 +441,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=enable_log @@ -453,9 +449,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt" @@ -550,9 +544,7 @@ def main(): if params.export: logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") - torch.save( - {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" - ) + torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt") return model.to(device) @@ -581,9 +573,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/aishell/ASR/conformer_mmi/subsampling.py b/egs/aishell/ASR/conformer_mmi/subsampling.py index 720ed6c22..398837a46 100644 --- a/egs/aishell/ASR/conformer_mmi/subsampling.py +++ b/egs/aishell/ASR/conformer_mmi/subsampling.py @@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module): assert idim >= 7 super().__init__() self.conv = nn.Sequential( - nn.Conv2d( - in_channels=1, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), - nn.Conv2d( - in_channels=odim, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), ) self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim) @@ -132,17 +128,13 @@ class VggSubsampling(nn.Module): ) ) layers.append( - torch.nn.MaxPool2d( - kernel_size=2, stride=2, padding=0, ceil_mode=True - ) + torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) ) cur_channels = block_dim self.layers = nn.Sequential(*layers) - self.out = nn.Linear( - block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim - ) + self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. diff --git a/egs/aishell/ASR/conformer_mmi/train.py b/egs/aishell/ASR/conformer_mmi/train.py index 685831d09..09cd6e60c 100755 --- a/egs/aishell/ASR/conformer_mmi/train.py +++ b/egs/aishell/ASR/conformer_mmi/train.py @@ -511,9 +511,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -625,9 +623,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/aishell/ASR/conformer_mmi/transformer.py b/egs/aishell/ASR/conformer_mmi/transformer.py index f93914aaa..a3e50e385 100644 --- a/egs/aishell/ASR/conformer_mmi/transformer.py +++ b/egs/aishell/ASR/conformer_mmi/transformer.py @@ -149,9 +149,7 @@ class Transformer(nn.Module): norm=decoder_norm, ) - self.decoder_output_layer = torch.nn.Linear( - d_model, self.decoder_num_class - ) + self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class) self.decoder_criterion = LabelSmoothingLoss() else: @@ -183,9 +181,7 @@ class Transformer(nn.Module): x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) - encoder_memory, memory_key_padding_mask = self.run_encoder( - x, supervision - ) + encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision) x = self.ctc_output(encoder_memory) return x, encoder_memory, memory_key_padding_mask @@ -266,23 +262,17 @@ class Transformer(nn.Module): """ ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -343,23 +333,17 @@ class Transformer(nn.Module): ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -632,9 +616,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): @@ -836,9 +818,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -859,9 +839,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/aishell/ASR/local/compute_fbank_aidatatang_200zh.py b/egs/aishell/ASR/local/compute_fbank_aidatatang_200zh.py index 42700a972..037971927 100755 --- a/egs/aishell/ASR/local/compute_fbank_aidatatang_200zh.py +++ b/egs/aishell/ASR/local/compute_fbank_aidatatang_200zh.py @@ -87,9 +87,7 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -116,9 +114,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/aishell/ASR/local/compute_fbank_aishell.py b/egs/aishell/ASR/local/compute_fbank_aishell.py index deab6c809..115ca1031 100755 --- a/egs/aishell/ASR/local/compute_fbank_aishell.py +++ b/egs/aishell/ASR/local/compute_fbank_aishell.py @@ -83,9 +83,7 @@ def compute_fbank_aishell(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -111,9 +109,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/aishell/ASR/local/prepare_char.py b/egs/aishell/ASR/local/prepare_char.py index d9e47d17a..6b440dfb3 100755 --- a/egs/aishell/ASR/local/prepare_char.py +++ b/egs/aishell/ASR/local/prepare_char.py @@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil( cur_state = loop_state word = word2id[word] - pieces = [ - token2id[i] if i in token2id else token2id[""] for i in pieces - ] + pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces] for i in range(len(pieces) - 1): w = word if i == 0 else eps @@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool: return False -def generate_lexicon( - token_sym_table: Dict[str, int], words: List[str] -) -> Lexicon: +def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon: """Generate a lexicon from a word list and token_sym_table. Args: diff --git a/egs/aishell/ASR/local/prepare_lang.py b/egs/aishell/ASR/local/prepare_lang.py index e5ae89ec4..c8cf9b881 100755 --- a/egs/aishell/ASR/local/prepare_lang.py +++ b/egs/aishell/ASR/local/prepare_lang.py @@ -317,9 +317,7 @@ def lexicon_to_fst( def get_args(): parser = argparse.ArgumentParser() - parser.add_argument( - "--lang-dir", type=str, help="The lang dir, data/lang_phone" - ) + parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone") return parser.parse_args() diff --git a/egs/aishell/ASR/local/test_prepare_lang.py b/egs/aishell/ASR/local/test_prepare_lang.py index d4cf62bba..74e025ad7 100755 --- a/egs/aishell/ASR/local/test_prepare_lang.py +++ b/egs/aishell/ASR/local/test_prepare_lang.py @@ -88,9 +88,7 @@ def test_read_lexicon(filename: str): fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa.draw("L.pdf", title="L") - fsa_disambig = lexicon_to_fst( - lexicon_disambig, phone2id=phone2id, word2id=word2id - ) + fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id) fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt") fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa_disambig.draw("L_disambig.pdf", title="L_disambig") diff --git a/egs/aishell/ASR/prepare.sh b/egs/aishell/ASR/prepare.sh index eaeecfc4a..5917668a1 100755 --- a/egs/aishell/ASR/prepare.sh +++ b/egs/aishell/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail nj=15 diff --git a/egs/aishell/ASR/pruned_transducer_stateless2/decode.py b/egs/aishell/ASR/pruned_transducer_stateless2/decode.py index a12934d55..20a4f21c7 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless2/decode.py +++ b/egs/aishell/ASR/pruned_transducer_stateless2/decode.py @@ -76,11 +76,7 @@ from beam_search import ( ) from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, @@ -188,8 +184,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -249,9 +244,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) if params.decoding_method == "fast_beam_search": hyp_tokens = fast_beam_search_one_best( @@ -263,10 +256,7 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -387,9 +377,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -415,9 +403,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=True @@ -428,8 +414,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -473,9 +458,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -504,8 +487,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/aishell/ASR/pruned_transducer_stateless2/export.py b/egs/aishell/ASR/pruned_transducer_stateless2/export.py index feababdd2..2ce5cfe69 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless2/export.py +++ b/egs/aishell/ASR/pruned_transducer_stateless2/export.py @@ -50,11 +50,7 @@ from pathlib import Path import torch from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import str2bool @@ -120,8 +116,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -157,8 +152,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -191,9 +185,7 @@ def main(): model.__class__.forward = torch.jit.ignore(model.__class__.forward) logging.info("Using torch.jit.script") model = torch.jit.script(model) - filename = ( - params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt" - ) + filename = params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") else: @@ -201,17 +193,14 @@ def main(): # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = ( - params.exp_dir - / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt" + params.exp_dir / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt" ) torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py b/egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py index 3c38e5db7..82c10f129 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py +++ b/egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py @@ -165,8 +165,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -196,10 +195,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -256,13 +254,9 @@ def main(): feature_lens = [f.size(0) for f in features] feature_lens = torch.tensor(feature_lens, device=device) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens) num_waves = encoder_out.size(0) hyp_list = [] @@ -310,9 +304,7 @@ def main(): beam=params.beam_size, ) else: - raise ValueError( - f"Unsupported decoding method: {params.method}" - ) + raise ValueError(f"Unsupported decoding method: {params.method}") hyp_list.append(hyp) hyps = [] @@ -329,9 +321,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/pruned_transducer_stateless2/train.py b/egs/aishell/ASR/pruned_transducer_stateless2/train.py index 97d892754..d08908238 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless2/train.py +++ b/egs/aishell/ASR/pruned_transducer_stateless2/train.py @@ -49,7 +49,6 @@ import optim import torch import torch.multiprocessing as mp import torch.nn as nn - from asr_datamodule import AishellAsrDataModule from conformer import Conformer from decoder import Decoder @@ -75,9 +74,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -203,8 +200,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -227,8 +223,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -251,8 +246,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -561,11 +555,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -593,23 +583,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -725,9 +708,7 @@ def train_one_epoch( scaler.update() optimizer.zero_grad() except: # noqa - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise if params.print_diagnostics and batch_idx == 5: @@ -891,7 +872,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) @@ -1029,9 +1010,7 @@ def scan_pessimistic_batches_for_oom( f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise diff --git a/egs/aishell/ASR/pruned_transducer_stateless3/decode.py b/egs/aishell/ASR/pruned_transducer_stateless3/decode.py index d159e420b..bac829ae1 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless3/decode.py +++ b/egs/aishell/ASR/pruned_transducer_stateless3/decode.py @@ -202,8 +202,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -263,9 +262,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) if params.decoding_method == "fast_beam_search": hyp_tokens = fast_beam_search_one_best( @@ -277,10 +274,7 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -401,9 +395,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -429,9 +421,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=True @@ -442,8 +432,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tCER", file=f) @@ -488,9 +477,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -518,9 +505,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -551,9 +538,9 @@ def main(): ) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/aishell/ASR/pruned_transducer_stateless3/export.py b/egs/aishell/ASR/pruned_transducer_stateless3/export.py index 566902a85..7f10eb36e 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless3/export.py +++ b/egs/aishell/ASR/pruned_transducer_stateless3/export.py @@ -132,8 +132,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -166,9 +165,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -195,9 +194,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -252,9 +251,7 @@ def main(): model.__class__.forward = torch.jit.ignore(model.__class__.forward) logging.info("Using torch.jit.script") model = torch.jit.script(model) - filename = ( - params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt" - ) + filename = params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") else: @@ -262,17 +259,14 @@ def main(): # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = ( - params.exp_dir - / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt" + params.exp_dir / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt" ) torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/pruned_transducer_stateless3/model.py b/egs/aishell/ASR/pruned_transducer_stateless3/model.py index e150e8230..a4dda0d6d 100644 --- a/egs/aishell/ASR/pruned_transducer_stateless3/model.py +++ b/egs/aishell/ASR/pruned_transducer_stateless3/model.py @@ -84,9 +84,7 @@ class Transducer(nn.Module): self.decoder_datatang = decoder_datatang self.joiner_datatang = joiner_datatang - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) if decoder_datatang is not None: @@ -179,9 +177,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = encoder_out_lens diff --git a/egs/aishell/ASR/pruned_transducer_stateless3/pretrained.py b/egs/aishell/ASR/pruned_transducer_stateless3/pretrained.py index 04a0a882a..ead393e6e 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless3/pretrained.py +++ b/egs/aishell/ASR/pruned_transducer_stateless3/pretrained.py @@ -165,8 +165,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -196,10 +195,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -257,13 +255,9 @@ def main(): feature_lens = [f.size(0) for f in features] feature_lens = torch.tensor(feature_lens, device=device) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens) num_waves = encoder_out.size(0) hyp_list = [] @@ -311,9 +305,7 @@ def main(): beam=params.beam_size, ) else: - raise ValueError( - f"Unsupported decoding method: {params.method}" - ) + raise ValueError(f"Unsupported decoding method: {params.method}") hyp_list.append(hyp) hyps = [] @@ -330,9 +322,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/pruned_transducer_stateless3/train.py b/egs/aishell/ASR/pruned_transducer_stateless3/train.py index feaef5cf6..62e67530d 100755 --- a/egs/aishell/ASR/pruned_transducer_stateless3/train.py +++ b/egs/aishell/ASR/pruned_transducer_stateless3/train.py @@ -96,9 +96,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -224,8 +222,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -248,8 +245,7 @@ def get_parser(): "--context-size", type=int, default=1, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -272,8 +268,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -635,11 +630,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -670,23 +661,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -824,9 +808,7 @@ def train_one_epoch( ) # summary stats if datatang_train_dl is not None: - tot_loss = ( - tot_loss * (1 - 1 / params.reset_interval) - ) + loss_info + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info if aishell: aishell_tot_loss = ( @@ -847,9 +829,7 @@ def train_one_epoch( scaler.update() optimizer.zero_grad() except: # noqa - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise if params.print_diagnostics and batch_idx == 5: @@ -892,9 +872,7 @@ def train_one_epoch( cur_lr = scheduler.get_last_lr()[0] if datatang_train_dl is not None: datatang_str = f"datatang_tot_loss[{datatang_tot_loss}], " - tot_loss_str = ( - f"tot_loss[{tot_loss}], batch size: {batch_size}, " - ) + tot_loss_str = f"tot_loss[{tot_loss}], batch size: {batch_size}, " else: tot_loss_str = "" datatang_str = "" @@ -1067,7 +1045,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) @@ -1076,9 +1054,7 @@ def run(rank, world_size, args): train_cuts = filter_short_and_long_utterances(train_cuts) if args.enable_musan: - cuts_musan = load_manifest( - Path(args.manifest_dir) / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz") else: cuts_musan = None @@ -1093,9 +1069,7 @@ def run(rank, world_size, args): if params.datatang_prob > 0: datatang = AIDatatang200zh(manifest_dir=args.manifest_dir) train_datatang_cuts = datatang.train_cuts() - train_datatang_cuts = filter_short_and_long_utterances( - train_datatang_cuts - ) + train_datatang_cuts = filter_short_and_long_utterances(train_datatang_cuts) train_datatang_cuts = train_datatang_cuts.repeat(times=None) datatang_train_dl = asr_datamodule.train_dataloaders( train_datatang_cuts, @@ -1249,9 +1223,7 @@ def scan_pessimistic_batches_for_oom( f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py index d24ba6bb7..fc28e8dbc 100644 --- a/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py +++ b/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py @@ -183,17 +183,13 @@ class AishellAsrDataModule: def train_dataloaders(self, cuts_train: CutSet) -> DataLoader: logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -215,9 +211,7 @@ class AishellAsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -260,9 +254,7 @@ class AishellAsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -308,9 +300,7 @@ class AishellAsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: @@ -366,13 +356,9 @@ class AishellAsrDataModule: @lru_cache() def valid_cuts(self) -> CutSet: logging.info("About to get dev cuts") - return load_manifest_lazy( - self.args.manifest_dir / "aishell_cuts_dev.jsonl.gz" - ) + return load_manifest_lazy(self.args.manifest_dir / "aishell_cuts_dev.jsonl.gz") @lru_cache() def test_cuts(self) -> List[CutSet]: logging.info("About to get test cuts") - return load_manifest_lazy( - self.args.manifest_dir / "aishell_cuts_test.jsonl.gz" - ) + return load_manifest_lazy(self.args.manifest_dir / "aishell_cuts_test.jsonl.gz") diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/decode.py b/egs/aishell/ASR/tdnn_lstm_ctc/decode.py index 66b734fc4..824ca2a92 100755 --- a/egs/aishell/ASR/tdnn_lstm_ctc/decode.py +++ b/egs/aishell/ASR/tdnn_lstm_ctc/decode.py @@ -265,9 +265,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -289,9 +287,7 @@ def save_results( # We compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats(f, f"{test_set_name}-{key}", results_char) test_set_wers[key] = wer @@ -335,9 +331,7 @@ def main(): logging.info(f"device: {device}") - HLG = k2.Fsa.from_dict( - torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") - ) + HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")) HLG = HLG.to(device) assert HLG.requires_grad is False @@ -362,9 +356,7 @@ def main(): if params.export: logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") - torch.save( - {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" - ) + torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt") model.to(device) model.eval() @@ -392,9 +384,7 @@ def main(): lexicon=lexicon, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/model.py b/egs/aishell/ASR/tdnn_lstm_ctc/model.py index 5e04c11b4..1731e1ebe 100644 --- a/egs/aishell/ASR/tdnn_lstm_ctc/model.py +++ b/egs/aishell/ASR/tdnn_lstm_ctc/model.py @@ -66,10 +66,7 @@ class TdnnLstm(nn.Module): nn.BatchNorm1d(num_features=500, affine=False), ) self.lstms = nn.ModuleList( - [ - nn.LSTM(input_size=500, hidden_size=500, num_layers=1) - for _ in range(5) - ] + [nn.LSTM(input_size=500, hidden_size=500, num_layers=1) for _ in range(5)] ) self.lstm_bnorms = nn.ModuleList( [nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)] diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/pretrained.py b/egs/aishell/ASR/tdnn_lstm_ctc/pretrained.py index 9bd810809..7e7213501 100644 --- a/egs/aishell/ASR/tdnn_lstm_ctc/pretrained.py +++ b/egs/aishell/ASR/tdnn_lstm_ctc/pretrained.py @@ -53,9 +53,7 @@ def get_parser(): help="Path to words.txt", ) - parser.add_argument( - "--HLG", type=str, required=True, help="Path to HLG.pt." - ) + parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.") parser.add_argument( "--method", @@ -112,10 +110,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -173,9 +170,7 @@ def main(): logging.info("Decoding started") features = fbank(waves) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) features = features.permute(0, 2, 1) # now features is [N, C, T] with torch.no_grad(): @@ -219,9 +214,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/train.py b/egs/aishell/ASR/tdnn_lstm_ctc/train.py index 7619b0551..e574cf89b 100755 --- a/egs/aishell/ASR/tdnn_lstm_ctc/train.py +++ b/egs/aishell/ASR/tdnn_lstm_ctc/train.py @@ -49,12 +49,7 @@ from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.dist import cleanup_dist, setup_dist from icefall.graph_compiler import CtcTrainingGraphCompiler from icefall.lexicon import Lexicon -from icefall.utils import ( - AttributeDict, - encode_supervisions, - setup_logger, - str2bool, -) +from icefall.utils import AttributeDict, encode_supervisions, setup_logger, str2bool def get_parser(): diff --git a/egs/aishell/ASR/transducer_stateless/beam_search.py b/egs/aishell/ASR/transducer_stateless/beam_search.py index 9ed9b2ad1..de0a8d0f5 100644 --- a/egs/aishell/ASR/transducer_stateless/beam_search.py +++ b/egs/aishell/ASR/transducer_stateless/beam_search.py @@ -47,9 +47,9 @@ def greedy_search( device = model.device - decoder_input = torch.tensor( - [blank_id] * context_size, device=device - ).reshape(1, context_size) + decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape( + 1, context_size + ) decoder_out = model.decoder(decoder_input, need_pad=False) @@ -81,9 +81,9 @@ def greedy_search( y = logits.argmax().item() if y != blank_id: hyp.append(y) - decoder_input = torch.tensor( - [hyp[-context_size:]], device=device - ).reshape(1, context_size) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) decoder_out = model.decoder(decoder_input, need_pad=False) @@ -157,9 +157,7 @@ class HypothesisList(object): """ if length_norm: - return max( - self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys) - ) + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) else: return max(self._data.values(), key=lambda hyp: hyp.log_prob) @@ -246,9 +244,9 @@ def beam_search( device = model.device - decoder_input = torch.tensor( - [blank_id] * context_size, device=device - ).reshape(1, context_size) + decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape( + 1, context_size + ) decoder_out = model.decoder(decoder_input, need_pad=False) diff --git a/egs/aishell/ASR/transducer_stateless/conformer.py b/egs/aishell/ASR/transducer_stateless/conformer.py index 64114253d..78424aea2 100644 --- a/egs/aishell/ASR/transducer_stateless/conformer.py +++ b/egs/aishell/ASR/transducer_stateless/conformer.py @@ -155,9 +155,7 @@ class ConformerEncoderLayer(nn.Module): normalize_before: bool = True, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -175,18 +173,14 @@ class ConformerEncoderLayer(nn.Module): self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -220,9 +214,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -341,9 +333,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -359,9 +349,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -631,9 +619,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -701,31 +689,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -764,9 +743,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -778,9 +755,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -814,13 +789,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -843,9 +814,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/aishell/ASR/transducer_stateless/decode.py b/egs/aishell/ASR/transducer_stateless/decode.py index 780b0c4bb..e019d2329 100755 --- a/egs/aishell/ASR/transducer_stateless/decode.py +++ b/egs/aishell/ASR/transducer_stateless/decode.py @@ -99,8 +99,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -227,9 +226,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] batch_size = encoder_out.size(0) @@ -248,9 +245,7 @@ def decode_one_batch( model=model, encoder_out=encoder_out_i, beam=params.beam_size ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") hyps.append([lexicon.token_table[i] for i in hyp]) if params.decoding_method == "greedy_search": @@ -319,9 +314,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -346,9 +339,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=True @@ -359,8 +350,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tCER", file=f) @@ -430,9 +420,7 @@ def main(): if params.export: logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") - torch.save( - {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" - ) + torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt") return model.to(device) diff --git a/egs/aishell/ASR/transducer_stateless/decoder.py b/egs/aishell/ASR/transducer_stateless/decoder.py index c2c6552a9..70e9e6c96 100644 --- a/egs/aishell/ASR/transducer_stateless/decoder.py +++ b/egs/aishell/ASR/transducer_stateless/decoder.py @@ -86,9 +86,7 @@ class Decoder(nn.Module): if self.context_size > 1: embedding_out = embedding_out.permute(0, 2, 1) if need_pad is True: - embedding_out = F.pad( - embedding_out, pad=(self.context_size - 1, 0) - ) + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) else: # During inference time, there is no need to do extra padding # as we only need one output diff --git a/egs/aishell/ASR/transducer_stateless/export.py b/egs/aishell/ASR/transducer_stateless/export.py index 4c6519b96..01de5d772 100755 --- a/egs/aishell/ASR/transducer_stateless/export.py +++ b/egs/aishell/ASR/transducer_stateless/export.py @@ -110,8 +110,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -243,9 +242,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless/model.py b/egs/aishell/ASR/transducer_stateless/model.py index 994305fc1..591bbe44f 100644 --- a/egs/aishell/ASR/transducer_stateless/model.py +++ b/egs/aishell/ASR/transducer_stateless/model.py @@ -103,9 +103,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens diff --git a/egs/aishell/ASR/transducer_stateless/pretrained.py b/egs/aishell/ASR/transducer_stateless/pretrained.py index db89c4d67..40f430e13 100755 --- a/egs/aishell/ASR/transducer_stateless/pretrained.py +++ b/egs/aishell/ASR/transducer_stateless/pretrained.py @@ -117,8 +117,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -211,10 +210,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -273,9 +271,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -319,9 +315,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless/train.py b/egs/aishell/ASR/transducer_stateless/train.py index d54157709..62ffff473 100755 --- a/egs/aishell/ASR/transducer_stateless/train.py +++ b/egs/aishell/ASR/transducer_stateless/train.py @@ -126,8 +126,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -389,9 +388,7 @@ def compute_loss( info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -504,9 +501,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -625,9 +620,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/aishell/ASR/transducer_stateless/transformer.py b/egs/aishell/ASR/transducer_stateless/transformer.py index e851dcc32..b3ff153c1 100644 --- a/egs/aishell/ASR/transducer_stateless/transformer.py +++ b/egs/aishell/ASR/transducer_stateless/transformer.py @@ -250,9 +250,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py b/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py index 838e53658..5d49d7338 100644 --- a/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py +++ b/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py @@ -29,10 +29,7 @@ from lhotse.dataset import ( K2SpeechRecognitionDataset, SpecAugment, ) -from lhotse.dataset.input_strategies import ( - OnTheFlyFeatures, - PrecomputedFeatures, -) +from lhotse.dataset.input_strategies import OnTheFlyFeatures, PrecomputedFeatures from torch.utils.data import DataLoader from icefall.utils import str2bool @@ -162,9 +159,7 @@ class AsrDataModule: if cuts_musan is not None: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -173,9 +168,7 @@ class AsrDataModule: if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -252,9 +245,7 @@ class AsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/decode.py b/egs/aishell/ASR/transducer_stateless_modified-2/decode.py index ea3f94fd8..41cc1c01c 100755 --- a/egs/aishell/ASR/transducer_stateless_modified-2/decode.py +++ b/egs/aishell/ASR/transducer_stateless_modified-2/decode.py @@ -170,8 +170,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -227,9 +226,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) if params.decoding_method == "fast_beam_search": hyp_tokens = fast_beam_search_one_best( @@ -241,10 +238,7 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -365,9 +359,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -393,9 +385,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=True @@ -406,8 +396,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tCER", file=f) @@ -448,9 +437,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/export.py b/egs/aishell/ASR/transducer_stateless_modified-2/export.py index 3bd2ceb11..c1081c32b 100755 --- a/egs/aishell/ASR/transducer_stateless_modified-2/export.py +++ b/egs/aishell/ASR/transducer_stateless_modified-2/export.py @@ -109,8 +109,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -241,9 +240,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py b/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py index a95a4bc52..5d8ca2e11 100755 --- a/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py +++ b/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py @@ -165,8 +165,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -194,10 +193,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -254,13 +252,9 @@ def main(): feature_lens = [f.size(0) for f in features] feature_lens = torch.tensor(feature_lens, device=device) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens) num_waves = encoder_out.size(0) hyp_list = [] @@ -308,9 +302,7 @@ def main(): beam=params.beam_size, ) else: - raise ValueError( - f"Unsupported decoding method: {params.method}" - ) + raise ValueError(f"Unsupported decoding method: {params.method}") hyp_list.append(hyp) hyps = [] @@ -327,9 +319,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/train.py b/egs/aishell/ASR/transducer_stateless_modified-2/train.py index 225d0d709..8fb7d1e49 100755 --- a/egs/aishell/ASR/transducer_stateless_modified-2/train.py +++ b/egs/aishell/ASR/transducer_stateless_modified-2/train.py @@ -149,8 +149,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -168,8 +167,7 @@ def get_parser(): "--datatang-prob", type=float, default=0.2, - help="The probability to select a batch from the " - "aidatatang_200zh dataset", + help="The probability to select a batch from the aidatatang_200zh dataset", ) return parser @@ -449,9 +447,7 @@ def compute_loss( info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -605,9 +601,7 @@ def train_one_epoch( f"train/current_{prefix}_", params.batch_idx_train, ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) aishell_tot_loss.write_summary( tb_writer, "train/aishell_tot_", params.batch_idx_train ) @@ -735,9 +729,7 @@ def run(rank, world_size, args): train_datatang_cuts = train_datatang_cuts.repeat(times=None) if args.enable_musan: - cuts_musan = load_manifest( - Path(args.manifest_dir) / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz") else: cuts_musan = None @@ -776,9 +768,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/aishell/ASR/transducer_stateless_modified/decode.py b/egs/aishell/ASR/transducer_stateless_modified/decode.py index 65fcda873..7c06e6e51 100755 --- a/egs/aishell/ASR/transducer_stateless_modified/decode.py +++ b/egs/aishell/ASR/transducer_stateless_modified/decode.py @@ -171,8 +171,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -231,9 +230,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) if params.decoding_method == "fast_beam_search": hyp_tokens = fast_beam_search_one_best( @@ -245,10 +242,7 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -369,9 +363,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -397,9 +389,7 @@ def save_results( # we compute CER for aishell dataset. results_char = [] for res in results: - results_char.append( - (res[0], list("".join(res[1])), list("".join(res[2]))) - ) + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results_char, enable_log=True @@ -410,8 +400,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tCER", file=f) @@ -452,9 +441,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" diff --git a/egs/aishell/ASR/transducer_stateless_modified/export.py b/egs/aishell/ASR/transducer_stateless_modified/export.py index 11335a834..3e14ad69c 100755 --- a/egs/aishell/ASR/transducer_stateless_modified/export.py +++ b/egs/aishell/ASR/transducer_stateless_modified/export.py @@ -109,8 +109,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -241,9 +240,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless_modified/pretrained.py b/egs/aishell/ASR/transducer_stateless_modified/pretrained.py index 262e822c2..9e4459247 100755 --- a/egs/aishell/ASR/transducer_stateless_modified/pretrained.py +++ b/egs/aishell/ASR/transducer_stateless_modified/pretrained.py @@ -165,8 +165,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -194,10 +193,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -254,13 +252,9 @@ def main(): feature_lens = [f.size(0) for f in features] feature_lens = torch.tensor(feature_lens, device=device) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens) num_waves = encoder_out.size(0) hyp_list = [] @@ -308,9 +302,7 @@ def main(): beam=params.beam_size, ) else: - raise ValueError( - f"Unsupported decoding method: {params.method}" - ) + raise ValueError(f"Unsupported decoding method: {params.method}") hyp_list.append(hyp) hyps = [] @@ -327,9 +319,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell/ASR/transducer_stateless_modified/train.py b/egs/aishell/ASR/transducer_stateless_modified/train.py index d3ffccafa..5f116f2bd 100755 --- a/egs/aishell/ASR/transducer_stateless_modified/train.py +++ b/egs/aishell/ASR/transducer_stateless_modified/train.py @@ -142,8 +142,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -414,9 +413,7 @@ def compute_loss( info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -529,9 +526,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -657,9 +652,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/aishell2/ASR/local/__init__.py b/egs/aishell2/ASR/local/__init__.py old mode 100755 new mode 100644 diff --git a/egs/aishell2/ASR/local/compute_fbank_aishell2.py b/egs/aishell2/ASR/local/compute_fbank_aishell2.py index d8d3622bd..ec0c584ca 100755 --- a/egs/aishell2/ASR/local/compute_fbank_aishell2.py +++ b/egs/aishell2/ASR/local/compute_fbank_aishell2.py @@ -83,9 +83,7 @@ def compute_fbank_aishell2(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -111,9 +109,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/aishell2/ASR/prepare.sh b/egs/aishell2/ASR/prepare.sh index 06810bfdd..3e8e840ab 100755 --- a/egs/aishell2/ASR/prepare.sh +++ b/egs/aishell2/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail nj=30 diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/__init__.py b/egs/aishell2/ASR/pruned_transducer_stateless5/__init__.py old mode 100755 new mode 100644 diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py b/egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py old mode 100755 new mode 100644 index b7a21f579..0f383a244 --- a/egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py +++ b/egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py @@ -216,13 +216,9 @@ class AiShell2AsrDataModule: if self.args.enable_musan: logging.info("Enable MUSAN") logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -244,9 +240,7 @@ class AiShell2AsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -290,9 +284,7 @@ class AiShell2AsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -348,9 +340,7 @@ class AiShell2AsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: @@ -406,9 +396,7 @@ class AiShell2AsrDataModule: @lru_cache() def valid_cuts(self) -> CutSet: logging.info("About to gen cuts from aishell2_cuts_dev.jsonl.gz") - return load_manifest_lazy( - self.args.manifest_dir / "aishell2_cuts_dev.jsonl.gz" - ) + return load_manifest_lazy(self.args.manifest_dir / "aishell2_cuts_dev.jsonl.gz") @lru_cache() def test_cuts(self) -> CutSet: diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/decode.py b/egs/aishell2/ASR/pruned_transducer_stateless5/decode.py index 915737f4a..b5da0959b 100755 --- a/egs/aishell2/ASR/pruned_transducer_stateless5/decode.py +++ b/egs/aishell2/ASR/pruned_transducer_stateless5/decode.py @@ -269,8 +269,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -348,9 +347,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -409,10 +406,7 @@ def decode_one_batch( ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -538,9 +532,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -573,8 +565,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -625,9 +616,7 @@ def main(): if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -661,9 +650,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -690,9 +679,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -749,9 +738,7 @@ def main(): ) decoding_graph.scores *= params.ngram_lm_scale else: - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/export.py b/egs/aishell2/ASR/pruned_transducer_stateless5/export.py index bc7bd71cb..8a5be94d0 100755 --- a/egs/aishell2/ASR/pruned_transducer_stateless5/export.py +++ b/egs/aishell2/ASR/pruned_transducer_stateless5/export.py @@ -133,8 +133,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -167,9 +166,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -196,9 +195,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -266,9 +265,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/pretrained.py b/egs/aishell2/ASR/pruned_transducer_stateless5/pretrained.py index 09de1bece..bc3ae7abf 100755 --- a/egs/aishell2/ASR/pruned_transducer_stateless5/pretrained.py +++ b/egs/aishell2/ASR/pruned_transducer_stateless5/pretrained.py @@ -159,8 +159,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -191,10 +190,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -254,15 +252,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -334,9 +328,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell2/ASR/pruned_transducer_stateless5/train.py b/egs/aishell2/ASR/pruned_transducer_stateless5/train.py index 838a0497f..74bf68ccb 100755 --- a/egs/aishell2/ASR/pruned_transducer_stateless5/train.py +++ b/egs/aishell2/ASR/pruned_transducer_stateless5/train.py @@ -92,9 +92,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -220,8 +218,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -244,8 +241,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -268,8 +264,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -603,11 +598,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -636,23 +627,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -771,9 +755,7 @@ def train_one_epoch( scaler.update() optimizer.zero_grad() except: # noqa - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise if params.print_diagnostics and batch_idx == 5: @@ -829,9 +811,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -939,7 +919,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) @@ -1104,9 +1084,7 @@ def scan_pessimistic_batches_for_oom( f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) - display_and_save_batch( - batch, params=params, graph_compiler=graph_compiler - ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) raise diff --git a/egs/aishell4/ASR/local/compute_fbank_aishell4.py b/egs/aishell4/ASR/local/compute_fbank_aishell4.py index 3f50d9e3e..400c406f0 100755 --- a/egs/aishell4/ASR/local/compute_fbank_aishell4.py +++ b/egs/aishell4/ASR/local/compute_fbank_aishell4.py @@ -85,9 +85,7 @@ def compute_fbank_aishell4(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -120,9 +118,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/aishell4/ASR/local/prepare_char.py b/egs/aishell4/ASR/local/prepare_char.py index d9e47d17a..6b440dfb3 100755 --- a/egs/aishell4/ASR/local/prepare_char.py +++ b/egs/aishell4/ASR/local/prepare_char.py @@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil( cur_state = loop_state word = word2id[word] - pieces = [ - token2id[i] if i in token2id else token2id[""] for i in pieces - ] + pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces] for i in range(len(pieces) - 1): w = word if i == 0 else eps @@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool: return False -def generate_lexicon( - token_sym_table: Dict[str, int], words: List[str] -) -> Lexicon: +def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon: """Generate a lexicon from a word list and token_sym_table. Args: diff --git a/egs/aishell4/ASR/local/prepare_lang.py b/egs/aishell4/ASR/local/prepare_lang.py index e5ae89ec4..c8cf9b881 100755 --- a/egs/aishell4/ASR/local/prepare_lang.py +++ b/egs/aishell4/ASR/local/prepare_lang.py @@ -317,9 +317,7 @@ def lexicon_to_fst( def get_args(): parser = argparse.ArgumentParser() - parser.add_argument( - "--lang-dir", type=str, help="The lang dir, data/lang_phone" - ) + parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone") return parser.parse_args() diff --git a/egs/aishell4/ASR/local/test_prepare_lang.py b/egs/aishell4/ASR/local/test_prepare_lang.py index d4cf62bba..74e025ad7 100755 --- a/egs/aishell4/ASR/local/test_prepare_lang.py +++ b/egs/aishell4/ASR/local/test_prepare_lang.py @@ -88,9 +88,7 @@ def test_read_lexicon(filename: str): fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa.draw("L.pdf", title="L") - fsa_disambig = lexicon_to_fst( - lexicon_disambig, phone2id=phone2id, word2id=word2id - ) + fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id) fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt") fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa_disambig.draw("L_disambig.pdf", title="L_disambig") diff --git a/egs/aishell4/ASR/local/text2token.py b/egs/aishell4/ASR/local/text2token.py index 71be2a613..85047c367 100755 --- a/egs/aishell4/ASR/local/text2token.py +++ b/egs/aishell4/ASR/local/text2token.py @@ -56,9 +56,7 @@ def get_parser(): parser.add_argument( "--skip-ncols", "-s", default=0, type=int, help="skip first n columns" ) - parser.add_argument( - "--space", default="", type=str, help="space symbol" - ) + parser.add_argument("--space", default="", type=str, help="space symbol") parser.add_argument( "--non-lang-syms", "-l", @@ -66,9 +64,7 @@ def get_parser(): type=str, help="list of non-linguistic symobles, e.g., etc.", ) - parser.add_argument( - "text", type=str, default=False, nargs="?", help="input text" - ) + parser.add_argument("text", type=str, default=False, nargs="?", help="input text") parser.add_argument( "--trans_type", "-t", @@ -108,8 +104,7 @@ def token2id( if token_type == "lazy_pinyin": text = lazy_pinyin(chars_list) sub_ids = [ - token_table[txt] if txt in token_table else oov_id - for txt in text + token_table[txt] if txt in token_table else oov_id for txt in text ] ids.append(sub_ids) else: # token_type = "pinyin" @@ -135,9 +130,7 @@ def main(): if args.text: f = codecs.open(args.text, encoding="utf-8") else: - f = codecs.getreader("utf-8")( - sys.stdin if is_python2 else sys.stdin.buffer - ) + f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer) sys.stdout = codecs.getwriter("utf-8")( sys.stdout if is_python2 else sys.stdout.buffer diff --git a/egs/aishell4/ASR/prepare.sh b/egs/aishell4/ASR/prepare.sh index c351e3964..cb2b73a3e 100755 --- a/egs/aishell4/ASR/prepare.sh +++ b/egs/aishell4/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail stage=-1 diff --git a/egs/aishell4/ASR/pruned_transducer_stateless5/asr_datamodule.py b/egs/aishell4/ASR/pruned_transducer_stateless5/asr_datamodule.py index 7aa53ddda..d980a857f 100644 --- a/egs/aishell4/ASR/pruned_transducer_stateless5/asr_datamodule.py +++ b/egs/aishell4/ASR/pruned_transducer_stateless5/asr_datamodule.py @@ -222,17 +222,13 @@ class Aishell4AsrDataModule: The state dict for the training sampler. """ logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -254,9 +250,7 @@ class Aishell4AsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -300,9 +294,7 @@ class Aishell4AsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -359,9 +351,7 @@ class Aishell4AsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: diff --git a/egs/aishell4/ASR/pruned_transducer_stateless5/decode.py b/egs/aishell4/ASR/pruned_transducer_stateless5/decode.py index 14e44c7d9..37d766ec8 100755 --- a/egs/aishell4/ASR/pruned_transducer_stateless5/decode.py +++ b/egs/aishell4/ASR/pruned_transducer_stateless5/decode.py @@ -201,8 +201,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -260,9 +259,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -277,10 +274,7 @@ def decode_one_batch( ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -401,9 +395,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -436,8 +428,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -480,9 +471,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -510,9 +499,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -543,9 +532,9 @@ def main(): ) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/aishell4/ASR/pruned_transducer_stateless5/export.py b/egs/aishell4/ASR/pruned_transducer_stateless5/export.py index 993341131..bf9856c60 100755 --- a/egs/aishell4/ASR/pruned_transducer_stateless5/export.py +++ b/egs/aishell4/ASR/pruned_transducer_stateless5/export.py @@ -136,8 +136,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -169,9 +168,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -202,9 +201,9 @@ def main(): ) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -276,9 +275,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell4/ASR/pruned_transducer_stateless5/pretrained.py b/egs/aishell4/ASR/pruned_transducer_stateless5/pretrained.py index 1fa893637..ee898c303 100755 --- a/egs/aishell4/ASR/pruned_transducer_stateless5/pretrained.py +++ b/egs/aishell4/ASR/pruned_transducer_stateless5/pretrained.py @@ -172,8 +172,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -204,10 +203,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -266,15 +264,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -306,10 +300,7 @@ def main(): for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -350,9 +341,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/aishell4/ASR/pruned_transducer_stateless5/train.py b/egs/aishell4/ASR/pruned_transducer_stateless5/train.py index 0a48b9059..d7c69f226 100755 --- a/egs/aishell4/ASR/pruned_transducer_stateless5/train.py +++ b/egs/aishell4/ASR/pruned_transducer_stateless5/train.py @@ -85,9 +85,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -213,8 +211,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -237,8 +234,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -261,8 +257,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -599,11 +594,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -633,22 +624,15 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -827,9 +811,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -937,7 +919,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) diff --git a/egs/alimeeting/ASR/local/compute_fbank_alimeeting.py b/egs/alimeeting/ASR/local/compute_fbank_alimeeting.py index af926aa53..96115a230 100755 --- a/egs/alimeeting/ASR/local/compute_fbank_alimeeting.py +++ b/egs/alimeeting/ASR/local/compute_fbank_alimeeting.py @@ -84,9 +84,7 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80): ) if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cur_num_jobs = num_jobs if ex is None else 80 cur_num_jobs = min(cur_num_jobs, len(cut_set)) @@ -121,9 +119,7 @@ def get_args(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/alimeeting/ASR/local/prepare_char.py b/egs/alimeeting/ASR/local/prepare_char.py index d9e47d17a..6b440dfb3 100755 --- a/egs/alimeeting/ASR/local/prepare_char.py +++ b/egs/alimeeting/ASR/local/prepare_char.py @@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil( cur_state = loop_state word = word2id[word] - pieces = [ - token2id[i] if i in token2id else token2id[""] for i in pieces - ] + pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces] for i in range(len(pieces) - 1): w = word if i == 0 else eps @@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool: return False -def generate_lexicon( - token_sym_table: Dict[str, int], words: List[str] -) -> Lexicon: +def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon: """Generate a lexicon from a word list and token_sym_table. Args: diff --git a/egs/alimeeting/ASR/local/prepare_lang.py b/egs/alimeeting/ASR/local/prepare_lang.py index e5ae89ec4..c8cf9b881 100755 --- a/egs/alimeeting/ASR/local/prepare_lang.py +++ b/egs/alimeeting/ASR/local/prepare_lang.py @@ -317,9 +317,7 @@ def lexicon_to_fst( def get_args(): parser = argparse.ArgumentParser() - parser.add_argument( - "--lang-dir", type=str, help="The lang dir, data/lang_phone" - ) + parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone") return parser.parse_args() diff --git a/egs/alimeeting/ASR/local/test_prepare_lang.py b/egs/alimeeting/ASR/local/test_prepare_lang.py index d4cf62bba..74e025ad7 100755 --- a/egs/alimeeting/ASR/local/test_prepare_lang.py +++ b/egs/alimeeting/ASR/local/test_prepare_lang.py @@ -88,9 +88,7 @@ def test_read_lexicon(filename: str): fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa.draw("L.pdf", title="L") - fsa_disambig = lexicon_to_fst( - lexicon_disambig, phone2id=phone2id, word2id=word2id - ) + fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id) fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt") fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa_disambig.draw("L_disambig.pdf", title="L_disambig") diff --git a/egs/alimeeting/ASR/local/text2segments.py b/egs/alimeeting/ASR/local/text2segments.py index 7c1019aa8..27b904fc8 100644 --- a/egs/alimeeting/ASR/local/text2segments.py +++ b/egs/alimeeting/ASR/local/text2segments.py @@ -30,8 +30,8 @@ with word segmenting: import argparse -import paddle import jieba +import paddle from tqdm import tqdm paddle.enable_static() diff --git a/egs/alimeeting/ASR/local/text2token.py b/egs/alimeeting/ASR/local/text2token.py index 71be2a613..85047c367 100755 --- a/egs/alimeeting/ASR/local/text2token.py +++ b/egs/alimeeting/ASR/local/text2token.py @@ -56,9 +56,7 @@ def get_parser(): parser.add_argument( "--skip-ncols", "-s", default=0, type=int, help="skip first n columns" ) - parser.add_argument( - "--space", default="", type=str, help="space symbol" - ) + parser.add_argument("--space", default="", type=str, help="space symbol") parser.add_argument( "--non-lang-syms", "-l", @@ -66,9 +64,7 @@ def get_parser(): type=str, help="list of non-linguistic symobles, e.g., etc.", ) - parser.add_argument( - "text", type=str, default=False, nargs="?", help="input text" - ) + parser.add_argument("text", type=str, default=False, nargs="?", help="input text") parser.add_argument( "--trans_type", "-t", @@ -108,8 +104,7 @@ def token2id( if token_type == "lazy_pinyin": text = lazy_pinyin(chars_list) sub_ids = [ - token_table[txt] if txt in token_table else oov_id - for txt in text + token_table[txt] if txt in token_table else oov_id for txt in text ] ids.append(sub_ids) else: # token_type = "pinyin" @@ -135,9 +130,7 @@ def main(): if args.text: f = codecs.open(args.text, encoding="utf-8") else: - f = codecs.getreader("utf-8")( - sys.stdin if is_python2 else sys.stdin.buffer - ) + f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer) sys.stdout = codecs.getwriter("utf-8")( sys.stdout if is_python2 else sys.stdout.buffer diff --git a/egs/alimeeting/ASR/prepare.sh b/egs/alimeeting/ASR/prepare.sh index 17224bb68..604cc92c6 100755 --- a/egs/alimeeting/ASR/prepare.sh +++ b/egs/alimeeting/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail stage=-1 diff --git a/egs/alimeeting/ASR/pruned_transducer_stateless2/asr_datamodule.py b/egs/alimeeting/ASR/pruned_transducer_stateless2/asr_datamodule.py index bf6faad7a..a9a4675a9 100644 --- a/egs/alimeeting/ASR/pruned_transducer_stateless2/asr_datamodule.py +++ b/egs/alimeeting/ASR/pruned_transducer_stateless2/asr_datamodule.py @@ -205,17 +205,13 @@ class AlimeetingAsrDataModule: The state dict for the training sampler. """ logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -237,9 +233,7 @@ class AlimeetingAsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -282,9 +276,7 @@ class AlimeetingAsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -341,9 +333,7 @@ class AlimeetingAsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: diff --git a/egs/alimeeting/ASR/pruned_transducer_stateless2/decode.py b/egs/alimeeting/ASR/pruned_transducer_stateless2/decode.py index 6358fe970..e4a90ef71 100755 --- a/egs/alimeeting/ASR/pruned_transducer_stateless2/decode.py +++ b/egs/alimeeting/ASR/pruned_transducer_stateless2/decode.py @@ -70,11 +70,7 @@ from beam_search import ( from lhotse.cut import Cut from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, @@ -193,8 +189,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -249,9 +244,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -266,10 +259,7 @@ def decode_one_batch( ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -390,9 +380,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -425,8 +413,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -563,8 +550,7 @@ def main(): ) dev_shards = [ - str(path) - for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar"))) + str(path) for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar"))) ] cuts_dev_webdataset = CutSet.from_webdataset( dev_shards, @@ -574,8 +560,7 @@ def main(): ) test_shards = [ - str(path) - for path in sorted(glob.glob(os.path.join(test, "shared-*.tar"))) + str(path) for path in sorted(glob.glob(os.path.join(test, "shared-*.tar"))) ] cuts_test_webdataset = CutSet.from_webdataset( test_shards, @@ -588,9 +573,7 @@ def main(): return 1.0 <= c.duration cuts_dev_webdataset = cuts_dev_webdataset.filter(remove_short_and_long_utt) - cuts_test_webdataset = cuts_test_webdataset.filter( - remove_short_and_long_utt - ) + cuts_test_webdataset = cuts_test_webdataset.filter(remove_short_and_long_utt) dev_dl = alimeeting.valid_dataloaders(cuts_dev_webdataset) test_dl = alimeeting.test_dataloaders(cuts_test_webdataset) diff --git a/egs/alimeeting/ASR/pruned_transducer_stateless2/export.py b/egs/alimeeting/ASR/pruned_transducer_stateless2/export.py index 8beec1b8a..8e5cc6075 100644 --- a/egs/alimeeting/ASR/pruned_transducer_stateless2/export.py +++ b/egs/alimeeting/ASR/pruned_transducer_stateless2/export.py @@ -103,8 +103,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -173,9 +172,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/alimeeting/ASR/pruned_transducer_stateless2/pretrained.py b/egs/alimeeting/ASR/pruned_transducer_stateless2/pretrained.py index 93b1e1f57..f5a0dd8c8 100644 --- a/egs/alimeeting/ASR/pruned_transducer_stateless2/pretrained.py +++ b/egs/alimeeting/ASR/pruned_transducer_stateless2/pretrained.py @@ -162,8 +162,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -193,10 +192,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -257,9 +255,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -284,10 +280,7 @@ def main(): ) for i in range(encoder_out.size(0)): hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -339,9 +332,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/alimeeting/ASR/pruned_transducer_stateless2/train.py b/egs/alimeeting/ASR/pruned_transducer_stateless2/train.py index 81a0ede7f..e57b5c859 100644 --- a/egs/alimeeting/ASR/pruned_transducer_stateless2/train.py +++ b/egs/alimeeting/ASR/pruned_transducer_stateless2/train.py @@ -81,9 +81,7 @@ from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] os.environ["CUDA_LAUNCH_BLOCKING"] = "1" @@ -187,8 +185,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -211,8 +208,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -542,22 +538,15 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -711,9 +700,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -813,7 +800,7 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) diff --git a/egs/alimeeting/ASR_v2/README.md b/egs/alimeeting/ASR_v2/README.md new file mode 100644 index 000000000..f70327501 --- /dev/null +++ b/egs/alimeeting/ASR_v2/README.md @@ -0,0 +1,38 @@ + +# Introduction + +This recipe trains multi-domain ASR models for AliMeeting. By multi-domain, we mean that +we train a single model on close-talk and far-field conditions. This recipe optionally +uses [GSS]-based enhancement for far-field array microphone. +We pool data in the following 4 ways and train a single model on the pooled data: + +(i) individual headset microphone (IHM) +(ii) IHM with simulated reverb +(iii) Single distant microphone (SDM) +(iv) GSS-enhanced array microphones + +This is different from `alimeeting/ASR` since that recipe trains a model only on the +far-field audio. Additionally, we use text normalization here similar to the original +M2MeT challenge, so the results should be more comparable to those from Table 4 of +the [paper](https://arxiv.org/abs/2110.07393). + +The following additional packages need to be installed to run this recipe: +* `pip install jieba` +* `pip install paddlepaddle` +* `pip install git+https://github.com/desh2608/gss.git` + +[./RESULTS.md](./RESULTS.md) contains the latest results. + +## Performance Record + +### pruned_transducer_stateless7 + +The following are decoded using `modified_beam_search`: + +| Evaluation set | eval WER | test WER | +|--------------------------|------------|---------| +| IHM | 9.58 | 11.53 | +| SDM | 23.37 | 25.85 | +| MDM (GSS-enhanced) | 11.82 | 14.22 | + +See [RESULTS](/egs/alimeeting/ASR_v2/RESULTS.md) for details. diff --git a/egs/alimeeting/ASR_v2/RESULTS.md b/egs/alimeeting/ASR_v2/RESULTS.md new file mode 100644 index 000000000..15b24250d --- /dev/null +++ b/egs/alimeeting/ASR_v2/RESULTS.md @@ -0,0 +1,90 @@ +## Results (CER) + +#### 2022-12-09 + +#### Zipformer (pruned_transducer_stateless7) + +Zipformer encoder + non-current decoder. The decoder +contains only an embedding layer, a Conv1d (with kernel size 2) and a linear +layer (to transform tensor dim). + +All the results below are using a single model that is trained by combining the following +data: IHM, IHM+reverb, SDM, and GSS-enhanced MDM. Speed perturbation and MUSAN noise +augmentation are applied on top of the pooled data. + +**WERs for IHM:** + +| | eval | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 10.13 | 12.21 | --epoch 15 --avg 8 --max-duration 500 | +| modified beam search | 9.58 | 11.53 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 9.92 | 12.07 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +**WERs for SDM:** + +| | eval | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 23.70 | 26.41 | --epoch 15 --avg 8 --max-duration 500 | +| modified beam search | 23.37 | 25.85 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 23.60 | 26.38 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +**WERs for GSS-enhanced MDM:** + +| | eval | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 12.24 | 14.99 | --epoch 15 --avg 8 --max-duration 500 | +| modified beam search | 11.82 | 14.22 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 12.30 | 14.98 | --epoch 15 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +The training command for reproducing is given below: + +``` +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 15 \ + --exp-dir pruned_transducer_stateless7/exp \ + --max-duration 300 \ + --max-cuts 100 \ + --prune-range 5 \ + --lr-factor 5 \ + --lm-scale 0.25 \ + --use-fp16 True +``` + +The decoding command is: +``` +# greedy search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method greedy_search + +# modified beam search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +# fast beam search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --max-duration 500 \ + --decoding-method fast_beam_search \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +``` + +Pretrained model is available at + +The tensorboard training log can be found at + diff --git a/egs/alimeeting/ASR_v2/local/__init__.py b/egs/alimeeting/ASR_v2/local/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/alimeeting/ASR_v2/local/compute_fbank_alimeeting.py b/egs/alimeeting/ASR_v2/local/compute_fbank_alimeeting.py new file mode 100755 index 000000000..c6aa2ab36 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/compute_fbank_alimeeting.py @@ -0,0 +1,193 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the AliMeeting dataset. +For the training data, we prepare IHM, reverberated IHM, SDM, and GSS-enhanced +audios. For the test data, we separately prepare IHM, SDM, and GSS-enhanced +parts (which are the 3 evaluation settings). +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" +import logging +from pathlib import Path + +import torch +import torch.multiprocessing +from lhotse import CutSet, LilcomChunkyWriter +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") + + +def compute_fbank_ami(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + manifests_ihm = read_manifests_if_cached( + dataset_parts=["train", "eval", "test"], + output_dir=src_dir, + prefix="alimeeting-ihm", + suffix="jsonl.gz", + ) + manifests_sdm = read_manifests_if_cached( + dataset_parts=["train", "eval", "test"], + output_dir=src_dir, + prefix="alimeeting-sdm", + suffix="jsonl.gz", + ) + # For GSS we already have cuts so we read them directly. + manifests_gss = read_manifests_if_cached( + dataset_parts=["train", "eval", "test"], + output_dir=src_dir, + prefix="alimeeting-gss", + suffix="jsonl.gz", + ) + + def _extract_feats(cuts: CutSet, storage_path: Path, manifest_path: Path) -> None: + cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1) + _ = cuts.compute_and_store_features_batch( + extractor=extractor, + storage_path=storage_path, + manifest_path=manifest_path, + batch_duration=5000, + num_workers=8, + storage_type=LilcomChunkyWriter, + ) + + logging.info( + "Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)" + ) + + logging.info("Processing train split IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm["train"]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .modify_ids(lambda x: x + "-ihm") + ) + _extract_feats( + cuts_ihm, + output_dir / "feats_train_ihm", + src_dir / "cuts_train_ihm.jsonl.gz", + ) + + logging.info("Processing train split IHM + reverberated IHM") + cuts_ihm_rvb = cuts_ihm.reverb_rir() + _extract_feats( + cuts_ihm_rvb, + output_dir / "feats_train_ihm_rvb", + src_dir / "cuts_train_ihm_rvb.jsonl.gz", + ) + + logging.info("Processing train split SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-sdm") + ) + _extract_feats( + cuts_sdm, + output_dir / "feats_train_sdm", + src_dir / "cuts_train_sdm.jsonl.gz", + ) + + logging.info("Processing train split GSS") + cuts_gss = ( + CutSet.from_manifests(**manifests_gss["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-gss") + ) + _extract_feats( + cuts_gss, + output_dir / "feats_train_gss", + src_dir / "cuts_train_gss.jsonl.gz", + ) + + logging.info("Preparing test cuts: IHM, SDM, GSS (optional)") + for split in ["eval", "test"]: + logging.info(f"Processing {split} IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm[split]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_ihm", + manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + logging.info(f"Processing {split} SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_sdm", + manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + logging.info(f"Processing {split} GSS") + cuts_gss = ( + CutSet.from_manifests(**manifests_gss[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_gss", + manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_ami() diff --git a/egs/alimeeting/ASR_v2/local/compute_fbank_musan.py b/egs/alimeeting/ASR_v2/local/compute_fbank_musan.py new file mode 120000 index 000000000..5833f2484 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/compute_fbank_musan.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/compute_fbank_musan.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/local/prepare_alimeeting_enhanced.py b/egs/alimeeting/ASR_v2/local/prepare_alimeeting_enhanced.py new file mode 100644 index 000000000..f1512efa5 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/prepare_alimeeting_enhanced.py @@ -0,0 +1,158 @@ +#!/usr/local/bin/python +# -*- coding: utf-8 -*- +# Data preparation for AliMeeting GSS-enhanced dataset. + +import logging +from concurrent.futures import ThreadPoolExecutor +from pathlib import Path + +from lhotse import Recording, RecordingSet, SupervisionSet +from lhotse.qa import fix_manifests +from lhotse.recipes.utils import read_manifests_if_cached +from lhotse.utils import fastcopy +from tqdm import tqdm + +logging.basicConfig( + format="%(asctime)s %(levelname)-8s %(message)s", + level=logging.INFO, + datefmt="%Y-%m-%d %H:%M:%S", +) + + +def get_args(): + import argparse + + parser = argparse.ArgumentParser(description="AMI enhanced dataset preparation.") + parser.add_argument( + "manifests_dir", + type=Path, + help="Path to directory containing AliMeeting manifests.", + ) + parser.add_argument( + "enhanced_dir", + type=Path, + help="Path to enhanced data directory.", + ) + parser.add_argument( + "--num-jobs", + "-j", + type=int, + default=1, + help="Number of parallel jobs to run.", + ) + parser.add_argument( + "--min-segment-duration", + "-d", + type=float, + default=0.0, + help="Minimum duration of a segment in seconds.", + ) + return parser.parse_args() + + +def find_recording_and_create_new_supervision(enhanced_dir, supervision): + """ + Given a supervision (corresponding to original AMI recording), this function finds the + enhanced recording correspoding to the supervision, and returns this recording and + a new supervision whose start and end times are adjusted to match the enhanced recording. + """ + file_name = Path( + f"{supervision.recording_id}-{supervision.speaker}-{int(100*supervision.start):06d}_{int(100*supervision.end):06d}.flac" + ) + save_path = enhanced_dir / f"{supervision.recording_id}" / file_name + if save_path.exists(): + recording = Recording.from_file(save_path) + if recording.duration == 0: + logging.warning(f"Skipping {save_path} which has duration 0 seconds.") + return None + + # Old supervision is wrt to the original recording, we create new supervision + # wrt to the enhanced segment + new_supervision = fastcopy( + supervision, + recording_id=recording.id, + start=0, + duration=recording.duration, + ) + return recording, new_supervision + else: + logging.warning(f"{save_path} does not exist.") + return None + + +def main(args): + # Get arguments + manifests_dir = args.manifests_dir + enhanced_dir = args.enhanced_dir + + # Load manifests from cache if they exist (saves time) + manifests = read_manifests_if_cached( + dataset_parts=["train", "eval", "test"], + output_dir=manifests_dir, + prefix="alimeeting-sdm", + suffix="jsonl.gz", + ) + if not manifests: + raise ValueError( + "AliMeeting SDM manifests not found in {}".format(manifests_dir) + ) + + with ThreadPoolExecutor(args.num_jobs) as ex: + for part in ["train", "eval", "test"]: + logging.info(f"Processing {part}...") + supervisions_orig = manifests[part]["supervisions"].filter( + lambda s: s.duration >= args.min_segment_duration + ) + futures = [] + + for supervision in tqdm( + supervisions_orig, + desc="Distributing tasks", + ): + futures.append( + ex.submit( + find_recording_and_create_new_supervision, + enhanced_dir, + supervision, + ) + ) + + recordings = [] + supervisions = [] + for future in tqdm( + futures, + total=len(futures), + desc="Processing tasks", + ): + result = future.result() + if result is not None: + recording, new_supervision = result + recordings.append(recording) + supervisions.append(new_supervision) + + # Remove duplicates from the recordings + recordings_nodup = {} + for recording in recordings: + if recording.id not in recordings_nodup: + recordings_nodup[recording.id] = recording + else: + logging.warning("Recording {} is duplicated.".format(recording.id)) + recordings = RecordingSet.from_recordings(recordings_nodup.values()) + supervisions = SupervisionSet.from_segments(supervisions) + + recordings, supervisions = fix_manifests( + recordings=recordings, supervisions=supervisions + ) + + logging.info(f"Writing {part} enhanced manifests") + recordings.to_file( + manifests_dir / f"alimeeting-gss_recordings_{part}.jsonl.gz" + ) + supervisions.to_file( + manifests_dir / f"alimeeting-gss_supervisions_{part}.jsonl.gz" + ) + + +if __name__ == "__main__": + args = get_args() + main(args) diff --git a/egs/alimeeting/ASR_v2/local/prepare_alimeeting_gss.sh b/egs/alimeeting/ASR_v2/local/prepare_alimeeting_gss.sh new file mode 100755 index 000000000..76db19832 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/prepare_alimeeting_gss.sh @@ -0,0 +1,98 @@ +#!/bin/bash +# This script is used to run GSS-based enhancement on AMI data. +set -euo pipefail +nj=4 +stage=0 + +. shared/parse_options.sh || exit 1 + +if [ $# != 2 ]; then + echo "Wrong #arguments ($#, expected 2)" + echo "Usage: local/prepare_alimeeting_gss.sh [options] " + echo "e.g. local/prepare_alimeeting_gss.sh data/manifests exp/ami_gss" + echo "main options (for others, see top of script file)" + echo " --nj # number of parallel jobs" + echo " --stage # stage to start running from" + exit 1; +fi + +DATA_DIR=$1 +EXP_DIR=$2 + +mkdir -p $EXP_DIR + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +if [ $stage -le 1 ]; then + log "Stage 1: Prepare cut sets" + for part in train eval test; do + lhotse cut simple \ + -r $DATA_DIR/alimeeting-mdm_recordings_${part}.jsonl.gz \ + -s $DATA_DIR/alimeeting-mdm_supervisions_${part}.jsonl.gz \ + $EXP_DIR/cuts_${part}.jsonl.gz + done +fi + +if [ $stage -le 2 ]; then + log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)" + for part in train eval test; do + lhotse cut trim-to-supervisions --discard-overlapping \ + $EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz + done +fi + +if [ $stage -le 3 ]; then + log "Stage 3: Split manifests for multi-GPU processing (optional)" + for part in train eval test; do + gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj + done +fi + +if [ $stage -le 4 ]; then + log "Stage 4: Enhance train segments using GSS (requires GPU)" + # for train, we use smaller context and larger batches to speed-up processing + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \ + $EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 5.0 \ + --use-garbage-class \ + --channels 0,1,2,3,4,5,6,7 \ + --min-segment-length 0.05 \ + --max-segment-length 25.0 \ + --max-batch-duration 60.0 \ + --num-buckets 4 \ + --num-workers 4 + done +fi + +if [ $stage -le 5 ]; then + log "Stage 5: Enhance eval/test segments using GSS (using GPU)" + # for eval/test, we use larger context and smaller batches to get better quality + for part in eval test; do + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \ + $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 15.0 \ + --use-garbage-class \ + --channels 0,1,2,3,4,5,6,7 \ + --min-segment-length 0.05 \ + --max-segment-length 16.0 \ + --max-batch-duration 45.0 \ + --num-buckets 4 \ + --num-workers 4 + done + done +fi + +if [ $stage -le 6 ]; then + log "Stage 6: Prepare manifests for GSS-enhanced data" + python local/prepare_alimeeting_enhanced.py $DATA_DIR $EXP_DIR/enhanced -j $nj --min-segment-duration 0.05 +fi diff --git a/egs/alimeeting/ASR_v2/local/prepare_char.py b/egs/alimeeting/ASR_v2/local/prepare_char.py new file mode 120000 index 000000000..ee5dd34f1 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/prepare_char.py @@ -0,0 +1 @@ +../../ASR/local/prepare_char.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/local/prepare_words.py b/egs/alimeeting/ASR_v2/local/prepare_words.py new file mode 120000 index 000000000..970bfd60c --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/prepare_words.py @@ -0,0 +1 @@ +../../ASR/local/prepare_words.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/local/text2segments.py b/egs/alimeeting/ASR_v2/local/text2segments.py new file mode 120000 index 000000000..bf4547794 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/text2segments.py @@ -0,0 +1 @@ +../../ASR/local/text2segments.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/local/text2token.py b/egs/alimeeting/ASR_v2/local/text2token.py new file mode 120000 index 000000000..f6b8531b6 --- /dev/null +++ b/egs/alimeeting/ASR_v2/local/text2token.py @@ -0,0 +1 @@ +../../ASR/local/text2token.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/prepare.sh b/egs/alimeeting/ASR_v2/prepare.sh new file mode 100755 index 000000000..76a108771 --- /dev/null +++ b/egs/alimeeting/ASR_v2/prepare.sh @@ -0,0 +1,125 @@ +#!/usr/bin/env bash + +set -eou pipefail + +stage=-1 +stop_stage=100 +use_gss=true # Use GSS-based enhancement with MDM setting + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/alimeeting +# This directory contains the following files downloaded from +# https://openslr.org/62/ +# +# - Train_Ali_far.tar.gz +# - Train_Ali_near.tar.gz +# - Test_Ali.tar.gz +# - Eval_Ali.tar.gz +# +# - $dl_dir/musan +# This directory contains the following directories downloaded from +# http://www.openslr.org/17/ +# +# - music +# - noise +# - speech + +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "Stage 0: Download data" + + if [ ! -f $dl_dir/alimeeting/Train_Ali_far.tar.gz ]; then + lhotse download ali-meeting $dl_dir/alimeeting + fi +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare alimeeting manifest" + # We assume that you have downloaded the alimeeting corpus + # to $dl_dir/alimeeting + for part in ihm sdm mdm; do + mkdir -p data/manifests/alimeeting + lhotse prepare ali-meeting --mic $part --save-mono --normalize-text m2met \ + $dl_dir/alimeeting data/manifests + done +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare musan manifest" + # We assume that you have downloaded the musan corpus + # to data/musan + mkdir -p data/manifests + lhotse prepare musan $dl_dir/musan data/manifests +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then + log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)" + # We assume that you have installed the GSS package: https://github.com/desh2608/gss + local/prepare_alimeeting_gss.sh data/manifests exp/alimeeting_gss +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Compute fbank for musan" + mkdir -p data/fbank + python local/compute_fbank_musan.py +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Compute fbank for alimeeting" + mkdir -p data/fbank + python local/compute_fbank_alimeeting.py + log "Combine features from train splits" + lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ + gzip -c > data/manifests/cuts_train_all.jsonl.gz +fi + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Prepare char based lang" + lang_char_dir=data/lang_char + mkdir -p $lang_char_dir + + # Prepare text. + # Note: in Linux, you can install jq with the following command: + # wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 + gunzip -c data/manifests/alimeeting-sdm_supervisions_train.jsonl.gz \ + | jq ".text" | sed 's/"//g' \ + | ./local/text2token.py -t "char" > $lang_char_dir/text + + # Prepare words segments + python ./local/text2segments.py \ + --input $lang_char_dir/text \ + --output $lang_char_dir/text_words_segmentation + + cat $lang_char_dir/text_words_segmentation | sed "s/ /\n/g" \ + | sort -u | sed "/^$/d" \ + | uniq > $lang_char_dir/words_no_ids.txt + + # Prepare words.txt + if [ ! -f $lang_char_dir/words.txt ]; then + ./local/prepare_words.py \ + --input-file $lang_char_dir/words_no_ids.txt \ + --output-file $lang_char_dir/words.txt + fi + + if [ ! -f $lang_char_dir/L_disambig.pt ]; then + ./local/prepare_char.py + fi +fi diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/__init__.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/asr_datamodule.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/asr_datamodule.py new file mode 100644 index 000000000..1cfd053c7 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/asr_datamodule.py @@ -0,0 +1,419 @@ +# Copyright 2021 Piotr Żelasko +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +import re +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy +from lhotse.cut import Cut +from lhotse.dataset import ( + CutConcatenate, + CutMix, + DynamicBucketingSampler, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SpecAugment, +) +from lhotse.dataset.input_strategies import OnTheFlyFeatures +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader +from tqdm import tqdm + +from icefall.utils import str2bool + + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class AlimeetingAsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description=( + "These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc." + ), + ) + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/manifests"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help=( + "When enabled, select noise from MUSAN and mix it " + "with training dataset. " + ), + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help=( + "When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding." + ), + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help=( + "Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch." + ), + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help=( + "The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used." + ), + ) + group.add_argument( + "--max-duration", + type=int, + default=100.0, + help=( + "Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM." + ), + ) + group.add_argument( + "--max-cuts", type=int, default=None, help="Maximum cuts in a single batch." + ) + group.add_argument( + "--num-buckets", + type=int, + default=50, + help=( + "The number of buckets for the BucketingSampler" + "(you might want to increase it for larger datasets)." + ), + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help=( + "When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available." + ), + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help=( + "When enabled (=default), the examples will be " + "shuffled for each epoch." + ), + ) + + group.add_argument( + "--num-workers", + type=int, + default=8, + help=( + "The number of training dataloader workers that " "collect the batches." + ), + ) + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help=( + "Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp." + ), + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + logging.info("About to get Musan cuts") + + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") + transforms.append( + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + + if self.args.concatenate_cuts: + logging.info( + "Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=2, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + if self.args.on_the_fly_feats: + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_transforms=input_transforms, + ) + else: + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_transforms=input_transforms, + ) + + logging.info("Using DynamicBucketingSampler.") + train_sampler = DynamicBucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + max_cuts=self.args.max_cuts, + shuffle=False, + num_buckets=self.args.num_buckets, + drop_last=True, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + + transforms = [] + if self.args.concatenate_cuts: + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + logging.info("About to create dev dataset") + if self.args.on_the_fly_feats: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + ) + else: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + ) + valid_sampler = DynamicBucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=2, + persistent_workers=False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + if self.args.on_the_fly_feats + else PrecomputedFeatures(), + return_cuts=True, + ) + sampler = DynamicBucketingSampler( + cuts, max_duration=self.args.max_duration, shuffle=False + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + def remove_short_cuts(self, cut: Cut) -> bool: + """ + See: https://github.com/k2-fsa/icefall/issues/500 + Basically, the zipformer model subsamples the input using the following formula: + num_out_frames = ((num_in_frames - 7)//2 + 1)//2 + For num_out_frames to be at least 1, num_in_frames must be at least 9. + """ + return cut.duration >= 0.09 + + @lru_cache() + def train_cuts(self, sp: Optional[Any] = None) -> CutSet: + logging.info("About to get AMI train cuts") + + def _remove_short_and_long_utt(c: Cut): + if c.duration < 0.1 or c.duration > 25.0: + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = c.supervisions[0].text + return T >= len(tokens) + + cuts_train = load_manifest_lazy( + self.args.manifest_dir / "cuts_train_all.jsonl.gz" + ) + + return cuts_train.filter(_remove_short_and_long_utt) + + @lru_cache() + def eval_ihm_cuts(self) -> CutSet: + logging.info("About to get AliMeeting IHM eval cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_eval_ihm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def eval_sdm_cuts(self) -> CutSet: + logging.info("About to get AliMeeting SDM eval cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_eval_sdm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def eval_gss_cuts(self) -> CutSet: + if not (self.args.manifest_dir / "cuts_eval_gss.jsonl.gz").exists(): + logging.info("No GSS dev cuts found") + return None + logging.info("About to get AliMeeting GSS-enhanced eval cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_eval_gss.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_ihm_cuts(self) -> CutSet: + logging.info("About to get AliMeeting IHM test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_ihm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_sdm_cuts(self) -> CutSet: + logging.info("About to get AliMeeting SDM test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_sdm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_gss_cuts(self) -> CutSet: + if not (self.args.manifest_dir / "cuts_test_gss.jsonl.gz").exists(): + logging.info("No GSS test cuts found") + return None + logging.info("About to get AliMeeting GSS-enhanced test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_gss.jsonl.gz") + return cs.filter(self.remove_short_cuts) diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/beam_search.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/beam_search.py new file mode 120000 index 000000000..37516affc --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/beam_search.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/beam_search.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decode.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decode.py new file mode 100755 index 000000000..53381c1f4 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decode.py @@ -0,0 +1,698 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method greedy_search + +(2) modified beam search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(3) fast beam search +./pruned_transducer_stateless7/decode.py \ + --epoch 15 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method fast_beam_search \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +""" + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import AlimeetingAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest_LG, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall import NgramLm +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=10, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_char", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + lexicon: Lexicon, + batch: dict, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = model.device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for i in range(encoder_out.size(0)): + hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for i in range(encoder_out.size(0)): + hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for i in range(encoder_out.size(0)): + hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for i in range(encoder_out.size(0)): + hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]]) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append([lexicon.token_table[idx] for idx in hyp]) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif params.decoding_method == "fast_beam_search": + return { + ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ): hyps + } + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + lexicon: Lexicon, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 100 + else: + log_interval = 2 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + texts = [list(str(text).replace(" ", "")) for text in texts] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + lexicon=lexicon, + decoding_graph=decoding_graph, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + this_batch.append((cut_id, ref_text, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + AlimeetingAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest_LG", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + lexicon = Lexicon(params.lang_dir) + params.blank_id = lexicon.token_table[""] + params.vocab_size = max(lexicon.tokens) + 1 + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + model.device = device + + if "fast_beam_search" in params.decoding_method: + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + alimeeting = AlimeetingAsrDataModule(args) + + eval_ihm_cuts = alimeeting.eval_ihm_cuts() + test_ihm_cuts = alimeeting.test_ihm_cuts() + eval_sdm_cuts = alimeeting.eval_sdm_cuts() + test_sdm_cuts = alimeeting.test_sdm_cuts() + eval_gss_cuts = alimeeting.eval_gss_cuts() + test_gss_cuts = alimeeting.test_gss_cuts() + + eval_ihm_dl = alimeeting.test_dataloaders(eval_ihm_cuts) + test_ihm_dl = alimeeting.test_dataloaders(test_ihm_cuts) + eval_sdm_dl = alimeeting.test_dataloaders(eval_sdm_cuts) + test_sdm_dl = alimeeting.test_dataloaders(test_sdm_cuts) + if eval_gss_cuts is not None: + eval_gss_dl = alimeeting.test_dataloaders(eval_gss_cuts) + if test_gss_cuts is not None: + test_gss_dl = alimeeting.test_dataloaders(test_gss_cuts) + + test_sets = { + "eval_ihm": (eval_ihm_dl, eval_ihm_cuts), + "test_ihm": (test_ihm_dl, test_ihm_cuts), + "eval_sdm": (eval_sdm_dl, eval_sdm_cuts), + "test_sdm": (test_sdm_dl, test_sdm_cuts), + } + if eval_gss_cuts is not None: + test_sets["eval_gss"] = (eval_gss_dl, eval_gss_cuts) + if test_gss_cuts is not None: + test_sets["test_gss"] = (test_gss_dl, test_gss_cuts) + + for test_set in test_sets: + logging.info(f"Decoding {test_set}") + dl, cuts = test_sets[test_set] + results_dict = decode_dataset( + dl=dl, + params=params, + model=model, + lexicon=lexicon, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decoder.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decoder.py new file mode 120000 index 000000000..8283d8c5a --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/decoder.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/encoder_interface.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/encoder_interface.py new file mode 120000 index 000000000..0c2673d46 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/encoder_interface.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/export.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/export.py new file mode 100755 index 000000000..23a88dd29 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/export.py @@ -0,0 +1,320 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless7/decode.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +import torch.nn as nn +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=15, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=8, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_char", + help="The lang dir", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + lexicon = Lexicon(params.lang_dir) + + params.blank_id = 0 + params.vocab_size = max(lexicon.tokens) + 1 + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.script()") + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/jit_pretrained.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/jit_pretrained.py new file mode 120000 index 000000000..a44034e34 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/jit_pretrained.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/jit_pretrained.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/joiner.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/joiner.py new file mode 120000 index 000000000..0f0c3c90a --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/joiner.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/model.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/model.py new file mode 120000 index 000000000..0d8bc665b --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/model.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/model.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/optim.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/optim.py new file mode 120000 index 000000000..8a05abb5f --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/optim.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/pretrained.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/pretrained.py new file mode 120000 index 000000000..068f0f57f --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/pretrained.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/pretrained.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling.py new file mode 120000 index 000000000..5f9be9fe0 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling_converter.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling_converter.py new file mode 120000 index 000000000..f9960e5c6 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/scaling_converter.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/test_model.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/test_model.py new file mode 120000 index 000000000..7ceac5d10 --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/test_model.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/test_model.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/train.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/train.py new file mode 100755 index 000000000..757d6535e --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/train.py @@ -0,0 +1,1186 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 15 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7/exp \ + --max-duration 150 \ + --use-fp16 True + +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import AlimeetingAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.lexicon import Lexicon +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=15, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_char", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=5000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=10, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 100, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + graph_compiler: CharCtcTrainingGraphCompiler, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + + y = graph_compiler.texts_to_ids(texts) + if type(y) == list: + y = k2.RaggedTensor(y).to(device) + else: + y = y.to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = ((feature_lens - 7) // 2).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + graph_compiler: CharCtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + graph_compiler: CharCtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", cur_grad_scale, params.batch_idx_train + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + lexicon = Lexicon(params.lang_dir) + graph_compiler = CharCtcTrainingGraphCompiler( + lexicon=lexicon, + device=device, + ) + + params.blank_id = lexicon.token_table[""] + params.vocab_size = max(lexicon.tokens) + 1 + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + if params.inf_check: + register_inf_check_hooks(model) + + alimeeting = AlimeetingAsrDataModule(args) + + train_cuts = alimeeting.train_cuts() + train_dl = alimeeting.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = alimeeting.eval_ihm_cuts() + valid_dl = alimeeting.valid_dataloaders(valid_cuts) + + # if not params.print_diagnostics: + # scan_pessimistic_batches_for_oom( + # model=model, + # train_dl=train_dl, + # optimizer=optimizer, + # graph_compiler=graph_compiler, + # params=params, + # ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + graph_compiler: CharCtcTrainingGraphCompiler, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + graph_compiler: CharCtcTrainingGraphCompiler, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, graph_compiler=graph_compiler) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + AlimeetingAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/zipformer.py b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/zipformer.py new file mode 120000 index 000000000..f2f66041e --- /dev/null +++ b/egs/alimeeting/ASR_v2/pruned_transducer_stateless7/zipformer.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/zipformer.py \ No newline at end of file diff --git a/egs/alimeeting/ASR_v2/shared b/egs/alimeeting/ASR_v2/shared new file mode 120000 index 000000000..3a3b28f96 --- /dev/null +++ b/egs/alimeeting/ASR_v2/shared @@ -0,0 +1 @@ +../../../egs/aishell/ASR/shared \ No newline at end of file diff --git a/egs/ami/ASR/README.md b/egs/ami/ASR/README.md new file mode 100644 index 000000000..1c9714bd4 --- /dev/null +++ b/egs/ami/ASR/README.md @@ -0,0 +1,48 @@ +# AMI + +This is an ASR recipe for the AMI corpus. AMI provides recordings from the speaker's +headset and lapel microphones, and also 2 array microphones containing 8 channels each. +We pool data in the following 4 ways and train a single model on the pooled data: + +(i) individual headset microphone (IHM) +(ii) IHM with simulated reverb +(iii) Single distant microphone (SDM) +(iv) GSS-enhanced array microphones + +Speed perturbation and MUSAN noise augmentation are additionally performed on the pooled +data. Here are the statistics of the combined training data: + +```python +>>> cuts_train.describe() +Cuts count: 1222053 +Total duration (hh:mm:ss): 905:00:28 +Speech duration (hh:mm:ss): 905:00:28 (99.9%) +Duration statistics (seconds): +mean 2.7 +std 2.8 +min 0.0 +25% 0.6 +50% 1.6 +75% 3.8 +99% 12.3 +99.5% 13.9 +99.9% 18.4 +max 36.8 +``` + +**Note:** This recipe additionally uses [GSS](https://github.com/desh2608/gss) for enhancement +of far-field array microphones, but this is optional (see `prepare.sh` for details). + +## Performance Record + +### pruned_transducer_stateless7 + +The following are decoded using `modified_beam_search`: + +| Evaluation set | dev WER | test WER | +|--------------------------|------------|---------| +| IHM | 18.92 | 17.40 | +| SDM | 31.25 | 32.21 | +| MDM (GSS-enhanced) | 21.67 | 22.43 | + +See [RESULTS](/egs/ami/ASR/RESULTS.md) for details. diff --git a/egs/ami/ASR/RESULTS.md b/egs/ami/ASR/RESULTS.md new file mode 100644 index 000000000..163986021 --- /dev/null +++ b/egs/ami/ASR/RESULTS.md @@ -0,0 +1,92 @@ +## Results + +### AMI training results (Pruned Transducer) + +#### 2022-11-20 + +#### Zipformer (pruned_transducer_stateless7) + +Zipformer encoder + non-current decoder. The decoder +contains only an embedding layer, a Conv1d (with kernel size 2) and a linear +layer (to transform tensor dim). + +All the results below are using a single model that is trained by combining the following +data: IHM, IHM+reverb, SDM, and GSS-enhanced MDM. Speed perturbation and MUSAN noise +augmentation are applied on top of the pooled data. + +**WERs for IHM:** + +| | dev | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 19.25 | 17.83 | --epoch 14 --avg 8 --max-duration 500 | +| modified beam search | 18.92 | 17.40 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 19.44 | 18.04 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +**WERs for SDM:** + +| | dev | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 31.32 | 32.38 | --epoch 14 --avg 8 --max-duration 500 | +| modified beam search | 31.25 | 32.21 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 31.11 | 32.10 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +**WERs for GSS-enhanced MDM:** + +| | dev | test | comment | +|---------------------------|------------|------------|------------------------------------------| +| greedy search | 22.05 | 22.93 | --epoch 14 --avg 8 --max-duration 500 | +| modified beam search | 21.67 | 22.43 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 | +| fast beam search | 22.21 | 22.83 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 | + +The training command for reproducing is given below: + +``` +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 15 \ + --exp-dir pruned_transducer_stateless7/exp \ + --max-duration 150 \ + --max-cuts 150 \ + --prune-range 5 \ + --lr-factor 5 \ + --lm-scale 0.25 \ + --use-fp16 True +``` + +The decoding command is: +``` +# greedy search +./pruned_transducer_stateless7/decode.py \ + --epoch 14 \ + --avg 8 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method greedy_search + +# modified beam search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +# fast beam search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --max-duration 500 \ + --decoding-method fast_beam_search \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +``` + +Pretrained model is available at + +The tensorboard training log can be found at + diff --git a/egs/ami/ASR/local/__init__.py b/egs/ami/ASR/local/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/ami/ASR/local/compute_fbank_ami.py b/egs/ami/ASR/local/compute_fbank_ami.py new file mode 100755 index 000000000..4892b40e3 --- /dev/null +++ b/egs/ami/ASR/local/compute_fbank_ami.py @@ -0,0 +1,194 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the AMI dataset. +For the training data, we pool together IHM, reverberated IHM, and GSS-enhanced +audios. For the test data, we separately prepare IHM, SDM, and GSS-enhanced +parts (which are the 3 evaluation settings). +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" +import logging +import math +from pathlib import Path + +import torch +import torch.multiprocessing +from lhotse import CutSet, LilcomChunkyWriter +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") + + +def compute_fbank_ami(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + manifests_ihm = read_manifests_if_cached( + dataset_parts=["train", "dev", "test"], + output_dir=src_dir, + prefix="ami-ihm", + suffix="jsonl.gz", + ) + manifests_sdm = read_manifests_if_cached( + dataset_parts=["train", "dev", "test"], + output_dir=src_dir, + prefix="ami-sdm", + suffix="jsonl.gz", + ) + # For GSS we already have cuts so we read them directly. + manifests_gss = read_manifests_if_cached( + dataset_parts=["train", "dev", "test"], + output_dir=src_dir, + prefix="ami-gss", + suffix="jsonl.gz", + ) + + def _extract_feats(cuts: CutSet, storage_path: Path, manifest_path: Path) -> None: + cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1) + _ = cuts.compute_and_store_features_batch( + extractor=extractor, + storage_path=storage_path, + manifest_path=manifest_path, + batch_duration=5000, + num_workers=8, + storage_type=LilcomChunkyWriter, + ) + + logging.info( + "Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)" + ) + + logging.info("Processing train split IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm["train"]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .modify_ids(lambda x: x + "-ihm") + ) + _extract_feats( + cuts_ihm, + output_dir / "feats_train_ihm", + src_dir / "cuts_train_ihm.jsonl.gz", + ) + + logging.info("Processing train split IHM + reverberated IHM") + cuts_ihm_rvb = cuts_ihm.reverb_rir() + _extract_feats( + cuts_ihm_rvb, + output_dir / "feats_train_ihm_rvb", + src_dir / "cuts_train_ihm_rvb.jsonl.gz", + ) + + logging.info("Processing train split SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-sdm") + ) + _extract_feats( + cuts_sdm, + output_dir / "feats_train_sdm", + src_dir / "cuts_train_sdm.jsonl.gz", + ) + + logging.info("Processing train split GSS") + cuts_gss = ( + CutSet.from_manifests(**manifests_gss["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-gss") + ) + _extract_feats( + cuts_gss, + output_dir / "feats_train_gss", + src_dir / "cuts_train_gss.jsonl.gz", + ) + + logging.info("Preparing test cuts: IHM, SDM, GSS (optional)") + for split in ["dev", "test"]: + logging.info(f"Processing {split} IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm[split]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_ihm", + manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz", + batch_duration=5000, + num_workers=8, + storage_type=LilcomChunkyWriter, + ) + ) + logging.info(f"Processing {split} SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_sdm", + manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + logging.info(f"Processing {split} GSS") + cuts_gss = ( + CutSet.from_manifests(**manifests_gss[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_gss", + manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_ami() diff --git a/egs/ami/ASR/local/compute_fbank_musan.py b/egs/ami/ASR/local/compute_fbank_musan.py new file mode 100755 index 000000000..1fcf951f9 --- /dev/null +++ b/egs/ami/ASR/local/compute_fbank_musan.py @@ -0,0 +1,114 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the musan dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import logging +from pathlib import Path + +import torch +from lhotse import CutSet, LilcomChunkyWriter, combine +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def compute_fbank_musan(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + dataset_parts = ( + "music", + "speech", + "noise", + ) + prefix = "musan" + suffix = "jsonl.gz" + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + + musan_cuts_path = src_dir / "musan_cuts.jsonl.gz" + + if musan_cuts_path.is_file(): + logging.info(f"{musan_cuts_path} already exists - skipping") + return + + logging.info("Extracting features for Musan") + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + # create chunks of Musan with duration 5 - 10 seconds + _ = ( + CutSet.from_manifests( + recordings=combine(part["recordings"] for part in manifests.values()) + ) + .cut_into_windows(10.0) + .filter(lambda c: c.duration > 5) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / "musan_feats", + manifest_path=musan_cuts_path, + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + compute_fbank_musan() diff --git a/egs/ami/ASR/local/prepare_ami_enhanced.py b/egs/ami/ASR/local/prepare_ami_enhanced.py new file mode 100644 index 000000000..bed220eb3 --- /dev/null +++ b/egs/ami/ASR/local/prepare_ami_enhanced.py @@ -0,0 +1,158 @@ +#!/usr/local/bin/python +# -*- coding: utf-8 -*- +# Data preparation for AMI GSS-enhanced dataset. + +import logging +from concurrent.futures import ThreadPoolExecutor +from pathlib import Path + +from lhotse import Recording, RecordingSet, SupervisionSet +from lhotse.qa import fix_manifests +from lhotse.recipes.utils import read_manifests_if_cached +from lhotse.utils import fastcopy +from tqdm import tqdm + +logging.basicConfig( + format="%(asctime)s %(levelname)-8s %(message)s", + level=logging.INFO, + datefmt="%Y-%m-%d %H:%M:%S", +) + + +def get_args(): + import argparse + + parser = argparse.ArgumentParser(description="AMI enhanced dataset preparation.") + parser.add_argument( + "manifests_dir", + type=Path, + help="Path to directory containing AMI manifests.", + ) + parser.add_argument( + "enhanced_dir", + type=Path, + help="Path to enhanced data directory.", + ) + parser.add_argument( + "--num-jobs", + "-j", + type=int, + default=1, + help="Number of parallel jobs to run.", + ) + parser.add_argument( + "--min-segment-duration", + "-d", + type=float, + default=0.0, + help="Minimum duration of a segment in seconds.", + ) + return parser.parse_args() + + +def find_recording_and_create_new_supervision(enhanced_dir, supervision): + """ + Given a supervision (corresponding to original AMI recording), this function finds the + enhanced recording correspoding to the supervision, and returns this recording and + a new supervision whose start and end times are adjusted to match the enhanced recording. + """ + file_name = Path( + f"{supervision.recording_id}-{supervision.speaker}-{int(100*supervision.start):06d}_{int(100*supervision.end):06d}.flac" + ) + save_path = enhanced_dir / f"{supervision.recording_id}" / file_name + if save_path.exists(): + recording = Recording.from_file(save_path) + if recording.duration == 0: + logging.warning(f"Skipping {save_path} which has duration 0 seconds.") + return None + + # Old supervision is wrt to the original recording, we create new supervision + # wrt to the enhanced segment + new_supervision = fastcopy( + supervision, + recording_id=recording.id, + start=0, + duration=recording.duration, + ) + return recording, new_supervision + else: + logging.warning(f"{save_path} does not exist.") + return None + + +def main(args): + # Get arguments + manifests_dir = args.manifests_dir + enhanced_dir = args.enhanced_dir + + # Load manifests from cache if they exist (saves time) + manifests = read_manifests_if_cached( + dataset_parts=["train", "dev", "test"], + output_dir=manifests_dir, + prefix="ami-sdm", + suffix="jsonl.gz", + ) + if not manifests: + raise ValueError("AMI SDM manifests not found in {}".format(manifests_dir)) + + with ThreadPoolExecutor(args.num_jobs) as ex: + for part in ["train", "dev", "test"]: + logging.info(f"Processing {part}...") + supervisions_orig = manifests[part]["supervisions"].filter( + lambda s: s.duration >= args.min_segment_duration + ) + # Remove TS3009d supervisions since they are not present in the enhanced data + supervisions_orig = supervisions_orig.filter( + lambda s: s.recording_id != "TS3009d" + ) + futures = [] + + for supervision in tqdm( + supervisions_orig, + desc="Distributing tasks", + ): + futures.append( + ex.submit( + find_recording_and_create_new_supervision, + enhanced_dir, + supervision, + ) + ) + + recordings = [] + supervisions = [] + for future in tqdm( + futures, + total=len(futures), + desc="Processing tasks", + ): + result = future.result() + if result is not None: + recording, new_supervision = result + recordings.append(recording) + supervisions.append(new_supervision) + + # Remove duplicates from the recordings + recordings_nodup = {} + for recording in recordings: + if recording.id not in recordings_nodup: + recordings_nodup[recording.id] = recording + else: + logging.warning("Recording {} is duplicated.".format(recording.id)) + recordings = RecordingSet.from_recordings(recordings_nodup.values()) + supervisions = SupervisionSet.from_segments(supervisions) + + recordings, supervisions = fix_manifests( + recordings=recordings, supervisions=supervisions + ) + + logging.info(f"Writing {part} enhanced manifests") + recordings.to_file(manifests_dir / f"ami-gss_recordings_{part}.jsonl.gz") + supervisions.to_file( + manifests_dir / f"ami-gss_supervisions_{part}.jsonl.gz" + ) + + +if __name__ == "__main__": + args = get_args() + main(args) diff --git a/egs/ami/ASR/local/prepare_ami_gss.sh b/egs/ami/ASR/local/prepare_ami_gss.sh new file mode 100755 index 000000000..d5422458b --- /dev/null +++ b/egs/ami/ASR/local/prepare_ami_gss.sh @@ -0,0 +1,98 @@ +#!/bin/bash +# This script is used to run GSS-based enhancement on AMI data. +set -euo pipefail +nj=4 +stage=0 + +. shared/parse_options.sh || exit 1 + +if [ $# != 2 ]; then + echo "Wrong #arguments ($#, expected 2)" + echo "Usage: local/prepare_ami_gss.sh [options] " + echo "e.g. local/prepare_ami_gss.sh data/manifests exp/ami_gss" + echo "main options (for others, see top of script file)" + echo " --nj # number of parallel jobs" + echo " --stage # stage to start running from" + exit 1; +fi + +DATA_DIR=$1 +EXP_DIR=$2 + +mkdir -p $EXP_DIR + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +if [ $stage -le 1 ]; then + log "Stage 1: Prepare cut sets" + for part in train dev test; do + lhotse cut simple \ + -r $DATA_DIR/ami-mdm_recordings_${part}.jsonl.gz \ + -s $DATA_DIR/ami-mdm_supervisions_${part}.jsonl.gz \ + $EXP_DIR/cuts_${part}.jsonl.gz + done +fi + +if [ $stage -le 2 ]; then + log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)" + for part in train dev test; do + lhotse cut trim-to-supervisions --discard-overlapping \ + $EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz + done +fi + +if [ $stage -le 3 ]; then + log "Stage 3: Split manifests for multi-GPU processing (optional)" + for part in train; do + gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj + done +fi + +if [ $stage -le 4 ]; then + log "Stage 4: Enhance train segments using GSS (requires GPU)" + # for train, we use smaller context and larger batches to speed-up processing + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \ + $EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 5.0 \ + --use-garbage-class \ + --channels 0,1,2,3,4,5,6,7 \ + --min-segment-length 0.05 \ + --max-segment-length 35.0 \ + --max-batch-duration 60.0 \ + --num-buckets 3 \ + --num-workers 2 + done +fi + +if [ $stage -le 5 ]; then + log "Stage 5: Enhance dev/test segments using GSS (using GPU)" + # for dev/test, we use larger context and smaller batches to get better quality + for part in dev test; do + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \ + $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 15.0 \ + --use-garbage-class \ + --channels 0,1,2,3,4,5,6,7 \ + --min-segment-length 0.05 \ + --max-segment-length 30.0 \ + --max-batch-duration 45.0 \ + --num-buckets 3 \ + --num-workers 2 + done + done +fi + +if [ $stage -le 6 ]; then + log "Stage 6: Prepare manifests for GSS-enhanced data" + python local/prepare_ami_enhanced.py $DATA_DIR $EXP_DIR/enhanced -j $nj --min-segment-duration 0.05 +fi diff --git a/egs/ami/ASR/local/prepare_lang_bpe.py b/egs/ami/ASR/local/prepare_lang_bpe.py new file mode 120000 index 000000000..36b40e7fc --- /dev/null +++ b/egs/ami/ASR/local/prepare_lang_bpe.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/prepare_lang_bpe.py \ No newline at end of file diff --git a/egs/ami/ASR/local/train_bpe_model.py b/egs/ami/ASR/local/train_bpe_model.py new file mode 120000 index 000000000..6fad36421 --- /dev/null +++ b/egs/ami/ASR/local/train_bpe_model.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/train_bpe_model.py \ No newline at end of file diff --git a/egs/ami/ASR/prepare.sh b/egs/ami/ASR/prepare.sh new file mode 100755 index 000000000..fb21a8ec6 --- /dev/null +++ b/egs/ami/ASR/prepare.sh @@ -0,0 +1,144 @@ +#!/usr/bin/env bash + +set -eou pipefail + +stage=-1 +stop_stage=100 +use_gss=true # Use GSS-based enhancement with MDM setting + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/amicorpus +# You can find audio and transcripts in this path. +# +# - $dl_dir/musan +# This directory contains the following directories downloaded from +# http://www.openslr.org/17/ +# +# - music +# - noise +# - speech +# +# - $dl_dir/{LDC2004S13,LDC2005S13,LDC2004T19,LDC2005T19} +# These contain the Fisher English audio and transcripts. We will +# only use the transcripts as extra LM training data (similar to Kaldi). +# +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data +vocab_size=500 + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "Stage 0: Download data" + + # If you have pre-downloaded it to /path/to/amicorpus, + # you can create a symlink + # + # ln -sfv /path/to/amicorpus $dl_dir/amicorpus + # + if [ ! -d $dl_dir/amicorpus ]; then + lhotse download ami --mic ihm $dl_dir/amicorpus + lhotse download ami --mic mdm $dl_dir/amicorpus + fi + + # If you have pre-downloaded it to /path/to/musan, + # you can create a symlink + # + # ln -sfv /path/to/musan $dl_dir/ + # + if [ ! -d $dl_dir/musan ]; then + lhotse download musan $dl_dir + fi +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare AMI manifests" + # We assume that you have downloaded the AMI corpus + # to $dl_dir/amicorpus. We perform text normalization for the transcripts. + mkdir -p data/manifests + for mic in ihm sdm mdm; do + lhotse prepare ami --mic $mic --partition full-corpus-asr --normalize-text kaldi \ + --max-words-per-segment 30 $dl_dir/amicorpus data/manifests/ + done +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare musan manifest" + # We assume that you have downloaded the musan corpus + # to $dl_dir/musan + mkdir -p data/manifests + lhotse prepare musan $dl_dir/musan data/manifests +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then + log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)" + # We assume that you have installed the GSS package: https://github.com/desh2608/gss + local/prepare_ami_gss.sh data/manifests exp/ami_gss +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Compute fbank features for AMI" + mkdir -p data/fbank + python local/compute_fbank_ami.py + log "Combine features from train splits" + lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ + gzip -c > data/manifests/cuts_train_all.jsonl.gz +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Compute fbank features for musan" + mkdir -p data/fbank + python local/compute_fbank_musan.py +fi + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Dump transcripts for BPE model training." + mkdir -p data/lm + cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g')> data/lm/transcript_words.txt +fi + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Prepare BPE based lang" + + lang_dir=data/lang_bpe_${vocab_size} + mkdir -p $lang_dir + + # Add special words to words.txt + echo " 0" > $lang_dir/words.txt + echo "!SIL 1" >> $lang_dir/words.txt + echo " 2" >> $lang_dir/words.txt + + # Add regular words to words.txt + cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt + + # Add remaining special word symbols expected by LM scripts. + num_words=$(cat $lang_dir/words.txt | wc -l) + echo " ${num_words}" >> $lang_dir/words.txt + num_words=$(cat $lang_dir/words.txt | wc -l) + echo " ${num_words}" >> $lang_dir/words.txt + num_words=$(cat $lang_dir/words.txt | wc -l) + echo "#0 ${num_words}" >> $lang_dir/words.txt + + ./local/train_bpe_model.py \ + --lang-dir $lang_dir \ + --vocab-size $vocab_size \ + --transcript data/lm/transcript_words.txt + + if [ ! -f $lang_dir/L_disambig.pt ]; then + ./local/prepare_lang_bpe.py --lang-dir $lang_dir + fi +fi diff --git a/egs/ami/ASR/pruned_transducer_stateless7/__init__.py b/egs/ami/ASR/pruned_transducer_stateless7/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py b/egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py new file mode 100644 index 000000000..f7ee9c962 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py @@ -0,0 +1,430 @@ +# Copyright 2021 Piotr Żelasko +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +import re +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy +from lhotse.cut import Cut +from lhotse.dataset import ( + CutConcatenate, + CutMix, + DynamicBucketingSampler, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SpecAugment, +) +from lhotse.dataset.input_strategies import OnTheFlyFeatures +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader +from tqdm import tqdm + +from icefall.utils import str2bool + + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class AmiAsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description=( + "These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc." + ), + ) + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/manifests"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help=( + "When enabled, select noise from MUSAN and mix it " + "with training dataset. " + ), + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help=( + "When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding." + ), + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help=( + "Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch." + ), + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help=( + "The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used." + ), + ) + group.add_argument( + "--max-duration", + type=int, + default=100.0, + help=( + "Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM." + ), + ) + group.add_argument( + "--max-cuts", type=int, default=None, help="Maximum cuts in a single batch." + ) + group.add_argument( + "--num-buckets", + type=int, + default=50, + help=( + "The number of buckets for the BucketingSampler" + "(you might want to increase it for larger datasets)." + ), + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help=( + "When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available." + ), + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help=( + "When enabled (=default), the examples will be " + "shuffled for each epoch." + ), + ) + + group.add_argument( + "--num-workers", + type=int, + default=8, + help=( + "The number of training dataloader workers that " "collect the batches." + ), + ) + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help=( + "Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp." + ), + ) + group.add_argument( + "--ihm-only", + type=str2bool, + default=False, + help="When enabled, only use IHM data for training.", + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + logging.info("About to get Musan cuts") + + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") + transforms.append( + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + + if self.args.concatenate_cuts: + logging.info( + "Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=2, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + if self.args.on_the_fly_feats: + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_transforms=input_transforms, + ) + else: + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_transforms=input_transforms, + ) + + logging.info("Using DynamicBucketingSampler.") + train_sampler = DynamicBucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + max_cuts=self.args.max_cuts, + shuffle=False, + num_buckets=self.args.num_buckets, + drop_last=True, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + + transforms = [] + if self.args.concatenate_cuts: + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + logging.info("About to create dev dataset") + if self.args.on_the_fly_feats: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + ) + else: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + ) + valid_sampler = DynamicBucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=2, + persistent_workers=False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + if self.args.on_the_fly_feats + else PrecomputedFeatures(), + return_cuts=True, + ) + sampler = DynamicBucketingSampler( + cuts, max_duration=self.args.max_duration, shuffle=False + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + def remove_short_cuts(self, cut: Cut) -> bool: + """ + See: https://github.com/k2-fsa/icefall/issues/500 + Basically, the zipformer model subsamples the input using the following formula: + num_out_frames = (num_in_frames - 7)//2 + For num_out_frames to be at least 1, num_in_frames must be at least 9. + """ + return cut.duration >= 0.09 + + @lru_cache() + def train_cuts(self, sp: Optional[Any] = None) -> CutSet: + logging.info("About to get AMI train cuts") + + def _remove_short_and_long_utt(c: Cut): + if c.duration < 0.2 or c.duration > 25.0: + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + return T >= len(tokens) + + if self.args.ihm_only: + cuts_train = load_manifest_lazy( + self.args.manifest_dir / "cuts_train_ihm.jsonl.gz" + ) + else: + cuts_train = load_manifest_lazy( + self.args.manifest_dir / "cuts_train_all.jsonl.gz" + ) + + return cuts_train.filter(_remove_short_and_long_utt) + + @lru_cache() + def dev_ihm_cuts(self) -> CutSet: + logging.info("About to get AMI IHM dev cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def dev_sdm_cuts(self) -> CutSet: + logging.info("About to get AMI SDM dev cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def dev_gss_cuts(self) -> CutSet: + if not (self.args.manifest_dir / "cuts_dev_gss.jsonl.gz").exists(): + logging.info("No GSS dev cuts found") + return None + logging.info("About to get AMI GSS-enhanced dev cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_gss.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_ihm_cuts(self) -> CutSet: + logging.info("About to get AMI IHM test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_ihm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_sdm_cuts(self) -> CutSet: + logging.info("About to get AMI SDM test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_sdm.jsonl.gz") + return cs.filter(self.remove_short_cuts) + + @lru_cache() + def test_gss_cuts(self) -> CutSet: + if not (self.args.manifest_dir / "cuts_test_gss.jsonl.gz").exists(): + logging.info("No GSS test cuts found") + return None + logging.info("About to get AMI GSS-enhanced test cuts") + cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_gss.jsonl.gz") + return cs.filter(self.remove_short_cuts) diff --git a/egs/ami/ASR/pruned_transducer_stateless7/beam_search.py b/egs/ami/ASR/pruned_transducer_stateless7/beam_search.py new file mode 120000 index 000000000..37516affc --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/beam_search.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/beam_search.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/decode.py b/egs/ami/ASR/pruned_transducer_stateless7/decode.py new file mode 100755 index 000000000..f47228fbe --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/decode.py @@ -0,0 +1,747 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 100 \ + --decoding-method greedy_search + +(2) beam search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 500 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search +./pruned_transducer_stateless7/decode.py \ + --iter 105000 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --max-duration 500 \ + --decoding-method fast_beam_search \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +""" + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import AmiAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest_LG, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall import NgramLm +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=10, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + decoding_graph: Optional[k2.Fsa] = None, + word_table: Optional[k2.SymbolTable] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + word_table: + The word symbol table. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = model.device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif params.decoding_method == "fast_beam_search": + return { + ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ): hyps + } + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, + word_table: Optional[k2.SymbolTable] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 100 + else: + log_interval = 2 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + test_set_cers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + wers_filename = ( + params.res_dir / f"wers-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(wers_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + # we also compute CER for AMI dataset. + results_char = [] + for res in results: + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) + cers_filename = ( + params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(cers_filename, "w") as f: + cer = write_error_stats( + f, f"{test_set_name}-{key}", results_char, enable_log=True + ) + test_set_cers[key] = cer + + logging.info("Wrote detailed error stats to {}".format(wers_filename)) + + test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])} + test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])} + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER\tCER", file=f) + for key in test_set_wers: + print( + "{}\t{}\t{}".format(key, test_set_wers[key], test_set_cers[key]), + file=f, + ) + + s = "\nFor {}, WER/CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key in test_set_wers: + s += "{}\t{}\t{}{}\n".format(key, test_set_wers[key], test_set_cers[key], note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + AmiAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest_LG", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(f"{params.lang_dir}/bpe.model") + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + model.device = device + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + ami = AmiAsrDataModule(args) + + dev_ihm_cuts = ami.dev_ihm_cuts() + test_ihm_cuts = ami.test_ihm_cuts() + dev_sdm_cuts = ami.dev_sdm_cuts() + test_sdm_cuts = ami.test_sdm_cuts() + dev_gss_cuts = ami.dev_gss_cuts() + test_gss_cuts = ami.test_gss_cuts() + + dev_ihm_dl = ami.test_dataloaders(dev_ihm_cuts) + test_ihm_dl = ami.test_dataloaders(test_ihm_cuts) + dev_sdm_dl = ami.test_dataloaders(dev_sdm_cuts) + test_sdm_dl = ami.test_dataloaders(test_sdm_cuts) + if dev_gss_cuts is not None: + dev_gss_dl = ami.test_dataloaders(dev_gss_cuts) + if test_gss_cuts is not None: + test_gss_dl = ami.test_dataloaders(test_gss_cuts) + + test_sets = { + "dev_ihm": (dev_ihm_dl, dev_ihm_cuts), + "test_ihm": (test_ihm_dl, test_ihm_cuts), + "dev_sdm": (dev_sdm_dl, dev_sdm_cuts), + "test_sdm": (test_sdm_dl, test_sdm_cuts), + } + if dev_gss_cuts is not None: + test_sets["dev_gss"] = (dev_gss_dl, dev_gss_cuts) + if test_gss_cuts is not None: + test_sets["test_gss"] = (test_gss_dl, test_gss_cuts) + + for test_set in test_sets: + logging.info(f"Decoding {test_set}") + dl, cuts = test_sets[test_set] + results_dict = decode_dataset( + dl=dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/ami/ASR/pruned_transducer_stateless7/decoder.py b/egs/ami/ASR/pruned_transducer_stateless7/decoder.py new file mode 120000 index 000000000..8283d8c5a --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/decoder.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py b/egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py new file mode 120000 index 000000000..0c2673d46 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/export.py b/egs/ami/ASR/pruned_transducer_stateless7/export.py new file mode 120000 index 000000000..2713792e6 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/export.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/export.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/joiner.py b/egs/ami/ASR/pruned_transducer_stateless7/joiner.py new file mode 120000 index 000000000..0f0c3c90a --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/joiner.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/model.py b/egs/ami/ASR/pruned_transducer_stateless7/model.py new file mode 120000 index 000000000..0d8bc665b --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/model.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/model.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/optim.py b/egs/ami/ASR/pruned_transducer_stateless7/optim.py new file mode 120000 index 000000000..8a05abb5f --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/optim.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/scaling.py b/egs/ami/ASR/pruned_transducer_stateless7/scaling.py new file mode 120000 index 000000000..5f9be9fe0 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/scaling.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py b/egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py new file mode 120000 index 000000000..f9960e5c6 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/ami/ASR/pruned_transducer_stateless7/train.py b/egs/ami/ASR/pruned_transducer_stateless7/train.py new file mode 100755 index 000000000..81823ced2 --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/train.py @@ -0,0 +1,1193 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 15 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7/exp \ + --max-duration 150 \ + --use-fp16 True + +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import AmiAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=11, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=5000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=10, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 100, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"] + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = supervisions["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = ((feature_lens - 7) // 2).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", cur_grad_scale, params.batch_idx_train + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + if params.inf_check: + register_inf_check_hooks(model) + + ami = AmiAsrDataModule(args) + + # Here is the duration statistics of the training set. + # Cuts count: 1230033 + # Total duration (hh:mm:ss): 904:25:34 + # Speech duration (hh:mm:ss): 904:25:34 (100.0%) + # Duration statistics (seconds): + # mean 2.6 + # std 2.8 + # min 0.0 + # 25% 0.6 + # 50% 1.6 + # 75% 3.8 + # 99% 12.3 + # 99.5% 13.9 + # 99.9% 18.3 + # max 36.8 + + train_cuts = ami.train_cuts(sp=sp) + train_dl = ami.train_dataloaders(train_cuts, sampler_state_dict=sampler_state_dict) + + valid_cuts = ami.dev_ihm_cuts() + valid_dl = ami.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + AmiAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/ami/ASR/pruned_transducer_stateless7/zipformer.py b/egs/ami/ASR/pruned_transducer_stateless7/zipformer.py new file mode 120000 index 000000000..f2f66041e --- /dev/null +++ b/egs/ami/ASR/pruned_transducer_stateless7/zipformer.py @@ -0,0 +1 @@ +../../../librispeech/ASR/pruned_transducer_stateless7/zipformer.py \ No newline at end of file diff --git a/egs/ami/ASR/shared b/egs/ami/ASR/shared new file mode 120000 index 000000000..4cbd91a7e --- /dev/null +++ b/egs/ami/ASR/shared @@ -0,0 +1 @@ +../../../icefall/shared \ No newline at end of file diff --git a/egs/csj/ASR/.gitignore b/egs/csj/ASR/.gitignore index 5d965832e..cd0e20c4c 100644 --- a/egs/csj/ASR/.gitignore +++ b/egs/csj/ASR/.gitignore @@ -5,4 +5,4 @@ notify_tg.py finetune_* misc.ini .vscode/* -offline/* \ No newline at end of file +offline/* diff --git a/egs/csj/ASR/local/compute_fbank_csj.py b/egs/csj/ASR/local/compute_fbank_csj.py index 994dedbdd..667ad427e 100644 --- a/egs/csj/ASR/local/compute_fbank_csj.py +++ b/egs/csj/ASR/local/compute_fbank_csj.py @@ -25,20 +25,19 @@ from random import Random from typing import List, Tuple import torch -from lhotse import ( + +# fmt: off +from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527 CutSet, Fbank, FbankConfig, - # fmt: off - # See the following for why LilcomChunkyWriter is preferred - # https://github.com/k2-fsa/icefall/pull/404 - # https://github.com/lhotse-speech/lhotse/pull/527 - # fmt: on LilcomChunkyWriter, RecordingSet, SupervisionSet, ) +# fmt: on + ARGPARSE_DESCRIPTION = """ This script follows the espnet method of splitting the remaining core+noncore utterances into valid and train cutsets at an index which is by default 4000. @@ -81,17 +80,13 @@ def make_cutset_blueprints( cut_sets.append((f"eval{i}", cut_set)) # Create train and valid cuts - logging.info( - "Loading, trimming, and shuffling the remaining core+noncore cuts." - ) + logging.info("Loading, trimming, and shuffling the remaining core+noncore cuts.") recording_set = RecordingSet.from_file( manifest_dir / "csj_recordings_core.jsonl.gz" ) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz") supervision_set = SupervisionSet.from_file( manifest_dir / "csj_supervisions_core.jsonl.gz" - ) + SupervisionSet.from_file( - manifest_dir / "csj_supervisions_noncore.jsonl.gz" - ) + ) + SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz") cut_set = CutSet.from_manifests( recordings=recording_set, @@ -101,15 +96,12 @@ def make_cutset_blueprints( cut_set = cut_set.shuffle(Random(RNG_SEED)) logging.info( - "Creating valid and train cuts from core and noncore," - f"split at {split}." + "Creating valid and train cuts from core and noncore, split at {split}." ) valid_set = CutSet.from_cuts(islice(cut_set, 0, split)) train_set = CutSet.from_cuts(islice(cut_set, split, None)) - train_set = ( - train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1) - ) + train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1) cut_sets.extend([("valid", valid_set), ("train", train_set)]) @@ -122,15 +114,9 @@ def get_args(): formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) - parser.add_argument( - "--manifest-dir", type=Path, help="Path to save manifests" - ) - parser.add_argument( - "--fbank-dir", type=Path, help="Path to save fbank features" - ) - parser.add_argument( - "--split", type=int, default=4000, help="Split at this index" - ) + parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests") + parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features") + parser.add_argument("--split", type=int, default=4000, help="Split at this index") return parser.parse_args() @@ -141,9 +127,7 @@ def main(): extractor = Fbank(FbankConfig(num_mel_bins=80)) num_jobs = min(16, os.cpu_count()) - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/csj/ASR/local/compute_fbank_musan.py b/egs/csj/ASR/local/compute_fbank_musan.py index 44a33c4eb..f60e62c85 100644 --- a/egs/csj/ASR/local/compute_fbank_musan.py +++ b/egs/csj/ASR/local/compute_fbank_musan.py @@ -26,7 +26,6 @@ from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor - ARGPARSE_DESCRIPTION = """ This file computes fbank features of the musan dataset. It looks for manifests in the directory data/manifests. @@ -84,9 +83,7 @@ def compute_fbank_musan(manifest_dir: Path, fbank_dir: Path): # create chunks of Musan with duration 5 - 10 seconds musan_cuts = ( CutSet.from_manifests( - recordings=combine( - part["recordings"] for part in manifests.values() - ) + recordings=combine(part["recordings"] for part in manifests.values()) ) .cut_into_windows(10.0) .filter(lambda c: c.duration > 5) @@ -107,21 +104,15 @@ def get_args(): formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) - parser.add_argument( - "--manifest-dir", type=Path, help="Path to save manifests" - ) - parser.add_argument( - "--fbank-dir", type=Path, help="Path to save fbank features" - ) + parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests") + parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features") return parser.parse_args() if __name__ == "__main__": args = get_args() - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_musan(args.manifest_dir, args.fbank_dir) diff --git a/egs/csj/ASR/local/conf/disfluent.ini b/egs/csj/ASR/local/conf/disfluent.ini index eb70673de..c987e72c5 100644 --- a/egs/csj/ASR/local/conf/disfluent.ini +++ b/egs/csj/ASR/local/conf/disfluent.ini @@ -1,17 +1,17 @@ ; # This section is ignored if this file is not supplied as the first config file to -; # lhotse prepare csj +; # lhotse prepare csj [SEGMENTS] ; # Allowed period of nonverbal noise. If exceeded, a new segment is created. gap = 0.5 ; # Maximum length of segment (s). maxlen = 10 -; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. +; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. minlen = 0.02 -; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. -; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. -; # If you intend to use a multicharacter string for gap_sym, remember to register the -; # multicharacter string as part of userdef-string in prepare_lang_char.py. -gap_sym = +; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. +; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. +; # If you intend to use a multicharacter string for gap_sym, remember to register the +; # multicharacter string as part of userdef-string in prepare_lang_char.py. +gap_sym = [CONSTANTS] ; # Name of this mode @@ -115,59 +115,59 @@ B^ = 0 ; # 0 to remain, 1 to delete ; # Example: '(笑 ナニガ)', '(笑 (F エー)+ソー+イッ+タ+ヨー+ナ)' 笑 = 0 -; # Example: 'コク(笑 サイ+(D オン))', +; # Example: 'コク(笑 サイ+(D オン))', 笑^ = 0 ; # 泣きながら発話 ; # 0 to remain, 1 to delete -; # Example: '(泣 ドンナニ)' +; # Example: '(泣 ドンナニ)' 泣 = 0 泣^ = 0 ; # 咳をしながら発話 ; # 0 to remain, 1 to delete -; # Example: 'シャ(咳 リン) ノ' +; # Example: 'シャ(咳 リン) ノ' 咳 = 0 ; # Example: 'イッ(咳 パン)', 'ワズ(咳 カ)' 咳^ = 0 ; # ささやき声や独り言などの小さな声 ; # 0 to remain, 1 to delete -; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' +; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' L = 0 ; # Example: 'デ(L ス)', 'ッ(L テ+コ)ト' L^ = 0 [REPLACEMENTS] ; # ボーカルフライなどで母音が同定できない場合 - = + = ; # 「うん/うーん/ふーん」の音の特定が困難な場合 - = + = ; # 非語彙的な母音の引き延ばし - = + = ; # 非語彙的な子音の引き延ばし - = + = ; # 言語音と独立に講演者の笑いが生じている場合 -<笑> = +<笑> = ; # 言語音と独立に講演者の咳が生じている場合 -<咳> = +<咳> = ; # 言語音と独立に講演者の息が生じている場合 -<息> = +<息> = ; # 講演者の泣き声 -<泣> = +<泣> = ; # 聴衆(司会者なども含む)の発話 -<フロア発話> = +<フロア発話> = ; # 聴衆の笑い -<フロア笑> = +<フロア笑> = ; # 聴衆の拍手 -<拍手> = +<拍手> = ; # 講演者が発表中に用いたデモンストレーションの音声 -<デモ> = +<デモ> = ; # 学会講演に発表時間を知らせるためにならすベルの音 -<ベル> = +<ベル> = ; # 転記単位全体が再度読み直された場合 -<朗読間違い> = +<朗読間違い> = ; # 上記以外の音で特に目立った音 -<雑音> = +<雑音> = ; # 0.2秒以上のポーズ -

= +

= ; # Redacted information, for R ; # It is \x00D7 multiplication sign, not your normal 'x' × = × @@ -318,4 +318,3 @@ spk_id = 2 ャ = ǐa ュ = ǐu ョ = ǐo - diff --git a/egs/csj/ASR/local/conf/fluent.ini b/egs/csj/ASR/local/conf/fluent.ini index 5d22f9eb8..f7f27f5bc 100644 --- a/egs/csj/ASR/local/conf/fluent.ini +++ b/egs/csj/ASR/local/conf/fluent.ini @@ -1,17 +1,17 @@ ; # This section is ignored if this file is not supplied as the first config file to -; # lhotse prepare csj +; # lhotse prepare csj [SEGMENTS] ; # Allowed period of nonverbal noise. If exceeded, a new segment is created. gap = 0.5 ; # Maximum length of segment (s). maxlen = 10 -; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. +; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. minlen = 0.02 -; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. -; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. -; # If you intend to use a multicharacter string for gap_sym, remember to register the -; # multicharacter string as part of userdef-string in prepare_lang_char.py. -gap_sym = +; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. +; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. +; # If you intend to use a multicharacter string for gap_sym, remember to register the +; # multicharacter string as part of userdef-string in prepare_lang_char.py. +gap_sym = [CONSTANTS] ; # Name of this mode @@ -115,59 +115,59 @@ B^ = 0 ; # 0 to remain, 1 to delete ; # Example: '(笑 ナニガ)', '(笑 (F エー)+ソー+イッ+タ+ヨー+ナ)' 笑 = 0 -; # Example: 'コク(笑 サイ+(D オン))', +; # Example: 'コク(笑 サイ+(D オン))', 笑^ = 0 ; # 泣きながら発話 ; # 0 to remain, 1 to delete -; # Example: '(泣 ドンナニ)' +; # Example: '(泣 ドンナニ)' 泣 = 0 泣^ = 0 ; # 咳をしながら発話 ; # 0 to remain, 1 to delete -; # Example: 'シャ(咳 リン) ノ' +; # Example: 'シャ(咳 リン) ノ' 咳 = 0 ; # Example: 'イッ(咳 パン)', 'ワズ(咳 カ)' 咳^ = 0 ; # ささやき声や独り言などの小さな声 ; # 0 to remain, 1 to delete -; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' +; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' L = 0 ; # Example: 'デ(L ス)', 'ッ(L テ+コ)ト' L^ = 0 [REPLACEMENTS] ; # ボーカルフライなどで母音が同定できない場合 - = + = ; # 「うん/うーん/ふーん」の音の特定が困難な場合 - = + = ; # 非語彙的な母音の引き延ばし - = + = ; # 非語彙的な子音の引き延ばし - = + = ; # 言語音と独立に講演者の笑いが生じている場合 -<笑> = +<笑> = ; # 言語音と独立に講演者の咳が生じている場合 -<咳> = +<咳> = ; # 言語音と独立に講演者の息が生じている場合 -<息> = +<息> = ; # 講演者の泣き声 -<泣> = +<泣> = ; # 聴衆(司会者なども含む)の発話 -<フロア発話> = +<フロア発話> = ; # 聴衆の笑い -<フロア笑> = +<フロア笑> = ; # 聴衆の拍手 -<拍手> = +<拍手> = ; # 講演者が発表中に用いたデモンストレーションの音声 -<デモ> = +<デモ> = ; # 学会講演に発表時間を知らせるためにならすベルの音 -<ベル> = +<ベル> = ; # 転記単位全体が再度読み直された場合 -<朗読間違い> = +<朗読間違い> = ; # 上記以外の音で特に目立った音 -<雑音> = +<雑音> = ; # 0.2秒以上のポーズ -

= +

= ; # Redacted information, for R ; # It is \x00D7 multiplication sign, not your normal 'x' × = × @@ -318,4 +318,3 @@ spk_id = 2 ャ = ǐa ュ = ǐu ョ = ǐo - diff --git a/egs/csj/ASR/local/conf/number.ini b/egs/csj/ASR/local/conf/number.ini index 2613c3409..cf9038f62 100644 --- a/egs/csj/ASR/local/conf/number.ini +++ b/egs/csj/ASR/local/conf/number.ini @@ -1,17 +1,17 @@ ; # This section is ignored if this file is not supplied as the first config file to -; # lhotse prepare csj +; # lhotse prepare csj [SEGMENTS] ; # Allowed period of nonverbal noise. If exceeded, a new segment is created. gap = 0.5 ; # Maximum length of segment (s). maxlen = 10 -; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. +; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. minlen = 0.02 -; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. -; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. -; # If you intend to use a multicharacter string for gap_sym, remember to register the -; # multicharacter string as part of userdef-string in prepare_lang_char.py. -gap_sym = +; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. +; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. +; # If you intend to use a multicharacter string for gap_sym, remember to register the +; # multicharacter string as part of userdef-string in prepare_lang_char.py. +gap_sym = [CONSTANTS] ; # Name of this mode @@ -115,59 +115,59 @@ B^ = 0 ; # 0 to remain, 1 to delete ; # Example: '(笑 ナニガ)', '(笑 (F エー)+ソー+イッ+タ+ヨー+ナ)' 笑 = 0 -; # Example: 'コク(笑 サイ+(D オン))', +; # Example: 'コク(笑 サイ+(D オン))', 笑^ = 0 ; # 泣きながら発話 ; # 0 to remain, 1 to delete -; # Example: '(泣 ドンナニ)' +; # Example: '(泣 ドンナニ)' 泣 = 0 泣^ = 0 ; # 咳をしながら発話 ; # 0 to remain, 1 to delete -; # Example: 'シャ(咳 リン) ノ' +; # Example: 'シャ(咳 リン) ノ' 咳 = 0 ; # Example: 'イッ(咳 パン)', 'ワズ(咳 カ)' 咳^ = 0 ; # ささやき声や独り言などの小さな声 ; # 0 to remain, 1 to delete -; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' +; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' L = 0 ; # Example: 'デ(L ス)', 'ッ(L テ+コ)ト' L^ = 0 [REPLACEMENTS] ; # ボーカルフライなどで母音が同定できない場合 - = + = ; # 「うん/うーん/ふーん」の音の特定が困難な場合 - = + = ; # 非語彙的な母音の引き延ばし - = + = ; # 非語彙的な子音の引き延ばし - = + = ; # 言語音と独立に講演者の笑いが生じている場合 -<笑> = +<笑> = ; # 言語音と独立に講演者の咳が生じている場合 -<咳> = +<咳> = ; # 言語音と独立に講演者の息が生じている場合 -<息> = +<息> = ; # 講演者の泣き声 -<泣> = +<泣> = ; # 聴衆(司会者なども含む)の発話 -<フロア発話> = +<フロア発話> = ; # 聴衆の笑い -<フロア笑> = +<フロア笑> = ; # 聴衆の拍手 -<拍手> = +<拍手> = ; # 講演者が発表中に用いたデモンストレーションの音声 -<デモ> = +<デモ> = ; # 学会講演に発表時間を知らせるためにならすベルの音 -<ベル> = +<ベル> = ; # 転記単位全体が再度読み直された場合 -<朗読間違い> = +<朗読間違い> = ; # 上記以外の音で特に目立った音 -<雑音> = +<雑音> = ; # 0.2秒以上のポーズ -

= +

= ; # Redacted information, for R ; # It is \x00D7 multiplication sign, not your normal 'x' × = × @@ -318,4 +318,3 @@ spk_id = 2 ャ = ǐa ュ = ǐu ョ = ǐo - diff --git a/egs/csj/ASR/local/conf/symbol.ini b/egs/csj/ASR/local/conf/symbol.ini index 8ba451dd5..f9801284b 100644 --- a/egs/csj/ASR/local/conf/symbol.ini +++ b/egs/csj/ASR/local/conf/symbol.ini @@ -1,17 +1,17 @@ ; # This section is ignored if this file is not supplied as the first config file to -; # lhotse prepare csj +; # lhotse prepare csj [SEGMENTS] ; # Allowed period of nonverbal noise. If exceeded, a new segment is created. gap = 0.5 ; # Maximum length of segment (s). maxlen = 10 -; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. +; # Minimum length of segment (s). Segments shorter than `minlen` will be dropped silently. minlen = 0.02 -; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. -; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. -; # If you intend to use a multicharacter string for gap_sym, remember to register the -; # multicharacter string as part of userdef-string in prepare_lang_char.py. -gap_sym = +; # Use this symbol to represent a period of allowed nonverbal noise, i.e. `gap`. +; # Pass an empty string to avoid adding any symbol. It was "" in kaldi. +; # If you intend to use a multicharacter string for gap_sym, remember to register the +; # multicharacter string as part of userdef-string in prepare_lang_char.py. +gap_sym = [CONSTANTS] ; # Name of this mode @@ -116,59 +116,59 @@ B^ = 0 ; # 0 to remain, 1 to delete ; # Example: '(笑 ナニガ)', '(笑 (F エー)+ソー+イッ+タ+ヨー+ナ)' 笑 = 0 -; # Example: 'コク(笑 サイ+(D オン))', +; # Example: 'コク(笑 サイ+(D オン))', 笑^ = 0 ; # 泣きながら発話 ; # 0 to remain, 1 to delete -; # Example: '(泣 ドンナニ)' +; # Example: '(泣 ドンナニ)' 泣 = 0 泣^ = 0 ; # 咳をしながら発話 ; # 0 to remain, 1 to delete -; # Example: 'シャ(咳 リン) ノ' +; # Example: 'シャ(咳 リン) ノ' 咳 = 0 ; # Example: 'イッ(咳 パン)', 'ワズ(咳 カ)' 咳^ = 0 ; # ささやき声や独り言などの小さな声 ; # 0 to remain, 1 to delete -; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' +; # Example: '(L アレコレナンダッケ)', '(L (W コデ;(? コレ,ココデ))+(? セツメー+シ+タ+ホー+ガ+イー+カ+ナ))' L = 0 ; # Example: 'デ(L ス)', 'ッ(L テ+コ)ト' L^ = 0 [REPLACEMENTS] ; # ボーカルフライなどで母音が同定できない場合 - = + = ; # 「うん/うーん/ふーん」の音の特定が困難な場合 - = + = ; # 非語彙的な母音の引き延ばし - = + = ; # 非語彙的な子音の引き延ばし - = + = ; # 言語音と独立に講演者の笑いが生じている場合 -<笑> = +<笑> = ; # 言語音と独立に講演者の咳が生じている場合 -<咳> = +<咳> = ; # 言語音と独立に講演者の息が生じている場合 -<息> = +<息> = ; # 講演者の泣き声 -<泣> = +<泣> = ; # 聴衆(司会者なども含む)の発話 -<フロア発話> = +<フロア発話> = ; # 聴衆の笑い -<フロア笑> = +<フロア笑> = ; # 聴衆の拍手 -<拍手> = +<拍手> = ; # 講演者が発表中に用いたデモンストレーションの音声 -<デモ> = +<デモ> = ; # 学会講演に発表時間を知らせるためにならすベルの音 -<ベル> = +<ベル> = ; # 転記単位全体が再度読み直された場合 -<朗読間違い> = +<朗読間違い> = ; # 上記以外の音で特に目立った音 -<雑音> = +<雑音> = ; # 0.2秒以上のポーズ -

= +

= ; # Redacted information, for R ; # It is \x00D7 multiplication sign, not your normal 'x' × = × @@ -319,4 +319,3 @@ spk_id = 2 ャ = ǐa ュ = ǐu ョ = ǐo - diff --git a/egs/csj/ASR/local/display_manifest_statistics.py b/egs/csj/ASR/local/display_manifest_statistics.py index c9de21073..c043cf853 100644 --- a/egs/csj/ASR/local/display_manifest_statistics.py +++ b/egs/csj/ASR/local/display_manifest_statistics.py @@ -37,9 +37,7 @@ def get_parser(): formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) - parser.add_argument( - "--manifest-dir", type=Path, help="Path to cutset manifests" - ) + parser.add_argument("--manifest-dir", type=Path, help="Path to cutset manifests") return parser.parse_args() diff --git a/egs/csj/ASR/local/prepare_lang_char.py b/egs/csj/ASR/local/prepare_lang_char.py index e4d996871..16107f543 100644 --- a/egs/csj/ASR/local/prepare_lang_char.py +++ b/egs/csj/ASR/local/prepare_lang_char.py @@ -87,9 +87,7 @@ def main(): args = get_args() logging.basicConfig( - format=( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] " "%(message)s" - ), + format=("%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"), level=logging.INFO, ) @@ -111,8 +109,7 @@ def main(): words = set() logging.info( - f"Creating vocabulary from {args.train_cut.name}" - f" at {args.trans_mode} mode." + f"Creating vocabulary from {args.train_cut.name} at {args.trans_mode} mode." ) for cut in train_set: try: @@ -123,8 +120,7 @@ def main(): ) except KeyError: raise KeyError( - f"Could not find {args.trans_mode} in " - f"{cut.supervisions[0].custom}" + f"Could not find {args.trans_mode} in {cut.supervisions[0].custom}" ) for t in text.split(): if t in args.userdef_string: @@ -143,9 +139,7 @@ def main(): (args.lang_dir / "words_len").write_text(f"{len(words)}") - (args.lang_dir / "userdef_string").write_text( - "\n".join(args.userdef_string) - ) + (args.lang_dir / "userdef_string").write_text("\n".join(args.userdef_string)) (args.lang_dir / "trans_mode").write_text(args.trans_mode) logging.info("Done.") diff --git a/egs/csj/ASR/local/validate_manifest.py b/egs/csj/ASR/local/validate_manifest.py index 0c4c6c1ea..7f67c64b6 100644 --- a/egs/csj/ASR/local/validate_manifest.py +++ b/egs/csj/ASR/local/validate_manifest.py @@ -89,9 +89,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/csj/ASR/prepare.sh b/egs/csj/ASR/prepare.sh index 052748ca6..c4ce91984 100755 --- a/egs/csj/ASR/prepare.sh +++ b/egs/csj/ASR/prepare.sh @@ -35,6 +35,9 @@ # can generate other transcript formats by supplying your own config files. A few examples of these # config files can be found in local/conf. +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail nj=8 diff --git a/egs/gigaspeech/ASR/.gitignore b/egs/gigaspeech/ASR/.gitignore index 5592679cc..8dec2d86d 100644 --- a/egs/gigaspeech/ASR/.gitignore +++ b/egs/gigaspeech/ASR/.gitignore @@ -1 +1,2 @@ log-* +.DS_Store \ No newline at end of file diff --git a/egs/gigaspeech/ASR/conformer_ctc/asr_datamodule.py b/egs/gigaspeech/ASR/conformer_ctc/asr_datamodule.py index d78e26240..9437c935c 100644 --- a/egs/gigaspeech/ASR/conformer_ctc/asr_datamodule.py +++ b/egs/gigaspeech/ASR/conformer_ctc/asr_datamodule.py @@ -183,23 +183,18 @@ class GigaSpeechAsrDataModule: "--small-dev", type=str2bool, default=False, - help="Should we use only 1000 utterances for dev " - "(speeds up training)", + help="Should we use only 1000 utterances for dev (speeds up training)", ) def train_dataloaders(self, cuts_train: CutSet) -> DataLoader: logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -221,9 +216,7 @@ class GigaSpeechAsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") input_transforms.append( SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, @@ -256,9 +249,7 @@ class GigaSpeechAsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -304,9 +295,7 @@ class GigaSpeechAsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: @@ -362,9 +351,7 @@ class GigaSpeechAsrDataModule: @lru_cache() def dev_cuts(self) -> CutSet: logging.info("About to get dev cuts") - cuts_valid = load_manifest_lazy( - self.args.manifest_dir / "cuts_DEV.jsonl.gz" - ) + cuts_valid = load_manifest_lazy(self.args.manifest_dir / "cuts_DEV.jsonl.gz") if self.args.small_dev: return cuts_valid.subset(first=1000) else: diff --git a/egs/gigaspeech/ASR/conformer_ctc/conformer.py b/egs/gigaspeech/ASR/conformer_ctc/conformer.py index 6fac07f93..a1cfe6e75 100644 --- a/egs/gigaspeech/ASR/conformer_ctc/conformer.py +++ b/egs/gigaspeech/ASR/conformer_ctc/conformer.py @@ -160,9 +160,7 @@ class ConformerEncoderLayer(nn.Module): use_conv_batchnorm: bool = False, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -182,18 +180,14 @@ class ConformerEncoderLayer(nn.Module): d_model, cnn_module_kernel, use_batchnorm=use_conv_batchnorm ) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -227,9 +221,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -348,9 +340,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -366,9 +356,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -638,9 +626,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -708,31 +696,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -771,9 +750,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -785,9 +762,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -821,13 +796,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads diff --git a/egs/gigaspeech/ASR/conformer_ctc/decode.py b/egs/gigaspeech/ASR/conformer_ctc/decode.py index 51406667e..d7035a1f8 100755 --- a/egs/gigaspeech/ASR/conformer_ctc/decode.py +++ b/egs/gigaspeech/ASR/conformer_ctc/decode.py @@ -476,14 +476,12 @@ def decode_dataset( results[lm_scale].extend(this_batch) else: - assert ( - len(results) > 0 - ), "It should not decode to empty in the first batch!" + assert len(results) > 0, "It should not decode to empty in the first batch!" this_batch = [] hyp_words = [] - for ref_text in texts: + for cut_id, ref_text in zip(cut_ids, texts): ref_words = ref_text.split() - this_batch.append((ref_words, hyp_words)) + this_batch.append((cut_id, ref_words, hyp_words)) for lm_scale in results.keys(): results[lm_scale].extend(this_batch) @@ -493,9 +491,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -528,9 +524,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt" @@ -705,9 +699,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/gigaspeech/ASR/conformer_ctc/label_smoothing.py b/egs/gigaspeech/ASR/conformer_ctc/label_smoothing.py index cdc85ce9a..3b94f0c4b 100644 --- a/egs/gigaspeech/ASR/conformer_ctc/label_smoothing.py +++ b/egs/gigaspeech/ASR/conformer_ctc/label_smoothing.py @@ -78,13 +78,10 @@ class LabelSmoothingLoss(torch.nn.Module): ignored = target == self.ignore_index target[ignored] = 0 - true_dist = torch.nn.functional.one_hot( - target, num_classes=num_classes - ).to(x) + true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x) true_dist = ( - true_dist * (1 - self.label_smoothing) - + self.label_smoothing / num_classes + true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes ) # Set the value of ignored indexes to 0 true_dist[ignored] = 0 diff --git a/egs/gigaspeech/ASR/conformer_ctc/subsampling.py b/egs/gigaspeech/ASR/conformer_ctc/subsampling.py index 542fb0364..8e0f73d05 100644 --- a/egs/gigaspeech/ASR/conformer_ctc/subsampling.py +++ b/egs/gigaspeech/ASR/conformer_ctc/subsampling.py @@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module): assert idim >= 7 super().__init__() self.conv = nn.Sequential( - nn.Conv2d( - in_channels=1, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), - nn.Conv2d( - in_channels=odim, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), ) self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim) @@ -132,17 +128,13 @@ class VggSubsampling(nn.Module): ) ) layers.append( - torch.nn.MaxPool2d( - kernel_size=2, stride=2, padding=0, ceil_mode=True - ) + torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) ) cur_channels = block_dim self.layers = nn.Sequential(*layers) - self.out = nn.Linear( - block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim - ) + self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. diff --git a/egs/gigaspeech/ASR/conformer_ctc/train.py b/egs/gigaspeech/ASR/conformer_ctc/train.py index 2965cde18..4883d04d8 100755 --- a/egs/gigaspeech/ASR/conformer_ctc/train.py +++ b/egs/gigaspeech/ASR/conformer_ctc/train.py @@ -386,9 +386,7 @@ def compute_loss( # # See https://github.com/k2-fsa/icefall/issues/97 # for more details - unsorted_token_ids = graph_compiler.texts_to_ids( - supervisions["text"] - ) + unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"]) att_loss = mmodel.decoder_forward( encoder_memory, memory_mask, @@ -521,9 +519,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -641,9 +637,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/gigaspeech/ASR/conformer_ctc/transformer.py b/egs/gigaspeech/ASR/conformer_ctc/transformer.py index 00ca027a7..0566cfc81 100644 --- a/egs/gigaspeech/ASR/conformer_ctc/transformer.py +++ b/egs/gigaspeech/ASR/conformer_ctc/transformer.py @@ -151,9 +151,7 @@ class Transformer(nn.Module): norm=decoder_norm, ) - self.decoder_output_layer = torch.nn.Linear( - d_model, self.decoder_num_class - ) + self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class) self.decoder_criterion = LabelSmoothingLoss() else: @@ -181,18 +179,13 @@ class Transformer(nn.Module): memory_key_padding_mask for the decoder. Its shape is (N, T). It is None if `supervision` is None. """ - if ( - isinstance(self.use_feat_batchnorm, bool) - and self.use_feat_batchnorm - ): + if isinstance(self.use_feat_batchnorm, bool) and self.use_feat_batchnorm: x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) if isinstance(self.use_feat_batchnorm, float): x *= self.use_feat_batchnorm - encoder_memory, memory_key_padding_mask = self.run_encoder( - x, supervision - ) + encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision) x = self.ctc_output(encoder_memory) return x, encoder_memory, memory_key_padding_mask @@ -273,23 +266,17 @@ class Transformer(nn.Module): """ ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -350,23 +337,17 @@ class Transformer(nn.Module): ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -639,9 +620,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): @@ -843,9 +822,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -866,9 +843,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_dev_test.py b/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_dev_test.py index 8209ee3ec..07beeb1f0 100755 --- a/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_dev_test.py +++ b/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_dev_test.py @@ -77,9 +77,7 @@ def compute_fbank_gigaspeech_dev_test(): def main(): - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_gigaspeech_dev_test() diff --git a/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_splits.py b/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_splits.py index 6410249db..1c71be0f9 100755 --- a/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_splits.py +++ b/egs/gigaspeech/ASR/local/compute_fbank_gigaspeech_splits.py @@ -134,9 +134,7 @@ def main(): date_time = now.strftime("%Y-%m-%d-%H-%M-%S") log_filename = "log-compute_fbank_gigaspeech_splits" - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" log_filename = f"{log_filename}-{date_time}" logging.basicConfig( diff --git a/egs/gigaspeech/ASR/local/preprocess_gigaspeech.py b/egs/gigaspeech/ASR/local/preprocess_gigaspeech.py index 48d10a157..31abe7fff 100755 --- a/egs/gigaspeech/ASR/local/preprocess_gigaspeech.py +++ b/egs/gigaspeech/ASR/local/preprocess_gigaspeech.py @@ -98,19 +98,13 @@ def preprocess_giga_speech(): f"Speed perturb for {partition} with factors 0.9 and 1.1 " "(Perturbing may take 8 minutes and saving may take 20 minutes)" ) - cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) - ) + cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) logging.info(f"Saving to {raw_cuts_path}") cut_set.to_file(raw_cuts_path) def main(): - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) preprocess_giga_speech() diff --git a/egs/gigaspeech/ASR/prepare.sh b/egs/gigaspeech/ASR/prepare.sh index fd2532741..bd255dc6a 100755 --- a/egs/gigaspeech/ASR/prepare.sh +++ b/egs/gigaspeech/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail nj=15 diff --git a/egs/gigaspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py b/egs/gigaspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py index c87686e1e..5c01d7190 100644 --- a/egs/gigaspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py +++ b/egs/gigaspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py @@ -195,8 +195,7 @@ class GigaSpeechAsrDataModule: "--small-dev", type=str2bool, default=False, - help="Should we use only 1000 utterances for dev " - "(speeds up training)", + help="Should we use only 1000 utterances for dev (speeds up training)", ) def train_dataloaders( @@ -216,13 +215,9 @@ class GigaSpeechAsrDataModule: if self.args.enable_musan: logging.info("Enable MUSAN") logging.info("About to get Musan cuts") - cuts_musan = load_manifest( - self.args.manifest_dir / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -244,9 +239,7 @@ class GigaSpeechAsrDataModule: input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. @@ -289,9 +282,7 @@ class GigaSpeechAsrDataModule: # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -347,9 +338,7 @@ class GigaSpeechAsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: @@ -405,9 +394,7 @@ class GigaSpeechAsrDataModule: @lru_cache() def dev_cuts(self) -> CutSet: logging.info("About to get dev cuts") - cuts_valid = load_manifest_lazy( - self.args.manifest_dir / "cuts_DEV.jsonl.gz" - ) + cuts_valid = load_manifest_lazy(self.args.manifest_dir / "cuts_DEV.jsonl.gz") if self.args.small_dev: return cuts_valid.subset(first=1000) else: diff --git a/egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py b/egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py index 5849a3471..8595c27bd 100755 --- a/egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py +++ b/egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py @@ -77,11 +77,7 @@ from beam_search import ( from gigaspeech_scoring import asr_text_post_processing from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import ( AttributeDict, setup_logger, @@ -188,8 +184,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -258,9 +253,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -275,10 +268,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -398,9 +388,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -434,8 +422,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -511,8 +498,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py b/egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py index cff9c7377..b6190e8a6 100755 --- a/egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py +++ b/egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py @@ -51,11 +51,7 @@ import sentencepiece as spm import torch from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import str2bool @@ -120,8 +116,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -160,8 +155,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -209,9 +203,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py b/egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py index 83ae25561..9edc42b61 100755 --- a/egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py +++ b/egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py @@ -77,9 +77,7 @@ from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def get_parser(): @@ -178,8 +176,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -202,8 +199,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -553,23 +549,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() @@ -732,9 +721,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") diff --git a/egs/librispeech/ASR/.gitignore b/egs/librispeech/ASR/.gitignore index 5592679cc..8dec2d86d 100644 --- a/egs/librispeech/ASR/.gitignore +++ b/egs/librispeech/ASR/.gitignore @@ -1 +1,2 @@ log-* +.DS_Store \ No newline at end of file diff --git a/egs/librispeech/ASR/README.md b/egs/librispeech/ASR/README.md index 570d1ba1f..9ffd78d5b 100644 --- a/egs/librispeech/ASR/README.md +++ b/egs/librispeech/ASR/README.md @@ -1,6 +1,6 @@ # Introduction -Please refer to for how to run models in this recipe. +Please refer to for how to run models in this recipe. [./RESULTS.md](./RESULTS.md) contains the latest results. @@ -19,15 +19,36 @@ The following table lists the differences among them. | `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss | | `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss | | `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data | -| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training | +| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training + delay penalty | | `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner| | `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert| +| `pruned_transducer_stateless7` | Zipformer | Embedding + Conv1d | First experiment with Zipformer from Dan| +| `pruned_transducer_stateless7_ctc` | Zipformer | Embedding + Conv1d | Same as pruned_transducer_stateless7, but with extra CTC head| +| `pruned_transducer_stateless7_ctc_bs` | Zipformer | Embedding + Conv1d | pruned_transducer_stateless7_ctc + blank skip | +| `pruned_transducer_stateless7_streaming` | Streaming Zipformer | Embedding + Conv1d | streaming version of pruned_transducer_stateless7 | +| `pruned_transducer_stateless8` | Zipformer | Embedding + Conv1d | Same as pruned_transducer_stateless7, but using extra data from GigaSpeech| | `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR| | `conv_emformer_transducer_stateless` | ConvEmformer | Embedding + Conv1d | Using ConvEmformer for streaming ASR + mechanisms in reworked model | | `conv_emformer_transducer_stateless2` | ConvEmformer | Embedding + Conv1d | Using ConvEmformer with simplified memory for streaming ASR + mechanisms in reworked model | | `lstm_transducer_stateless` | LSTM | Embedding + Conv1d | Using LSTM with mechanisms in reworked model | -| `lstm_transducer_stateless2` | LSTM | Embedding + Conv1d | Using LSTM with mechanisms in reworked model + gigaspeech (multi-dataset setup) | +| `lstm_transducer_stateless2` | LSTM | Embedding + Conv1d | Using LSTM with mechanisms in reworked model + gigaspeech (multi-dataset setup) | +| `lstm_transducer_stateless3` | LSTM | Embedding + Conv1d | Using LSTM with mechanisms in reworked model + gradient filter + delay penalty | The decoder in `transducer_stateless` is modified from the paper [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/). We place an additional Conv1d layer right after the input embedding layer. + +# CTC + +| | Encoder | Comment | +|------------------------------|--------------------|------------------------------| +| `conformer-ctc` | Conformer | Use auxiliary attention head | +| `conformer-ctc2` | Reworked Conformer | Use auxiliary attention head | +| `conformer-ctc3` | Reworked Conformer | Streaming version + delay penalty | + +# MMI + +| | Encoder | Comment | +|------------------------------|-----------|---------------------------------------------------| +| `conformer-mmi` | Conformer | | +| `zipformer-mmi` | Zipformer | CTC warmup + use HP as decoding graph for decoding | diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md index 92323a556..1a894498e 100644 --- a/egs/librispeech/ASR/RESULTS.md +++ b/egs/librispeech/ASR/RESULTS.md @@ -1,5 +1,534 @@ ## Results +### Streaming Zipformer-Transducer (Pruned Stateless Transducer + Streaming Zipformer) + +#### [pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming) + +See for more details. + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +Number of model parameters: 70369391, i.e., 70.37 M + +##### training on full librispeech + +The WERs are: + +| decoding method | chunk size | test-clean | test-other | comment | decoding mode | +|----------------------|------------|------------|------------|---------------------|----------------------| +| greedy search | 320ms | 3.15 | 8.09 | --epoch 30 --avg 9 | simulated streaming | +| greedy search | 320ms | 3.17 | 8.24 | --epoch 30 --avg 9 | chunk-wise | +| fast beam search | 320ms | 3.2 | 8.04 | --epoch 30 --avg 9 | simulated streaming | +| fast beam search | 320ms | 3.36 | 8.19 | --epoch 30 --avg 9 | chunk-wise | +| modified beam search | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming | +| modified beam search | 320ms | 3.12 | 8.11 | --epoch 30 --avg 9 | chunk-size | +| greedy search | 640ms | 2.97 | 7.5 | --epoch 30 --avg 9 | simulated streaming | +| greedy search | 640ms | 2.98 | 7.67 | --epoch 30 --avg 9 | chunk-wise | +| fast beam search | 640ms | 3.02 | 7.47 | --epoch 30 --avg 9 | simulated streaming | +| fast beam search | 640ms | 2.96 | 7.61 | --epoch 30 --avg 9 | chunk-wise | +| modified beam search | 640ms | 2.94 | 7.36 | --epoch 30 --avg 9 | simulated streaming | +| modified beam search | 640ms | 2.95 | 7.53 | --epoch 30 --avg 9 | chunk-size | + +Note: `simulated streaming` indicates feeding full utterance during decoding using `decode.py`, +while `chunk-size` indicates feeding certain number of frames at each time using `streaming_decode.py`. + +The training command is: + +```bash +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --full-libri 1 \ + --max-duration 750 \ + --master-port 12345 +``` + +The tensorboard log can be found at + + +The simulated streaming decoding command (e.g., chunk-size=320ms) is: +```bash +for $m in greedy_search fast_beam_search modified_beam_search; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 30 \ + --avg 9 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method $m +done +``` + +The streaming chunk-size decoding command (e.g., chunk-size=320ms) is: +```bash +for m in greedy_search modified_beam_search fast_beam_search; do + ./pruned_transducer_stateless7_streaming/streaming_decode.py \ + --epoch 30 \ + --avg 9 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --decoding-method $m \ + --decode-chunk-len 32 \ + --num-decode-streams 2000 +done +``` + + +### zipformer_mmi (zipformer with mmi loss) + +See for more details. + +[zipformer_mmi](./zipformer_mmi) + +The tensorboard log can be found at + + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +Number of model parameters: 69136519, i.e., 69.14 M + +| | test-clean | test-other | comment | +| ---------------------- | ---------- | ---------- | ------------------- | +| 1best | 2.54 | 5.65 | --epoch 30 --avg 10 | +| nbest | 2.54 | 5.66 | --epoch 30 --avg 10 | +| nbest-rescoring-LG | 2.49 | 5.42 | --epoch 30 --avg 10 | +| nbest-rescoring-3-gram | 2.52 | 5.62 | --epoch 30 --avg 10 | +| nbest-rescoring-4-gram | 2.5 | 5.51 | --epoch 30 --avg 10 | + +The training commands are: +```bash +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./zipformer_mmi/train.py \ + --world-size 4 \ + --master-port 12345 \ + --num-epochs 30 \ + --start-epoch 1 \ + --lang-dir data/lang_bpe_500 \ + --max-duration 500 \ + --full-libri 1 \ + --use-fp16 1 \ + --exp-dir zipformer_mmi/exp +``` + +The decoding commands for the transducer branch are: +```bash +export CUDA_VISIBLE_DEVICES="5" + +for m in nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do + ./zipformer_mmi/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir ./zipformer_mmi/exp/ \ + --max-duration 100 \ + --lang-dir data/lang_bpe_500 \ + --nbest-scale 1.2 \ + --hp-scale 1.0 \ + --decoding-method $m +done +``` + +### pruned_transducer_stateless7_ctc_bs (zipformer with transducer loss and ctc loss using blank skip) + +See https://github.com/k2-fsa/icefall/pull/730 for more details. + +[pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs) + +The tensorboard log can be found at + + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +Number of model parameters: 76804822, i.e., 76.80 M + +Test on 8-card V100 cluster, with 4-card busy and 4-card idle. + +#### greedy_search + +| model | test-clean | test-other | decoding time(s) | comment | +| ------------------------------------------------------------ | ---------- | ---------- | ---------------- | ------------------- | +| [pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs) | 2.28 | 5.53 | 48.939 | --epoch 30 --avg 13 | +| [pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc) | 2.24 | 5.18 | 91.900 | --epoch 30 --avg 8 | + +- [pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs) applies blank skip both on training and decoding, and [pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc) doesn`t apply blank skip. +- Applying blank skip both on training and decoding is **1.88 times** faster than the model that doesn't apply blank skip without obvious performance loss. + +#### modified_beam_search + +| model | test-clean | test-other | decoding time(s) | comment | +| ------------------------------------------------------------ | ---------- | ---------- | ---------------- | ------------------- | +| [pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs) | 2.26 | 5.44 | 80.446 | --epoch 30 --avg 13 | +| [pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc) | 2.20 | 5.12 | 283.676 | --epoch 30 --avg 8 | + +- [pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs) applies blank skip both on training and decoding, and [pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc) doesn`t apply blank skip. +- Applying blank skip both on training and decoding is **3.53 times** faster than the model that doesn't apply blank skip without obvious performance loss. + +The training commands for the model using blank skip ([pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs)) are: + +```bash +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7_ctc_bs/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --full-libri 1 \ + --use-fp16 1 \ + --max-duration 750 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --ctc-loss-scale 0.2 \ + --master-port 12535 +``` + +The decoding commands for the transducer branch of the model using blank skip ([pruned_transducer_stateless7_ctc_bs](./pruned_transducer_stateless7_ctc_bs)) are: + +```bash +for m in greedy_search modified_beam_search fast_beam_search; do + for epoch in 30; do + for avg in 15; do + ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model 1 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --max-duration 600 \ + --decoding-method $m + done + done +done +``` + +The decoding commands for the transducer branch of the model without blank skip ([pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc)) are: + +```bash +for m in greedy_search modified_beam_search fast_beam_search; do + for epoch in 30; do + for avg in 15; do + ./pruned_transducer_stateless7_ctc/decode.py \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model 1 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --max-duration 600 \ + --decoding-method $m + done + done +done +``` + +### pruned_transducer_stateless7_ctc (zipformer with transducer loss and ctc loss) + +See for more details. + +[pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc) + +The tensorboard log can be found at + + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +Number of model parameters: 70561891, i.e., 70.56 M + +| | test-clean | test-other | comment | +|--------------------------|------------|-------------|--------------------| +| greedy search | 2.23 | 5.19 | --epoch 30 --avg 8 | +| modified beam search | 2.21 | 5.12 | --epoch 30 --avg 8 | +| fast beam search | 2.23 | 5.18 | --epoch 30 --avg 8 | +| ctc decoding | 2.48 | 5.82 | --epoch 30 --avg 9 | +| 1best | 2.43 | 5.22 | --epoch 30 --avg 9 | +| nbest | 2.43 | 5.22 | --epoch 30 --avg 9 | +| nbest rescoring | 2.34 | 5.05 | --epoch 30 --avg 9 | +| whole lattice rescoring | 2.34 | 5.04 | --epoch 30 --avg 9 | + +The training commands are: +```bash +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7_ctc/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --full-libri 1 \ + --use-fp16 1 \ + --max-duration 750 \ + --exp-dir pruned_transducer_stateless7_ctc/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --ctc-loss-scale 0.2 \ + --master-port 12535 +``` + +The decoding commands for the transducer branch are: +```bash +for m in greedy_search fast_beam_search modified_beam_search ; do + for epoch in 30; do + for avg in 8; do + ./pruned_transducer_stateless7_ctc/decode.py \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model 1 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --max-duration 600 \ + --decoding-method $m + done + done +done +``` + +The decoding commands for the ctc branch are: +```bash +for m in ctc-decoding nbest nbest-rescoring whole-lattice-rescoring; do + for epoch in 30; do + for avg in 9; do + ./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch $epoch \ + --avg $avg \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 100 \ + --decoding-method $m \ + --hlg-scale 0.6 \ + --lm-dir data/lm + done + done +done +``` + + +### LibriSpeech BPE training results (Conformer CTC, supporting delay penalty) + +#### [conformer_ctc3](./conformer_ctc3) + +It implements Conformer model training with CTC loss. +For streaming mode, it supports symbol delay penalty. + +See for more details. + +##### training on full librispeech + +This model contains 12 encoder layers. The number of model parameters is 77352694. + +The WERs are: + +| | test-clean | test-other | comment | +|-------------------------------------|------------|------------|----------------------| +| ctc-decoding | 3.09 | 7.62 | --epoch 25 --avg 7 | +| 1best | 2.87 | 6.44 | --epoch 25 --avg 7 | +| nbest | 2.88 | 6.5 | --epoch 25 --avg 7 | +| nbest-rescoring | 2.71 | 6.1 | --epoch 25 --avg 7 | +| whole-lattice-rescoring | 2.71 | 6.04 | --epoch 25 --avg 7 | + +The training command is: + +```bash +./conformer_ctc3/train.py \ + --world-size 4 \ + --num-epochs 25 \ + --start-epoch 1 \ + --exp-dir conformer_ctc3/full \ + --full-libri 1 \ + --max-duration 300 \ + --master-port 12345 +``` + +The tensorboard log can be found at + + +The decoding command using different methods is: +```bash +for method in ctc-decoding 1best nbest nbest-rescoring whole-lattice-rescoring; do + ./conformer_ctc3/decode.py \ + --epoch 25 \ + --avg 7 \ + --exp-dir conformer_ctc3/exp \ + --max-duration 300 \ + --decoding-method $method \ + --manifest-dir data/fbank \ + --lm-dir data/lm \ +done +``` + +Pretrained models, training logs, decoding logs, and decoding results +are available at + + +The command to train a streaming model with symbol delay penalty is: +```bash +./conformer_ctc3/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir conformer_ctc3/exp \ + --full-libri 1 \ + --dynamic-chunk-training 1 \ + --causal-convolution 1 \ + --short-chunk-size 25 \ + --num-left-chunks 4 \ + --max-duration 300 \ + --delay-penalty 0.1 +``` +To evaluate symbol delay, you should: +(1) Generate cuts with word-time alignments: +```bash +./local/add_alignment_librispeech.py \ + --alignments-dir data/alignment \ + --cuts-in-dir data/fbank \ + --cuts-out-dir data/fbank_ali +``` +(2) Set the argument "--manifest-dir data/fbank_ali" while decoding. +For example: +```bash +./conformer_ctc3/decode.py \ + --epoch 25 \ + --avg 7 \ + --exp-dir ./conformer_ctc3/exp \ + --max-duration 300 \ + --decoding-method ctc-decoding \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --decode-chunk-size 16 \ + --left-context 64 \ + --manifest-dir data/fbank_ali +``` +Note: It supports to calculate symbol delay with following decoding methods: + - ctc-greedy-search + - ctc-decoding + - 1best + + +### pruned_transducer_stateless8 (zipformer + multidataset) + +See for more details. + +[pruned_transducer_stateless8](./pruned_transducer_stateless8) + +The tensorboard log can be found at + + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +You can use to deploy it. + +Number of model parameters: 70369391, i.e., 70.37 M + +| decoding method | test-clean | test-other | comment | +|----------------------|------------|------------|--------------------| +| greedy_search | 1.81 | 4.18 | --epoch 20 --avg 4 | +| fast_beam_search | 1.82 | 4.15 | --epoch 20 --avg 4 | +| modified_beam_search | 1.78 | **4.08** | --epoch 20 --avg 4 | +| greedy_search | 1.84 | 4.3 | --epoch 19 --avg 8 | +| fast_beam_search |**1.77** | 4.25 | --epoch 19 --avg 8 | +| modified_beam_search | 1.81 | 4.16 | --epoch 19 --avg 8 | + + +The training commands are: +```bash +export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" + +./pruned_transducer_stateless8/train.py \ + --world-size 8 \ + --num-epochs 20 \ + --full-libri 1 \ + --use-fp16 1 \ + --max-duration 750 \ + --exp-dir pruned_transducer_stateless8/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --master-port 12535 \ + --giga-prob 0.9 +``` + +The decoding commands are: +```bash +for m in greedy_search fast_beam_search modified_beam_search; do + for epoch in $(seq 20 -1 10); do + for avg in $(seq 9 -1 1); do + ./pruned_transducer_stateless8/decode.py \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model 1 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --max-duration 600 \ + --decoding-method $m + done + done +done +``` + + +### pruned_transducer_stateless7 (zipformer) + +See for more details. + +[pruned_transducer_stateless7](./pruned_transducer_stateless7) + +The tensorboard log can be found at + + +You can find a pretrained model, training logs, decoding logs, and decoding +results at: + + +You can use to deploy it. + +Number of model parameters: 70369391, i.e., 70.37 M + +| | test-clean | test-other | comment | +|----------------------|------------|-------------|----------------------------------------| +| greedy search | 2.17 | 5.23 | --epoch 30 --avg 9 --max-duration 600 | +| modified beam search | 2.15 | 5.20 | --epoch 30 --avg 9 --max-duration 600 | +| modified beam search + RNNLM shallow fusion | 1.99 | 4.73 | --epoch 30 --avg 9 --max-duration 600 | +| modified beam search + TransformerLM shallow fusion | 1.94 | 4.73 | --epoch 30 --avg 9 --max-duration 600 | +| modified beam search + RNNLM + LODR | 1.91 | 4.57 | --epoch 30 --avg 9 --max-duration 600 | +| modified beam search + TransformerLM + LODR | 1.91 | 4.51 | --epoch 30 --avg 9 --max-duration 600 | +| fast beam search | 2.15 | 5.22 | --epoch 30 --avg 9 --max-duration 600 | + +The training commands are: +```bash +export CUDA_VISIBLE_DEVICES="0,3,6,7" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --full-libri 1 \ + --use-fp16 1 \ + --max-duration 750 \ + --exp-dir pruned_transducer_stateless7/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --master-port 12535 +``` + +The decoding commands are: +```bash +for m in greedy_search fast_beam_search modified_beam_search ; do + for epoch in 30; do + for avg in 9; do + ./pruned_transducer_stateless7/decode.py \ + --epoch $epoch \ + --avg $avg \ + --use-averaged-model 1 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --feedforward-dims "1024,1024,2048,2048,1024" \ + --max-duration 600 \ + --decoding-method $m + done + done +done +``` + + ### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter) #### [lstm_transducer_stateless3](./lstm_transducer_stateless3) @@ -101,6 +630,10 @@ The WERs are: |-------------------------------------|------------|------------|-------------------------| | greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 | | modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 | +| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 | +| modified_beam_search + TransformerLM shallow fusion | 2.37 | 6.48 | --iter 468000 --avg 16 | +| modified_beam_search + RNNLM + LODR | 2.24 | 5.89 | --iter 468000 --avg 16 | +| modified_beam_search + TransformerLM + LODR | 2.19 | 5.90 | --iter 468000 --avg 16 | | fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 | | greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 | | modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 | @@ -155,6 +688,61 @@ for m in greedy_search fast_beam_search modified_beam_search; do done ``` +You may also decode using shallow fusion with external neural network LM. To do so you need to +download a well-trained NN LM: +RNN LM: +Transformer LM: + +```bash +for iter in 472000; do + for avg in 8 10 12 14 16 18; do + ./lstm_transducer_stateless2/decode.py \ + --iter $iter \ + --avg $avg \ + --exp-dir ./lstm_transducer_stateless2/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --use-shallow-fusion 1 \ + --lm-type rnn \ + --lm-exp-dir /ceph-data4/yangxiaoyu/pretrained_models/LM/icefall-librispeech-rnn-lm/exp \ + --lm-epoch 99 \ + --lm-scale $lm_scale \ + --lm-avg 1 \ + done +done +``` + +You may also decode using LODR + LM shallow fusion. This decoding method is proposed in . +It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be +generated by `generate-lm.sh`, or you may download it from . + +The decoding command is as follows: + +```bash +for iter in 472000; do + for avg in 8 10 12 14 16 18; do + ./lstm_transducer_stateless2/decode.py \ + --iter $iter \ + --avg $avg \ + --exp-dir ./lstm_transducer_stateless2/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_LODR \ + --beam 4 \ + --max-contexts 4 \ + --use-shallow-fusion 1 \ + --lm-type rnn \ + --lm-exp-dir /ceph-data4/yangxiaoyu/pretrained_models/LM/icefall-librispeech-rnn-lm/exp \ + --lm-epoch 99 \ + --lm-scale 0.4 \ + --lm-avg 1 \ + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 + done +done +``` +Note that you can also set `--lm-type transformer` to use transformer LM during LODR. But it will be slower +because it has not been optimized. The pre-trained transformer LM is available at + Pretrained models, training logs, decoding logs, and decoding results are available at @@ -1311,6 +1899,10 @@ layers (24 v.s 12) but a narrower model (1536 feedforward dim and 384 encoder di |-------------------------------------|------------|------------|-----------------------------------------| | greedy search (max sym per frame 1) | 2.54 | 5.72 | --epoch 30 --avg 10 --max-duration 600 | | modified beam search | 2.47 | 5.71 | --epoch 30 --avg 10 --max-duration 600 | +| modified beam search + RNNLM shallow fusion | 2.27 | 5.24 | --epoch 30 --avg 10 --max-duration 600 | +| modified beam search + RNNLM + LODR | 2.23 | 5.17 | --epoch 30 --avg 10 --max-duration 600 | +| modified beam search + TransformerLM shallow fusion | 2.27 | 5.26 | --epoch 30 --avg 10 --max-duration 600 | +| modified beam search + TransformerLM + LODR | 2.22 | 5.11 | --epoch 30 --avg 10 --max-duration 600 | | fast beam search | 2.5 | 5.72 | --epoch 30 --avg 10 --max-duration 600 | ```bash @@ -1356,6 +1948,36 @@ for method in greedy_search modified_beam_search fast_beam_search; do done ``` +To decode with RNNLM shallow fusion, use the following decoding command. A well-trained RNNLM +can be found here: + +```bash +for method in greedy_search modified_beam_search fast_beam_search; do + ./pruned_transducer_stateless5/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir ./pruned_transducer_stateless5/exp-B \ + --max-duration 600 \ + --decoding-method modified_beam_search_rnnlm_shallow_fusion \ + --max-sym-per-frame 1 \ + --num-encoder-layers 24 \ + --dim-feedforward 1536 \ + --nhead 8 \ + --encoder-dim 384 \ + --decoder-dim 512 \ + --joiner-dim 512 \ + --use-averaged-model True + --beam 4 \ + --max-contexts 4 \ + --rnn-lm-scale 0.4 \ + --rnn-lm-exp-dir /path/to/RNNLM/exp \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 +done +``` + You can find a pretrained model, training logs, decoding logs, and decoding results at: @@ -1643,6 +2265,9 @@ subset so that the gigaspeech dataloader never exhausts. |-------------------------------------|------------|------------|---------------------------------------------| | greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 | | modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 | +| modified beam search + rnnlm shallow fusion | 1.94 | 4.2 | --iter 1224000 --avg 14 --max-duration 600 | +| modified beam search + rnnlm + LODR | 1.77 | 3.99 | --iter 1224000 --avg 14 --max-duration 600 | +| modified beam search + TransformerLM + LODR | 1.75 | 3.94 | --iter 1224000 --avg 14 --max-duration 600 | | fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 | The training commands are: @@ -1688,6 +2313,66 @@ for iter in 1224000; do done done ``` +You may also decode using shallow fusion with external neural network LM. To do so you need to +download a well-trained NN LM: +RNN LM: +Transformer LM: + +```bash +rnn_lm_scale=0.3 + +for iter in 1224000; do + for avg in 14; do + for method in modified_beam_search_rnnlm_shallow_fusion ; do + ./pruned_transducer_stateless3/decode.py \ + --iter $iter \ + --avg $avg \ + --exp-dir ./pruned_transducer_stateless3/exp-0.9/ \ + --max-duration 600 \ + --decoding-method $method \ + --max-sym-per-frame 1 \ + --beam 4 \ + --max-contexts 32 \ + --rnn-lm-scale $rnn_lm_scale \ + --rnn-lm-exp-dir /path/to/RNNLM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + done + done +done +``` + +If you want to try out with LODR decoding, use the following command. This assums you have a bi-gram LM trained on LibriSpeech text. You can also download the bi-gram LM from here and put it under the directory `data/lang_bpe_500`. + +```bash +rnn_lm_scale=0.4 + +for iter in 1224000; do + for avg in 14; do + for method in modified_beam_search_rnnlm_LODR ; do + ./pruned_transducer_stateless3/decode.py \ + --iter $iter \ + --avg $avg \ + --exp-dir ./pruned_transducer_stateless3/exp-0.9/ \ + --max-duration 600 \ + --decoding-method $method \ + --max-sym-per-frame 1 \ + --beam 4 \ + --max-contexts 32 \ + --rnn-lm-scale $rnn_lm_scale \ + --rnn-lm-exp-dir /path/to/RNNLM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 \ + --tokens-ngram 2 \ + --ngram-lm-scale -0.14 + done + done +done +``` The pretrained models, training logs, decoding logs, and decoding results can be found at diff --git a/egs/librispeech/ASR/conformer_ctc/ali.py b/egs/librispeech/ASR/conformer_ctc/ali.py index 2828e309e..42e14abac 100755 --- a/egs/librispeech/ASR/conformer_ctc/ali.py +++ b/egs/librispeech/ASR/conformer_ctc/ali.py @@ -231,9 +231,7 @@ def compute_alignments( labels_ali = get_alignments(best_path, kind="labels") aux_labels_ali = get_alignments(best_path, kind="aux_labels") assert len(labels_ali) == len(aux_labels_ali) == len(cut_list) - for cut, labels, aux_labels in zip( - cut_list, labels_ali, aux_labels_ali - ): + for cut, labels, aux_labels in zip(cut_list, labels_ali, aux_labels_ali): cut.labels_alignment = labels_writer.store_array( key=cut.id, value=np.asarray(labels, dtype=np.int32), @@ -258,9 +256,7 @@ def compute_alignments( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return CutSet.from_cuts(cuts) @@ -289,9 +285,7 @@ def main(): out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5" out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5" - out_manifest_filename = ( - out_dir / f"librispeech_cuts_{params.dataset}.jsonl.gz" - ) + out_manifest_filename = out_dir / f"librispeech_cuts_{params.dataset}.jsonl.gz" for f in ( out_labels_ali_filename, diff --git a/egs/librispeech/ASR/conformer_ctc/conformer.py b/egs/librispeech/ASR/conformer_ctc/conformer.py index 6fac07f93..a1cfe6e75 100644 --- a/egs/librispeech/ASR/conformer_ctc/conformer.py +++ b/egs/librispeech/ASR/conformer_ctc/conformer.py @@ -160,9 +160,7 @@ class ConformerEncoderLayer(nn.Module): use_conv_batchnorm: bool = False, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -182,18 +180,14 @@ class ConformerEncoderLayer(nn.Module): d_model, cnn_module_kernel, use_batchnorm=use_conv_batchnorm ) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -227,9 +221,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -348,9 +340,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -366,9 +356,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -638,9 +626,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -708,31 +696,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -771,9 +750,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -785,9 +762,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -821,13 +796,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads diff --git a/egs/librispeech/ASR/conformer_ctc/decode.py b/egs/librispeech/ASR/conformer_ctc/decode.py index 3f3b1acda..7e0bf5b7b 100755 --- a/egs/librispeech/ASR/conformer_ctc/decode.py +++ b/egs/librispeech/ASR/conformer_ctc/decode.py @@ -551,9 +551,7 @@ def decode_dataset( results[lm_scale].extend(this_batch) else: - assert ( - len(results) > 0 - ), "It should not decode to empty in the first batch!" + assert len(results) > 0, "It should not decode to empty in the first batch!" this_batch = [] hyp_words = [] for ref_text in texts: @@ -568,9 +566,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -602,9 +598,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt" @@ -809,9 +803,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/librispeech/ASR/conformer_ctc/export.py b/egs/librispeech/ASR/conformer_ctc/export.py index 28c28df01..fbcbd7b29 100755 --- a/egs/librispeech/ASR/conformer_ctc/export.py +++ b/egs/librispeech/ASR/conformer_ctc/export.py @@ -157,9 +157,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/conformer_ctc/label_smoothing.py b/egs/librispeech/ASR/conformer_ctc/label_smoothing.py index 1f2f3b137..52d2eda3b 100644 --- a/egs/librispeech/ASR/conformer_ctc/label_smoothing.py +++ b/egs/librispeech/ASR/conformer_ctc/label_smoothing.py @@ -44,7 +44,8 @@ class LabelSmoothingLoss(torch.nn.Module): mean of the output is taken. (3) "sum": the output will be summed. """ super().__init__() - assert 0.0 <= label_smoothing < 1.0 + assert 0.0 <= label_smoothing < 1.0, f"{label_smoothing}" + assert reduction in ("none", "sum", "mean"), reduction self.ignore_index = ignore_index self.label_smoothing = label_smoothing self.reduction = reduction @@ -82,13 +83,10 @@ class LabelSmoothingLoss(torch.nn.Module): # for why we don't use target[ignored] = 0 here target = torch.where(ignored, torch.zeros_like(target), target) - true_dist = torch.nn.functional.one_hot( - target, num_classes=num_classes - ).to(x) + true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x) true_dist = ( - true_dist * (1 - self.label_smoothing) - + self.label_smoothing / num_classes + true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes ) # Set the value of ignored indexes to 0 diff --git a/egs/librispeech/ASR/conformer_ctc/pretrained.py b/egs/librispeech/ASR/conformer_ctc/pretrained.py index a2c0a5486..30def9c40 100755 --- a/egs/librispeech/ASR/conformer_ctc/pretrained.py +++ b/egs/librispeech/ASR/conformer_ctc/pretrained.py @@ -236,10 +236,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -300,9 +299,7 @@ def main(): logging.info("Decoding started") features = fbank(waves) - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) # Note: We don't use key padding mask for attention during decoding with torch.no_grad(): @@ -427,9 +424,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/conformer_ctc/subsampling.py b/egs/librispeech/ASR/conformer_ctc/subsampling.py index 542fb0364..8e0f73d05 100644 --- a/egs/librispeech/ASR/conformer_ctc/subsampling.py +++ b/egs/librispeech/ASR/conformer_ctc/subsampling.py @@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module): assert idim >= 7 super().__init__() self.conv = nn.Sequential( - nn.Conv2d( - in_channels=1, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), - nn.Conv2d( - in_channels=odim, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), ) self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim) @@ -132,17 +128,13 @@ class VggSubsampling(nn.Module): ) ) layers.append( - torch.nn.MaxPool2d( - kernel_size=2, stride=2, padding=0, ceil_mode=True - ) + torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) ) cur_channels = block_dim self.layers = nn.Sequential(*layers) - self.out = nn.Linear( - block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim - ) + self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. diff --git a/egs/librispeech/ASR/conformer_ctc/train.py b/egs/librispeech/ASR/conformer_ctc/train.py index 6419f6816..99fe64793 100755 --- a/egs/librispeech/ASR/conformer_ctc/train.py +++ b/egs/librispeech/ASR/conformer_ctc/train.py @@ -393,9 +393,7 @@ def compute_loss( # Works with a phone lexicon decoding_graph = graph_compiler.compile(texts) else: - raise ValueError( - f"Unsupported type of graph compiler: {type(graph_compiler)}" - ) + raise ValueError(f"Unsupported type of graph compiler: {type(graph_compiler)}") dense_fsa_vec = k2.DenseFsaVec( nnet_output, @@ -422,9 +420,7 @@ def compute_loss( # # See https://github.com/k2-fsa/icefall/issues/97 # for more details - unsorted_token_ids = graph_compiler.texts_to_ids( - supervisions["text"] - ) + unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"]) att_loss = mmodel.decoder_forward( encoder_memory, memory_mask, @@ -453,9 +449,7 @@ def compute_loss( info["utt_duration"] = supervisions["num_frames"].sum().item() # averaged padding proportion over utterances info["utt_pad_proportion"] = ( - ((feature.size(1) - supervisions["num_frames"]) / feature.size(1)) - .sum() - .item() + ((feature.size(1) - supervisions["num_frames"]) / feature.size(1)).sum().item() ) return loss, info @@ -568,9 +562,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -695,10 +687,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -733,9 +725,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/librispeech/ASR/conformer_ctc/transformer.py b/egs/librispeech/ASR/conformer_ctc/transformer.py index 00ca027a7..0566cfc81 100644 --- a/egs/librispeech/ASR/conformer_ctc/transformer.py +++ b/egs/librispeech/ASR/conformer_ctc/transformer.py @@ -151,9 +151,7 @@ class Transformer(nn.Module): norm=decoder_norm, ) - self.decoder_output_layer = torch.nn.Linear( - d_model, self.decoder_num_class - ) + self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class) self.decoder_criterion = LabelSmoothingLoss() else: @@ -181,18 +179,13 @@ class Transformer(nn.Module): memory_key_padding_mask for the decoder. Its shape is (N, T). It is None if `supervision` is None. """ - if ( - isinstance(self.use_feat_batchnorm, bool) - and self.use_feat_batchnorm - ): + if isinstance(self.use_feat_batchnorm, bool) and self.use_feat_batchnorm: x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) if isinstance(self.use_feat_batchnorm, float): x *= self.use_feat_batchnorm - encoder_memory, memory_key_padding_mask = self.run_encoder( - x, supervision - ) + encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision) x = self.ctc_output(encoder_memory) return x, encoder_memory, memory_key_padding_mask @@ -273,23 +266,17 @@ class Transformer(nn.Module): """ ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -350,23 +337,17 @@ class Transformer(nn.Module): ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -639,9 +620,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): @@ -843,9 +822,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -866,9 +843,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/librispeech/ASR/conformer_ctc2/attention.py b/egs/librispeech/ASR/conformer_ctc2/attention.py index 1375d7245..356d3f21b 100644 --- a/egs/librispeech/ASR/conformer_ctc2/attention.py +++ b/egs/librispeech/ASR/conformer_ctc2/attention.py @@ -18,11 +18,10 @@ from typing import Optional, Tuple import torch import torch.nn as nn +from scaling import ScaledLinear from torch import Tensor from torch.nn.init import xavier_normal_ -from scaling import ScaledLinear - class MultiheadAttention(nn.Module): r"""Allows the model to jointly attend to information @@ -76,9 +75,7 @@ class MultiheadAttention(nn.Module): self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim - self._qkv_same_embed_dim = ( - self.kdim == embed_dim and self.vdim == embed_dim - ) + self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout @@ -94,9 +91,7 @@ class MultiheadAttention(nn.Module): self.v_proj_weight = ScaledLinear(self.vdim, embed_dim, bias=bias) self.register_parameter("in_proj_weight", None) else: - self.in_proj_weight = ScaledLinear( - embed_dim, 3 * embed_dim, bias=bias - ) + self.in_proj_weight = ScaledLinear(embed_dim, 3 * embed_dim, bias=bias) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) @@ -107,12 +102,8 @@ class MultiheadAttention(nn.Module): self.out_proj = ScaledLinear(embed_dim, embed_dim, bias=bias) if add_bias_kv: - self.bias_k = nn.Parameter( - torch.empty((1, 1, embed_dim), **factory_kwargs) - ) - self.bias_v = nn.Parameter( - torch.empty((1, 1, embed_dim), **factory_kwargs) - ) + self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) + self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) else: self.bias_k = self.bias_v = None diff --git a/egs/librispeech/ASR/conformer_ctc2/conformer.py b/egs/librispeech/ASR/conformer_ctc2/conformer.py index b906d2650..09f1eb000 100644 --- a/egs/librispeech/ASR/conformer_ctc2/conformer.py +++ b/egs/librispeech/ASR/conformer_ctc2/conformer.py @@ -29,9 +29,8 @@ from scaling import ( ScaledConv1d, ScaledLinear, ) -from torch import Tensor, nn from subsampling import Conv2dSubsampling - +from torch import Tensor, nn from transformer import Supervisions, Transformer, encoder_padding_mask @@ -182,9 +181,7 @@ class ConformerEncoderLayer(nn.Module): self.d_model = d_model - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( ScaledLinear(d_model, dim_feedforward), @@ -356,9 +353,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -373,9 +368,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vecotr and `j` means the @@ -650,9 +643,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -721,31 +714,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -784,9 +768,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -794,13 +776,9 @@ class RelPositionMultiheadAttention(nn.Module): ) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd) - attn_output_weights = ( - matrix_ac + matrix_bd - ) # (batch, head, time1, time2) + attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -834,13 +812,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -863,9 +837,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/librispeech/ASR/conformer_ctc2/decode.py b/egs/librispeech/ASR/conformer_ctc2/decode.py index 97f2f2d39..0b271a51c 100755 --- a/egs/librispeech/ASR/conformer_ctc2/decode.py +++ b/egs/librispeech/ASR/conformer_ctc2/decode.py @@ -658,9 +658,7 @@ def decode_dataset( results[lm_scale].extend(this_batch) else: - assert ( - len(results) > 0 - ), "It should not decode to empty in the first batch!" + assert len(results) > 0, "It should not decode to empty in the first batch!" this_batch = [] hyp_words = [] for ref_text in texts: @@ -675,9 +673,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -709,9 +705,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt" @@ -852,9 +846,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -881,9 +875,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -985,9 +979,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/librispeech/ASR/conformer_ctc2/export.py b/egs/librispeech/ASR/conformer_ctc2/export.py index 584b3c3fc..7892b03c6 100755 --- a/egs/librispeech/ASR/conformer_ctc2/export.py +++ b/egs/librispeech/ASR/conformer_ctc2/export.py @@ -47,6 +47,7 @@ import logging from pathlib import Path import torch +from conformer import Conformer from decode import get_params from icefall.checkpoint import ( @@ -55,10 +56,8 @@ from icefall.checkpoint import ( find_checkpoints, load_checkpoint, ) -from conformer import Conformer - -from icefall.utils import str2bool from icefall.lexicon import Lexicon +from icefall.utils import str2bool def get_parser(): @@ -177,9 +176,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -206,9 +205,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -273,9 +272,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/conformer_ctc2/subsampling.py b/egs/librispeech/ASR/conformer_ctc2/subsampling.py index 3fcb4196f..85a4dc8df 100644 --- a/egs/librispeech/ASR/conformer_ctc2/subsampling.py +++ b/egs/librispeech/ASR/conformer_ctc2/subsampling.py @@ -24,10 +24,9 @@ from scaling import ( ScaledConv2d, ScaledLinear, ) -from torch import nn -class Conv2dSubsampling(nn.Module): +class Conv2dSubsampling(torch.nn.Module): """Convolutional 2D subsampling (to 1/4 length). Convert an input of shape (N, T, idim) to an output @@ -61,7 +60,7 @@ class Conv2dSubsampling(nn.Module): assert in_channels >= 7 super().__init__() - self.conv = nn.Sequential( + self.conv = torch.nn.Sequential( ScaledConv2d( in_channels=1, out_channels=layer1_channels, diff --git a/egs/librispeech/ASR/conformer_ctc2/train.py b/egs/librispeech/ASR/conformer_ctc2/train.py index 9d9c2af1f..121fdb256 100755 --- a/egs/librispeech/ASR/conformer_ctc2/train.py +++ b/egs/librispeech/ASR/conformer_ctc2/train.py @@ -69,8 +69,8 @@ from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter -from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall import diagnostics +from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall.checkpoint import load_checkpoint, remove_checkpoints from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.checkpoint import ( @@ -89,9 +89,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def get_parser(): @@ -166,13 +164,6 @@ def get_parser(): """, ) - parser.add_argument( - "--bpe-model", - type=str, - default="data/lang_bpe_500/bpe.model", - help="Path to the BPE model", - ) - parser.add_argument( "--initial-lr", type=float, @@ -505,11 +496,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -522,14 +509,6 @@ def compute_loss( nnet_output, encoder_memory, memory_mask = model( feature, supervisions, warmup=warmup ) - # logging.info('feature shape: {}'.format(feature.shape)) - # logging.info('nnet_output shape: {}'.format(nnet_output.shape)) - # logging.info('encoder_memory shape: {}'.format(encoder_memory.shape)) - # logging.info('memory_mask shape: {}'.format(memory_mask.shape)) - # after the main warmup step, we keep pruned_loss_scale small - # for the same amount of time (model_warm_step), to avoid - # overwhelming the simple_loss and causing it to diverge, - # in case it had not fully learned the alignment yet. # NOTE: We need `encode_supervisions` to sort sequences with # different duration in decreasing order, required by @@ -546,9 +525,7 @@ def compute_loss( # Works with a phone lexicon decoding_graph = graph_compiler.compile(texts) else: - raise ValueError( - f"Unsupported type of graph compiler: {type(graph_compiler)}" - ) + raise ValueError(f"Unsupported type of graph compiler: {type(graph_compiler)}") dense_fsa_vec = k2.DenseFsaVec( nnet_output, @@ -575,9 +552,7 @@ def compute_loss( # # See https://github.com/k2-fsa/icefall/issues/97 # for more details - unsorted_token_ids = graph_compiler.texts_to_ids( - supervisions["text"] - ) + unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"]) att_loss = mmodel.decoder_forward( encoder_memory, memory_mask, @@ -595,9 +570,7 @@ def compute_loss( info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() info["ctc_loss"] = ctc_loss.detach().cpu().item() if params.att_rate != 0.0: info["att_loss"] = att_loss.detach().cpu().item() @@ -791,9 +764,9 @@ def train_one_epoch( f"tot_loss[{tot_loss}], batch size: {batch_size}, " f"lr: {cur_lr:.2e}" ) - if loss_info["ctc_loss"] == float("inf") or loss_info[ - "att_loss" - ] == float("inf"): + if loss_info["ctc_loss"] == float("inf") or loss_info["att_loss"] == float( + "inf" + ): logging.error( "Your loss contains inf, something goes wrong" f"failing batch names {batch_name}" @@ -806,9 +779,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -957,10 +928,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds diff --git a/egs/librispeech/ASR/conformer_ctc2/transformer.py b/egs/librispeech/ASR/conformer_ctc2/transformer.py index fa179acc0..d3443dc94 100644 --- a/egs/librispeech/ASR/conformer_ctc2/transformer.py +++ b/egs/librispeech/ASR/conformer_ctc2/transformer.py @@ -21,19 +21,17 @@ from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn -from label_smoothing import LabelSmoothingLoss -from subsampling import Conv2dSubsampling from attention import MultiheadAttention -from torch.nn.utils.rnn import pad_sequence - +from label_smoothing import LabelSmoothingLoss from scaling import ( ActivationBalancer, BasicNorm, DoubleSwish, - ScaledLinear, ScaledEmbedding, + ScaledLinear, ) - +from subsampling import Conv2dSubsampling +from torch.nn.utils.rnn import pad_sequence # Note: TorchScript requires Dict/List/etc. to be fully typed. Supervisions = Dict[str, torch.Tensor] @@ -210,9 +208,7 @@ class Transformer(nn.Module): x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) mask = encoder_padding_mask(x.size(0), supervisions) mask = mask.to(x.device) if mask is not None else None - x = self.encoder( - x, src_key_padding_mask=mask, warmup=warmup - ) # (T, N, C) + x = self.encoder(x, src_key_padding_mask=mask, warmup=warmup) # (T, N, C) return x, mask @@ -261,23 +257,17 @@ class Transformer(nn.Module): """ ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -338,23 +328,17 @@ class Transformer(nn.Module): ys_in = add_sos(token_ids, sos_id=sos_id) ys_in = [torch.tensor(y) for y in ys_in] - ys_in_pad = pad_sequence( - ys_in, batch_first=True, padding_value=float(eos_id) - ) + ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id)) ys_out = add_eos(token_ids, eos_id=eos_id) ys_out = [torch.tensor(y) for y in ys_out] - ys_out_pad = pad_sequence( - ys_out, batch_first=True, padding_value=float(-1) - ) + ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1)) device = memory.device ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -417,7 +401,6 @@ class TransformerEncoderLayer(nn.Module): dim_feedforward: int = 2048, dropout: float = 0.1, layer_dropout: float = 0.075, - activation: str = "relu", ) -> None: super(TransformerEncoderLayer, self).__init__() @@ -443,11 +426,6 @@ class TransformerEncoderLayer(nn.Module): self.dropout = nn.Dropout(dropout) - # def __setstate__(self, state): - # if "activation" not in state: - # state["activation"] = nn.functional.relu - # super(TransformerEncoderLayer, self).__setstate__(state) - def forward( self, src: torch.Tensor, @@ -539,7 +517,6 @@ class TransformerDecoderLayer(nn.Module): dim_feedforward: int = 2048, dropout: float = 0.1, layer_dropout: float = 0.075, - # activation: str = "relu", normalize_before: bool = True, ) -> None: super(TransformerDecoderLayer, self).__init__() @@ -564,11 +541,6 @@ class TransformerDecoderLayer(nn.Module): self.dropout = nn.Dropout(dropout) - # def __setstate__(self, state): - # if "activation" not in state: - # state["activation"] = nn.functional.relu - # super(TransformerDecoderLayer, self).__setstate__(state) - def forward( self, tgt: torch.Tensor, @@ -653,17 +625,6 @@ class TransformerDecoderLayer(nn.Module): return tgt -def _get_activation_fn(activation: str): - if activation == "relu": - return nn.functional.relu - elif activation == "gelu": - return nn.functional.gelu - - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) - - class TransformerEncoder(nn.Module): r"""TransformerEncoder is a stack of N encoder layers @@ -708,7 +669,7 @@ class TransformerEncoder(nn.Module): """ output = src - for i, mod in enumerate(self.layers): + for mod in self.layers: output = mod( output, src_mask=mask, @@ -769,7 +730,7 @@ class TransformerDecoder(nn.Module): """ output = tgt - for i, mod in enumerate(self.layers): + for mod in self.layers: output = mod( output, memory, @@ -982,9 +943,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -1005,9 +964,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/librispeech/ASR/conformer_ctc3/__init__.py b/egs/librispeech/ASR/conformer_ctc3/__init__.py new file mode 120000 index 000000000..b24e5e357 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/__init__.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/__init__.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/asr_datamodule.py b/egs/librispeech/ASR/conformer_ctc3/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/conformer.py b/egs/librispeech/ASR/conformer_ctc3/conformer.py new file mode 120000 index 000000000..3b84b9573 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/conformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/conformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/decode.py b/egs/librispeech/ASR/conformer_ctc3/decode.py new file mode 100755 index 000000000..8eca2ae02 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/decode.py @@ -0,0 +1,1004 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) decode in non-streaming mode (take ctc-decoding as an example) +./conformer_ctc3/decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./conformer_ctc3/exp \ + --max-duration 600 \ + --decoding-method ctc-decoding + +(2) decode in streaming mode (take ctc-decoding as an example) +./conformer_ctc3/decode.py \ + --epoch 30 \ + --avg 15 \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --decode-chunk-size 16 \ + --left-context 64 \ + --exp-dir ./conformer_ctc3/exp \ + --max-duration 600 \ + --decoding-method ctc-decoding + +To evaluate symbol delay, you should: +(1) Generate cuts with word-time alignments: +./local/add_alignment_librispeech.py \ + --alignments-dir data/alignment \ + --cuts-in-dir data/fbank \ + --cuts-out-dir data/fbank_ali +(2) Set the argument "--manifest-dir data/fbank_ali" while decoding. +For example: +./conformer_ctc3/decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./conformer_ctc3/exp \ + --max-duration 600 \ + --decoding-method ctc-decoding \ + --simulate-streaming 1 \ + --causal-convolution 1 \ + --decode-chunk-size 16 \ + --left-context 64 \ + --manifest-dir data/fbank_ali +Note: It supports calculating symbol delay with following decoding methods: + - ctc-greedy-search + - ctc-decoding + - 1best +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from train import add_model_arguments, get_ctc_model, get_params + +from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.decode import ( + get_lattice, + nbest_decoding, + nbest_oracle, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + DecodingResults, + get_texts, + get_texts_with_timestamp, + make_pad_mask, + parse_hyp_and_timestamp, + setup_logger, + store_transcripts_and_timestamps, + str2bool, + write_error_stats_with_timestamps, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless4/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="ctc-decoding", + help="""Decoding method. + Supported values are: + - (0) ctc-decoding. Use CTC decoding. It uses a sentence piece + model, i.e., lang_dir/bpe.model, to convert word pieces to words. + It needs neither a lexicon nor an n-gram LM. + - (1) ctc-greedy-search. It only use CTC output and a sentence piece + model for decoding. It produces the same results with ctc-decoding. + - (2) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (3) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (4) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (5) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + you have trained an RNN LM using ./rnn_lm/train.py + - (6) nbest-oracle. Its WER is the lower bound of any n-best + rescoring method can achieve. Useful for debugging n-best + rescoring method. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--lm-dir", + type=str, + default="data/lm", + help="""The n-gram LM dir. + It should contain either G_4_gram.pt or G_4_gram.fst.txt + """, + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + add_model_arguments(parser) + + return parser + + +def get_decoding_params() -> AttributeDict: + """Parameters for decoding.""" + params = AttributeDict( + { + "frame_shift_ms": 10, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def ctc_greedy_search( + ctc_probs: torch.Tensor, + nnet_output_lens: torch.Tensor, +) -> List[List[int]]: + """Apply CTC greedy search + Args: + ctc_probs (torch.Tensor): (batch, max_len, feat_dim) + nnet_output_lens (torch.Tensor): (batch, ) + Returns: + List[List[int]]: best path result + """ + topk_prob, topk_index = ctc_probs.topk(1, dim=2) # (B, maxlen, 1) + topk_index = topk_index.squeeze(2) # (B, maxlen) + mask = make_pad_mask(nnet_output_lens) + topk_index = topk_index.masked_fill_(mask, 0) # (B, maxlen) + hyps = [hyp.tolist() for hyp in topk_index] + scores = topk_prob.max(1) + ret_hyps = [] + timestamps = [] + for i in range(len(hyps)): + hyp, time = remove_duplicates_and_blank(hyps[i]) + ret_hyps.append(hyp) + timestamps.append(time) + return ret_hyps, timestamps, scores + + +def remove_duplicates_and_blank(hyp: List[int]) -> Tuple[List[int], List[int]]: + # modified from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py + new_hyp: List[int] = [] + time: List[int] = [] + cur = 0 + while cur < len(hyp): + if hyp[cur] != 0: + new_hyp.append(hyp[cur]) + time.append(cur) + prev = cur + while cur < len(hyp) and hyp[cur] == hyp[prev]: + cur += 1 + return new_hyp, time + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + batch: dict, + word_table: k2.SymbolTable, + sos_id: int, + eos_id: int, + G: Optional[k2.Fsa] = None, +) -> Dict[str, Tuple[List[List[str]], List[List[float]]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + + Args: + params: + It's the return value of :func:`get_params`. + + - params.decoding_method is "1best", it uses 1best decoding without LM rescoring. + - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring. + - params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring. + - params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + sos_id: + The token ID of the SOS. + eos_id: + The token ID of the EOS. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. Note: If it decodes to nothing, then return None. + """ + if HLG is not None: + device = HLG.device + else: + device = H.device + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(feature, feature_lens) + + nnet_output = model.get_ctc_output(encoder_out) + # nnet_output is (N, T, C) + + if params.decoding_method == "ctc-greedy-search": + hyps, timestamps, _ = ctc_greedy_search( + nnet_output, + encoder_out_lens, + ) + res = DecodingResults(hyps=hyps, timestamps=timestamps) + hyps, timestamps = parse_hyp_and_timestamp( + res=res, + sp=bpe_model, + subsampling_factor=params.subsampling_factor, + frame_shift_ms=params.frame_shift_ms, + ) + key = "ctc-greedy-search" + return {key: (hyps, timestamps)} + + supervision_segments = torch.stack( + ( + supervisions["sequence_idx"], + supervisions["start_frame"] // params.subsampling_factor, + supervisions["num_frames"] // params.subsampling_factor, + ), + 1, + ).to(torch.int32) + + if H is None: + assert HLG is not None + decoding_graph = HLG + else: + assert HLG is None + assert bpe_model is not None + decoding_graph = H + + if params.decoding_method in ["1best", "nbest", "nbest-oracle"]: + hlg_scale_list = [0.2, 0.4, 0.6, 0.8, 1.0] + + ori_scores = decoding_graph.scores.clone() + + ans = {} + for hlg_scale in hlg_scale_list: + decoding_graph.scores = ori_scores * hlg_scale + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=decoding_graph, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + key_suffix = f"-HLG-scale-{hlg_scale}" + + if params.decoding_method == "nbest-oracle": + # Note: You can also pass rescored lattices to it. + # We choose the HLG decoded lattice for speed reasons + # as HLG decoding is faster and the oracle WER + # is only slightly worse than that of rescored lattices. + best_path = nbest_oracle( + lattice=lattice, + num_paths=params.num_paths, + ref_texts=supervisions["text"], + word_table=word_table, + nbest_scale=params.nbest_scale, + oov="", + ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + key = f"oracle-{params.num_paths}-nbest-scale-{params.nbest_scale}" # noqa + timestamps = [[] for _ in range(len(hyps))] + ans[key + key_suffix] = (hyps, timestamps) + + elif params.decoding_method in ["1best", "nbest"]: + if params.decoding_method == "1best": + best_path = one_best_decoding( + lattice=lattice, + use_double_scores=params.use_double_scores, + ) + key = "no-rescore" + res = get_texts_with_timestamp(best_path) + hyps, timestamps = parse_hyp_and_timestamp( + res=res, + subsampling_factor=params.subsampling_factor, + frame_shift_ms=params.frame_shift_ms, + word_table=word_table, + ) + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + timestamps = [[] for _ in range(len(hyps))] + + ans[key + key_suffix] = (hyps, timestamps) + + return ans + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=decoding_graph, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.decoding_method == "ctc-decoding": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + # Note: `best_path.aux_labels` contains token IDs, not word IDs + # since we are using H, not HLG here. + # + # token_ids is a lit-of-list of IDs + res = get_texts_with_timestamp(best_path) + hyps, timestamps = parse_hyp_and_timestamp( + res=res, + sp=bpe_model, + subsampling_factor=params.subsampling_factor, + frame_shift_ms=params.frame_shift_ms, + ) + key = "ctc-decoding" + return {key: (hyps, timestamps)} + + assert params.decoding_method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ] + + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.decoding_method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + elif params.decoding_method == "whole-lattice-rescoring": + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + else: + assert False, f"Unsupported decoding method: {params.decoding_method}" + + ans = dict() + if best_path_dict is not None: + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + timestamps = [[] for _ in range(len(hyps))] + ans[lm_scale_str] = (hyps, timestamps) + else: + ans = None + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + word_table: k2.SymbolTable, + sos_id: int, + eos_id: int, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str], List[float], List[float]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + word_table: + It is the word symbol table. + sos_id: + The token ID for SOS. + eos_id: + The token ID for EOS. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + timestamps_ref = [] + for cut in batch["supervisions"]["cut"]: + for s in cut.supervisions: + time = [] + if s.alignment is not None and "word" in s.alignment: + time = [ + aliword.start + for aliword in s.alignment["word"] + if aliword.symbol != "" + ] + timestamps_ref.append(time) + + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + batch=batch, + word_table=word_table, + G=G, + sos_id=sos_id, + eos_id=eos_id, + ) + + for name, (hyps, timestamps_hyp) in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) and len(timestamps_hyp) == len( + timestamps_ref + ) + for cut_id, hyp_words, ref_text, time_hyp, time_ref in zip( + cut_ids, hyps, texts, timestamps_hyp, timestamps_ref + ): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words, time_ref, time_hyp)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[ + str, + List[Tuple[List[str], List[str], List[str], List[float], List[float]]], + ], +): + test_set_wers = dict() + test_set_delays = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts_and_timestamps(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer, mean_delay, var_delay = write_error_stats_with_timestamps( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + test_set_delays[key] = (mean_delay, var_delay) + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0]) + delays_info = ( + params.res_dir + / f"symbol-delay-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(delays_info, "w") as f: + print("settings\tsymbol-delay", file=f) + for key, val in test_set_delays: + print( + "{}\tmean: {}s, variance: {}".format(key, val[0], val[1]), + file=f, + ) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + s = "\nFor {}, symbol-delay of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_delays: + s += "{}\tmean: {}s, variance: {}{}\n".format(key, val[0], val[1], note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + args.lang_dir = Path(args.lang_dir) + args.lm_dir = Path(args.lm_dir) + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + assert params.decoding_method in ( + "ctc-greedy-search", + "ctc-decoding", + "1best", + "nbest", + "nbest-rescoring", + "whole-lattice-rescoring", + "nbest-oracle", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + num_classes = max_token_id + 1 # +1 for the blank + + graph_compiler = BpeCtcTrainingGraphCompiler( + params.lang_dir, + device=device, + sos_token="", + eos_token="", + ) + sos_id = graph_compiler.sos_id + eos_id = graph_compiler.eos_id + + params.vocab_size = num_classes + params.sos_id = sos_id + params.eos_id = eos_id + + if params.decoding_method in ["ctc-decoding", "ctc-greedy-search"]: + HLG = None + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(str(params.lang_dir / "bpe.model")) + else: + H = None + bpe_model = None + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location=device) + ) + assert HLG.requires_grad is False + + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.decoding_method in ( + "nbest-rescoring", + "whole-lattice-rescoring", + ): + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + # See https://github.com/k2-fsa/k2/issues/874 + # for why we need to set G.properties to None + G.__dict__["_properties"] = None + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + # Save a dummy value so that it can be loaded in C++. + # See https://github.com/pytorch/pytorch/issues/67902 + # for why we need to do this. + G.dummy = 1 + + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device) + G = k2.Fsa.from_dict(d) + + if params.decoding_method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + logging.info("About to create model") + model = get_ctc_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + word_table=lexicon.word_table, + G=G, + sos_id=sos_id, + eos_id=eos_id, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/conformer_ctc3/encoder_interface.py b/egs/librispeech/ASR/conformer_ctc3/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/export.py b/egs/librispeech/ASR/conformer_ctc3/export.py new file mode 100755 index 000000000..c5b95d981 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/export.py @@ -0,0 +1,292 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" +Usage: + +(1) Export to torchscript model using torch.jit.trace() + +./conformer_ctc3/export.py \ + --exp-dir ./conformer_ctc3/exp \ + --lang-dir data/lang_bpe_500 \ + --epoch 20 \ + --avg 10 \ + --jit-trace 1 + +It will generates the file: `jit_trace.pt`. + +(2) Export `model.state_dict()` + +./conformer_ctc3/export.py \ + --exp-dir ./conformer_ctc3/exp \ + --lang-dir data/lang_bpe_500 \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `conformer_ctc3/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./conformer_ctc3/decode.py \ + --exp-dir ./conformer_ctc3/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 100 \ + --lang-dir data/lang_bpe_500 +""" + +import argparse +import logging +from pathlib import Path + +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_ctc_model, get_params + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for averaging. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless4/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--jit-trace", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + """, + ) + + parser.add_argument( + "--streaming-model", + type=str2bool, + default=False, + help="""Whether to export a streaming model, if the models in exp-dir + are streaming model, this should be True. + """, + ) + + add_model_arguments(parser) + + return parser + + +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + num_classes = max_token_id + 1 # +1 for the blank + params.vocab_size = num_classes + + if params.streaming_model: + assert params.causal_convolution + + logging.info(params) + + logging.info("About to create model") + model = get_ctc_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.jit_trace: + # TODO: will support streaming mode + assert not params.streaming_model + convert_scaled_to_non_scaled(model, inplace=True) + + logging.info("Using torch.jit.trace()") + + x = torch.zeros(1, 100, 80, dtype=torch.float32) + x_lens = torch.tensor([100], dtype=torch.int64) + traced_model = torch.jit.trace(model, (x, x_lens)) + + filename = params.exp_dir / "jit_trace.pt" + traced_model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torch.jit.trace()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conformer_ctc3/jit_pretrained.py b/egs/librispeech/ASR/conformer_ctc3/jit_pretrained.py new file mode 100755 index 000000000..76db46cc8 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/jit_pretrained.py @@ -0,0 +1,413 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +Usage (for non-streaming mode): + +(1) ctc-decoding +./conformer_ctc3/pretrained.py \ + --nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) 1best +./conformer_ctc3/pretrained.py \ + --nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) nbest-rescoring +./conformer_ctc3/pretrained.py \ + --nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) whole-lattice-rescoring +./conformer_ctc3/pretrained.py \ + --nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--model-filename", + type=str, + required=True, + help="Path to the torchscript model.", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + params.vocab_size = params.num_classes + + logging.info(f"{params}") + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + model = torch.jit.load(args.model_filename) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + nnet_output, _ = model(features, feature_lengths) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [ + [i, 0, feature_lengths[i] // params.subsampling_factor] + for i in range(batch_size) + ], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conformer_ctc3/lstmp.py b/egs/librispeech/ASR/conformer_ctc3/lstmp.py new file mode 120000 index 000000000..4f377cd01 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/lstmp.py @@ -0,0 +1 @@ +../lstm_transducer_stateless2/lstmp.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/model.py b/egs/librispeech/ASR/conformer_ctc3/model.py new file mode 100644 index 000000000..f56df2006 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/model.py @@ -0,0 +1,122 @@ +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import math +from typing import Tuple + +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import ScaledLinear + + +class CTCModel(nn.Module): + """It implements https://www.cs.toronto.edu/~graves/icml_2006.pdf + "Connectionist Temporal Classification: Labelling Unsegmented + Sequence Data with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + encoder_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + encoder_dim: + The feature embedding dimension. + vocab_size: + The vocabulary size. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + + self.encoder = encoder + self.ctc_output_module = nn.Sequential( + nn.Dropout(p=0.1), + ScaledLinear(encoder_dim, vocab_size), + ) + + def get_ctc_output( + self, + encoder_out: torch.Tensor, + delay_penalty: float = 0.0, + blank_threshold: float = 0.99, + ): + """Compute ctc log-prob and optionally (delay_penalty > 0) apply delay penalty. + We first split utterance into sub-utterances according to the + blank probs, and then add sawtooth-like "blank-bonus" values to + the blank probs. + See https://github.com/k2-fsa/icefall/pull/669 for details. + + Args: + encoder_out: + A tensor with shape of (N, T, C). + delay_penalty: + A constant used to scale the delay penalty score. + blank_threshold: + The threshold used to split utterance into sub-utterances. + """ + output = self.ctc_output_module(encoder_out) + log_prob = nn.functional.log_softmax(output, dim=-1) + + if self.training and delay_penalty > 0: + T_arange = torch.arange(encoder_out.shape[1]).to(device=encoder_out.device) + # split into sub-utterances using the blank-id + mask = log_prob[:, :, 0] >= math.log(blank_threshold) # (B, T) + mask[:, 0] = True + cummax_out = (T_arange * mask).cummax(dim=-1)[0] # (B, T) + # the sawtooth "blank-bonus" value + penalty = T_arange - cummax_out # (B, T) + penalty_all = torch.zeros_like(log_prob) + penalty_all[:, :, 0] = delay_penalty * penalty + # apply latency penalty on probs + log_prob = log_prob + penalty_all + + return log_prob + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + warmup: float = 1.0, + delay_penalty: float = 0.0, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + delay_penalty: + A constant used to scale the delay penalty score. + """ + encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup) + assert torch.all(encoder_out_lens > 0) + nnet_output = self.get_ctc_output(encoder_out, delay_penalty=delay_penalty) + return nnet_output, encoder_out_lens diff --git a/egs/librispeech/ASR/conformer_ctc3/optim.py b/egs/librispeech/ASR/conformer_ctc3/optim.py new file mode 120000 index 000000000..e2deb4492 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/optim.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/pretrained.py b/egs/librispeech/ASR/conformer_ctc3/pretrained.py new file mode 100755 index 000000000..880945ea0 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/pretrained.py @@ -0,0 +1,461 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +Usage (for non-streaming mode): + +(1) ctc-decoding +./conformer_ctc3/pretrained.py \ + --checkpoint conformer_ctc3/exp/pretrained.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + test_wavs/1089-134686-0001.wav + +(2) 1best +./conformer_ctc3/pretrained.py \ + --checkpoint conformer_ctc3/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + test_wavs/1089-134686-0001.wav + +(3) nbest-rescoring +./conformer_ctc3/pretrained.py \ + --checkpoint conformer_ctc3/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + test_wavs/1089-134686-0001.wav + +(4) whole-lattice-rescoring +./conformer_ctc3/pretrained.py \ + --checkpoint conformer_ctc3/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + test_wavs/1089-134686-0001.wav +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_ctc_model, get_params + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + params.vocab_size = params.num_classes + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("About to create model") + model = get_ctc_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + # model forward + if params.simulate_streaming: + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=features, + x_lens=feature_lengths, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder( + x=features, x_lens=feature_lengths + ) + nnet_output = model.get_ctc_output(encoder_out) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [ + [i, 0, feature_lengths[i] // params.subsampling_factor] + for i in range(batch_size) + ], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conformer_ctc3/scaling.py b/egs/librispeech/ASR/conformer_ctc3/scaling.py new file mode 120000 index 000000000..09d802cc4 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/scaling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/scaling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/scaling_converter.py b/egs/librispeech/ASR/conformer_ctc3/scaling_converter.py new file mode 120000 index 000000000..3b667058d --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conformer_ctc3/test_model.py b/egs/librispeech/ASR/conformer_ctc3/test_model.py new file mode 100755 index 000000000..b97b7eed8 --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/test_model.py @@ -0,0 +1,82 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./conformer_ctc3/test_model.py +""" + +import torch + +from train import get_params, get_ctc_model + + +def test_model(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.unk_id = 2 + + params.dynamic_chunk_training = False + params.short_chunk_size = 25 + params.num_left_chunks = 4 + params.causal_convolution = False + + model = get_ctc_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + features = torch.randn(2, 100, 80) + feature_lengths = torch.full((2,), 100) + model(x=features, x_lens=feature_lengths) + + +def test_model_streaming(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.unk_id = 2 + + params.dynamic_chunk_training = True + params.short_chunk_size = 25 + params.num_left_chunks = 4 + params.causal_convolution = True + + model = get_ctc_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + features = torch.randn(2, 100, 80) + feature_lengths = torch.full((2,), 100) + encoder_out, _ = model.encoder(x=features, x_lens=feature_lengths) + model.get_ctc_output(encoder_out) + + +def main(): + test_model() + test_model_streaming() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/conformer_ctc3/train.py b/egs/librispeech/ASR/conformer_ctc3/train.py new file mode 100755 index 000000000..ac489af9e --- /dev/null +++ b/egs/librispeech/ASR/conformer_ctc3/train.py @@ -0,0 +1,1109 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./conformer_ctc3/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir conformer_ctc3/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./conformer_ctc3/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir conformer_ctc3/exp \ + --full-libri 1 \ + --max-duration 550 + +# train a streaming model +./conformer_ctc3/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir conformer_ctc3/exp \ + --full-libri 1 \ + --dynamic-chunk-training 1 \ + --causal-convolution 1 \ + --short-chunk-size 25 \ + --num-left-chunks 4 \ + --max-duration 300 \ + --delay-penalty 0.0 +""" + +import argparse +import copy +import logging +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from conformer import Conformer +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import CTCModel +from optim import Eden, Eve +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter + +from icefall import diagnostics +from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + MetricsTracker, + encode_supervisions, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--dynamic-chunk-training", + type=str2bool, + default=False, + help="""Whether to use dynamic_chunk_training, if you want a streaming + model, this requires to be True. + """, + ) + + parser.add_argument( + "--causal-convolution", + type=str2bool, + default=False, + help="""Whether to use causal convolution, this requires to be True when + using dynamic_chunk_training. + """, + ) + + parser.add_argument( + "--short-chunk-size", + type=int, + default=25, + help="""Chunk length of dynamic training, the chunk size would be either + max sequence length of current batch or uniformly sampled from (1, short_chunk_size). + """, + ) + + parser.add_argument( + "--num-left-chunks", + type=int, + default=4, + help="How many left context can be seen in chunks when calculating attention.", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="conformer_ctc3/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_bpe_500", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + + parser.add_argument( + "--initial-lr", + type=float, + default=0.003, + help="""The initial learning rate. This value should not need to be + changed.""", + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate decreases. + We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=8000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=20, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=100, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant used to scale the symbol delay penalty, + to encourage symbol emit earlier for streaming models. + It is almost the same as the `delay_penalty` in our `rnnt_loss`, See + https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + + parser.add_argument( + "--nnet-delay-penalty", + type=float, + default=0.0, + help="""A constant to penalize symbol delay, which is applied on + the nnet_output after log-softmax. + We recommend using --delay-penalty instead. + See https://github.com/k2-fsa/icefall/pull/669 for details.""", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for conformer + "feature_dim": 80, + "subsampling_factor": 4, + "encoder_dim": 512, + "nhead": 8, + "dim_feedforward": 2048, + "num_encoder_layers": 12, + # parameters for loss + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + # parameters for Noam + "model_warm_step": 3000, # arg given to model, not for lrate + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Conformer and Transformer + encoder = Conformer( + num_features=params.feature_dim, + subsampling_factor=params.subsampling_factor, + d_model=params.encoder_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + dynamic_chunk_training=params.dynamic_chunk_training, + short_chunk_size=params.short_chunk_size, + num_left_chunks=params.num_left_chunks, + causal=params.causal_convolution, + ) + return encoder + + +def get_ctc_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + model = CTCModel( + encoder=encoder, + encoder_dim=params.encoder_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + graph_compiler: Union[BpeCtcTrainingGraphCompiler, CtcTrainingGraphCompiler], + batch: dict, + is_training: bool, + warmup: float = 1.0, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute RNN-T loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + with torch.set_grad_enabled(is_training): + nnet_output, encoder_out_lens = model( + feature, + feature_lens, + warmup=warmup, + delay_penalty=params.nnet_delay_penalty if warmup >= 1.0 else 0, + ) + assert torch.all(encoder_out_lens > 0) + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervision_segments, texts = encode_supervisions( + supervisions, subsampling_factor=params.subsampling_factor + ) + + if isinstance(graph_compiler, BpeCtcTrainingGraphCompiler): + # Works with a BPE model + token_ids = graph_compiler.texts_to_ids(texts) + decoding_graph = graph_compiler.compile(token_ids) + elif isinstance(graph_compiler, CtcTrainingGraphCompiler): + # Works with a phone lexicon + decoding_graph = graph_compiler.compile(texts) + else: + raise ValueError(f"Unsupported type of graph compiler: {type(graph_compiler)}") + + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + + ctc_loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + delay_penalty=params.delay_penalty if warmup >= 1.0 else 0.0, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + ctc_loss_is_finite = torch.isfinite(ctc_loss) + if not torch.all(ctc_loss_is_finite): + logging.info("Not all losses are finite!\n" f"ctc_loss: {ctc_loss}") + ctc_loss = ctc_loss[ctc_loss_is_finite] + + # If either all simple_loss or pruned_loss is inf or nan, + # we stop the training process by raising an exception + if torch.all(~ctc_loss_is_finite): + raise ValueError( + "There are too many utterances in this batch " + "leading to inf or nan losses." + ) + loss = ctc_loss.sum() + + assert loss.requires_grad == is_training + + info = MetricsTracker() + # info["frames"] is an approximate number for two reasons: + # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 + # (2) If some utterances in the batch lead to inf/nan loss, they + # are filtered out. + info["frames"] = supervision_segments[:, 2].sum().item() + # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa + info["utterances"] = feature.size(0) + # averaged input duration in frames over utterances + info["utt_duration"] = feature_lens.sum().item() + # averaged padding proportion over utterances + info["utt_pad_proportion"] = ( + ((feature.size(1) - feature_lens) / feature.size(1)).sum().item() + ) + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + graph_compiler: Union[BpeCtcTrainingGraphCompiler, CtcTrainingGraphCompiler], + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + graph_compiler: Union[BpeCtcTrainingGraphCompiler, CtcTrainingGraphCompiler], + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + warmup=(params.batch_idx_train / params.model_warm_step), + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + if params.print_diagnostics and batch_idx == 30: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}" + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + params.vocab_size = max_token_id + 1 # +1 for the blank + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + if "lang_bpe" in str(params.lang_dir): + graph_compiler = BpeCtcTrainingGraphCompiler( + params.lang_dir, + device=device, + sos_token="", + eos_token="", + ) + elif "lang_phone" in str(params.lang_dir): + graph_compiler = CtcTrainingGraphCompiler( + lexicon, + device=device, + need_repeat_flag=params.delay_penalty > 0, + ) + # Manually add the sos/eos ID with their default values + # from the BPE recipe which we're adapting here. + graph_compiler.sos_id = 1 + graph_compiler.eos_id = 1 + else: + raise ValueError( + f"Unsupported type of lang dir (we expected it to have " + f"'lang_bpe' or 'lang_phone' in its name): {params.lang_dir}" + ) + + if params.dynamic_chunk_training: + assert ( + params.causal_convolution + ), "dynamic_chunk_training requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_ctc_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + + optimizer = Eve(model.parameters(), lr=params.initial_lr) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + diagnostic = diagnostics.attach_diagnostics(model) + + librispeech = LibriSpeechAsrDataModule(args) + + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if params.start_batch <= 0 and not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + graph_compiler=graph_compiler, + params=params, + warmup=0.0 if params.start_epoch == 1 else 1.0, + ) + + scaler = GradScaler(enabled=params.use_fp16) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + graph_compiler: Union[BpeCtcTrainingGraphCompiler, CtcTrainingGraphCompiler], + params: AttributeDict, + warmup: float, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + warmup=warmup, + ) + loss.backward() + optimizer.step() + optimizer.zero_grad() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/conformer_mmi/conformer.py b/egs/librispeech/ASR/conformer_mmi/conformer.py index 97c8d83a2..53e48eb13 100644 --- a/egs/librispeech/ASR/conformer_mmi/conformer.py +++ b/egs/librispeech/ASR/conformer_mmi/conformer.py @@ -156,9 +156,7 @@ class ConformerEncoderLayer(nn.Module): normalize_before: bool = True, ) -> None: super(ConformerEncoderLayer, self).__init__() - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), @@ -176,18 +174,14 @@ class ConformerEncoderLayer(nn.Module): self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) - self.norm_ff_macaron = nn.LayerNorm( - d_model - ) # for the macaron style FNN module + self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module self.norm_ff = nn.LayerNorm(d_model) # for the FNN module self.norm_mha = nn.LayerNorm(d_model) # for the MHA module self.ff_scale = 0.5 self.norm_conv = nn.LayerNorm(d_model) # for the CNN module - self.norm_final = nn.LayerNorm( - d_model - ) # for the final output of the block + self.norm_final = nn.LayerNorm(d_model) # for the final output of the block self.dropout = nn.Dropout(dropout) @@ -221,9 +215,7 @@ class ConformerEncoderLayer(nn.Module): residual = src if self.normalize_before: src = self.norm_ff_macaron(src) - src = residual + self.ff_scale * self.dropout( - self.feed_forward_macaron(src) - ) + src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src)) if not self.normalize_before: src = self.norm_ff_macaron(src) @@ -342,9 +334,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -360,9 +350,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -632,9 +620,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -702,31 +690,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -765,9 +744,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -779,9 +756,7 @@ class RelPositionMultiheadAttention(nn.Module): matrix_ac + matrix_bd ) * scaling # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -815,13 +790,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -844,9 +815,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/librispeech/ASR/conformer_mmi/decode.py b/egs/librispeech/ASR/conformer_mmi/decode.py index fc9861489..74f6e73fa 100755 --- a/egs/librispeech/ASR/conformer_mmi/decode.py +++ b/egs/librispeech/ASR/conformer_mmi/decode.py @@ -478,9 +478,7 @@ def decode_dataset( if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -512,9 +510,7 @@ def save_results( test_set_wers[key] = wer if enable_log: - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt" @@ -653,9 +649,7 @@ def main(): if params.export: logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") - torch.save( - {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" - ) + torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt") return model.to(device) @@ -666,14 +660,22 @@ def main(): # we need cut ids to display recognition results. args.return_cuts = True librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + # CAUTION: `test_sets` is for displaying only. # If you want to skip test-clean, you have to skip # it inside the for loop. That is, use # # if test_set == 'test-clean': continue - # test_sets = ["test-clean", "test-other"] - for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()): + test_dls = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dls): results_dict = decode_dataset( dl=test_dl, params=params, @@ -687,9 +689,7 @@ def main(): eos_id=eos_id, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/librispeech/ASR/conformer_mmi/subsampling.py b/egs/librispeech/ASR/conformer_mmi/subsampling.py index 5c3e1222e..ad9415987 100644 --- a/egs/librispeech/ASR/conformer_mmi/subsampling.py +++ b/egs/librispeech/ASR/conformer_mmi/subsampling.py @@ -25,13 +25,9 @@ class Conv2dSubsampling(nn.Module): assert idim >= 7 super().__init__() self.conv = nn.Sequential( - nn.Conv2d( - in_channels=1, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), - nn.Conv2d( - in_channels=odim, out_channels=odim, kernel_size=3, stride=2 - ), + nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2), nn.ReLU(), ) self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim) @@ -115,17 +111,13 @@ class VggSubsampling(nn.Module): ) ) layers.append( - torch.nn.MaxPool2d( - kernel_size=2, stride=2, padding=0, ceil_mode=True - ) + torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) ) cur_channels = block_dim self.layers = nn.Sequential(*layers) - self.out = nn.Linear( - block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim - ) + self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Subsample x. diff --git a/egs/librispeech/ASR/conformer_mmi/test_subsampling.py b/egs/librispeech/ASR/conformer_mmi/test_subsampling.py index 937845d77..d0bb017dd 100755 --- a/egs/librispeech/ASR/conformer_mmi/test_subsampling.py +++ b/egs/librispeech/ASR/conformer_mmi/test_subsampling.py @@ -1,8 +1,7 @@ #!/usr/bin/env python3 -from subsampling import Conv2dSubsampling -from subsampling import VggSubsampling import torch +from subsampling import Conv2dSubsampling, VggSubsampling def test_conv2d_subsampling(): diff --git a/egs/librispeech/ASR/conformer_mmi/test_transformer.py b/egs/librispeech/ASR/conformer_mmi/test_transformer.py index 08e680607..25d18076d 100644 --- a/egs/librispeech/ASR/conformer_mmi/test_transformer.py +++ b/egs/librispeech/ASR/conformer_mmi/test_transformer.py @@ -1,17 +1,16 @@ #!/usr/bin/env python3 import torch +from torch.nn.utils.rnn import pad_sequence from transformer import ( Transformer, + add_eos, + add_sos, + decoder_padding_mask, encoder_padding_mask, generate_square_subsequent_mask, - decoder_padding_mask, - add_sos, - add_eos, ) -from torch.nn.utils.rnn import pad_sequence - def test_encoder_padding_mask(): supervisions = { diff --git a/egs/librispeech/ASR/conformer_mmi/train-with-attention.py b/egs/librispeech/ASR/conformer_mmi/train-with-attention.py index 011dadd73..100bc846a 100755 --- a/egs/librispeech/ASR/conformer_mmi/train-with-attention.py +++ b/egs/librispeech/ASR/conformer_mmi/train-with-attention.py @@ -30,29 +30,22 @@ import torch.multiprocessing as mp import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from conformer import Conformer +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler from lhotse.utils import fix_random_seed from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from torch.utils.tensorboard import SummaryWriter from transformer import Noam -from icefall.ali import ( - convert_alignments_to_tensor, - load_alignments, - lookup_alignments, -) +from icefall.ali import convert_alignments_to_tensor, load_alignments, lookup_alignments from icefall.checkpoint import load_checkpoint from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.dist import cleanup_dist, setup_dist from icefall.lexicon import Lexicon from icefall.mmi import LFMMILoss from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler -from icefall.utils import ( - AttributeDict, - encode_supervisions, - setup_logger, - str2bool, -) +from icefall.utils import AttributeDict, encode_supervisions, setup_logger, str2bool def get_parser(): @@ -109,6 +102,41 @@ def get_parser(): """, ) + parser.add_argument( + "--exp-dir", + type=str, + default="conformer_mmi/exp-attn", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_bpe_500", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--use-pruned-intersect", + type=str2bool, + default=False, + help="""Whether to use `intersect_dense_pruned` to get denominator + lattice.""", + ) + return parser @@ -123,12 +151,6 @@ def get_params() -> AttributeDict: Explanation of options saved in `params`: - - exp_dir: It specifies the directory where all training related - files, e.g., checkpoints, log, etc, are saved - - - lang_dir: It contains language related input files such as - "lexicon.txt" - - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. @@ -173,8 +195,6 @@ def get_params() -> AttributeDict: """ params = AttributeDict( { - "exp_dir": Path("conformer_mmi/exp_500_with_attention"), - "lang_dir": Path("data/lang_bpe_500"), "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, @@ -193,15 +213,12 @@ def get_params() -> AttributeDict: "beam_size": 6, # will change it to 8 after some batches (see code) "reduction": "sum", "use_double_scores": True, - # "att_rate": 0.0, - # "num_decoder_layers": 0, "att_rate": 0.7, "num_decoder_layers": 6, # parameters for Noam "weight_decay": 1e-6, "lr_factor": 5.0, "warm_step": 80000, - "use_pruned_intersect": False, "den_scale": 1.0, # use alignments before this number of batches "use_ali_until": 13000, @@ -370,10 +387,7 @@ def compute_loss( nnet_output = nnet_output.clone() nnet_output[:, :min_len, :] += ali_scale * mask[:, :min_len, :] - if ( - params.batch_idx_train > params.use_ali_until - and params.beam_size < 8 - ): + if params.batch_idx_train > params.use_ali_until and params.beam_size < 8: # logging.info("Change beam size to 8") params.beam_size = 8 else: @@ -673,7 +687,7 @@ def run(rank, world_size, args): params = get_params() params.update(vars(args)) - fix_random_seed(42) + fix_random_seed(params.seed) if world_size > 1: setup_dist(rank, world_size, params.master_port) @@ -757,24 +771,40 @@ def run(rank, world_size, args): valid_ali = None librispeech = LibriSpeechAsrDataModule(args) - train_dl = librispeech.train_dataloaders() - valid_dl = librispeech.valid_dataloaders() + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + train_dl = librispeech.train_dataloaders(train_cuts) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) for epoch in range(params.start_epoch, params.num_epochs): train_dl.sampler.set_epoch(epoch) - if ( - params.batch_idx_train >= params.use_ali_until - and train_ali is not None - ): + if params.batch_idx_train >= params.use_ali_until and train_ali is not None: # Delete the alignments to save memory train_ali = None valid_ali = None cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: @@ -813,6 +843,7 @@ def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) world_size = args.world_size assert world_size >= 1 diff --git a/egs/librispeech/ASR/conformer_mmi/train.py b/egs/librispeech/ASR/conformer_mmi/train.py index 9a5bdcce2..f9f80632e 100755 --- a/egs/librispeech/ASR/conformer_mmi/train.py +++ b/egs/librispeech/ASR/conformer_mmi/train.py @@ -30,29 +30,22 @@ import torch.multiprocessing as mp import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from conformer import Conformer +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler from lhotse.utils import fix_random_seed from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from torch.utils.tensorboard import SummaryWriter from transformer import Noam -from icefall.ali import ( - convert_alignments_to_tensor, - load_alignments, - lookup_alignments, -) +from icefall.ali import convert_alignments_to_tensor, load_alignments, lookup_alignments from icefall.checkpoint import load_checkpoint from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.dist import cleanup_dist, setup_dist from icefall.lexicon import Lexicon from icefall.mmi import LFMMILoss from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler -from icefall.utils import ( - AttributeDict, - encode_supervisions, - setup_logger, - str2bool, -) +from icefall.utils import AttributeDict, encode_supervisions, setup_logger, str2bool def get_parser(): @@ -109,6 +102,26 @@ def get_parser(): """, ) + parser.add_argument( + "--exp-dir", + type=str, + default="conformer_mmi/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_bpe_500", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + parser.add_argument( "--seed", type=int, @@ -116,6 +129,14 @@ def get_parser(): help="The seed for random generators intended for reproducibility", ) + parser.add_argument( + "--use-pruned-intersect", + type=str2bool, + default=False, + help="""Whether to use `intersect_dense_pruned` to get denominator + lattice.""", + ) + return parser @@ -130,12 +151,6 @@ def get_params() -> AttributeDict: Explanation of options saved in `params`: - - exp_dir: It specifies the directory where all training related - files, e.g., checkpoints, log, etc, are saved - - - lang_dir: It contains language related input files such as - "lexicon.txt" - - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. @@ -180,8 +195,6 @@ def get_params() -> AttributeDict: """ params = AttributeDict( { - "exp_dir": Path("conformer_mmi/exp_500"), - "lang_dir": Path("data/lang_bpe_500"), "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, @@ -202,13 +215,10 @@ def get_params() -> AttributeDict: "use_double_scores": True, "att_rate": 0.0, "num_decoder_layers": 0, - # "att_rate": 0.7, - # "num_decoder_layers": 6, # parameters for Noam "weight_decay": 1e-6, "lr_factor": 5.0, "warm_step": 80000, - "use_pruned_intersect": False, "den_scale": 1.0, # use alignments before this number of batches "use_ali_until": 13000, @@ -377,10 +387,7 @@ def compute_loss( nnet_output = nnet_output.clone() nnet_output[:, :min_len, :] += ali_scale * mask[:, :min_len, :] - if ( - params.batch_idx_train > params.use_ali_until - and params.beam_size < 8 - ): + if params.batch_idx_train > params.use_ali_until and params.beam_size < 8: logging.info("Change beam size to 8") params.beam_size = 8 else: @@ -764,25 +771,41 @@ def run(rank, world_size, args): valid_ali = None librispeech = LibriSpeechAsrDataModule(args) - train_dl = librispeech.train_dataloaders() - valid_dl = librispeech.valid_dataloaders() + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + train_dl = librispeech.train_dataloaders(train_cuts) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) for epoch in range(params.start_epoch, params.num_epochs): fix_random_seed(params.seed + epoch) train_dl.sampler.set_epoch(epoch) - if ( - params.batch_idx_train >= params.use_ali_until - and train_ali is not None - ): + if params.batch_idx_train >= params.use_ali_until and train_ali is not None: # Delete the alignments to save memory train_ali = None valid_ali = None cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: @@ -821,6 +844,7 @@ def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) world_size = args.world_size assert world_size >= 1 diff --git a/egs/librispeech/ASR/conformer_mmi/transformer.py b/egs/librispeech/ASR/conformer_mmi/transformer.py index 68a4ff65c..2542d9abe 100644 --- a/egs/librispeech/ASR/conformer_mmi/transformer.py +++ b/egs/librispeech/ASR/conformer_mmi/transformer.py @@ -148,9 +148,7 @@ class Transformer(nn.Module): norm=decoder_norm, ) - self.decoder_output_layer = torch.nn.Linear( - d_model, self.decoder_num_class - ) + self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class) self.decoder_criterion = LabelSmoothingLoss(self.decoder_num_class) else: @@ -182,9 +180,7 @@ class Transformer(nn.Module): x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) - encoder_memory, memory_key_padding_mask = self.run_encoder( - x, supervision - ) + encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision) x = self.ctc_output(encoder_memory) return x, encoder_memory, memory_key_padding_mask @@ -274,9 +270,7 @@ class Transformer(nn.Module): ys_in_pad = ys_in_pad.to(device) ys_out_pad = ys_out_pad.to(device) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -341,9 +335,7 @@ class Transformer(nn.Module): ys_in_pad = ys_in_pad.to(device, dtype=torch.int64) ys_out_pad = ys_out_pad.to(device, dtype=torch.int64) - tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to( - device - ) + tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device) tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id) # TODO: Use length information to create the decoder padding mask @@ -616,9 +608,7 @@ def _get_activation_fn(activation: str): elif activation == "gelu": return nn.functional.gelu - raise RuntimeError( - "activation should be relu/gelu, not {}".format(activation) - ) + raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class PositionalEncoding(nn.Module): @@ -887,9 +877,7 @@ def encoder_padding_mask( 1, ).to(torch.int32) - lengths = [ - 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1) - ] + lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)] for idx in range(supervision_segments.size(0)): # Note: TorchScript doesn't allow to unpack tensors as tuples sequence_idx = supervision_segments[idx, 0].item() @@ -910,9 +898,7 @@ def encoder_padding_mask( return mask -def decoder_padding_mask( - ys_pad: torch.Tensor, ignore_id: int = -1 -) -> torch.Tensor: +def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor: """Generate a length mask for input. The masked position are filled with True, diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py index 620d69a19..365e8b8a7 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py @@ -215,8 +215,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -284,9 +283,7 @@ def decode_one_batch( value=LOG_EPS, ) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -301,10 +298,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -427,9 +421,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -462,8 +454,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -506,9 +497,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -540,9 +529,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -569,9 +558,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py index 8ca7d5568..91f50cf67 100644 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py @@ -35,7 +35,6 @@ from scaling import ( from icefall.utils import make_pad_mask - LOG_EPSILON = math.log(1e-10) @@ -127,9 +126,7 @@ def stack_states( for si, s in enumerate(layer): attn_caches[li][si].append(s) if b == batch_size - 1: - attn_caches[li][si] = torch.stack( - attn_caches[li][si], dim=1 - ) + attn_caches[li][si] = torch.stack(attn_caches[li][si], dim=1) conv_caches = [] for layer in state_list[0][1]: @@ -268,9 +265,7 @@ class ConvolutionModule(nn.Module): intervals = torch.arange( 0, self.chunk_length * (num_chunks - 1), self.chunk_length ) - first = torch.arange( - self.chunk_length, self.chunk_length + self.cache_size - ) + first = torch.arange(self.chunk_length, self.chunk_length + self.cache_size) indexes = intervals.unsqueeze(1) + first.unsqueeze(0) indexes = torch.cat( [indexes, torch.arange(U_ - self.cache_size, U_).unsqueeze(0)] @@ -284,9 +279,7 @@ class ConvolutionModule(nn.Module): # (num_chunks * B, cache_size + right_context_length, D) return pad_right_context.permute(0, 2, 1) - def _merge_right_context( - self, right_context: torch.Tensor, B: int - ) -> torch.Tensor: + def _merge_right_context(self, right_context: torch.Tensor, B: int) -> torch.Tensor: """ Args: right_context: @@ -337,12 +330,8 @@ class ConvolutionModule(nn.Module): right_context = x[:, :, :R] # (B, D, R) # make causal convolution - cache = torch.zeros( - B, D, self.cache_size, device=x.device, dtype=x.dtype - ) - pad_utterance = torch.cat( - [cache, utterance], dim=2 - ) # (B, D, cache + U) + cache = torch.zeros(B, D, self.cache_size, device=x.device, dtype=x.dtype) + pad_utterance = torch.cat([cache, utterance], dim=2) # (B, D, cache + U) # depth-wise conv on utterance utterance = self.depthwise_conv(pad_utterance) # (B, D, U) @@ -355,9 +344,7 @@ class ConvolutionModule(nn.Module): right_context = self.depthwise_conv( pad_right_context ) # (num_segs * B, D, right_context_length) - right_context = self._merge_right_context( - right_context, B - ) # (B, D, R) + right_context = self._merge_right_context(right_context, B) # (B, D, R) x = torch.cat([right_context, utterance], dim=2) # (B, D, R + U) x = self.deriv_balancer2(x) @@ -458,8 +445,7 @@ class EmformerAttention(nn.Module): if embed_dim % nhead != 0: raise ValueError( - f"embed_dim ({embed_dim}) is not a multiple of" - f"nhead ({nhead})." + f"embed_dim ({embed_dim}) is not a multiple of nhead ({nhead})." ) self.embed_dim = embed_dim @@ -469,9 +455,7 @@ class EmformerAttention(nn.Module): self.head_dim = embed_dim // nhead self.dropout = dropout - self.emb_to_key_value = ScaledLinear( - embed_dim, 2 * embed_dim, bias=True - ) + self.emb_to_key_value = ScaledLinear(embed_dim, 2 * embed_dim, bias=True) self.emb_to_query = ScaledLinear(embed_dim, embed_dim, bias=True) self.out_proj = ScaledLinear( embed_dim, embed_dim, bias=True, initial_scale=0.25 @@ -513,9 +497,7 @@ class EmformerAttention(nn.Module): if padding_mask is not None: Q = attention_weights.size(1) B = attention_weights.size(0) // self.nhead - attention_weights_float = attention_weights_float.view( - B, self.nhead, Q, -1 - ) + attention_weights_float = attention_weights_float.view(B, self.nhead, Q, -1) attention_weights_float = attention_weights_float.masked_fill( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), self.negative_inf, @@ -551,9 +533,7 @@ class EmformerAttention(nn.Module): scaling = float(self.head_dim) ** -0.5 # compute query with [right_context, utterance, summary]. - query = self.emb_to_query( - torch.cat([right_context, utterance, summary]) - ) + query = self.emb_to_query(torch.cat([right_context, utterance, summary])) # compute key and value with [memory, right_context, utterance]. key, value = self.emb_to_key_value( torch.cat([memory, right_context, utterance]) @@ -564,16 +544,12 @@ class EmformerAttention(nn.Module): # [memory, right context, left context, uttrance] # this is used in inference mode key = torch.cat([key[: M + R], left_context_key, key[M + R :]]) - value = torch.cat( - [value[: M + R], left_context_val, value[M + R :]] - ) + value = torch.cat([value[: M + R], left_context_val, value[M + R :]]) Q = query.size(0) # KV = key.size(0) reshaped_query, reshaped_key, reshaped_value = [ - tensor.contiguous() - .view(-1, B * self.nhead, self.head_dim) - .transpose(0, 1) + tensor.contiguous().view(-1, B * self.nhead, self.head_dim).transpose(0, 1) for tensor in [query, key, value] ] # (B * nhead, Q or KV, head_dim) attention_weights = torch.bmm( @@ -588,9 +564,7 @@ class EmformerAttention(nn.Module): # compute attention outputs attention = torch.bmm(attention_probs, reshaped_value) assert attention.shape == (B * self.nhead, Q, self.head_dim) - attention = ( - attention.transpose(0, 1).contiguous().view(Q, B, self.embed_dim) - ) + attention = attention.transpose(0, 1).contiguous().view(Q, B, self.embed_dim) # apply output projection outputs = self.out_proj(attention) @@ -672,12 +646,7 @@ class EmformerAttention(nn.Module): - output of right context and utterance, with shape (R + U, B, D). - memory output, with shape (M, B, D), where M = S - 1 or M = 0. """ - ( - output_right_context_utterance, - output_memory, - _, - _, - ) = self._forward_impl( + (output_right_context_utterance, output_memory, _, _,) = self._forward_impl( utterance, right_context, summary, @@ -947,13 +916,9 @@ class EmformerEncoderLayer(nn.Module): right_context = right_context_utterance[:R] if self.use_memory: - summary = self.summary_op(utterance.permute(1, 2, 0)).permute( - 2, 0, 1 - ) + summary = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1) else: - summary = torch.empty(0).to( - dtype=utterance.dtype, device=utterance.device - ) + summary = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) output_right_context_utterance, output_memory = self.attention( utterance=utterance, right_context=right_context, @@ -992,14 +957,10 @@ class EmformerEncoderLayer(nn.Module): left_context_val = attn_cache[2] if self.use_memory: - summary = self.summary_op(utterance.permute(1, 2, 0)).permute( - 2, 0, 1 - ) + summary = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1) summary = summary[:1] else: - summary = torch.empty(0).to( - dtype=utterance.dtype, device=utterance.device - ) + summary = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) ( output_right_context_utterance, output_memory, @@ -1014,9 +975,7 @@ class EmformerEncoderLayer(nn.Module): left_context_val=left_context_val, padding_mask=padding_mask, ) - attn_cache = self._update_attn_cache( - next_key, next_val, memory, attn_cache - ) + attn_cache = self._update_attn_cache(next_key, next_val, memory, attn_cache) return output_right_context_utterance, output_memory, attn_cache def forward( @@ -1151,11 +1110,7 @@ class EmformerEncoderLayer(nn.Module): src = src + self.dropout(self.feed_forward_macaron(src)) # emformer attention module - ( - src_att, - output_memory, - attn_cache, - ) = self._apply_attention_module_infer( + (src_att, output_memory, attn_cache,) = self._apply_attention_module_infer( src, R, memory, attn_cache, padding_mask=padding_mask ) src = src + self.dropout(src_att) @@ -1295,9 +1250,7 @@ class EmformerEncoder(nn.Module): def _gen_right_context(self, x: torch.Tensor) -> torch.Tensor: """Hard copy each chunk's right context and concat them.""" T = x.shape[0] - num_chunks = math.ceil( - (T - self.right_context_length) / self.chunk_length - ) + num_chunks = math.ceil((T - self.right_context_length) / self.chunk_length) # first (num_chunks - 1) right context block intervals = torch.arange( 0, self.chunk_length * (num_chunks - 1), self.chunk_length @@ -1316,9 +1269,7 @@ class EmformerEncoder(nn.Module): right_context_blocks = x[indexes.reshape(-1)] return right_context_blocks - def _gen_attention_mask_col_widths( - self, chunk_idx: int, U: int - ) -> List[int]: + def _gen_attention_mask_col_widths(self, chunk_idx: int, U: int) -> List[int]: """Calculate column widths (key, value) in attention mask for the chunk_idx chunk.""" num_chunks = math.ceil(U / self.chunk_length) @@ -1479,9 +1430,7 @@ class EmformerEncoder(nn.Module): output_lengths = torch.clamp(lengths - self.right_context_length, min=0) attention_mask = self._gen_attention_mask(utterance) memory = ( - self.init_memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[ - :-1 - ] + self.init_memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[:-1] if self.use_memory else torch.empty(0).to(dtype=x.dtype, device=x.device) ) @@ -1643,12 +1592,8 @@ class EmformerEncoder(nn.Module): attn_caches = [ [ torch.zeros(self.memory_size, self.d_model, device=device), - torch.zeros( - self.left_context_length, self.d_model, device=device - ), - torch.zeros( - self.left_context_length, self.d_model, device=device - ), + torch.zeros(self.left_context_length, self.d_model, device=device), + torch.zeros(self.left_context_length, self.d_model, device=device), ] for _ in range(self.num_encoder_layers) ] @@ -1693,17 +1638,11 @@ class Emformer(EncoderInterface): raise NotImplementedError( "chunk_length must be a mutiple of subsampling_factor." ) - if ( - left_context_length != 0 - and left_context_length % subsampling_factor != 0 - ): + if left_context_length != 0 and left_context_length % subsampling_factor != 0: raise NotImplementedError( "left_context_length must be 0 or a mutiple of subsampling_factor." # noqa ) - if ( - right_context_length != 0 - and right_context_length % subsampling_factor != 0 - ): + if right_context_length != 0 and right_context_length % subsampling_factor != 0: raise NotImplementedError( "right_context_length must be 0 or a mutiple of subsampling_factor." # noqa ) @@ -1766,9 +1705,7 @@ class Emformer(EncoderInterface): x_lens = (((x_lens - 1) >> 1) - 1) >> 1 assert x.size(0) == x_lens.max().item() - output, output_lengths = self.encoder( - x, x_lens, warmup=warmup - ) # (T, N, C) + output, output_lengths = self.encoder(x, x_lens, warmup=warmup) # (T, N, C) output = output.permute(1, 0, 2) # (T, N, C) -> (N, T, C) diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py index 4930881ea..09a3e96b0 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py @@ -136,8 +136,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -181,9 +180,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -210,9 +209,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -279,9 +278,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py index 9494e1fc1..c211b215e 100644 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py @@ -68,14 +68,12 @@ class Stream(object): elif params.decoding_method == "fast_beam_search": # feature_len is needed to get partial results. # The rnnt_decoding_stream for fast_beam_search. - self.rnnt_decoding_stream: k2.RnntDecodingStream = ( - k2.RnntDecodingStream(decoding_graph) + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph ) self.hyp: Optional[List[int]] = None else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") self.ground_truth: str = "" diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py index 61dbe8658..c93125c80 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py @@ -211,8 +211,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -371,9 +370,7 @@ def modified_beam_search( index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) - logits = model.joiner( - current_encoder_out, decoder_out, project_input=False - ) + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) # logits is of shape (num_hyps, 1, 1, vocab_size) logits = logits.squeeze(1).squeeze(1) @@ -390,9 +387,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -551,14 +546,10 @@ def decode_one_chunk( feature_list, batch_first=True, padding_value=LOG_EPSILON ).to(device) feature_lens = torch.tensor(feature_len_list, device=device) - num_processed_frames = torch.tensor( - num_processed_frames_list, device=device - ) + num_processed_frames = torch.tensor(num_processed_frames_list, device=device) # Make sure it has at least 1 frame after subsampling, first-and-last-frame cutting, and right context cutting # noqa - tail_length = ( - 3 * params.subsampling_factor + params.right_context_length + 3 - ) + tail_length = 3 * params.subsampling_factor + params.right_context_length + 3 if features.size(1) < tail_length: pad_length = tail_length - features.size(1) feature_lens += pad_length @@ -605,9 +596,7 @@ def decode_one_chunk( max_states=params.max_states, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") # Update cached states of each stream state_list = unstack_states(states) @@ -782,8 +771,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -831,9 +819,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -867,9 +853,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -896,9 +882,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py index c07d8f76b..6bb5505aa 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py @@ -95,9 +95,7 @@ from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -265,8 +263,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -289,8 +286,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -636,11 +632,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -668,23 +660,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -871,9 +856,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -981,16 +964,16 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py index 98b8290b5..78e1f4096 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py @@ -215,8 +215,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -284,9 +283,7 @@ def decode_one_batch( value=LOG_EPS, ) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -301,10 +298,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -427,9 +421,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -462,8 +454,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -506,9 +497,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -540,9 +529,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -569,9 +558,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer.py index f16f5acc7..3cedf99b6 100644 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer.py @@ -35,7 +35,6 @@ from scaling import ( from icefall.utils import make_pad_mask - LOG_EPSILON = math.log(1e-10) @@ -127,9 +126,7 @@ def stack_states( for si, s in enumerate(layer): attn_caches[li][si].append(s) if b == batch_size - 1: - attn_caches[li][si] = torch.stack( - attn_caches[li][si], dim=1 - ) + attn_caches[li][si] = torch.stack(attn_caches[li][si], dim=1) conv_caches = [] for layer in state_list[0][1]: @@ -268,9 +265,7 @@ class ConvolutionModule(nn.Module): intervals = torch.arange( 0, self.chunk_length * (num_chunks - 1), self.chunk_length ) - first = torch.arange( - self.chunk_length, self.chunk_length + self.cache_size - ) + first = torch.arange(self.chunk_length, self.chunk_length + self.cache_size) indexes = intervals.unsqueeze(1) + first.unsqueeze(0) indexes = torch.cat( [indexes, torch.arange(U_ - self.cache_size, U_).unsqueeze(0)] @@ -284,9 +279,7 @@ class ConvolutionModule(nn.Module): # (num_chunks * B, cache_size + right_context_length, D) return pad_right_context.permute(0, 2, 1) - def _merge_right_context( - self, right_context: torch.Tensor, B: int - ) -> torch.Tensor: + def _merge_right_context(self, right_context: torch.Tensor, B: int) -> torch.Tensor: """ Args: right_context: @@ -337,12 +330,8 @@ class ConvolutionModule(nn.Module): right_context = x[:, :, :R] # (B, D, R) # make causal convolution - cache = torch.zeros( - B, D, self.cache_size, device=x.device, dtype=x.dtype - ) - pad_utterance = torch.cat( - [cache, utterance], dim=2 - ) # (B, D, cache + U) + cache = torch.zeros(B, D, self.cache_size, device=x.device, dtype=x.dtype) + pad_utterance = torch.cat([cache, utterance], dim=2) # (B, D, cache + U) # depth-wise conv on utterance utterance = self.depthwise_conv(pad_utterance) # (B, D, U) @@ -355,9 +344,7 @@ class ConvolutionModule(nn.Module): right_context = self.depthwise_conv( pad_right_context ) # (num_segs * B, D, right_context_length) - right_context = self._merge_right_context( - right_context, B - ) # (B, D, R) + right_context = self._merge_right_context(right_context, B) # (B, D, R) x = torch.cat([right_context, utterance], dim=2) # (B, D, R + U) x = self.deriv_balancer2(x) @@ -458,8 +445,7 @@ class EmformerAttention(nn.Module): if embed_dim % nhead != 0: raise ValueError( - f"embed_dim ({embed_dim}) is not a multiple of" - f"nhead ({nhead})." + f"embed_dim ({embed_dim}) is not a multiple of nhead ({nhead})." ) self.embed_dim = embed_dim @@ -469,9 +455,7 @@ class EmformerAttention(nn.Module): self.head_dim = embed_dim // nhead self.dropout = dropout - self.emb_to_key_value = ScaledLinear( - embed_dim, 2 * embed_dim, bias=True - ) + self.emb_to_key_value = ScaledLinear(embed_dim, 2 * embed_dim, bias=True) self.emb_to_query = ScaledLinear(embed_dim, embed_dim, bias=True) self.out_proj = ScaledLinear( embed_dim, embed_dim, bias=True, initial_scale=0.25 @@ -513,9 +497,7 @@ class EmformerAttention(nn.Module): if padding_mask is not None: Q = attention_weights.size(1) B = attention_weights.size(0) // self.nhead - attention_weights_float = attention_weights_float.view( - B, self.nhead, Q, -1 - ) + attention_weights_float = attention_weights_float.view(B, self.nhead, Q, -1) attention_weights_float = attention_weights_float.masked_fill( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), self.negative_inf, @@ -561,16 +543,12 @@ class EmformerAttention(nn.Module): # [memory, right context, left context, uttrance] # this is used in inference mode key = torch.cat([key[: M + R], left_context_key, key[M + R :]]) - value = torch.cat( - [value[: M + R], left_context_val, value[M + R :]] - ) + value = torch.cat([value[: M + R], left_context_val, value[M + R :]]) Q = query.size(0) # KV = key.size(0) reshaped_query, reshaped_key, reshaped_value = [ - tensor.contiguous() - .view(-1, B * self.nhead, self.head_dim) - .transpose(0, 1) + tensor.contiguous().view(-1, B * self.nhead, self.head_dim).transpose(0, 1) for tensor in [query, key, value] ] # (B * nhead, Q or KV, head_dim) attention_weights = torch.bmm( @@ -585,9 +563,7 @@ class EmformerAttention(nn.Module): # compute attention outputs attention = torch.bmm(attention_probs, reshaped_value) assert attention.shape == (B * self.nhead, Q, self.head_dim) - attention = ( - attention.transpose(0, 1).contiguous().view(Q, B, self.embed_dim) - ) + attention = attention.transpose(0, 1).contiguous().view(Q, B, self.embed_dim) # apply output projection output_right_context_utterance = self.out_proj(attention) @@ -905,13 +881,11 @@ class EmformerEncoderLayer(nn.Module): right_context = right_context_utterance[:R] if self.use_memory: - memory = self.summary_op(utterance.permute(1, 2, 0)).permute( - 2, 0, 1 - )[:-1, :, :] + memory = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[ + :-1, :, : + ] else: - memory = torch.empty(0).to( - dtype=utterance.dtype, device=utterance.device - ) + memory = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) output_right_context_utterance = self.attention( utterance=utterance, right_context=right_context, @@ -948,18 +922,12 @@ class EmformerEncoderLayer(nn.Module): left_context_val = attn_cache[2] if self.use_memory: - memory = self.summary_op(utterance.permute(1, 2, 0)).permute( - 2, 0, 1 - )[:1, :, :] + memory = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[ + :1, :, : + ] else: - memory = torch.empty(0).to( - dtype=utterance.dtype, device=utterance.device - ) - ( - output_right_context_utterance, - next_key, - next_val, - ) = self.attention.infer( + memory = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) + (output_right_context_utterance, next_key, next_val,) = self.attention.infer( utterance=utterance, right_context=right_context, memory=pre_memory, @@ -967,9 +935,7 @@ class EmformerEncoderLayer(nn.Module): left_context_val=left_context_val, padding_mask=padding_mask, ) - attn_cache = self._update_attn_cache( - next_key, next_val, memory, attn_cache - ) + attn_cache = self._update_attn_cache(next_key, next_val, memory, attn_cache) return output_right_context_utterance, attn_cache def forward( @@ -1226,9 +1192,7 @@ class EmformerEncoder(nn.Module): def _gen_right_context(self, x: torch.Tensor) -> torch.Tensor: """Hard copy each chunk's right context and concat them.""" T = x.shape[0] - num_chunks = math.ceil( - (T - self.right_context_length) / self.chunk_length - ) + num_chunks = math.ceil((T - self.right_context_length) / self.chunk_length) # first (num_chunks - 1) right context block intervals = torch.arange( 0, self.chunk_length * (num_chunks - 1), self.chunk_length @@ -1247,9 +1211,7 @@ class EmformerEncoder(nn.Module): right_context_blocks = x[indexes.reshape(-1)] return right_context_blocks - def _gen_attention_mask_col_widths( - self, chunk_idx: int, U: int - ) -> List[int]: + def _gen_attention_mask_col_widths(self, chunk_idx: int, U: int) -> List[int]: """Calculate column widths (key, value) in attention mask for the chunk_idx chunk.""" num_chunks = math.ceil(U / self.chunk_length) @@ -1549,12 +1511,8 @@ class EmformerEncoder(nn.Module): attn_caches = [ [ torch.zeros(self.memory_size, self.d_model, device=device), - torch.zeros( - self.left_context_length, self.d_model, device=device - ), - torch.zeros( - self.left_context_length, self.d_model, device=device - ), + torch.zeros(self.left_context_length, self.d_model, device=device), + torch.zeros(self.left_context_length, self.d_model, device=device), ] for _ in range(self.num_encoder_layers) ] @@ -1599,17 +1557,11 @@ class Emformer(EncoderInterface): raise NotImplementedError( "chunk_length must be a mutiple of subsampling_factor." ) - if ( - left_context_length != 0 - and left_context_length % subsampling_factor != 0 - ): + if left_context_length != 0 and left_context_length % subsampling_factor != 0: raise NotImplementedError( "left_context_length must be 0 or a mutiple of subsampling_factor." # noqa ) - if ( - right_context_length != 0 - and right_context_length % subsampling_factor != 0 - ): + if right_context_length != 0 and right_context_length % subsampling_factor != 0: raise NotImplementedError( "right_context_length must be 0 or a mutiple of subsampling_factor." # noqa ) @@ -1672,9 +1624,7 @@ class Emformer(EncoderInterface): x_lens = (((x_lens - 1) >> 1) - 1) >> 1 assert x.size(0) == x_lens.max().item() - output, output_lengths = self.encoder( - x, x_lens, warmup=warmup - ) # (T, N, C) + output, output_lengths = self.encoder(x, x_lens, warmup=warmup) # (T, N, C) output = output.permute(1, 0, 2) # (T, N, C) -> (N, T, C) diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py new file mode 100644 index 000000000..f0c92a9b4 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py @@ -0,0 +1,1780 @@ +# Copyright 2022 Xiaomi Corporation (Author: Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# It is modified based on +# 1) https://github.com/pytorch/audio/blob/main/torchaudio/models/emformer.py # noqa +# 2) https://github.com/pytorch/audio/blob/main/torchaudio/prototype/models/conv_emformer.py # noqa + +import math +from typing import List, Optional, Tuple + +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import ( + ActivationBalancer, + BasicNorm, + DoubleSwish, + ScaledConv1d, + ScaledConv2d, + ScaledLinear, +) + +from icefall.utils import make_pad_mask + +LOG_EPSILON = math.log(1e-10) + + +def unstack_states( + states: Tuple[List[List[torch.Tensor]], List[torch.Tensor]] +) -> List[Tuple[List[List[torch.Tensor]], List[torch.Tensor]]]: + """Unstack the emformer state corresponding to a batch of utterances + into a list of states, where the i-th entry is the state from the i-th + utterance in the batch. + + Args: + states: + A tuple of 2 elements. + ``states[0]`` is the attention caches of a batch of utterance. + ``states[1]`` is the convolution caches of a batch of utterance. + ``len(states[0])`` and ``len(states[1])`` both eqaul to number of layers. # noqa + + Returns: + A list of states. + ``states[i]`` is a tuple of 2 elements of i-th utterance. + ``states[i][0]`` is the attention caches of i-th utterance. + ``states[i][1]`` is the convolution caches of i-th utterance. + ``len(states[i][0])`` and ``len(states[i][1])`` both eqaul to number of layers. # noqa + """ + + attn_caches, conv_caches = states + batch_size = conv_caches[0].size(0) + num_layers = len(attn_caches) + + list_attn_caches = [None] * batch_size + for i in range(batch_size): + list_attn_caches[i] = [[] for _ in range(num_layers)] + for li, layer in enumerate(attn_caches): + for s in layer: + s_list = s.unbind(dim=1) + for bi, b in enumerate(list_attn_caches): + b[li].append(s_list[bi]) + + list_conv_caches = [None] * batch_size + for i in range(batch_size): + list_conv_caches[i] = [None] * num_layers + for li, layer in enumerate(conv_caches): + c_list = layer.unbind(dim=0) + for bi, b in enumerate(list_conv_caches): + b[li] = c_list[bi] + + ans = [None] * batch_size + for i in range(batch_size): + ans[i] = [list_attn_caches[i], list_conv_caches[i]] + + return ans + + +def stack_states( + state_list: List[Tuple[List[List[torch.Tensor]], List[torch.Tensor]]] +) -> Tuple[List[List[torch.Tensor]], List[torch.Tensor]]: + """Stack list of emformer states that correspond to separate utterances + into a single emformer state so that it can be used as an input for + emformer when those utterances are formed into a batch. + + Note: + It is the inverse of :func:`unstack_states`. + + Args: + state_list: + Each element in state_list corresponding to the internal state + of the emformer model for a single utterance. + ``states[i]`` is a tuple of 2 elements of i-th utterance. + ``states[i][0]`` is the attention caches of i-th utterance. + ``states[i][1]`` is the convolution caches of i-th utterance. + ``len(states[i][0])`` and ``len(states[i][1])`` both eqaul to number of layers. # noqa + + Returns: + A new state corresponding to a batch of utterances. + See the input argument of :func:`unstack_states` for the meaning + of the returned tensor. + """ + batch_size = len(state_list) + + attn_caches = [] + for layer in state_list[0][0]: + if batch_size > 1: + # Note: We will stack attn_caches[layer][s][] later to get attn_caches[layer][s] # noqa + attn_caches.append([[s] for s in layer]) + else: + attn_caches.append([s.unsqueeze(1) for s in layer]) + for b, states in enumerate(state_list[1:], 1): + for li, layer in enumerate(states[0]): + for si, s in enumerate(layer): + attn_caches[li][si].append(s) + if b == batch_size - 1: + attn_caches[li][si] = torch.stack(attn_caches[li][si], dim=1) + + conv_caches = [] + for layer in state_list[0][1]: + if batch_size > 1: + # Note: We will stack conv_caches[layer][] later to get conv_caches[layer] # noqa + conv_caches.append([layer]) + else: + conv_caches.append(layer.unsqueeze(0)) + for b, states in enumerate(state_list[1:], 1): + for li, layer in enumerate(states[1]): + conv_caches[li].append(layer) + if b == batch_size - 1: + conv_caches[li] = torch.stack(conv_caches[li], dim=0) + + return [attn_caches, conv_caches] + + +class ConvolutionModule(nn.Module): + """ConvolutionModule. + + Modified from https://github.com/pytorch/audio/blob/main/torchaudio/prototype/models/conv_emformer.py # noqa + + Args: + chunk_length (int): + Length of each chunk. + right_context_length (int): + Length of right context. + channels (int): + The number of input channels and output channels of conv layers. + kernel_size (int): + Kernerl size of conv layers. + bias (bool): + Whether to use bias in conv layers (default=True). + """ + + def __init__( + self, + chunk_length: int, + right_context_length: int, + channels: int, + kernel_size: int, + bias: bool = True, + ) -> None: + """Construct an ConvolutionModule object.""" + super().__init__() + # kernerl_size should be an odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0, kernel_size + + self.chunk_length = chunk_length + self.right_context_length = right_context_length + self.channels = channels + + self.pointwise_conv1 = ScaledConv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + # After pointwise_conv1 we put x through a gated linear unit + # (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in + # the range 1 to 4, but sometimes, for some reason, for layer 0 the rms + # ends up being very large, between 50 and 100 for different channels. + # This will cause very peaky and sparse derivatives for the sigmoid + # gating function, which will tend to make the loss function not learn + # effectively. (for most layers the average absolute values are in the + # range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for + # different layers, which likely breaks down as 0.5 for the "linear" + # half and 0.2 to 0.3 for the part that goes into the sigmoid. + # The idea is that if we constrain the rms values to a reasonable range + # via a constraint of max_abs=10.0, it will be in a better position to + # start learning something, i.e. to latch onto the correct range. + self.deriv_balancer1 = ActivationBalancer( + channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0 + ) + + # make it causal by padding cached (kernel_size - 1) frames on the left + self.cache_size = kernel_size - 1 + self.depthwise_conv = ScaledConv1d( + channels, + channels, + kernel_size, + stride=1, + padding=0, + groups=channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + channel_dim=1, min_positive=0.05, max_positive=1.0 + ) + + self.activation = DoubleSwish() + + self.pointwise_conv2 = ScaledConv1d( + channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.25, + ) + + def _split_right_context( + self, + pad_utterance: torch.Tensor, + right_context: torch.Tensor, + ) -> torch.Tensor: + """ + Args: + pad_utterance: + Its shape is (cache_size + U, B, D). + right_context: + Its shape is (R, B, D). + + Returns: + Right context segments padding with corresponding context. + Its shape is (num_segs * B, D, cache_size + right_context_length). + """ + U_, B, D = pad_utterance.size() + R = right_context.size(0) + assert self.right_context_length != 0 + assert R % self.right_context_length == 0 + num_chunks = R // self.right_context_length + right_context = right_context.reshape( + num_chunks, self.right_context_length, B, D + ) + right_context = right_context.permute(0, 2, 1, 3).reshape( + num_chunks * B, self.right_context_length, D + ) + + intervals = torch.arange( + 0, self.chunk_length * (num_chunks - 1), self.chunk_length + ) + first = torch.arange(self.chunk_length, self.chunk_length + self.cache_size) + indexes = intervals.unsqueeze(1) + first.unsqueeze(0) + indexes = torch.cat( + [indexes, torch.arange(U_ - self.cache_size, U_).unsqueeze(0)] + ) + padding = pad_utterance[indexes] # (num_chunks, cache_size, B, D) + padding = padding.permute(0, 2, 1, 3).reshape( + num_chunks * B, self.cache_size, D + ) + + pad_right_context = torch.cat([padding, right_context], dim=1) + # (num_chunks * B, cache_size + right_context_length, D) + return pad_right_context.permute(0, 2, 1) + + def _merge_right_context(self, right_context: torch.Tensor, B: int) -> torch.Tensor: + """ + Args: + right_context: + Right context segments. + It shape is (num_segs * B, D, right_context_length). + B: + Batch size. + + Returns: + A tensor of shape (B, D, R), where + R = num_segs * right_context_length. + """ + right_context = right_context.reshape( + -1, B, self.channels, self.right_context_length + ) + right_context = right_context.permute(1, 2, 0, 3) + right_context = right_context.reshape(B, self.channels, -1) + return right_context + + def forward( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Causal convolution module. + + Args: + utterance (torch.Tensor): + Utterance tensor of shape (U, B, D). + right_context (torch.Tensor): + Right context tensor of shape (R, B, D). + + Returns: + A tuple of 2 tensors: + - output utterance of shape (U, B, D). + - output right_context of shape (R, B, D). + """ + U, B, D = utterance.size() + R, _, _ = right_context.size() + + # point-wise conv and GLU mechanism + x = torch.cat([right_context, utterance], dim=0) # (R + U, B, D) + x = x.permute(1, 2, 0) # (B, D, R + U) + x = self.pointwise_conv1(x) # (B, 2 * D, R + U) + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (B, D, R + U) + utterance = x[:, :, R:] # (B, D, U) + right_context = x[:, :, :R] # (B, D, R) + + # make causal convolution + cache = torch.zeros(B, D, self.cache_size, device=x.device, dtype=x.dtype) + pad_utterance = torch.cat([cache, utterance], dim=2) # (B, D, cache + U) + + # depth-wise conv on utterance + utterance = self.depthwise_conv(pad_utterance) # (B, D, U) + + if self.right_context_length > 0: + # depth-wise conv on right_context + pad_right_context = self._split_right_context( + pad_utterance.permute(2, 0, 1), right_context.permute(2, 0, 1) + ) # (num_segs * B, D, cache_size + right_context_length) + right_context = self.depthwise_conv( + pad_right_context + ) # (num_segs * B, D, right_context_length) + right_context = self._merge_right_context(right_context, B) # (B, D, R) + + x = torch.cat([right_context, utterance], dim=2) # (B, D, R + U) + x = self.deriv_balancer2(x) + x = self.activation(x) + + # point-wise conv + x = self.pointwise_conv2(x) # (B, D, R + U) + + right_context = x[:, :, :R] # (B, D, R) + utterance = x[:, :, R:] # (B, D, U) + return ( + utterance.permute(2, 0, 1), + right_context.permute(2, 0, 1), + ) + + @torch.jit.export + def infer( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + cache: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Causal convolution module applied on both utterance and right_context. + + Args: + utterance (torch.Tensor): + Utterance tensor of shape (U, B, D). + right_context (torch.Tensor): + Right context tensor of shape (R, B, D). + cache (torch.Tensor, optional): + Cached tensor for left padding of shape (B, D, cache_size). + + Returns: + A tuple of 3 tensors: + - output utterance of shape (U, B, D). + - output right_context of shape (R, B, D). + - updated cache tensor of shape (B, D, cache_size). + """ + # U, B, D = utterance.size() + # R, _, _ = right_context.size() + U = self.chunk_length + B = 1 + D = self.channels + R = self.right_context_length + + # point-wise conv + x = torch.cat([utterance, right_context], dim=0) # (U + R, B, D) + x = x.permute(1, 2, 0) # (B, D, U + R) + x = self.pointwise_conv1(x) # (B, 2 * D, U + R) + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (B, D, U + R) + + # make causal convolution + assert cache.shape == (B, D, self.cache_size), cache.shape + x = torch.cat([cache, x], dim=2) # (B, D, cache_size + U + R) + # update cache + new_cache = x[:, :, -R - self.cache_size : -R] + + # 1-D depth-wise conv + x = self.depthwise_conv(x) # (B, D, U + R) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + # point-wise conv + x = self.pointwise_conv2(x) # (B, D, U + R) + + utterance = x[:, :, :U] # (B, D, U) + right_context = x[:, :, U:] # (B, D, R) + return ( + utterance.permute(2, 0, 1), + right_context.permute(2, 0, 1), + new_cache, + ) + + +class EmformerAttention(nn.Module): + r"""Emformer layer attention module. + + Args: + embed_dim (int): + Embedding dimension. + nhead (int): + Number of attention heads in each Emformer layer. + dropout (float, optional): + Dropout probability. (Default: 0.0) + tanh_on_mem (bool, optional): + If ``True``, applies tanh to memory elements. (Default: ``False``) + negative_inf (float, optional): + Value to use for negative infinity in attention weights. (Default: -1e8) + """ + + def __init__( + self, + embed_dim: int, + nhead: int, + left_context_length: int, + chunk_length: int, + right_context_length: int, + memory_size: int, + dropout: float = 0.0, + tanh_on_mem: bool = False, + negative_inf: float = -1e8, + ): + super().__init__() + + if embed_dim % nhead != 0: + raise ValueError( + f"embed_dim ({embed_dim}) is not a multiple of nhead ({nhead})." + ) + + self.embed_dim = embed_dim + self.nhead = nhead + self.tanh_on_mem = tanh_on_mem + self.negative_inf = negative_inf + self.head_dim = embed_dim // nhead + self.dropout = dropout + + self.left_context_length = left_context_length + self.right_context_length = right_context_length + self.chunk_length = chunk_length + self.memory_size = memory_size + + self.emb_to_key_value = ScaledLinear(embed_dim, 2 * embed_dim, bias=True) + self.emb_to_query = ScaledLinear(embed_dim, embed_dim, bias=True) + self.out_proj = ScaledLinear( + embed_dim, embed_dim, bias=True, initial_scale=0.25 + ) + + def _gen_attention_probs( + self, + attention_weights: torch.Tensor, + attention_mask: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + """Given the entire attention weights, mask out unecessary connections + and optionally with padding positions, to obtain underlying chunk-wise + attention probabilities. + + B: batch size; + Q: length of query; + KV: length of key and value. + + Args: + attention_weights (torch.Tensor): + Attention weights computed on the entire concatenated tensor + with shape (B * nhead, Q, KV). + attention_mask (torch.Tensor): + Mask tensor where chunk-wise connections are filled with `False`, + and other unnecessary connections are filled with `True`, + with shape (Q, KV). + padding_mask (torch.Tensor, optional): + Mask tensor where the padding positions are fill with `True`, + and other positions are filled with `False`, with shapa `(B, KV)`. + + Returns: + A tensor of shape (B * nhead, Q, KV). + """ + attention_weights_float = attention_weights.float() + attention_weights_float = attention_weights_float.masked_fill( + attention_mask.unsqueeze(0), self.negative_inf + ) + if padding_mask is not None: + Q = attention_weights.size(1) + B = attention_weights.size(0) // self.nhead + attention_weights_float = attention_weights_float.view(B, self.nhead, Q, -1) + attention_weights_float = attention_weights_float.masked_fill( + padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), + self.negative_inf, + ) + attention_weights_float = attention_weights_float.view( + B * self.nhead, Q, -1 + ) + + attention_probs = nn.functional.softmax( + attention_weights_float, dim=-1 + ).type_as(attention_weights) + + attention_probs = nn.functional.dropout( + attention_probs, p=self.dropout, training=self.training + ) + return attention_probs + + def _forward_impl( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + memory: torch.Tensor, + attention_mask: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + left_context_key: Optional[torch.Tensor] = None, + left_context_val: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Underlying chunk-wise attention implementation.""" + # U, B, _ = utterance.size() + # R = right_context.size(0) + # M = memory.size(0) + + U = self.chunk_length + B = 1 + R = self.right_context_length + M = self.memory_size + L = self.left_context_length + + scaling = float(self.head_dim) ** -0.5 + + # compute query with [right_context, utterance]. + query = self.emb_to_query(torch.cat([right_context, utterance])) + # compute key and value with [memory, right_context, utterance]. + key, value = self.emb_to_key_value( + torch.cat([memory, right_context, utterance]) + ).chunk(chunks=2, dim=2) + + if left_context_key is not None and left_context_val is not None: + # now compute key and value with + # [memory, right context, left context, uttrance] + # this is used in inference mode + key = torch.cat([key[: M + R], left_context_key, key[M + R :]]) + value = torch.cat([value[: M + R], left_context_val, value[M + R :]]) + + # Q = query.size(0) + Q = U + R + + # KV = key.size(0) + + reshaped_query = query.view(Q, self.nhead, self.head_dim).permute(1, 0, 2) + reshaped_key = key.view(M + R + U + L, self.nhead, self.head_dim).permute( + 1, 0, 2 + ) + reshaped_value = value.view(M + R + U + L, self.nhead, self.head_dim).permute( + 1, 0, 2 + ) + + # reshaped_query, reshaped_key, reshaped_value = [ + # tensor.contiguous().view(-1, B * self.nhead, self.head_dim).transpose(0, 1) + # for tensor in [query, key, value] + # ] # (B * nhead, Q or KV, head_dim) + attention_weights = torch.bmm( + reshaped_query * scaling, reshaped_key.permute(0, 2, 1) + ) # (B * nhead, Q, KV) + + # compute attention probabilities + if False: + attention_probs = self._gen_attention_probs( + attention_weights, attention_mask, padding_mask + ) + else: + attention_probs = nn.functional.softmax(attention_weights, dim=-1) + + # compute attention outputs + attention = torch.bmm(attention_probs, reshaped_value) + assert attention.shape == (B * self.nhead, Q, self.head_dim) + attention = attention.permute(1, 0, 2).reshape(-1, self.embed_dim) + # TODO(fangjun): ncnn does not support reshape(-1, 1, self.embed_dim) + # We have to change InnerProduct in ncnn to ignore the extra dim below + attention = attention.unsqueeze(1) + + # apply output projection + output_right_context_utterance = self.out_proj(attention) + # The return shape of output_right_context_utterance is (10, 1, 512) + + return output_right_context_utterance, key, value + + def forward( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + memory: torch.Tensor, + attention_mask: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + # TODO: Modify docs. + """Forward pass for training and validation mode. + + B: batch size; + D: embedding dimension; + R: length of the hard-copied right contexts; + U: length of full utterance; + M: length of memory vectors. + + It computes a `big` attention matrix on full utterance and + then utilizes a pre-computed mask to simulate chunk-wise attention. + + It concatenates three blocks: hard-copied right contexts, + and full utterance, as a `big` block, + to compute the query tensor: + query = [right_context, utterance], + with length Q = R + U. + It concatenates the three blocks: memory vectors, + hard-copied right contexts, and full utterance as another `big` block, + to compute the key and value tensors: + key & value = [memory, right_context, utterance], + with length KV = M + R + U. + Attention scores is computed with above `big` query and key. + + Then the underlying chunk-wise attention is obtained by applying + the attention mask. Suppose + c_i: chunk at index i; + r_i: right context that c_i can use; + l_i: left context that c_i can use; + m_i: past memory vectors from previous layer that c_i can use; + The target chunk-wise attention is: + c_i, r_i (in query) -> l_i, c_i, r_i, m_i (in key) + + Args: + utterance (torch.Tensor): + Full utterance frames, with shape (U, B, D). + right_context (torch.Tensor): + Hard-copied right context frames, with shape (R, B, D), + where R = num_chunks * right_context_length + memory (torch.Tensor): + Memory elements, with shape (M, B, D), where M = num_chunks - 1. + It is an empty tensor without using memory. + attention_mask (torch.Tensor): + Pre-computed attention mask to simulate underlying chunk-wise + attention, with shape (Q, KV). + padding_mask (torch.Tensor): + Padding mask of key tensor, with shape (B, KV). + + Returns: + Output of right context and utterance, with shape (R + U, B, D). + """ + output_right_context_utterance, _, _ = self._forward_impl( + utterance, + right_context, + memory, + attention_mask, + padding_mask=padding_mask, + ) + return output_right_context_utterance + + @torch.jit.export + def infer( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + memory: torch.Tensor, + left_context_key: torch.Tensor, + left_context_val: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Forward pass for inference. + + B: batch size; + D: embedding dimension; + R: length of right context; + U: length of utterance, i.e., current chunk; + L: length of cached left context; + M: length of cached memory vectors. + + It concatenates the right context and utterance (i.e., current chunk) + of current chunk, to compute the query tensor: + query = [right_context, utterance], + with length Q = R + U. + It concatenates the memory vectors, right context, left context, and + current chunk, to compute the key and value tensors: + key & value = [memory, right_context, left_context, utterance], + with length KV = M + R + L + U. + + The chunk-wise attention is: + chunk, right context (in query) -> + left context, chunk, right context, memory vectors (in key). + + Args: + utterance (torch.Tensor): + Current chunk frames, with shape (U, B, D), where U = chunk_length. + right_context (torch.Tensor): + Right context frames, with shape (R, B, D), + where R = right_context_length. + memory (torch.Tensor): + Memory vectors, with shape (M, B, D), or empty tensor. + left_context_key (torch,Tensor): + Cached attention key of left context from preceding computation, + with shape (L, B, D). + left_context_val (torch.Tensor): + Cached attention value of left context from preceding computation, + with shape (L, B, D). + padding_mask (torch.Tensor): + Padding mask of key tensor, with shape (B, KV). + + Returns: + A tuple containing 4 tensors: + - output of right context and utterance, with shape (R + U, B, D). + - attention key of left context and utterance, which would be cached + for next computation, with shape (L + U, B, D). + - attention value of left context and utterance, which would be + cached for next computation, with shape (L + U, B, D). + """ + # U = utterance.size(0) + # R = right_context.size(0) + # L = left_context_key.size(0) + # M = memory.size(0) + + U = self.chunk_length + R = self.right_context_length + L = self.left_context_length + M = self.memory_size + + # query = [right context, utterance] + Q = R + U + # key, value = [memory, right context, left context, utterance] + KV = M + R + L + U + attention_mask = torch.zeros(Q, KV).to( + dtype=torch.bool, device=utterance.device + ) + + output_right_context_utterance, key, value = self._forward_impl( + utterance, + right_context, + memory, + attention_mask, + padding_mask=padding_mask, + left_context_key=left_context_key, + left_context_val=left_context_val, + ) + return ( + output_right_context_utterance, + key[M + R :], + value[M + R :], + ) + + +class EmformerEncoderLayer(nn.Module): + """Emformer layer that constitutes Emformer. + + Args: + d_model (int): + Input dimension. + nhead (int): + Number of attention heads. + dim_feedforward (int): + Hidden layer dimension of feedforward network. + chunk_length (int): + Length of each input segment. + dropout (float, optional): + Dropout probability. (Default: 0.0) + layer_dropout (float, optional): + Layer dropout probability. (Default: 0.0) + cnn_module_kernel (int): + Kernel size of convolution module. + left_context_length (int, optional): + Length of left context. (Default: 0) + right_context_length (int, optional): + Length of right context. (Default: 0) + memory_size (int, optional): + Number of memory elements to use. (Default: 0) + tanh_on_mem (bool, optional): + If ``True``, applies tanh to memory elements. (Default: ``False``) + negative_inf (float, optional): + Value to use for negative infinity in attention weights. (Default: -1e8) + """ + + def __init__( + self, + d_model: int, + nhead: int, + dim_feedforward: int, + chunk_length: int, + dropout: float = 0.1, + layer_dropout: float = 0.075, + cnn_module_kernel: int = 31, + left_context_length: int = 0, + right_context_length: int = 0, + memory_size: int = 0, + tanh_on_mem: bool = False, + negative_inf: float = -1e8, + ): + super().__init__() + + self.attention = EmformerAttention( + embed_dim=d_model, + nhead=nhead, + left_context_length=left_context_length, + chunk_length=chunk_length, + memory_size=memory_size, + right_context_length=right_context_length, + dropout=dropout, + tanh_on_mem=tanh_on_mem, + negative_inf=negative_inf, + ) + self.summary_op = nn.AvgPool1d( + kernel_size=chunk_length, stride=chunk_length, ceil_mode=True + ) + + self.feed_forward_macaron = nn.Sequential( + ScaledLinear(d_model, dim_feedforward), + ActivationBalancer(channel_dim=-1), + DoubleSwish(), + nn.Dropout(dropout), + ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), + ) + + self.feed_forward = nn.Sequential( + ScaledLinear(d_model, dim_feedforward), + ActivationBalancer(channel_dim=-1), + DoubleSwish(), + nn.Dropout(dropout), + ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), + ) + + self.conv_module = ConvolutionModule( + chunk_length, + right_context_length, + d_model, + cnn_module_kernel, + ) + + self.norm_final = BasicNorm(d_model) + + # try to ensure the output is close to zero-mean + # (or at least, zero-median). + self.balancer = ActivationBalancer( + channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0 + ) + + self.dropout = nn.Dropout(dropout) + + self.layer_dropout = layer_dropout + self.left_context_length = left_context_length + self.right_context_length = right_context_length + self.chunk_length = chunk_length + self.memory_size = memory_size + self.d_model = d_model + self.use_memory = memory_size > 0 + + def _update_attn_cache( + self, + next_key: torch.Tensor, + next_val: torch.Tensor, + memory: torch.Tensor, + attn_cache: List[torch.Tensor], + ) -> List[torch.Tensor]: + """Update cached attention state: + 1) output memory of current chunk in the lower layer; + 2) attention key and value in current chunk's computation, which would + be reused in next chunk's computation. + """ + # attn_cache[0].shape (self.memory_size, 1, 512) + # memory.shape (1, 1, 512) + # attn_cache[1].shape (self.left_context_length, 1, 512) + # attn_cache[2].shape (self.left_context_length, 1, 512) + # next_key.shape (self.left_context_length + self.right_context_utterance, 1, 512) + # next_value.shape (self.left_context_length + self.right_context_utterance, 1, 512) + new_memory = torch.cat([attn_cache[0], memory]) + # TODO(fangjun): Remove torch.cat + # new_key = torch.cat([attn_cache[1], next_key]) + # new_val = torch.cat([attn_cache[2], next_val]) + attn_cache[0] = new_memory[1:] + attn_cache[1] = next_key[-self.left_context_length :] + attn_cache[2] = next_val[-self.left_context_length :] + return attn_cache + + def _apply_conv_module_forward( + self, + right_context_utterance: torch.Tensor, + R: int, + ) -> torch.Tensor: + """Apply convolution module in training and validation mode.""" + utterance = right_context_utterance[R:] + right_context = right_context_utterance[:R] + utterance, right_context = self.conv_module(utterance, right_context) + right_context_utterance = torch.cat([right_context, utterance]) + return right_context_utterance + + def _apply_conv_module_infer( + self, + right_context_utterance: torch.Tensor, + R: int, + conv_cache: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Apply convolution module on utterance in inference mode.""" + utterance = right_context_utterance[R:] + right_context = right_context_utterance[:R] + utterance, right_context, conv_cache = self.conv_module.infer( + utterance, right_context, conv_cache + ) + right_context_utterance = torch.cat([right_context, utterance]) + return right_context_utterance, conv_cache + + def _apply_attention_module_forward( + self, + right_context_utterance: torch.Tensor, + R: int, + attention_mask: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + """Apply attention module in training and validation mode.""" + utterance = right_context_utterance[R:] + right_context = right_context_utterance[:R] + + if self.use_memory: + memory = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[ + :-1, :, : + ] + else: + memory = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) + output_right_context_utterance = self.attention( + utterance=utterance, + right_context=right_context, + memory=memory, + attention_mask=attention_mask, + padding_mask=padding_mask, + ) + + return output_right_context_utterance + + def _apply_attention_module_infer( + self, + right_context_utterance: torch.Tensor, + R: int, + attn_cache: List[torch.Tensor], + padding_mask: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, List[torch.Tensor]]: + """Apply attention module in inference mode. + 1) Unpack cached states including: + - memory from previous chunks; + - attention key and value of left context from preceding + chunk's compuation; + 2) Apply attention computation; + 3) Update cached attention states including: + - memory of current chunk; + - attention key and value in current chunk's computation, which would + be resued in next chunk's computation. + """ + utterance = right_context_utterance[R:] + right_context = right_context_utterance[:R] + + pre_memory = attn_cache[0] + left_context_key = attn_cache[1] + left_context_val = attn_cache[2] + + if self.use_memory: + memory = torch.mean(utterance, dim=0, keepdim=True) + + # memory = self.summary_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[ + # :1, :, : + # ] + else: + memory = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device) + (output_right_context_utterance, next_key, next_val) = self.attention.infer( + utterance=utterance, + right_context=right_context, + memory=pre_memory, + left_context_key=left_context_key, + left_context_val=left_context_val, + padding_mask=padding_mask, + ) + attn_cache = self._update_attn_cache(next_key, next_val, memory, attn_cache) + return output_right_context_utterance, attn_cache + + def forward( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + attention_mask: torch.Tensor, + padding_mask: Optional[torch.Tensor] = None, + warmup: float = 1.0, + ) -> Tuple[torch.Tensor, torch.Tensor]: + r"""Forward pass for training and validation mode. + + B: batch size; + D: embedding dimension; + R: length of hard-copied right contexts; + U: length of full utterance; + M: length of memory vectors. + + Args: + utterance (torch.Tensor): + Utterance frames, with shape (U, B, D). + right_context (torch.Tensor): + Right context frames, with shape (R, B, D). + attention_mask (torch.Tensor): + Attention mask for underlying attention module, + with shape (Q, KV), where Q = R + U, KV = M + R + U. + padding_mask (torch.Tensor): + Padding mask of ker tensor, with shape (B, KV). + + Returns: + A tuple containing 2 tensors: + - output utterance, with shape (U, B, D). + - output right context, with shape (R, B, D). + """ + R = right_context.size(0) + src = torch.cat([right_context, utterance]) + src_orig = src + + warmup_scale = min(0.1 + warmup, 1.0) + # alpha = 1.0 means fully use this encoder layer, 0.0 would mean + # completely bypass it. + if self.training: + alpha = ( + warmup_scale + if torch.rand(()).item() <= (1.0 - self.layer_dropout) + else 0.1 + ) + else: + alpha = 1.0 + + # macaron style feed forward module + src = src + self.dropout(self.feed_forward_macaron(src)) + + # emformer attention module + src_att = self._apply_attention_module_forward( + src, R, attention_mask, padding_mask=padding_mask + ) + src = src + self.dropout(src_att) + + # convolution module + src_conv = self._apply_conv_module_forward(src, R) + src = src + self.dropout(src_conv) + + # feed forward module + src = src + self.dropout(self.feed_forward(src)) + + src = self.norm_final(self.balancer(src)) + + if alpha != 1.0: + src = alpha * src + (1 - alpha) * src_orig + + output_utterance = src[R:] + output_right_context = src[:R] + return output_utterance, output_right_context + + @torch.jit.export + def infer( + self, + utterance: torch.Tensor, + right_context: torch.Tensor, + cache: List[torch.Tensor], + padding_mask: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]: + """Forward pass for inference. + + B: batch size; + D: embedding dimension; + R: length of right_context; + U: length of utterance; + M: length of memory. + + Args: + utterance (torch.Tensor): + Utterance frames, with shape (U, B, D). + right_context (torch.Tensor): + Right context frames, with shape (R, B, D). + attn_cache (List[torch.Tensor]): + Cached attention tensors generated in preceding computation, + including memory, key and value of left context. + conv_cache (torch.Tensor, optional): + Cache tensor of left context for causal convolution. + padding_mask (torch.Tensor): + Padding mask of ker tensor. + + Returns: + (Tensor, Tensor, List[torch.Tensor], Tensor): + - output utterance, with shape (U, B, D); + - output right_context, with shape (R, B, D); + - output attention cache; + - output convolution cache. + """ + R = self.right_context_length + src = torch.cat([right_context, utterance]) + attn_cache = cache[:3] + conv_cache = cache[3] + + # macaron style feed forward module + src = src + self.dropout(self.feed_forward_macaron(src)) + + # emformer attention module + src_att, attn_cache = self._apply_attention_module_infer( + src, R, attn_cache, padding_mask=padding_mask + ) + src = src + self.dropout(src_att) + + # convolution module + src_conv, conv_cache = self._apply_conv_module_infer(src, R, conv_cache) + src = src + self.dropout(src_conv) + + # feed forward module + src = src + self.dropout(self.feed_forward(src)) + + src = self.norm_final(self.balancer(src)) + + output_utterance = src[R:] + output_right_context = src[:R] + return (output_utterance, output_right_context, attn_cache + [conv_cache]) + + +def _gen_attention_mask_block( + col_widths: List[int], + col_mask: List[bool], + num_rows: int, + device: torch.device, +) -> torch.Tensor: + assert len(col_widths) == len( + col_mask + ), "Length of col_widths must match that of col_mask" + + mask_block = [ + torch.ones(num_rows, col_width, device=device) + if is_ones_col + else torch.zeros(num_rows, col_width, device=device) + for col_width, is_ones_col in zip(col_widths, col_mask) + ] + return torch.cat(mask_block, dim=1) + + +class EmformerEncoder(nn.Module): + """Implements the Emformer architecture introduced in + *Emformer: Efficient Memory Transformer Based Acoustic Model for Low Latency + Streaming Speech Recognition* + [:footcite:`shi2021emformer`]. + + In this model, the memory bank computation is simplifed, using the averaged + value of each chunk as its memory vector. + + Args: + d_model (int): + Input dimension. + nhead (int): + Number of attention heads in each emformer layer. + dim_feedforward (int): + Hidden layer dimension of each emformer layer's feedforward network. + num_encoder_layers (int): + Number of emformer layers to instantiate. + chunk_length (int): + Length of each input segment. + dropout (float, optional): + Dropout probability. (default: 0.0) + layer_dropout (float, optional): + Layer dropout probability. (default: 0.0) + cnn_module_kernel (int): + Kernel size of convolution module. + left_context_length (int, optional): + Length of left context. (default: 0) + right_context_length (int, optional): + Length of right context. (default: 0) + memory_size (int, optional): + Number of memory elements to use. (default: 0) + tanh_on_mem (bool, optional): + If ``true``, applies tanh to memory elements. (default: ``false``) + negative_inf (float, optional): + Value to use for negative infinity in attention weights. (default: -1e8) + """ + + def __init__( + self, + chunk_length: int, + d_model: int = 256, + nhead: int = 4, + dim_feedforward: int = 2048, + num_encoder_layers: int = 12, + dropout: float = 0.1, + layer_dropout: float = 0.075, + cnn_module_kernel: int = 31, + left_context_length: int = 0, + right_context_length: int = 0, + memory_size: int = 0, + tanh_on_mem: bool = False, + negative_inf: float = -1e8, + ): + super().__init__() + + assert ( + chunk_length - 1 + ) & chunk_length == 0, "chunk_length should be a power of 2." + self.shift = int(math.log(chunk_length, 2)) + + self.use_memory = memory_size > 0 + + self.emformer_layers = nn.ModuleList( + [ + EmformerEncoderLayer( + d_model=d_model, + nhead=nhead, + dim_feedforward=dim_feedforward, + chunk_length=chunk_length, + dropout=dropout, + layer_dropout=layer_dropout, + cnn_module_kernel=cnn_module_kernel, + left_context_length=left_context_length, + right_context_length=right_context_length, + memory_size=memory_size, + tanh_on_mem=tanh_on_mem, + negative_inf=negative_inf, + ) + for layer_idx in range(num_encoder_layers) + ] + ) + + self.num_encoder_layers = num_encoder_layers + self.d_model = d_model + self.left_context_length = left_context_length + self.right_context_length = right_context_length + self.chunk_length = chunk_length + self.memory_size = memory_size + self.cnn_module_kernel = cnn_module_kernel + + def _gen_right_context(self, x: torch.Tensor) -> torch.Tensor: + """Hard copy each chunk's right context and concat them.""" + T = x.shape[0] + num_chunks = math.ceil((T - self.right_context_length) / self.chunk_length) + # first (num_chunks - 1) right context block + intervals = torch.arange( + 0, self.chunk_length * (num_chunks - 1), self.chunk_length + ) + first = torch.arange( + self.chunk_length, self.chunk_length + self.right_context_length + ) + indexes = intervals.unsqueeze(1) + first.unsqueeze(0) + # cat last right context block + indexes = torch.cat( + [ + indexes, + torch.arange(T - self.right_context_length, T).unsqueeze(0), + ] + ) + right_context_blocks = x[indexes.reshape(-1)] + return right_context_blocks + + def _gen_attention_mask_col_widths(self, chunk_idx: int, U: int) -> List[int]: + """Calculate column widths (key, value) in attention mask for the + chunk_idx chunk.""" + num_chunks = math.ceil(U / self.chunk_length) + rc = self.right_context_length + lc = self.left_context_length + rc_start = chunk_idx * rc + rc_end = rc_start + rc + chunk_start = max(chunk_idx * self.chunk_length - lc, 0) + chunk_end = min((chunk_idx + 1) * self.chunk_length, U) + R = rc * num_chunks + + if self.use_memory: + m_start = max(chunk_idx - self.memory_size, 0) + M = num_chunks - 1 + col_widths = [ + m_start, # before memory + chunk_idx - m_start, # memory + M - chunk_idx, # after memory + rc_start, # before right context + rc, # right context + R - rc_end, # after right context + chunk_start, # before chunk + chunk_end - chunk_start, # chunk + U - chunk_end, # after chunk + ] + else: + col_widths = [ + rc_start, # before right context + rc, # right context + R - rc_end, # after right context + chunk_start, # before chunk + chunk_end - chunk_start, # chunk + U - chunk_end, # after chunk + ] + + return col_widths + + def _gen_attention_mask(self, utterance: torch.Tensor) -> torch.Tensor: + """Generate attention mask to simulate underlying chunk-wise attention + computation, where chunk-wise connections are filled with `False`, + and other unnecessary connections beyond chunk are filled with `True`. + + R: length of hard-copied right contexts; + U: length of full utterance; + M: length of memory vectors; + Q: length of attention query; + KV: length of attention key and value. + + The shape of attention mask is (Q, KV). + If self.use_memory is `True`: + query = [right_context, utterance]; + key, value = [memory, right_context, utterance]; + Q = R + U, KV = M + R + U. + Otherwise: + query = [right_context, utterance] + key, value = [right_context, utterance] + Q = R + U, KV = R + U. + + Suppose: + c_i: chunk at index i; + r_i: right context that c_i can use; + l_i: left context that c_i can use; + m_i: past memory vectors from previous layer that c_i can use; + The target chunk-wise attention is: + c_i, r_i (in query) -> l_i, c_i, r_i, m_i (in key). + """ + U = utterance.size(0) + num_chunks = math.ceil(U / self.chunk_length) + + right_context_mask = [] + utterance_mask = [] + + if self.use_memory: + num_cols = 9 + # right context and utterance both attend to memory, right context, + # utterance + right_context_utterance_cols_mask = [ + idx in [1, 4, 7] for idx in range(num_cols) + ] + else: + num_cols = 6 + # right context and utterance both attend to right context and + # utterance + right_context_utterance_cols_mask = [ + idx in [1, 4] for idx in range(num_cols) + ] + masks_to_concat = [right_context_mask, utterance_mask] + + for chunk_idx in range(num_chunks): + col_widths = self._gen_attention_mask_col_widths(chunk_idx, U) + + right_context_mask_block = _gen_attention_mask_block( + col_widths, + right_context_utterance_cols_mask, + self.right_context_length, + utterance.device, + ) + right_context_mask.append(right_context_mask_block) + + utterance_mask_block = _gen_attention_mask_block( + col_widths, + right_context_utterance_cols_mask, + min( + self.chunk_length, + U - chunk_idx * self.chunk_length, + ), + utterance.device, + ) + utterance_mask.append(utterance_mask_block) + + attention_mask = ( + 1 - torch.cat([torch.cat(mask) for mask in masks_to_concat]) + ).to(torch.bool) + return attention_mask + + def _forward( + self, x: torch.Tensor, lengths: torch.Tensor, warmup: float = 1.0 + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Forward pass for training and validation mode. + + B: batch size; + D: input dimension; + U: length of utterance. + + Args: + x (torch.Tensor): + Utterance frames right-padded with right context frames, + with shape (U + right_context_length, B, D). + lengths (torch.Tensor): + With shape (B,) and i-th element representing number of valid + utterance frames for i-th batch element in x, which contains the + right_context at the end. + + Returns: + A tuple of 2 tensors: + - output utterance frames, with shape (U, B, D). + - output_lengths, with shape (B,), without containing the + right_context at the end. + """ + U = x.size(0) - self.right_context_length + + right_context = self._gen_right_context(x) + utterance = x[:U] + output_lengths = torch.clamp(lengths - self.right_context_length, min=0) + attention_mask = self._gen_attention_mask(utterance) + + M = ( + right_context.size(0) // self.right_context_length - 1 + if self.use_memory + else 0 + ) + padding_mask = make_pad_mask(M + right_context.size(0) + output_lengths) + + output = utterance + for layer in self.emformer_layers: + output, right_context = layer( + output, + right_context, + attention_mask, + padding_mask=padding_mask, + warmup=warmup, + ) + + return output, output_lengths + + @torch.jit.export + def infer( + self, + x: torch.Tensor, + states: List[torch.Tensor], + ) -> Tuple[torch.Tensor, List[torch.Tensor]]: + """Forward pass for streaming inference. + + B: batch size; + D: input dimension; + U: length of utterance. + + Args: + x (torch.Tensor): + Utterance frames right-padded with right context frames, + with shape (U + right_context_length, B, D). + lengths (torch.Tensor): + With shape (B,) and i-th element representing number of valid + utterance frames for i-th batch element in x, which contains the + right_context at the end. + states (List[torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]]: # noqa + Cached states containing: + - attn_caches: attention states from preceding chunk's computation, + where each element corresponds to each emformer layer + - conv_caches: left context for causal convolution, where each + element corresponds to each layer. + + Returns: + (Tensor, Tensor, List[List[torch.Tensor]], List[torch.Tensor]): + - output utterance frames, with shape (U, B, D). + - output lengths, with shape (B,), without containing the + right_context at the end. + - updated states from current chunk's computation. + """ + # lengths = chunk_length + right_context_length + utterance = x[: self.chunk_length] + right_context = x[self.chunk_length :] + # right_context_utterance = torch.cat([right_context, utterance]) + + output = utterance + output_states: List[torch.Tensor] = [] + for layer_idx, layer in enumerate(self.emformer_layers): + start = layer_idx * 4 + end = start + 4 + cache = states[start:end] + + (output, right_context, output_cache,) = layer.infer( + output, + right_context, + padding_mask=None, + cache=cache, + ) + output_states.extend(output_cache) + + return output, output_states + + @torch.jit.export + def init_states( + self, device: torch.device = torch.device("cpu") + ) -> List[torch.Tensor]: + """Create initial states.""" + # + states = [] + # layer0: attn cache, conv cache, 3 tensors + 1 tensor + # layer1: attn cache, conv cache, 3 tensors + 1 tensor + # layer2: attn cache, conv cache, 3 tensors + 1 tensor + # ... + # last layer: attn cache, conv cache, 3 tensors + 1 tensor + for i in range(self.num_encoder_layers): + states.append(torch.zeros(self.memory_size, 1, self.d_model, device=device)) + states.append( + torch.zeros(self.left_context_length, 1, self.d_model, device=device) + ) + states.append( + torch.zeros(self.left_context_length, 1, self.d_model, device=device) + ) + + states.append( + torch.zeros(1, self.d_model, self.cnn_module_kernel - 1, device=device) + ) + return states + + +class Emformer(EncoderInterface): + def __init__( + self, + num_features: int, + chunk_length: int, + subsampling_factor: int = 4, + d_model: int = 256, + nhead: int = 4, + dim_feedforward: int = 2048, + num_encoder_layers: int = 12, + dropout: float = 0.1, + layer_dropout: float = 0.075, + cnn_module_kernel: int = 3, + left_context_length: int = 0, + right_context_length: int = 0, + memory_size: int = 0, + tanh_on_mem: bool = False, + negative_inf: float = -1e8, + is_pnnx: bool = True, + ): + super().__init__() + + self.subsampling_factor = subsampling_factor + self.right_context_length = right_context_length + self.chunk_length = chunk_length + if subsampling_factor != 4: + raise NotImplementedError("Support only 'subsampling_factor=4'.") + if chunk_length % subsampling_factor != 0: + raise NotImplementedError( + "chunk_length must be a mutiple of subsampling_factor." + ) + if left_context_length != 0 and left_context_length % subsampling_factor != 0: + raise NotImplementedError( + "left_context_length must be 0 or a mutiple of subsampling_factor." # noqa + ) + if right_context_length != 0 and right_context_length % subsampling_factor != 0: + raise NotImplementedError( + "right_context_length must be 0 or a mutiple of subsampling_factor." # noqa + ) + + # self.encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, T//subsampling_factor, d_model). + # That is, it does two things simultaneously: + # (1) subsampling: T -> T//subsampling_factor + # (2) embedding: num_features -> d_model + self.encoder_embed = Conv2dSubsampling(num_features, d_model, is_pnnx=is_pnnx) + self.is_pnnx = is_pnnx + + self.encoder = EmformerEncoder( + chunk_length=chunk_length // subsampling_factor, + d_model=d_model, + nhead=nhead, + dim_feedforward=dim_feedforward, + num_encoder_layers=num_encoder_layers, + dropout=dropout, + layer_dropout=layer_dropout, + cnn_module_kernel=cnn_module_kernel, + left_context_length=left_context_length // subsampling_factor, + right_context_length=right_context_length // subsampling_factor, + memory_size=memory_size, + tanh_on_mem=tanh_on_mem, + negative_inf=negative_inf, + ) + + def _forward( + self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0 + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Forward pass for training and non-streaming inference. + + B: batch size; + D: feature dimension; + T: length of utterance. + + Args: + x (torch.Tensor): + Utterance frames right-padded with right context frames, + with shape (B, T, D). + x_lens (torch.Tensor): + With shape (B,) and i-th element representing number of valid + utterance frames for i-th batch element in x, containing the + right_context at the end. + warmup: + A floating point value that gradually increases from 0 throughout + training; when it is >= 1.0 we are "fully warmed up". It is used + to turn modules on sequentially. + + Returns: + (Tensor, Tensor): + - output embedding, with shape (B, T', D), where + T' = ((T - 1) // 2 - 1) // 2 - self.right_context_length // 4. + - output lengths, with shape (B,), without containing the + right_context at the end. + """ + x = self.encoder_embed(x) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + x_lens = (((x_lens - 1) >> 1) - 1) >> 1 + assert x.size(0) == x_lens.max().item() + + output, output_lengths = self.encoder(x, x_lens, warmup=warmup) # (T, N, C) + + output = output.permute(1, 0, 2) # (T, N, C) -> (N, T, C) + + return output, output_lengths + + def forward( + self, + x: torch.Tensor, + states: List[torch.Tensor], + ) -> Tuple[torch.Tensor, List[torch.Tensor]]: + """Forward pass for streaming inference. + + B: batch size; + D: feature dimension; + T: length of utterance. + + Args: + x (torch.Tensor): + Utterance frames right-padded with right context frames, + with shape (B, T, D). + lengths (torch.Tensor): + With shape (B,) and i-th element representing number of valid + utterance frames for i-th batch element in x, containing the + right_context at the end. + states (List[torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]]: # noqa + Cached states containing: + - past_lens: number of past frames for each sample in batch + - attn_caches: attention states from preceding chunk's computation, + where each element corresponds to each emformer layer + - conv_caches: left context for causal convolution, where each + element corresponds to each layer. + Returns: + (Tensor, Tensor): + - output embedding, with shape (B, T', D), where + T' = ((T - 1) // 2 - 1) // 2 - self.right_context_length // 4. + - output lengths, with shape (B,), without containing the + right_context at the end. + - updated states from current chunk's computation. + """ + x = self.encoder_embed(x) + # drop the first and last frames + x = x[:, 1:-1, :] + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + # Caution: We assume the subsampling factor is 4! + + output, output_states = self.encoder.infer(x, states) + + output = output.permute(1, 0, 2) # (T, N, C) -> (N, T, C) + + return output, output_states + + @torch.jit.export + def init_states( + self, device: torch.device = torch.device("cpu") + ) -> List[torch.Tensor]: + """Create initial states.""" + return self.encoder.init_states(device) + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/4 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = ((T-1)//2 - 1)//2, which approximates T' == T//4 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + is_pnnx: bool = False, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, ((T-1)//2 - 1)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer1_channels: + Number of channels in layer2 + is_pnnx: + True if we are converting the model to PNNX format. + False otherwise. + """ + assert in_channels >= 7 + super().__init__() + + self.conv = nn.Sequential( + ScaledConv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=1, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ScaledConv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ScaledConv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=2, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ) + self.out = ScaledLinear( + layer3_channels * (((in_channels - 1) // 2 - 1) // 2), out_channels + ) + # set learn_eps=False because out_norm is preceded by `out`, and `out` + # itself has learned scale, so the extra degree of freedom is not + # needed. + self.out_norm = BasicNorm(out_channels, learn_eps=False) + # constrain median of output to be close to zero. + self.out_balancer = ActivationBalancer( + channel_dim=-1, min_positive=0.45, max_positive=0.55 + ) + + # ncnn supports only batch size == 1 + self.is_pnnx = is_pnnx + self.conv_out_dim = self.out.weight.shape[1] + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + + Returns: + Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + x = self.conv(x) + + if torch.jit.is_tracing() and self.is_pnnx: + x = x.permute(0, 2, 1, 3).reshape(1, -1, self.conv_out_dim) + x = self.out(x) + else: + # Now x is of shape (N, odim, ((T-1)//2-1)//2, ((idim-1)//2-1)//2) + b, c, t, f = x.size() + x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) + # Now x is of shape (N, ((T-1)//2 - 1))//2, odim) + x = self.out_norm(x) + x = self.out_balancer(x) + return x diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export-for-ncnn.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export-for-ncnn.py new file mode 100755 index 000000000..64c16141c --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export-for-ncnn.py @@ -0,0 +1,334 @@ +#!/usr/bin/env python3 + +""" +Usage: +./conv_emformer_transducer_stateless2/export-for-ncnn.py \ + --exp-dir ./conv_emformer_transducer_stateless2/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 10 \ + --use-averaged-model=True \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + +cd ./conv_emformer_transducer_stateless2/exp +pnnx encoder_jit_trace-pnnx.pt +pnnx decoder_jit_trace-pnnx.pt +pnnx joiner_jit_trace-pnnx.pt + +You can find converted models at +https://huggingface.co/csukuangfj/sherpa-ncnn-conv-emformer-transducer-2022-12-04 + +See ./streaming-ncnn-decode.py +and +https://github.com/k2-fsa/sherpa-ncnn +for usage. +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train2 import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for averaging. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + add_model_arguments(parser) + + return parser + + +def export_encoder_model_jit_trace( + encoder_model: torch.nn.Module, + encoder_filename: str, +) -> None: + """Export the given encoder model with torch.jit.trace() + + Note: The warmup argument is fixed to 1. + + Args: + encoder_model: + The input encoder model + encoder_filename: + The filename to save the exported model. + """ + chunk_length = encoder_model.chunk_length # before subsampling + right_context_length = encoder_model.right_context_length # before subsampling + pad_length = right_context_length + 2 * 4 + 3 + s = f"chunk_length: {chunk_length}, " + s += f"right_context_length: {right_context_length}\n" + logging.info(s) + + T = chunk_length + pad_length + + x = torch.zeros(1, T, 80, dtype=torch.float32) + states = encoder_model.init_states() + + traced_model = torch.jit.trace(encoder_model, (x, states)) + traced_model.save(encoder_filename) + logging.info(f"Saved to {encoder_filename}") + + +def export_decoder_model_jit_trace( + decoder_model: torch.nn.Module, + decoder_filename: str, +) -> None: + """Export the given decoder model with torch.jit.trace() + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The input decoder model + decoder_filename: + The filename to save the exported model. + """ + y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) + need_pad = torch.tensor([False]) + + traced_model = torch.jit.trace(decoder_model, (y, need_pad)) + traced_model.save(decoder_filename) + logging.info(f"Saved to {decoder_filename}") + + +def export_joiner_model_jit_trace( + joiner_model: torch.nn.Module, + joiner_filename: str, +) -> None: + """Export the given joiner model with torch.jit.trace() + + Note: The argument project_input is fixed to True. A user should not + project the encoder_out/decoder_out by himself/herself. The exported joiner + will do that for the user. + + Args: + joiner_model: + The input joiner model + joiner_filename: + The filename to save the exported model. + + """ + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + + traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out)) + traced_model.save(joiner_filename) + logging.info(f"Saved to {joiner_filename}") + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.trace()") + + logging.info("Exporting encoder") + encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt" + export_encoder_model_jit_trace(model.encoder, encoder_filename) + + logging.info("Exporting decoder") + decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt" + export_decoder_model_jit_trace(model.decoder, decoder_filename) + + logging.info("Exporting joiner") + joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt" + export_joiner_model_jit_trace(model.joiner, joiner_filename) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py index ab15e0241..949214aec 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py @@ -136,8 +136,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -181,9 +180,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -210,9 +209,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -279,9 +278,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/jit_pretrained.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/jit_pretrained.py new file mode 100755 index 000000000..1fe358c79 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/jit_pretrained.py @@ -0,0 +1,292 @@ +#!/usr/bin/env python3 +# flake8: noqa +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models exported by `torch.jit.trace()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./conv_emformer_transducer_stateless2/export-for-ncnn.py \ + --exp-dir ./conv_emformer_transducer_stateless2/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +./conv_emformer_transducer_stateless2/jit_pretrained.py \ + --encoder-model-filename ./conv_emformer_transducer_stateless2/exp/encoder_jit_trace-pnnx.pt \ + --decoder-model-filename ./conv_emformer_transducer_stateless2/exp/decoder_jit_trace-pnnx.pt \ + --joiner-model-filename ./conv_emformer_transducer_stateless2/exp/joiner_jit_trace-pnnx.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature +from torch.nn.utils.rnn import pad_sequence +from typing import Optional, List + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--encoder-model-filename", + type=str, + required=True, + help="Path to the encoder torchscript model. ", + ) + + parser.add_argument( + "--decoder-model-filename", + type=str, + required=True, + help="Path to the decoder torchscript model. ", + ) + + parser.add_argument( + "--joiner-model-filename", + type=str, + required=True, + help="Path to the joiner torchscript model. ", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_file", + type=str, + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="Context size of the decoder model", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + decoder: torch.jit.ScriptModule, + joiner: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + decoder_out: Optional[torch.Tensor] = None, + hyp: Optional[List[int]] = None, +): + assert encoder_out.ndim == 2 + context_size = 2 + blank_id = 0 + + if decoder_out is None: + assert hyp is None, hyp + hyp = [blank_id] * context_size + decoder_input = torch.tensor(hyp, dtype=torch.int32).unsqueeze(0) + # decoder_input.shape (1,, 1 context_size) + decoder_out = decoder(decoder_input, torch.tensor([0])).squeeze(1) + else: + assert decoder_out.ndim == 2 + assert hyp is not None, hyp + + T = encoder_out.size(0) + for i in range(T): + cur_encoder_out = encoder_out[i : i + 1] + joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0) + y = joiner_out.argmax(dim=0).item() + + if y != blank_id: + hyp.append(y) + decoder_input = hyp[-context_size:] + + decoder_input = torch.tensor(decoder_input, dtype=torch.int32).unsqueeze(0) + decoder_out = decoder(decoder_input, torch.tensor([0])).squeeze(1) + + return hyp, decoder_out + + +def create_streaming_feature_extractor(sample_rate) -> OnlineFeature: + """Create a CPU streaming feature extractor. + + At present, we assume it returns a fbank feature extractor with + fixed options. In the future, we will support passing in the options + from outside. + + Returns: + Return a CPU streaming feature extractor. + """ + opts = FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = sample_rate + opts.mel_opts.num_bins = 80 + return OnlineFbank(opts) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + encoder = torch.jit.load(args.encoder_model_filename) + decoder = torch.jit.load(args.decoder_model_filename) + joiner = torch.jit.load(args.joiner_model_filename) + + encoder.eval() + decoder.eval() + joiner.eval() + + encoder.to(device) + decoder.to(device) + joiner.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + online_fbank = create_streaming_feature_extractor(args.sample_rate) + + logging.info(f"Reading sound files: {args.sound_file}") + wave_samples = read_sound_files( + filenames=[args.sound_file], + expected_sample_rate=args.sample_rate, + )[0] + logging.info(wave_samples.shape) + + logging.info("Decoding started") + chunk_length = encoder.chunk_length + right_context_length = encoder.right_context_length + + # Assume the subsampling factor is 4 + pad_length = right_context_length + 2 * 4 + 3 + T = chunk_length + pad_length + + logging.info(f"chunk_length: {chunk_length}") + logging.info(f"right_context_length: {right_context_length}") + + states = encoder.init_states(device) + logging.info(f"num layers: {len(states)//4}") + + tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32) + + wave_samples = torch.cat([wave_samples, tail_padding]) + + chunk = int(0.25 * args.sample_rate) # 0.2 second + num_processed_frames = 0 + + hyp = None + decoder_out = None + + start = 0 + while start < wave_samples.numel(): + logging.info(f"{start}/{wave_samples.numel()}") + end = min(start + chunk, wave_samples.numel()) + samples = wave_samples[start:end] + start += chunk + online_fbank.accept_waveform( + sampling_rate=args.sample_rate, + waveform=samples, + ) + while online_fbank.num_frames_ready - num_processed_frames >= T: + frames = [] + for i in range(T): + frames.append(online_fbank.get_frame(num_processed_frames + i)) + num_processed_frames += chunk_length + frames = torch.cat(frames, dim=0).unsqueeze(0) + # TODO(fangjun): remove x_lens + x_lens = torch.tensor([T]) + encoder_out, _, states = encoder(frames, x_lens, states) + + hyp, decoder_out = greedy_search( + decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp + ) + + context_size = 2 + + logging.info(args.sound_file) + logging.info(sp.decode(hyp[context_size:])) + + logging.info("Decoding Done") + + +torch.set_num_threads(4) +torch.set_num_interop_threads(1) +torch._C._jit_set_profiling_executor(False) +torch._C._jit_set_profiling_mode(False) +torch._C._set_graph_executor_optimize(False) +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/lstmp.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/lstmp.py new file mode 120000 index 000000000..4f377cd01 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/lstmp.py @@ -0,0 +1 @@ +../lstm_transducer_stateless2/lstmp.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/scaling_converter.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/scaling_converter.py new file mode 120000 index 000000000..3b667058d --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py new file mode 100755 index 000000000..e4104a5bb --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py @@ -0,0 +1,389 @@ +#!/usr/bin/env python3 +# +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \ + --tokens ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/tokens.txt \ + --encoder-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/encoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \ + --encoder-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/encoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \ + --decoder-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/decoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \ + --decoder-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/decoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \ + --joiner-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/joiner_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \ + --joiner-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/joiner_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \ + ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/test_wavs/1089-134686-0001.wav + +You can find pretrained models at +https://huggingface.co/csukuangfj/sherpa-ncnn-conv-emformer-transducer-2022-12-04 +""" + +import argparse +import logging +from typing import List, Optional, Tuple + +import k2 +import ncnn +import torch +import torchaudio +from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--tokens", + type=str, + help="Path to tokens.txt", + ) + + parser.add_argument( + "--encoder-param-filename", + type=str, + help="Path to encoder.ncnn.param", + ) + + parser.add_argument( + "--encoder-bin-filename", + type=str, + help="Path to encoder.ncnn.bin", + ) + + parser.add_argument( + "--decoder-param-filename", + type=str, + help="Path to decoder.ncnn.param", + ) + + parser.add_argument( + "--decoder-bin-filename", + type=str, + help="Path to decoder.ncnn.bin", + ) + + parser.add_argument( + "--joiner-param-filename", + type=str, + help="Path to joiner.ncnn.param", + ) + + parser.add_argument( + "--joiner-bin-filename", + type=str, + help="Path to joiner.ncnn.bin", + ) + + parser.add_argument( + "sound_filename", + type=str, + help="Path to foo.wav", + ) + + return parser.parse_args() + + +class Model: + def __init__(self, args): + self.init_encoder(args) + self.init_decoder(args) + self.init_joiner(args) + + self.num_layers = 12 + self.memory_size = 32 + self.d_model = 512 + self.cnn_module_kernel = 31 + + self.left_context_length = 32 // 4 # after subsampling + self.chunk_length = 32 # before subsampling + right_context_length = 8 # before subsampling + pad_length = right_context_length + 2 * 4 + 3 + self.T = self.chunk_length + pad_length + print("T", self.T, self.chunk_length) + + def get_init_states(self) -> List[torch.Tensor]: + states = [] + + for i in range(self.num_layers): + s0 = torch.zeros(self.memory_size, self.d_model) + s1 = torch.zeros(self.left_context_length, self.d_model) + s2 = torch.zeros(self.left_context_length, self.d_model) + s3 = torch.zeros(self.d_model, self.cnn_module_kernel - 1) + states.extend([s0, s1, s2, s3]) + + return states + + def init_encoder(self, args): + encoder_net = ncnn.Net() + encoder_net.opt.use_packing_layout = False + encoder_net.opt.use_fp16_storage = False + encoder_net.opt.num_threads = 4 + + encoder_param = args.encoder_param_filename + encoder_model = args.encoder_bin_filename + + encoder_net.load_param(encoder_param) + encoder_net.load_model(encoder_model) + + self.encoder_net = encoder_net + + def init_decoder(self, args): + decoder_param = args.decoder_param_filename + decoder_model = args.decoder_bin_filename + + decoder_net = ncnn.Net() + decoder_net.opt.num_threads = 4 + + decoder_net.load_param(decoder_param) + decoder_net.load_model(decoder_model) + + self.decoder_net = decoder_net + + def init_joiner(self, args): + joiner_param = args.joiner_param_filename + joiner_model = args.joiner_bin_filename + joiner_net = ncnn.Net() + joiner_net.opt.num_threads = 4 + + joiner_net.load_param(joiner_param) + joiner_net.load_model(joiner_model) + + self.joiner_net = joiner_net + + def run_encoder( + self, + x: torch.Tensor, + states: List[torch.Tensor], + ) -> Tuple[torch.Tensor, List[torch.Tensor]]: + """ + Args: + x: + A tensor of shape (T, C) + states: + A list of tensors. len(states) == self.num_layers * 4 + Returns: + Return a tuple containing: + - encoder_out, a tensor of shape (T, encoder_dim). + - next_states, a list of tensors containing the next states + """ + with self.encoder_net.create_extractor() as ex: + ex.input("in0", ncnn.Mat(x.numpy()).clone()) + + # layer0 in2-in5 + # layer1 in6-in9 + for i in range(self.num_layers): + offset = 1 + i * 4 + name = f"in{offset}" + # (32, 1, 512) -> (32, 512) + ex.input(name, ncnn.Mat(states[i * 4 + 0].numpy()).clone()) + + name = f"in{offset+1}" + # (8, 1, 512) -> (8, 512) + ex.input(name, ncnn.Mat(states[i * 4 + 1].numpy()).clone()) + + name = f"in{offset+2}" + # (8, 1, 512) -> (8, 512) + ex.input(name, ncnn.Mat(states[i * 4 + 2].numpy()).clone()) + + name = f"in{offset+3}" + # (1, 512, 2) -> (512, 2) + ex.input(name, ncnn.Mat(states[i * 4 + 3].numpy()).clone()) + + import pdb + + # pdb.set_trace() + ret, ncnn_out0 = ex.extract("out0") + # assert ret == 0, ret + encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() + + out_states: List[torch.Tensor] = [] + for i in range(4 * self.num_layers): + name = f"out{i+1}" + ret, ncnn_out_state = ex.extract(name) + assert ret == 0, ret + ncnn_out_state = torch.from_numpy(ncnn_out_state.numpy()) + out_states.append(ncnn_out_state) + + return encoder_out, out_states + + def run_decoder(self, decoder_input): + assert decoder_input.dtype == torch.int32 + + with self.decoder_net.create_extractor() as ex: + ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone()) + ret, ncnn_out0 = ex.extract("out0") + assert ret == 0, ret + decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() + return decoder_out + + def run_joiner(self, encoder_out, decoder_out): + with self.joiner_net.create_extractor() as ex: + ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone()) + ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone()) + ret, ncnn_out0 = ex.extract("out0") + assert ret == 0, ret + joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone() + return joiner_out + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def create_streaming_feature_extractor() -> OnlineFeature: + """Create a CPU streaming feature extractor. + + At present, we assume it returns a fbank feature extractor with + fixed options. In the future, we will support passing in the options + from outside. + + Returns: + Return a CPU streaming feature extractor. + """ + opts = FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + return OnlineFbank(opts) + + +def greedy_search( + model: Model, + encoder_out: torch.Tensor, + decoder_out: Optional[torch.Tensor] = None, + hyp: Optional[List[int]] = None, +): + context_size = 2 + blank_id = 0 + + if decoder_out is None: + assert hyp is None, hyp + hyp = [blank_id] * context_size + decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size) + decoder_out = model.run_decoder(decoder_input).squeeze(0) + else: + assert decoder_out.ndim == 1 + assert hyp is not None, hyp + + T = encoder_out.size(0) + for t in range(T): + cur_encoder_out = encoder_out[t] + + joiner_out = model.run_joiner(cur_encoder_out, decoder_out) + y = joiner_out.argmax(dim=0).item() + if y != blank_id: + hyp.append(y) + decoder_input = hyp[-context_size:] + decoder_input = torch.tensor(decoder_input, dtype=torch.int32) + decoder_out = model.run_decoder(decoder_input).squeeze(0) + + return hyp, decoder_out + + +def main(): + args = get_args() + logging.info(vars(args)) + + model = Model(args) + + sound_file = args.sound_filename + + sample_rate = 16000 + + logging.info("Constructing Fbank computer") + online_fbank = create_streaming_feature_extractor() + + logging.info(f"Reading sound files: {sound_file}") + wave_samples = read_sound_files( + filenames=[sound_file], + expected_sample_rate=sample_rate, + )[0] + logging.info(wave_samples.shape) + + tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32) + + wave_samples = torch.cat([wave_samples, tail_padding]) + + states = model.get_init_states() + + hyp = None + decoder_out = None + + num_processed_frames = 0 + segment = model.T + offset = model.chunk_length + + chunk = int(1 * sample_rate) # 0.2 second + + start = 0 + while start < wave_samples.numel(): + end = min(start + chunk, wave_samples.numel()) + samples = wave_samples[start:end] + start += chunk + + online_fbank.accept_waveform( + sampling_rate=sample_rate, + waveform=samples, + ) + while online_fbank.num_frames_ready - num_processed_frames >= segment: + frames = [] + for i in range(segment): + frames.append(online_fbank.get_frame(num_processed_frames + i)) + num_processed_frames += offset + frames = torch.cat(frames, dim=0) + encoder_out, states = model.run_encoder(frames, states) + hyp, decoder_out = greedy_search(model, encoder_out, decoder_out, hyp) + + symbol_table = k2.SymbolTable.from_file(args.tokens) + + context_size = 2 + text = "" + for i in hyp[context_size:]: + text += symbol_table[i] + text = text.replace("▁", " ").strip() + + logging.info(sound_file) + logging.info(text) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py index 71150392d..b2cb2c96b 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py @@ -211,8 +211,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -371,9 +370,7 @@ def modified_beam_search( index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) - logits = model.joiner( - current_encoder_out, decoder_out, project_input=False - ) + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) # logits is of shape (num_hyps, 1, 1, vocab_size) logits = logits.squeeze(1).squeeze(1) @@ -390,9 +387,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -551,14 +546,10 @@ def decode_one_chunk( feature_list, batch_first=True, padding_value=LOG_EPSILON ).to(device) feature_lens = torch.tensor(feature_len_list, device=device) - num_processed_frames = torch.tensor( - num_processed_frames_list, device=device - ) + num_processed_frames = torch.tensor(num_processed_frames_list, device=device) # Make sure it has at least 1 frame after subsampling, first-and-last-frame cutting, and right context cutting # noqa - tail_length = ( - 3 * params.subsampling_factor + params.right_context_length + 3 - ) + tail_length = 3 * params.subsampling_factor + params.right_context_length + 3 if features.size(1) < tail_length: pad_length = tail_length - features.size(1) feature_lens += pad_length @@ -605,9 +596,7 @@ def decode_one_chunk( max_states=params.max_states, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") # Update cached states of each stream state_list = unstack_states(states) @@ -782,8 +771,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -831,9 +819,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -867,9 +853,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -896,9 +882,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py index 2bbc45d78..8462ae92a 100755 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py @@ -95,9 +95,7 @@ from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -265,8 +263,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -289,8 +286,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -636,11 +632,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -668,23 +660,16 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -871,9 +856,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -981,16 +964,16 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train2.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train2.py new file mode 100755 index 000000000..c91f94876 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train2.py @@ -0,0 +1,1128 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./conv_emformer_transducer_stateless2/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir conv_emformer_transducer_stateless2/exp \ + --full-libri 1 \ + --max-duration 280 \ + --master-port 12321 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 + +# For mix precision training: +./conv_emformer_transducer_stateless2/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir conv_emformer_transducer_stateless2/exp \ + --full-libri 1 \ + --max-duration 300 \ + --master-port 12321 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from emformer2 import Emformer +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, Eve +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--encoder-dim", + type=int, + default=512, + help="Attention dim for the Emformer", + ) + + parser.add_argument( + "--nhead", + type=int, + default=8, + help="Number of attention heads for the Emformer", + ) + + parser.add_argument( + "--dim-feedforward", + type=int, + default=2048, + help="Feed-forward dimension for the Emformer", + ) + + parser.add_argument( + "--num-encoder-layers", + type=int, + default=12, + help="Number of encoder layers for the Emformer", + ) + + parser.add_argument( + "--cnn-module-kernel", + type=int, + default=31, + help="Kernel size for the convolution module.", + ) + + parser.add_argument( + "--left-context-length", + type=int, + default=32, + help="""Number of frames before subsampling for left context + in the Emformer.""", + ) + + parser.add_argument( + "--chunk-length", + type=int, + default=32, + help="""Number of frames before subsampling for each chunk + in the Emformer.""", + ) + + parser.add_argument( + "--right-context-length", + type=int, + default=8, + help="""Number of frames before subsampling for right context + in the Emformer.""", + ) + + parser.add_argument( + "--memory-size", + type=int, + default=0, + help="Number of entries in the memory for the Emformer", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--initial-lr", + type=float, + default=0.003, + help="""The initial learning rate. This value should not need to be + changed.""", + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate decreases. + We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=8000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=20, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=100, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for Emformer + "feature_dim": 80, + "subsampling_factor": 4, + # parameters for decoder + "decoder_dim": 512, + # parameters for joiner + "joiner_dim": 512, + # parameters for Noam + "model_warm_step": 3000, # arg given to model, not for lrate + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Conformer and Transformer + encoder = Emformer( + num_features=params.feature_dim, + chunk_length=params.chunk_length, + subsampling_factor=params.subsampling_factor, + d_model=params.encoder_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + cnn_module_kernel=params.cnn_module_kernel, + left_context_length=params.left_context_length, + right_context_length=params.right_context_length, + memory_size=params.memory_size, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, + warmup: float = 1.0, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute RNN-T loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + warmup=warmup, + ) + # after the main warmup step, we keep pruned_loss_scale small + # for the same amount of time (model_warm_step), to avoid + # overwhelming the simple_loss and causing it to diverge, + # in case it had not fully learned the alignment yet. + pruned_loss_scale = ( + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) + ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa + info["utterances"] = feature.size(0) + # averaged input duration in frames over utterances + info["utt_duration"] = feature_lens.sum().item() + # averaged padding proportion over utterances + info["utt_pad_proportion"] = ( + ((feature.size(1) - feature_lens) / feature.size(1)).sum().item() + ) + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=(params.batch_idx_train / params.model_warm_step), + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}" + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + + optimizer = Eve(model.parameters(), lr=params.initial_lr) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + # warmup = 0.0 is so that the derivs for the pruned loss stay zero + # (i.e. are not remembered by the decaying-average in adam), because + # we want to avoid these params being subject to shrinkage in adam. + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=0.0, + ) + loss.backward() + optimizer.step() + optimizer.zero_grad() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/distillation_with_hubert.sh b/egs/librispeech/ASR/distillation_with_hubert.sh index 2a69d3921..6aaa0333b 100755 --- a/egs/librispeech/ASR/distillation_with_hubert.sh +++ b/egs/librispeech/ASR/distillation_with_hubert.sh @@ -35,7 +35,7 @@ stop_stage=4 # export CUDA_VISIBLE_DEVICES="0" # # Suppose GPU 2,3,4,5 are available. -export CUDA_VISIBLE_DEVICES="0,1,2,3" +# export CUDA_VISIBLE_DEVICES="0,1,2,3" exp_dir=./pruned_transducer_stateless6/exp mkdir -p $exp_dir @@ -43,13 +43,13 @@ mkdir -p $exp_dir # full_libri can be "True" or "False" # "True" -> use full librispeech dataset for distillation # "False" -> use train-clean-100 subset for distillation -full_libri=False +full_libri=True # use_extracted_codebook can be "True" or "False" # "True" -> stage 0 and stage 1 would be skipped, # and directly download the extracted codebook indexes for distillation # "False" -> start from scratch -use_extracted_codebook=False +use_extracted_codebook=True # teacher_model_id can be one of # "hubert_xtralarge_ll60k_finetune_ls960" -> fine-tuned model, it is the one we currently use. @@ -145,8 +145,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Currently we only uploaded codebook indexes from teacher model hubert_xtralarge_ll60k_finetune_ls960" exit 1 fi + # The codebook indexes to be downloaded are generated using the following setup: + embedding_layer=36 + num_codebooks=8 + mkdir -p $exp_dir/vq - codebook_dir=$exp_dir/vq/$teacher_model_id + codebook_dir=$exp_dir/vq/${teacher_model_id} mkdir -p codebook_dir codebook_download_dir=$exp_dir/download_codebook if [ -d $codebook_download_dir ]; then @@ -155,11 +159,18 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then fi log "Downloading extracted codebook indexes to $codebook_download_dir" # Make sure you have git-lfs installed (https://git-lfs.github.com) + # The codebook indexes are generated using lhotse 1.11.0, to avoid + # potential issues, we recommend you to use lhotse version >= 1.11.0 + lhotse_version=$(python3 -c "import lhotse; from packaging import version; print(version.parse(lhotse.version.__version__)>=version.parse('1.11.0'))") + if [ "$lhotse_version" == "False" ]; then + log "Expecting lhotse >= 1.11.0. This may lead to potential ID mismatch." + fi git lfs install - git clone https://huggingface.co/Zengwei/pruned_transducer_stateless6_hubert_xtralarge_ll60k_finetune_ls960 $codebook_download_dir + git clone https://huggingface.co/marcoyang/pruned_transducer_stateless6_hubert_xtralarge_ll60k_finetune_ls960 $codebook_download_dir - mkdir -p data/vq_fbank - mv $codebook_download_dir/*.jsonl.gz data/vq_fbank/ + vq_fbank=data/vq_fbank_layer${embedding_layer}_cb${num_codebooks}/ + mkdir -p $vq_fbank + mv $codebook_download_dir/*.jsonl.gz $vq_fbank mkdir -p $codebook_dir/splits4 mv $codebook_download_dir/*.h5 $codebook_dir/splits4/ log "Remove $codebook_download_dir" @@ -169,12 +180,21 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then ./pruned_transducer_stateless6/extract_codebook_index.py \ --full-libri $full_libri \ --exp-dir $exp_dir \ - --embedding-layer 36 \ + --embedding-layer $embedding_layer \ --num-utts 1000 \ - --num-codebooks 8 \ + --num-codebooks $num_codebooks \ --max-duration 100 \ --teacher-model-id $teacher_model_id \ --use-extracted-codebook $use_extracted_codebook + + if [ "$full_libri" == "True" ]; then + # Merge the 3 subsets and create a full one + rm ${vq_fbank}/librispeech_cuts_train-all-shuf.jsonl.gz + cat <(gunzip -c ${vq_fbank}/librispeech_cuts_train-clean-100.jsonl.gz) \ + <(gunzip -c ${vq_fbank}/librispeech_cuts_train-clean-360.jsonl.gz) \ + <(gunzip -c ${vq_fbank}/librispeech_cuts_train-other-500.jsonl.gz) | \ + shuf | gzip -c > ${vq_fbank}/librispeech_cuts_train-all-shuf.jsonl.gz + fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then diff --git a/egs/librispeech/ASR/generate-lm.sh b/egs/librispeech/ASR/generate-lm.sh index 6baccd381..dacd276d1 100755 --- a/egs/librispeech/ASR/generate-lm.sh +++ b/egs/librispeech/ASR/generate-lm.sh @@ -2,7 +2,7 @@ lang_dir=data/lang_bpe_500 -for ngram in 2 3 5; do +for ngram in 2 3 4 5; do if [ ! -f $lang_dir/${ngram}gram.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order ${ngram} \ diff --git a/egs/librispeech/ASR/local/add_alignment_librispeech.py b/egs/librispeech/ASR/local/add_alignment_librispeech.py index cd1bcea67..cc34a72d8 100755 --- a/egs/librispeech/ASR/local/add_alignment_librispeech.py +++ b/egs/librispeech/ASR/local/add_alignment_librispeech.py @@ -157,9 +157,7 @@ def add_alignment( for ali_path in part_ali_dir.rglob("*.alignment.txt"): ali = parse_alignments(ali_path) alignments.update(ali) - logging.info( - f"{part} has {len(alignments.keys())} cuts with alignments." - ) + logging.info(f"{part} has {len(alignments.keys())} cuts with alignments.") # add alignment attribute and write out cuts_in = load_manifest_lazy(cuts_in_path) @@ -170,18 +168,14 @@ def add_alignment( if origin_id in alignments: ali = alignments[origin_id] else: - logging.info( - f"Warning: {origin_id} does not has alignment." - ) + logging.info(f"Warning: {origin_id} does not have alignment.") ali = [] subcut.alignment = {"word": ali} writer.write(cut, flush=True) def main(): - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) parser = get_parser() diff --git a/egs/librispeech/ASR/local/compile_hlg.py b/egs/librispeech/ASR/local/compile_hlg.py index 9a35750e0..08dac6a7b 100755 --- a/egs/librispeech/ASR/local/compile_hlg.py +++ b/egs/librispeech/ASR/local/compile_hlg.py @@ -24,7 +24,7 @@ This script takes as input lang_dir and generates HLG from Caution: We use a lexicon that contains disambiguation symbols - - G, the LM, built from data/lm/G_3_gram.fst.txt + - G, the LM, built from data/lm/G_n_gram.fst.txt The generated HLG is saved in $lang_dir/HLG.pt """ @@ -40,6 +40,13 @@ from icefall.lexicon import Lexicon def get_args(): parser = argparse.ArgumentParser() + parser.add_argument( + "--lm", + type=str, + default="G_3_gram", + help="""Stem name for LM used in HLG compiling. + """, + ) parser.add_argument( "--lang-dir", type=str, @@ -50,11 +57,13 @@ def get_args(): return parser.parse_args() -def compile_HLG(lang_dir: str) -> k2.Fsa: +def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa: """ Args: lang_dir: The language directory, e.g., data/lang_phone or data/lang_bpe_5000. + lm: + The language stem base name. Return: An FSA representing HLG. @@ -65,15 +74,15 @@ def compile_HLG(lang_dir: str) -> k2.Fsa: H = k2.ctc_topo(max_token_id) L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt")) - if Path("data/lm/G_3_gram.pt").is_file(): - logging.info("Loading pre-compiled G_3_gram") - d = torch.load("data/lm/G_3_gram.pt") + if Path(f"data/lm/{lm}.pt").is_file(): + logging.info(f"Loading pre-compiled {lm}") + d = torch.load(f"data/lm/{lm}.pt") G = k2.Fsa.from_dict(d) else: - logging.info("Loading G_3_gram.fst.txt") - with open("data/lm/G_3_gram.fst.txt") as f: + logging.info(f"Loading {lm}.fst.txt") + with open(f"data/lm/{lm}.fst.txt") as f: G = k2.Fsa.from_openfst(f.read(), acceptor=False) - torch.save(G.as_dict(), "data/lm/G_3_gram.pt") + torch.save(G.as_dict(), f"data/lm/{lm}.pt") first_token_disambig_id = lexicon.token_table["#0"] first_word_disambig_id = lexicon.word_table["#0"] @@ -144,15 +153,13 @@ def main(): logging.info(f"Processing {lang_dir}") - HLG = compile_HLG(lang_dir) + HLG = compile_HLG(lang_dir, args.lm) logging.info(f"Saving HLG.pt to {lang_dir}") torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt") if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/local/compile_hlg_using_openfst.py b/egs/librispeech/ASR/local/compile_hlg_using_openfst.py new file mode 100755 index 000000000..15fc47ef1 --- /dev/null +++ b/egs/librispeech/ASR/local/compile_hlg_using_openfst.py @@ -0,0 +1,193 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input lang_dir and generates HLG from + + - H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt + - L, the lexicon, built from lang_dir/L_disambig.fst + + Caution: We use a lexicon that contains disambiguation symbols + + - G, the LM, built from data/lm/G_n_gram.fst.txt + +The generated HLG is saved in $lang_dir/HLG_fst.pt + +So when to use this script instead of ./local/compile_hlg.py ? +If you have a very large G, ./local/compile_hlg.py may throw OOM for +determinization. In that case, you can use this script to compile HLG. +""" + +import argparse +import logging +from pathlib import Path + +import k2 +import kaldifst +import torch + +from icefall.lexicon import Lexicon + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lm", + type=str, + default="G_3_gram", + help="""Stem name for LM used in HLG compiling. + """, + ) + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + """, + ) + + return parser.parse_args() + + +def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> kaldifst.StdVectorFst: + """ + Args: + lang_dir: + The language directory, e.g., data/lang_phone or data/lang_bpe_5000. + lm: + The language stem base name. + + Return: + An FST representing HLG. + """ + + L = kaldifst.StdVectorFst.read(f"{lang_dir}/L_disambig.fst") + logging.info("Arc sort L") + kaldifst.arcsort(L, sort_type="olabel") + logging.info(f"L: #states {L.num_states}") + + G_filename_txt = f"data/lm/{lm}.fst.txt" + G_filename_binary = f"data/lm/{lm}.fst" + if Path(G_filename_binary).is_file(): + logging.info(f"Loading {G_filename_binary}") + G = kaldifst.StdVectorFst.read(G_filename_binary) + else: + logging.info(f"Loading {G_filename_txt}") + with open(G_filename_txt) as f: + G = kaldifst.compile(s=f.read(), acceptor=False) + logging.info(f"Saving G to {G_filename_binary}") + G.write(G_filename_binary) + + logging.info("Arc sort G") + kaldifst.arcsort(G, sort_type="ilabel") + + logging.info(f"G: #states {G.num_states}") + + logging.info("Compose L and G and connect LG") + LG = kaldifst.compose(L, G, connect=True) + logging.info(f"LG: #states {LG.num_states}") + + logging.info("Determinizestar LG") + kaldifst.determinize_star(LG) + logging.info(f"LG after determinize_star: #states {LG.num_states}") + + logging.info("Minimize encoded LG") + kaldifst.minimize_encoded(LG) + logging.info(f"LG after minimize_encoded: #states {LG.num_states}") + + logging.info("Converting LG to k2 format") + LG = k2.Fsa.from_openfst(LG.to_str(is_acceptor=False), acceptor=False) + logging.info(f"LG in k2: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}") + + lexicon = Lexicon(lang_dir) + + first_token_disambig_id = lexicon.token_table["#0"] + first_word_disambig_id = lexicon.word_table["#0"] + logging.info(f"token id for #0: {first_token_disambig_id}") + logging.info(f"word id for #0: {first_word_disambig_id}") + + max_token_id = max(lexicon.tokens) + modified = False + logging.info( + f"Building ctc_topo. modified: {modified}, max_token_id: {max_token_id}" + ) + + H = k2.ctc_topo(max_token_id, modified=modified) + logging.info(f"H: #states: {H.shape[0]}, #arcs: {H.num_arcs}") + + logging.info("Removing disambiguation symbols on LG") + LG.labels[LG.labels >= first_token_disambig_id] = 0 + LG.aux_labels[LG.aux_labels >= first_word_disambig_id] = 0 + + # See https://github.com/k2-fsa/k2/issues/874 + # for why we need to set LG.properties to None + LG.__dict__["_properties"] = None + + logging.info("Removing epsilons from LG") + LG = k2.remove_epsilon(LG) + logging.info( + f"LG after k2.remove_epsilon: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}" + ) + + logging.info("Connecting LG after removing epsilons") + LG = k2.connect(LG) + LG.aux_labels = LG.aux_labels.remove_values_eq(0) + logging.info(f"LG after k2.connect: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}") + + logging.info("Arc sorting LG") + LG = k2.arc_sort(LG) + + logging.info("Composing H and LG") + + HLG = k2.compose(H, LG, inner_labels="tokens") + logging.info( + f"HLG after k2.compose: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}" + ) + + logging.info("Connecting HLG") + HLG = k2.connect(HLG) + logging.info( + f"HLG after k2.connect: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}" + ) + + logging.info("Arc sorting LG") + HLG = k2.arc_sort(HLG) + + return HLG + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + + filename = lang_dir / "HLG_fst.pt" + + if filename.is_file(): + logging.info(f"{filename} already exists - skipping") + return + + HLG = compile_HLG(lang_dir, args.lm) + logging.info(f"Saving HLG to {filename}") + torch.save(HLG.as_dict(), filename) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/librispeech/ASR/local/compile_lg.py b/egs/librispeech/ASR/local/compile_lg.py index 45c4b7f5f..19bf3bff4 100755 --- a/egs/librispeech/ASR/local/compile_lg.py +++ b/egs/librispeech/ASR/local/compile_lg.py @@ -132,9 +132,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/local/compute_fbank_gigaspeech_dev_test.py b/egs/librispeech/ASR/local/compute_fbank_gigaspeech_dev_test.py index c0c7ef8c5..97750f3ea 100644 --- a/egs/librispeech/ASR/local/compute_fbank_gigaspeech_dev_test.py +++ b/egs/librispeech/ASR/local/compute_fbank_gigaspeech_dev_test.py @@ -80,9 +80,7 @@ def compute_fbank_gigaspeech_dev_test(): def main(): - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_gigaspeech_dev_test() diff --git a/egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py b/egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py index 5587106e5..ce0ef24e7 100644 --- a/egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py +++ b/egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py @@ -144,9 +144,7 @@ def main(): date_time = now.strftime("%Y-%m-%d-%H-%M-%S") log_filename = "log-compute_fbank_gigaspeech_splits" - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" log_filename = f"{log_filename}-{date_time}" logging.basicConfig( diff --git a/egs/librispeech/ASR/local/compute_fbank_librispeech.py b/egs/librispeech/ASR/local/compute_fbank_librispeech.py index f3e15e039..9f8503814 100755 --- a/egs/librispeech/ASR/local/compute_fbank_librispeech.py +++ b/egs/librispeech/ASR/local/compute_fbank_librispeech.py @@ -23,11 +23,15 @@ It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ +import argparse import logging import os from pathlib import Path +from typing import Optional +import sentencepiece as spm import torch +from filter_cuts import filter_cuts from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter from lhotse.recipes.utils import read_manifests_if_cached @@ -41,12 +45,29 @@ torch.set_num_threads(1) torch.set_num_interop_threads(1) -def compute_fbank_librispeech(): +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to the bpe.model. If not None, we will remove short and + long utterances before extracting features""", + ) + return parser.parse_args() + + +def compute_fbank_librispeech(bpe_model: Optional[str] = None): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) num_mel_bins = 80 + if bpe_model: + logging.info(f"Loading {bpe_model}") + sp = spm.SentencePieceProcessor() + sp.load(bpe_model) + dataset_parts = ( "dev-clean", "dev-other", @@ -86,11 +107,12 @@ def compute_fbank_librispeech(): recordings=m["recordings"], supervisions=m["supervisions"], ) + if bpe_model: + cut_set = filter_cuts(cut_set, sp) + if "train" in partition: cut_set = ( - cut_set - + cut_set.perturb_speed(0.9) - + cut_set.perturb_speed(1.1) + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, @@ -104,10 +126,9 @@ def compute_fbank_librispeech(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) - - compute_fbank_librispeech() + args = get_args() + logging.info(vars(args)) + compute_fbank_librispeech(bpe_model=args.bpe_model) diff --git a/egs/librispeech/ASR/local/compute_fbank_musan.py b/egs/librispeech/ASR/local/compute_fbank_musan.py index 056da29e5..62036467e 100755 --- a/egs/librispeech/ASR/local/compute_fbank_musan.py +++ b/egs/librispeech/ASR/local/compute_fbank_musan.py @@ -28,7 +28,7 @@ import os from pathlib import Path import torch -from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, combine +from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, MonoCut, combine from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor @@ -41,6 +41,10 @@ torch.set_num_threads(1) torch.set_num_interop_threads(1) +def is_cut_long(c: MonoCut) -> bool: + return c.duration > 5 + + def compute_fbank_musan(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") @@ -83,12 +87,10 @@ def compute_fbank_musan(): # create chunks of Musan with duration 5 - 10 seconds musan_cuts = ( CutSet.from_manifests( - recordings=combine( - part["recordings"] for part in manifests.values() - ) + recordings=combine(part["recordings"] for part in manifests.values()) ) .cut_into_windows(10.0) - .filter(lambda c: c.duration > 5) + .filter(is_cut_long) .compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/musan_feats", @@ -101,9 +103,7 @@ def compute_fbank_musan(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_musan() diff --git a/egs/librispeech/ASR/local/convert_transcript_words_to_tokens.py b/egs/librispeech/ASR/local/convert_transcript_words_to_tokens.py index 133499c8b..a8d5117c9 100755 --- a/egs/librispeech/ASR/local/convert_transcript_words_to_tokens.py +++ b/egs/librispeech/ASR/local/convert_transcript_words_to_tokens.py @@ -51,16 +51,12 @@ def get_args(): "lines. Each line consists of space separated words.", ) parser.add_argument("--lexicon", type=str, help="The input lexicon file.") - parser.add_argument( - "--oov", type=str, default="", help="The OOV word." - ) + parser.add_argument("--oov", type=str, default="", help="The OOV word.") return parser.parse_args() -def process_line( - lexicon: Dict[str, List[str]], line: str, oov_token: str -) -> None: +def process_line(lexicon: Dict[str, List[str]], line: str, oov_token: str) -> None: """ Args: lexicon: diff --git a/egs/librispeech/ASR/local/download_lm.py b/egs/librispeech/ASR/local/download_lm.py index 030122aa7..3518db524 100755 --- a/egs/librispeech/ASR/local/download_lm.py +++ b/egs/librispeech/ASR/local/download_lm.py @@ -87,9 +87,7 @@ def main(out_dir: str): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/local/filter_cuts.py b/egs/librispeech/ASR/local/filter_cuts.py new file mode 100644 index 000000000..fbcc9e24a --- /dev/null +++ b/egs/librispeech/ASR/local/filter_cuts.py @@ -0,0 +1,160 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script removes short and long utterances from a cutset. + +Caution: + You may need to tune the thresholds for your own dataset. + +Usage example: + + python3 ./local/filter_cuts.py \ + --bpe-model data/lang_bpe_500/bpe.model \ + --in-cuts data/fbank/librispeech_cuts_test-clean.jsonl.gz \ + --out-cuts data/fbank-filtered/librispeech_cuts_test-clean.jsonl.gz +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +from lhotse import CutSet, load_manifest_lazy +from lhotse.cut import Cut + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--bpe-model", + type=Path, + help="Path to the bpe.model", + ) + + parser.add_argument( + "--in-cuts", + type=Path, + help="Path to the input cutset", + ) + + parser.add_argument( + "--out-cuts", + type=Path, + help="Path to the output cutset", + ) + + return parser.parse_args() + + +def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor): + total = 0 # number of total utterances before removal + removed = 0 # number of removed utterances + + def remove_short_and_long_utterances(c: Cut): + """Return False to exclude the input cut""" + nonlocal removed, total + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ./display_manifest_statistics.py + # + # You should use ./display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + total += 1 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + removed += 1 + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./pruned_transducer_stateless2/conformer.py, the + # conv module uses the following expression + # for subsampling + if c.num_frames is None: + num_frames = c.duration * 100 # approximate + else: + num_frames = c.num_frames + + T = ((num_frames - 1) // 2 - 1) // 2 + # Note: for ./lstm_transducer_stateless/lstm.py, the formula is + # T = ((num_frames - 3) // 2 - 1) // 2 + + # Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is + # T = ((num_frames - 7) // 2 + 1) // 2 + + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + removed += 1 + return False + + return True + + # We use to_eager() here so that we can print out the value of total + # and removed below. + ans = cut_set.filter(remove_short_and_long_utterances).to_eager() + ratio = removed / total * 100 + logging.info( + f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed." + ) + return ans + + +def main(): + args = get_args() + logging.info(vars(args)) + + if args.out_cuts.is_file(): + logging.info(f"{args.out_cuts} already exists - skipping") + return + + assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist" + assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist" + + sp = spm.SentencePieceProcessor() + sp.load(str(args.bpe_model)) + + cut_set = load_manifest_lazy(args.in_cuts) + assert isinstance(cut_set, CutSet) + + cut_set = filter_cuts(cut_set, sp) + logging.info(f"Saving to {args.out_cuts}") + args.out_cuts.parent.mkdir(parents=True, exist_ok=True) + cut_set.to_file(args.out_cuts) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/librispeech/ASR/local/generate_unique_lexicon.py b/egs/librispeech/ASR/local/generate_unique_lexicon.py index 566c0743d..3459c2f5a 100755 --- a/egs/librispeech/ASR/local/generate_unique_lexicon.py +++ b/egs/librispeech/ASR/local/generate_unique_lexicon.py @@ -91,9 +91,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/local/prepare_lang_bpe.py b/egs/librispeech/ASR/local/prepare_lang_bpe.py index dec8a7442..2a2d9c219 100755 --- a/egs/librispeech/ASR/local/prepare_lang_bpe.py +++ b/egs/librispeech/ASR/local/prepare_lang_bpe.py @@ -127,7 +127,7 @@ def lexicon_to_fst_no_sil( def generate_lexicon( - model_file: str, words: List[str] + model_file: str, words: List[str], oov: str ) -> Tuple[Lexicon, Dict[str, int]]: """Generate a lexicon from a BPE model. @@ -136,6 +136,8 @@ def generate_lexicon( Path to a sentencepiece model. words: A list of strings representing words. + oov: + The out of vocabulary word in lexicon. Returns: Return a tuple with two elements: - A dict whose keys are words and values are the corresponding @@ -150,20 +152,15 @@ def generate_lexicon( words_pieces_ids: List[List[int]] = sp.encode(words, out_type=int) # Now convert word piece IDs back to word piece strings. - words_pieces: List[List[str]] = [ - sp.id_to_piece(ids) for ids in words_pieces_ids - ] + words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids] lexicon = [] for word, pieces in zip(words, words_pieces): lexicon.append((word, pieces)) - # The OOV word is - lexicon.append(("", [sp.id_to_piece(sp.unk_id())])) + lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())])) - token2id: Dict[str, int] = dict() - for i in range(sp.vocab_size()): - token2id[sp.id_to_piece(i)] = i + token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())} return lexicon, token2id @@ -178,6 +175,13 @@ def get_args(): """, ) + parser.add_argument( + "--oov", + type=str, + default="", + help="The out of vocabulary word in lexicon.", + ) + parser.add_argument( "--debug", type=str2bool, @@ -204,12 +208,13 @@ def main(): words = word_sym_table.symbols - excluded = ["", "!SIL", "", "", "#0", "", ""] + excluded = ["", "!SIL", "", args.oov, "#0", "", ""] + for w in excluded: if w in words: words.remove(w) - lexicon, token_sym_table = generate_lexicon(model_file, words) + lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov) lexicon_disambig, max_disambig = add_disambig_symbols(lexicon) diff --git a/egs/librispeech/ASR/local/prepare_lm_training_data.py b/egs/librispeech/ASR/local/prepare_lm_training_data.py index 5070341f1..70343fef7 100755 --- a/egs/librispeech/ASR/local/prepare_lm_training_data.py +++ b/egs/librispeech/ASR/local/prepare_lm_training_data.py @@ -137,8 +137,7 @@ def main(): for i in range(num_sentences): if step and i % step == 0: logging.info( - f"Processed number of lines: {i} " - f"({i/num_sentences*100: .3f}%)" + f"Processed number of lines: {i} ({i/num_sentences*100: .3f}%)" ) word_ids = sentences[i] @@ -154,18 +153,14 @@ def main(): sentence_lengths[i] = token_ids.numel() - output["sentence_lengths"] = torch.tensor( - sentence_lengths, dtype=torch.int32 - ) + output["sentence_lengths"] = torch.tensor(sentence_lengths, dtype=torch.int32) torch.save(output, args.lm_archive) logging.info(f"Saved to {args.lm_archive}") if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/local/preprocess_gigaspeech.py b/egs/librispeech/ASR/local/preprocess_gigaspeech.py index 077f23039..8aa5e461d 100644 --- a/egs/librispeech/ASR/local/preprocess_gigaspeech.py +++ b/egs/librispeech/ASR/local/preprocess_gigaspeech.py @@ -119,9 +119,7 @@ def preprocess_giga_speech(): def main(): - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) preprocess_giga_speech() diff --git a/egs/librispeech/ASR/local/test_prepare_lang.py b/egs/librispeech/ASR/local/test_prepare_lang.py index d4cf62bba..74e025ad7 100755 --- a/egs/librispeech/ASR/local/test_prepare_lang.py +++ b/egs/librispeech/ASR/local/test_prepare_lang.py @@ -88,9 +88,7 @@ def test_read_lexicon(filename: str): fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa.draw("L.pdf", title="L") - fsa_disambig = lexicon_to_fst( - lexicon_disambig, phone2id=phone2id, word2id=word2id - ) + fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id) fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt") fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt") fsa_disambig.draw("L_disambig.pdf", title="L_disambig") diff --git a/egs/librispeech/ASR/local/train_bpe_model.py b/egs/librispeech/ASR/local/train_bpe_model.py index 42aba9572..43142aee4 100755 --- a/egs/librispeech/ASR/local/train_bpe_model.py +++ b/egs/librispeech/ASR/local/train_bpe_model.py @@ -89,6 +89,9 @@ def main(): bos_id=-1, eos_id=-1, ) + else: + print(f"{model_file} exists - skipping") + return shutil.copyfile(model_file, f"{lang_dir}/bpe.model") diff --git a/egs/librispeech/ASR/local/validate_manifest.py b/egs/librispeech/ASR/local/validate_manifest.py index 7c57d629a..f620b91ea 100755 --- a/egs/librispeech/ASR/local/validate_manifest.py +++ b/egs/librispeech/ASR/local/validate_manifest.py @@ -85,9 +85,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/decode.py b/egs/librispeech/ASR/lstm_transducer_stateless/decode.py index 27414d717..3ad08f56a 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/decode.py @@ -272,8 +272,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -366,9 +365,7 @@ def decode_one_batch( ) feature_lens += num_tail_padded_frames - encoder_out, encoder_out_lens, _ = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=feature, x_lens=feature_lens) hyps = [] @@ -427,10 +424,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -561,9 +555,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -596,8 +588,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -648,9 +639,7 @@ def main(): if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -682,9 +671,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -711,9 +700,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -772,9 +761,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/export.py b/egs/librispeech/ASR/lstm_transducer_stateless/export.py index 13dac6009..e338342cc 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/export.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/export.py @@ -172,8 +172,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -281,9 +280,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -310,9 +309,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -380,9 +379,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/jit_pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless/jit_pretrained.py index 594c33e4f..c07956243 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/jit_pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/jit_pretrained.py @@ -123,10 +123,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -314,9 +313,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/lstm.py b/egs/librispeech/ASR/lstm_transducer_stateless/lstm.py index c54a4c478..bbab16af7 100644 --- a/egs/librispeech/ASR/lstm_transducer_stateless/lstm.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/lstm.py @@ -672,9 +672,7 @@ class RandomCombine(nn.Module): self.stddev = stddev self.final_log_weight = ( - torch.tensor( - (final_weight / (1 - final_weight)) * (self.num_inputs - 1) - ) + torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1)) .log() .item() ) @@ -771,16 +769,14 @@ class RandomCombine(nn.Module): # final contains self.num_inputs - 1 in all elements final = torch.full((num_frames,), self.num_inputs - 1, device=device) # nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. # noqa - nonfinal = torch.randint( - self.num_inputs - 1, (num_frames,), device=device - ) + nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device) indexes = torch.where( torch.rand(num_frames, device=device) < final_prob, final, nonfinal ) - ans = torch.nn.functional.one_hot( - indexes, num_classes=self.num_inputs - ).to(dtype=dtype) + ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to( + dtype=dtype + ) return ans def _get_random_mixed_weights( diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/model.py b/egs/librispeech/ASR/lstm_transducer_stateless/model.py index efbc88a55..e7bad7ed8 100644 --- a/egs/librispeech/ASR/lstm_transducer_stateless/model.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/model.py @@ -66,9 +66,7 @@ class Transducer(nn.Module): self.decoder = decoder self.joiner = joiner - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) def forward( @@ -81,6 +79,7 @@ class Transducer(nn.Module): lm_scale: float = 0.0, warmup: float = 1.0, reduction: str = "sum", + delay_penalty: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: @@ -108,6 +107,11 @@ class Transducer(nn.Module): "sum" to sum the losses over all utterances in the batch. "none" to return the loss in a 1-D tensor for each utterance in the batch. + delay_penalty: + A constant value used to penalize symbol delay, to encourage + streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details. Returns: Return the transducer loss. @@ -145,9 +149,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens @@ -164,6 +166,7 @@ class Transducer(nn.Module): am_only_scale=am_scale, boundary=boundary, reduction=reduction, + delay_penalty=delay_penalty, return_grad=True, ) @@ -196,6 +199,7 @@ class Transducer(nn.Module): ranges=ranges, termination_symbol=blank_id, boundary=boundary, + delay_penalty=delay_penalty, reduction=reduction, ) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless/pretrained.py index 2a6e2adc6..b3a34a9e3 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/pretrained.py @@ -166,8 +166,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -198,10 +197,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -264,15 +262,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens, _ = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -344,9 +338,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/stream.py b/egs/librispeech/ASR/lstm_transducer_stateless/stream.py index 97d890c82..d8f7fd960 100644 --- a/egs/librispeech/ASR/lstm_transducer_stateless/stream.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/stream.py @@ -70,14 +70,12 @@ class Stream(object): elif params.decoding_method == "fast_beam_search": # feature_len is needed to get partial results. # The rnnt_decoding_stream for fast_beam_search. - self.rnnt_decoding_stream: k2.RnntDecodingStream = ( - k2.RnntDecodingStream(decoding_graph) + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph ) self.hyp: Optional[List[int]] = None else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") self.ground_truth: str = "" diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/streaming_decode.py b/egs/librispeech/ASR/lstm_transducer_stateless/streaming_decode.py index d6376bdc0..961d8ddfb 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/streaming_decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/streaming_decode.py @@ -199,8 +199,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -359,9 +358,7 @@ def modified_beam_search( index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) - logits = model.joiner( - current_encoder_out, decoder_out, project_input=False - ) + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) # logits is of shape (num_hyps, 1, 1, vocab_size) logits = logits.squeeze(1).squeeze(1) @@ -378,9 +375,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -539,9 +534,7 @@ def decode_one_chunk( feature_list, batch_first=True, padding_value=LOG_EPSILON ).to(device) feature_lens = torch.tensor(feature_len_list, device=device) - num_processed_frames = torch.tensor( - num_processed_frames_list, device=device - ) + num_processed_frames = torch.tensor(num_processed_frames_list, device=device) # Make sure it has at least 1 frame after subsampling tail_length = params.subsampling_factor + 5 @@ -583,8 +576,7 @@ def decode_one_chunk( with warnings.catch_warnings(): warnings.simplefilter("ignore") processed_lens = ( - num_processed_frames // params.subsampling_factor - + encoder_out_lens + num_processed_frames // params.subsampling_factor + encoder_out_lens ) fast_beam_search_one_best( model=model, @@ -596,9 +588,7 @@ def decode_one_chunk( max_states=params.max_states, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") # Update cached states of each stream state_list = unstack_states(states) @@ -773,8 +763,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -816,9 +805,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -852,9 +839,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -881,9 +868,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/lstm_transducer_stateless/train.py b/egs/librispeech/ASR/lstm_transducer_stateless/train.py index a50686df9..feb81d500 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless/train.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless/train.py @@ -87,9 +87,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -222,8 +220,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -246,8 +243,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -318,6 +314,16 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -584,11 +590,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -611,6 +613,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -627,9 +630,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -642,14 +643,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -660,9 +656,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -845,9 +839,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -962,10 +954,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -976,7 +968,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./lstm.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 3) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/decode.py index c7b53ebc0..78be9c01f 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/decode.py @@ -1,7 +1,8 @@ #!/usr/bin/env python3 # # Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, -# Zengwei Yao) +# Zengwei Yao, +# Xiaoyu Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -91,8 +92,41 @@ Usage: --beam 20.0 \ --max-contexts 8 \ --max-states 64 -""" +(8) modified beam search (with LM shallow fusion) +./lstm_transducer_stateless2/decode.py \ + --epoch 35 \ + --avg 15 \ + --exp-dir ./lstm_transducer_stateless2/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --beam 4 \ + --lm-type rnn \ + --lm-scale 0.3 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + +(9) modified beam search with LM shallow fusion + LODR +./lstm_transducer_stateless2/decode.py \ + --epoch 35 \ + --avg 15 \ + --max-duration 600 \ + --exp-dir ./lstm_transducer_stateless2/exp \ + --decoding-method modified_beam_search_LODR \ + --beam 4 \ + --lm-type rnn \ + --lm-scale 0.4 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 \ +""" import argparse import logging @@ -115,12 +149,14 @@ from beam_search import ( greedy_search, greedy_search_batch, modified_beam_search, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, modified_beam_search_ngram_rescoring, ) from librispeech import LibriSpeech from train import add_model_arguments, get_params, get_transducer_model -from icefall import NgramLm +from icefall import LmScorer, NgramLm from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, @@ -217,6 +253,8 @@ def get_parser(): - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG - modified_beam_search_ngram_rescoring + - modified_beam_search_lm_shallow_fusion + - modified_beam_search_LODR If you use fast_beam_search_nbest_LG, you have to specify `--lang-dir`, which should contain `LG.pt`. """, @@ -276,8 +314,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -306,12 +343,39 @@ def get_parser(): fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) + parser.add_argument( + "--use-shallow-fusion", + type=str2bool, + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true + """, + ) + + parser.add_argument( + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + parser.add_argument( "--tokens-ngram", type=int, default=3, help="""Token Ngram used for rescoring. - Used only when the decoding method is modified_beam_search_ngram_rescoring""", + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", ) parser.add_argument( @@ -319,7 +383,8 @@ def get_parser(): type=int, default=500, help="""ID of the backoff symbol. - Used only when the decoding method is modified_beam_search_ngram_rescoring""", + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", ) add_model_arguments(parser) @@ -336,6 +401,7 @@ def decode_one_batch( decoding_graph: Optional[k2.Fsa] = None, ngram_lm: Optional[NgramLm] = None, ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: @@ -364,6 +430,9 @@ def decode_one_batch( The decoding graph. Can be either a `k2.trivial_graph` or LG, Used only when --decoding_method is fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural net LM for shallow fusion. Only used when `--use-shallow-fusion` + set to true. Returns: Return the decoding result. See above description for the format of the returned dict. @@ -388,9 +457,7 @@ def decode_one_batch( ) feature_lens += num_tail_padded_frames - encoder_out, encoder_out_lens, _ = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=feature, x_lens=feature_lens) hyps = [] @@ -449,10 +516,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -480,6 +544,30 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) else: batch_size = encoder_out.size(0) @@ -531,6 +619,7 @@ def decode_dataset( decoding_graph: Optional[k2.Fsa] = None, ngram_lm: Optional[NgramLm] = None, ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. @@ -549,6 +638,8 @@ def decode_dataset( The decoding graph. Can be either a `k2.trivial_graph` or LG, Used only when --decoding_method is fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural network LM, used during shallow fusion Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. @@ -582,6 +673,7 @@ def decode_dataset( batch=batch, ngram_lm=ngram_lm, ngram_lm_scale=ngram_lm_scale, + LM=LM, ) for name, hyps in hyps_dict.items(): @@ -598,9 +690,8 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -633,8 +724,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -653,6 +743,7 @@ def save_results( def main(): parser = get_parser() AsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) @@ -667,6 +758,8 @@ def main(): "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", "modified_beam_search", + "modified_beam_search_LODR", + "modified_beam_search_lm_shallow_fusion", "modified_beam_search_ngram_rescoring", ) params.res_dir = params.exp_dir / params.decoding_method @@ -686,13 +779,22 @@ def main(): if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "ngram" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if params.use_shallow_fusion: + if params.lm_type == "rnn": + params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}" + elif params.lm_type == "transformer": + params.suffix += f"-transformer-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) if params.use_averaged_model: params.suffix += "-use-averaged-model" @@ -721,9 +823,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -755,9 +857,9 @@ def main(): ) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -806,14 +908,34 @@ def main(): model.to(device) model.eval() - lm_filename = f"{params.tokens_ngram}gram.fst.txt" - logging.info(f"lm filename: {lm_filename}") - ngram_lm = NgramLm( - str(params.lang_dir / lm_filename), - backoff_id=params.backoff_id, - is_binary=False, - ) - logging.info(f"num states: {ngram_lm.lm.num_states}") + # only load N-gram LM when needed + if "ngram" in params.decoding_method or "LODR" in params.decoding_method: + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"lm filename: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + # only load the neural network LM if doing shallow fusion + if params.use_shallow_fusion: + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + + else: + LM = None if "fast_beam_search" in params.decoding_method: if params.decoding_method == "fast_beam_search_nbest_LG": @@ -827,9 +949,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None @@ -843,7 +963,9 @@ def main(): librispeech = LibriSpeech(manifest_dir=args.manifest_dir) test_clean_cuts = librispeech.test_clean_cuts() + # test_clean_cuts = test_clean_cuts.subset(first=500) test_other_cuts = librispeech.test_other_cuts() + # test_other_cuts = test_other_cuts.subset(first=500) test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts) test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts) @@ -860,7 +982,8 @@ def main(): word_table=word_table, decoding_graph=decoding_graph, ngram_lm=ngram_lm, - ngram_lm_scale=params.ngram_lm_scale, + ngram_lm_scale=ngram_lm_scale, + LM=LM, ) save_results( diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/export.py b/egs/librispeech/ASR/lstm_transducer_stateless2/export.py index 190673638..5977cb36d 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/export.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/export.py @@ -225,8 +225,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -342,9 +341,7 @@ def export_encoder_model_onnx( x = torch.zeros(N, 9, 80, dtype=torch.float32) x_lens = torch.tensor([9], dtype=torch.int64) h = torch.rand(encoder_model.num_encoder_layers, N, encoder_model.d_model) - c = torch.rand( - encoder_model.num_encoder_layers, N, encoder_model.rnn_hidden_size - ) + c = torch.rand(encoder_model.num_encoder_layers, N, encoder_model.rnn_hidden_size) warmup = 1.0 torch.onnx.export( @@ -445,13 +442,9 @@ def export_joiner_model_onnx( - projected_decoder_out: a tensor of shape (N, joiner_dim) """ - encoder_proj_filename = str(joiner_filename).replace( - ".onnx", "_encoder_proj.onnx" - ) + encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx") - decoder_proj_filename = str(joiner_filename).replace( - ".onnx", "_decoder_proj.onnx" - ) + decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx") encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] @@ -550,9 +543,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -585,9 +578,9 @@ def main(): ) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -694,9 +687,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/jit_pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless2/jit_pretrained.py index da184b76f..728b09104 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/jit_pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/jit_pretrained.py @@ -124,10 +124,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -315,9 +314,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/model.py b/egs/librispeech/ASR/lstm_transducer_stateless2/model.py index b0fb6ab89..4957d14b1 100644 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/model.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/model.py @@ -84,9 +84,7 @@ class Transducer(nn.Module): self.decoder_giga = decoder_giga self.joiner_giga = joiner_giga - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) if decoder_giga is not None: @@ -106,6 +104,7 @@ class Transducer(nn.Module): lm_scale: float = 0.0, warmup: float = 1.0, reduction: str = "sum", + delay_penalty: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: @@ -136,6 +135,11 @@ class Transducer(nn.Module): "sum" to sum the losses over all utterances in the batch. "none" to return the loss in a 1-D tensor for each utterance in the batch. + delay_penalty: + A constant value used to penalize symbol delay, to encourage + streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details. Returns: Return the transducer loss. @@ -184,9 +188,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens @@ -203,6 +205,7 @@ class Transducer(nn.Module): am_only_scale=am_scale, boundary=boundary, reduction=reduction, + delay_penalty=delay_penalty, return_grad=True, ) @@ -235,6 +238,7 @@ class Transducer(nn.Module): ranges=ranges, termination_symbol=blank_id, boundary=boundary, + delay_penalty=delay_penalty, reduction=reduction, ) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py index 410de8d3d..3bd1b0a09 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py @@ -104,6 +104,8 @@ class Model: encoder_net = ncnn.Net() encoder_net.opt.use_packing_layout = False encoder_net.opt.use_fp16_storage = False + encoder_net.opt.num_threads = 4 + encoder_param = args.encoder_param_filename encoder_model = args.encoder_bin_filename @@ -118,6 +120,7 @@ class Model: decoder_net = ncnn.Net() decoder_net.opt.use_packing_layout = False + decoder_net.opt.num_threads = 4 decoder_net.load_param(decoder_param) decoder_net.load_model(decoder_model) @@ -129,6 +132,8 @@ class Model: joiner_model = args.joiner_bin_filename joiner_net = ncnn.Net() joiner_net.opt.use_packing_layout = False + joiner_net.opt.num_threads = 4 + joiner_net.load_param(joiner_param) joiner_net.load_model(joiner_model) @@ -136,7 +141,6 @@ class Model: def run_encoder(self, x, states): with self.encoder_net.create_extractor() as ex: - ex.set_num_threads(10) ex.input("in0", ncnn.Mat(x.numpy()).clone()) x_lens = torch.tensor([x.size(0)], dtype=torch.float32) ex.input("in1", ncnn.Mat(x_lens.numpy()).clone()) @@ -156,9 +160,7 @@ class Model: assert ret == 0, ret encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() - encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to( - torch.int32 - ) + encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32) hx = torch.from_numpy(ncnn_out2.numpy()).clone() cx = torch.from_numpy(ncnn_out3.numpy()).clone() return encoder_out, encoder_out_lens, hx, cx @@ -167,7 +169,6 @@ class Model: assert decoder_input.dtype == torch.int32 with self.decoder_net.create_extractor() as ex: - ex.set_num_threads(10) ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") assert ret == 0, ret @@ -176,7 +177,6 @@ class Model: def run_joiner(self, encoder_out, decoder_out): with self.joiner_net.create_extractor() as ex: - ex.set_num_threads(10) ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone()) ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") @@ -200,10 +200,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -286,9 +285,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless2/pretrained.py index bef0ad760..f3f272b9f 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/pretrained.py @@ -169,8 +169,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -201,10 +200,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -267,15 +265,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens, _ = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -347,9 +341,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py index e47a05a9e..02ed16a8c 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py @@ -92,6 +92,8 @@ class Model: encoder_net = ncnn.Net() encoder_net.opt.use_packing_layout = False encoder_net.opt.use_fp16_storage = False + encoder_net.opt.num_threads = 4 + encoder_param = args.encoder_param_filename encoder_model = args.encoder_bin_filename @@ -106,6 +108,7 @@ class Model: decoder_net = ncnn.Net() decoder_net.opt.use_packing_layout = False + decoder_net.opt.num_threads = 4 decoder_net.load_param(decoder_param) decoder_net.load_model(decoder_model) @@ -117,6 +120,8 @@ class Model: joiner_model = args.joiner_bin_filename joiner_net = ncnn.Net() joiner_net.opt.use_packing_layout = False + joiner_net.opt.num_threads = 4 + joiner_net.load_param(joiner_param) joiner_net.load_model(joiner_model) @@ -124,7 +129,6 @@ class Model: def run_encoder(self, x, states): with self.encoder_net.create_extractor() as ex: - # ex.set_num_threads(10) ex.input("in0", ncnn.Mat(x.numpy()).clone()) x_lens = torch.tensor([x.size(0)], dtype=torch.float32) ex.input("in1", ncnn.Mat(x_lens.numpy()).clone()) @@ -144,9 +148,7 @@ class Model: assert ret == 0, ret encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() - encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to( - torch.int32 - ) + encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32) hx = torch.from_numpy(ncnn_out2.numpy()).clone() cx = torch.from_numpy(ncnn_out3.numpy()).clone() return encoder_out, encoder_out_lens, hx, cx @@ -155,7 +157,6 @@ class Model: assert decoder_input.dtype == torch.int32 with self.decoder_net.create_extractor() as ex: - # ex.set_num_threads(10) ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") assert ret == 0, ret @@ -164,7 +165,6 @@ class Model: def run_joiner(self, encoder_out, decoder_out): with self.joiner_net.create_extractor() as ex: - # ex.set_num_threads(10) ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone()) ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") @@ -188,10 +188,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -229,9 +228,7 @@ def greedy_search( if decoder_out is None: assert hyp is None, hyp hyp = [blank_id] * context_size - decoder_input = torch.tensor( - hyp, dtype=torch.int32 - ) # (1, context_size) + decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size) decoder_out = model.run_decoder(decoder_input).squeeze(0) else: assert decoder_out.ndim == 1 @@ -310,9 +307,7 @@ def main(): frames.append(online_fbank.get_frame(num_processed_frames + i)) num_processed_frames += offset frames = torch.cat(frames, dim=0) - encoder_out, encoder_out_lens, hx, cx = model.run_encoder( - frames, states - ) + encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states) states = (hx, cx) hyp, decoder_out = greedy_search( model, encoder_out.squeeze(0), decoder_out, hyp @@ -328,9 +323,7 @@ def main(): frames.append(online_fbank.get_frame(num_processed_frames + i)) num_processed_frames += offset frames = torch.cat(frames, dim=0) - encoder_out, encoder_out_lens, hx, cx = model.run_encoder( - frames, states - ) + encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states) states = (hx, cx) hyp, decoder_out = greedy_search( model, encoder_out.squeeze(0), decoder_out, hyp @@ -343,9 +336,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-onnx-decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-onnx-decode.py index 232d3dd18..34d2e5630 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-onnx-decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-onnx-decode.py @@ -147,10 +147,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -199,9 +198,7 @@ class Model: sess_options=self.session_opts, ) - def run_encoder( - self, x, h0, c0 - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + def run_encoder(self, x, h0, c0) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: x: @@ -258,9 +255,7 @@ class Model: }, )[0] - return self.run_joiner_decoder_proj( - torch.from_numpy(decoder_out).squeeze(1) - ) + return self.run_joiner_decoder_proj(torch.from_numpy(decoder_out).squeeze(1)) def run_joiner( self, @@ -303,11 +298,7 @@ class Model: projected_encoder_out = self.joiner_encoder_proj.run( [self.joiner_encoder_proj.get_outputs()[0].name], - { - self.joiner_encoder_proj.get_inputs()[ - 0 - ].name: encoder_out.numpy() - }, + {self.joiner_encoder_proj.get_inputs()[0].name: encoder_out.numpy()}, )[0] return torch.from_numpy(projected_encoder_out) @@ -326,11 +317,7 @@ class Model: projected_decoder_out = self.joiner_decoder_proj.run( [self.joiner_decoder_proj.get_outputs()[0].name], - { - self.joiner_decoder_proj.get_inputs()[ - 0 - ].name: decoder_out.numpy() - }, + {self.joiner_decoder_proj.get_inputs()[0].name: decoder_out.numpy()}, )[0] return torch.from_numpy(projected_decoder_out) @@ -369,9 +356,7 @@ def greedy_search( if decoder_out is None: assert hyp is None, hyp hyp = [blank_id] * context_size - decoder_input = torch.tensor( - [hyp], dtype=torch.int64 - ) # (1, context_size) + decoder_input = torch.tensor([hyp], dtype=torch.int64) # (1, context_size) decoder_out = model.run_decoder(decoder_input) else: assert decoder_out.shape[0] == 1 @@ -474,9 +459,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/train.py b/egs/librispeech/ASR/lstm_transducer_stateless2/train.py index 9eed2dfcb..4fc4fa7f8 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless2/train.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless2/train.py @@ -95,9 +95,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -163,8 +161,7 @@ def get_parser(): "--full-libri", type=str2bool, default=True, - help="When enabled, use 960h LibriSpeech. " - "Otherwise, use 100h subset.", + help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", ) parser.add_argument( @@ -238,8 +235,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -262,8 +258,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -341,6 +336,16 @@ def get_parser(): help="The probability to select a batch from the GigaSpeech dataset", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -635,11 +640,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -665,6 +666,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -681,9 +683,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -696,14 +696,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -714,9 +709,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -947,9 +940,7 @@ def train_one_epoch( f"train/current_{prefix}_", params.batch_idx_train, ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) libri_tot_loss.write_summary( tb_writer, "train/libri_tot_", params.batch_idx_train ) @@ -980,7 +971,10 @@ def train_one_epoch( params.best_train_loss = params.train_loss -def filter_short_and_long_utterances(cuts: CutSet) -> CutSet: +def filter_short_and_long_utterances( + cuts: CutSet, + sp: spm.SentencePieceProcessor, +) -> CutSet: def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds # @@ -990,7 +984,33 @@ def filter_short_and_long_utterances(cuts: CutSet) -> CutSet: # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./lstm.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 3) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True cuts = cuts.filter(remove_short_and_long_utt) @@ -1088,12 +1108,12 @@ def run(rank, world_size, args): librispeech = LibriSpeech(manifest_dir=args.manifest_dir) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() - train_cuts = filter_short_and_long_utterances(train_cuts) + train_cuts = filter_short_and_long_utterances(train_cuts, sp) gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir) # XL 10k hours @@ -1110,13 +1130,11 @@ def run(rank, world_size, args): logging.info("Using the S subset of GigaSpeech (250 hours)") train_giga_cuts = gigaspeech.train_S_cuts() - train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts) + train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts, sp) train_giga_cuts = train_giga_cuts.repeat(times=None) if args.enable_musan: - cuts_musan = load_manifest( - Path(args.manifest_dir) / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz") else: cuts_musan = None diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/decode.py b/egs/librispeech/ASR/lstm_transducer_stateless3/decode.py index 052d027e3..b7953e5e3 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/decode.py @@ -290,8 +290,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -386,9 +385,7 @@ def decode_one_batch( ) feature_lens += num_tail_padded_frames - encoder_out, encoder_out_lens, _ = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=feature, x_lens=feature_lens) if params.decoding_method == "fast_beam_search": res = fast_beam_search_one_best( @@ -441,10 +438,7 @@ def decode_one_batch( nbest_scale=params.nbest_scale, return_timestamps=True, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: res = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -487,7 +481,7 @@ def decode_one_batch( ) tokens.extend(res.tokens) timestamps.extend(res.timestamps) - res = DecodingResults(tokens=tokens, timestamps=timestamps) + res = DecodingResults(hyps=tokens, timestamps=timestamps) hyps, timestamps = parse_hyp_and_timestamp( decoding_method=params.decoding_method, @@ -522,9 +516,7 @@ def decode_dataset( sp: spm.SentencePieceProcessor, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, -) -> Dict[ - str, List[Tuple[str, List[str], List[str], List[float], List[float]]] -]: +) -> Dict[str, List[Tuple[str, List[str], List[str], List[float], List[float]]]]: """Decode dataset. Args: @@ -599,9 +591,7 @@ def decode_dataset( cut_ids, hyps, texts, timestamps_hyp, timestamps_ref ): ref_words = ref_text.split() - this_batch.append( - (cut_id, ref_words, hyp_words, time_ref, time_hyp) - ) + this_batch.append((cut_id, ref_words, hyp_words, time_ref, time_hyp)) results[name].extend(this_batch) @@ -610,9 +600,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -650,8 +638,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -678,9 +665,7 @@ def save_results( note = "" logging.info(s) - s = "\nFor {}, symbol-delay of different settings are:\n".format( - test_set_name - ) + s = "\nFor {}, symbol-delay of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_delays: s += "{}\tmean: {}s, variance: {}{}\n".format(key, val[0], val[1], note) @@ -724,9 +709,7 @@ def main(): if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -758,9 +741,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -787,9 +770,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -848,9 +831,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/export.py b/egs/librispeech/ASR/lstm_transducer_stateless3/export.py index 212c7bad6..a82cad043 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/export.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/export.py @@ -172,8 +172,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -281,9 +280,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -310,9 +309,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -380,9 +379,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/jit_pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless3/jit_pretrained.py index a3443cf0a..237591a36 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/jit_pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/jit_pretrained.py @@ -123,10 +123,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -314,9 +313,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/lstm.py b/egs/librispeech/ASR/lstm_transducer_stateless3/lstm.py index 90bc351f4..6e51b85e4 100644 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/lstm.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/lstm.py @@ -661,9 +661,7 @@ class RandomCombine(nn.Module): self.stddev = stddev self.final_log_weight = ( - torch.tensor( - (final_weight / (1 - final_weight)) * (self.num_inputs - 1) - ) + torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1)) .log() .item() ) @@ -760,16 +758,14 @@ class RandomCombine(nn.Module): # final contains self.num_inputs - 1 in all elements final = torch.full((num_frames,), self.num_inputs - 1, device=device) # nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. # noqa - nonfinal = torch.randint( - self.num_inputs - 1, (num_frames,), device=device - ) + nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device) indexes = torch.where( torch.rand(num_frames, device=device) < final_prob, final, nonfinal ) - ans = torch.nn.functional.one_hot( - indexes, num_classes=self.num_inputs - ).to(dtype=dtype) + ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to( + dtype=dtype + ) return ans def _get_random_mixed_weights( diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/pretrained.py b/egs/librispeech/ASR/lstm_transducer_stateless3/pretrained.py index 0e48fef04..f49e9c518 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/pretrained.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/pretrained.py @@ -166,8 +166,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -198,10 +197,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -264,15 +262,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens, _ = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens, _ = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -344,9 +338,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/streaming_decode.py b/egs/librispeech/ASR/lstm_transducer_stateless3/streaming_decode.py index cfa918ed5..109746ed5 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/streaming_decode.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/streaming_decode.py @@ -199,8 +199,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -359,9 +358,7 @@ def modified_beam_search( index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) - logits = model.joiner( - current_encoder_out, decoder_out, project_input=False - ) + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) # logits is of shape (num_hyps, 1, 1, vocab_size) logits = logits.squeeze(1).squeeze(1) @@ -378,9 +375,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -539,9 +534,7 @@ def decode_one_chunk( feature_list, batch_first=True, padding_value=LOG_EPSILON ).to(device) feature_lens = torch.tensor(feature_len_list, device=device) - num_processed_frames = torch.tensor( - num_processed_frames_list, device=device - ) + num_processed_frames = torch.tensor(num_processed_frames_list, device=device) # Make sure it has at least 1 frame after subsampling tail_length = params.subsampling_factor + 5 @@ -583,8 +576,7 @@ def decode_one_chunk( with warnings.catch_warnings(): warnings.simplefilter("ignore") processed_lens = ( - num_processed_frames // params.subsampling_factor - + encoder_out_lens + num_processed_frames // params.subsampling_factor + encoder_out_lens ) fast_beam_search_one_best( model=model, @@ -596,9 +588,7 @@ def decode_one_chunk( max_states=params.max_states, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") # Update cached states of each stream state_list = unstack_states(states) @@ -773,8 +763,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -816,9 +805,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -852,9 +839,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -881,9 +868,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/lstm_transducer_stateless3/train.py b/egs/librispeech/ASR/lstm_transducer_stateless3/train.py index fa50576d8..f56b4fd83 100755 --- a/egs/librispeech/ASR/lstm_transducer_stateless3/train.py +++ b/egs/librispeech/ASR/lstm_transducer_stateless3/train.py @@ -87,9 +87,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -232,8 +230,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -256,8 +253,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -328,6 +324,16 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -596,11 +602,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -623,6 +625,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -639,9 +642,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -654,14 +655,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -672,9 +668,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -841,10 +835,7 @@ def train_one_epoch( rank=rank, ) - if ( - batch_idx % params.log_interval == 0 - and not params.print_diagnostics - ): + if batch_idx % params.log_interval == 0 and not params.print_diagnostics: cur_lr = scheduler.get_last_lr()[0] logging.info( f"Epoch {params.cur_epoch}, " @@ -861,9 +852,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if ( batch_idx > 0 @@ -996,7 +985,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./lstm.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 3) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/prepare.sh b/egs/librispeech/ASR/prepare.sh index 94e003036..b1d207049 100755 --- a/egs/librispeech/ASR/prepare.sh +++ b/egs/librispeech/ASR/prepare.sh @@ -1,5 +1,8 @@ #!/usr/bin/env bash +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + set -eou pipefail nj=15 @@ -41,9 +44,9 @@ dl_dir=$PWD/download # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( - 5000 - 2000 - 1000 + # 5000 + # 2000 + # 1000 500 ) @@ -120,6 +123,13 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then touch data/fbank/.librispeech.done fi + if [ ! -f data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz ]; then + cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \ + <(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \ + <(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \ + shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz + fi + if [ ! -e data/fbank/.librispeech-validated.done ]; then log "Validating data/fbank for LibriSpeech" parts=( @@ -160,6 +170,22 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi + + if [ ! -f $lang_dir/L.fst ]; then + log "Converting L.pt to L.fst" + ./shared/convert-k2-to-openfst.py \ + --olabels aux_labels \ + $lang_dir/L.pt \ + $lang_dir/L.fst + fi + + if [ ! -f $lang_dir/L_disambig.fst ]; then + log "Converting L_disambig.pt to L_disambig.fst" + ./shared/convert-k2-to-openfst.py \ + --olabels aux_labels \ + $lang_dir/L_disambig.pt \ + $lang_dir/disambig_L.fst + fi fi @@ -200,11 +226,27 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi + + if [ ! -f $lang_dir/L.fst ]; then + log "Converting L.pt to L.fst" + ./shared/convert-k2-to-openfst.py \ + --olabels aux_labels \ + $lang_dir/L.pt \ + $lang_dir/L.fst + fi + + if [ ! -f $lang_dir/L_disambig.fst ]; then + log "Converting L_disambig.pt to L_disambig.fst" + ./shared/convert-k2-to-openfst.py \ + --olabels aux_labels \ + $lang_dir/L_disambig.pt \ + $lang_dir/L_disambig.fst + fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then - log "Stage 7: Prepare bigram P" + log "Stage 7: Prepare bigram token-level P for MMI training" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} @@ -263,9 +305,19 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone + # Note If ./local/compile_hlg.py throws OOM, + # please switch to the following command + # + # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone + for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir + + # Note If ./local/compile_hlg.py throws OOM, + # please switch to the following command + # + # ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir done fi diff --git a/egs/librispeech/ASR/pruned2_knowledge/__init__.py b/egs/librispeech/ASR/pruned2_knowledge/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/librispeech/ASR/pruned2_knowledge/asr_datamodule.py b/egs/librispeech/ASR/pruned2_knowledge/asr_datamodule.py new file mode 100644 index 000000000..b839a4a4c --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/asr_datamodule.py @@ -0,0 +1,411 @@ +# Copyright 2021 Piotr Żelasko +# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import inspect +import logging +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from lhotse import CutSet, Fbank, FbankConfig, load_manifest +from lhotse.dataset import ( + BucketingSampler, + CutConcatenate, + CutMix, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SingleCutSampler, + SpecAugment, +) +from lhotse.dataset.input_strategies import OnTheFlyFeatures +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader + +from icefall.utils import str2bool + + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class LibriSpeechAsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description="These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc.", + ) + group.add_argument( + "--full-libri", + type=str2bool, + default=True, + help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", + ) + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--max-duration", + type=int, + default=200.0, + help="Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM.", + ) + group.add_argument( + "--bucketing-sampler", + type=str2bool, + default=True, + help="When enabled, the batches will come from buckets of " + "similar duration (saves padding frames).", + ) + group.add_argument( + "--num-buckets", + type=int, + default=30, + help="The number of buckets for the BucketingSampler" + "(you might want to increase it for larger datasets).", + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help="When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding.", + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help="Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch.", + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help="The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used.", + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help="When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help="When enabled (=default), the examples will be " + "shuffled for each epoch.", + ) + group.add_argument( + "--return-cuts", + type=str2bool, + default=True, + help="When enabled, each batch will have the " + "field: batch['supervisions']['cut'] with the cuts that " + "were used to construct it.", + ) + + group.add_argument( + "--num-workers", + type=int, + default=2, + help="The number of training dataloader workers that " + "collect the batches.", + ) + + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help="Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp.", + ) + + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help="When enabled, select noise from MUSAN and mix it" + "with training dataset. ", + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + logging.info("About to get Musan cuts") + cuts_musan = load_manifest(self.args.manifest_dir / "cuts_musan.json.gz") + transforms.append( + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + + if self.args.concatenate_cuts: + logging.info( + f"Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + # Set the value of num_frame_masks according to Lhotse's version. + # In different Lhotse's versions, the default of num_frame_masks is + # different. + num_frame_masks = 10 + num_frame_masks_parameter = inspect.signature( + SpecAugment.__init__ + ).parameters["num_frame_masks"] + if num_frame_masks_parameter.default == 1: + num_frame_masks = 2 + logging.info(f"Num frame mask: {num_frame_masks}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=num_frame_masks, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.on_the_fly_feats: + # NOTE: the PerturbSpeed transform should be added only if we + # remove it from data prep stage. + # Add on-the-fly speed perturbation; since originally it would + # have increased epoch size by 3, we will apply prob 2/3 and use + # 3x more epochs. + # Speed perturbation probably should come first before + # concatenation, but in principle the transforms order doesn't have + # to be strict (e.g. could be randomized) + # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa + # Drop feats to be on the safe side. + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.bucketing_sampler: + logging.info("Using BucketingSampler.") + train_sampler = BucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + num_buckets=self.args.num_buckets, + bucket_method="equal_duration", + drop_last=True, + ) + else: + logging.info("Using SingleCutSampler.") + train_sampler = SingleCutSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + transforms = [] + if self.args.concatenate_cuts: + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + logging.info("About to create dev dataset") + if self.args.on_the_fly_feats: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + return_cuts=self.args.return_cuts, + ) + else: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + return_cuts=self.args.return_cuts, + ) + valid_sampler = BucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=2, + persistent_workers=False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + if self.args.on_the_fly_feats + else PrecomputedFeatures(), + return_cuts=self.args.return_cuts, + ) + sampler = BucketingSampler( + cuts, max_duration=self.args.max_duration, shuffle=False + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + @lru_cache() + def train_clean_100_cuts(self) -> CutSet: + logging.info("About to get train-clean-100 cuts") + return load_manifest(self.args.manifest_dir / "cuts_train-clean-100.json.gz") + + @lru_cache() + def train_clean_360_cuts(self) -> CutSet: + logging.info("About to get train-clean-360 cuts") + return load_manifest(self.args.manifest_dir / "cuts_train-clean-360.json.gz") + + @lru_cache() + def train_other_500_cuts(self) -> CutSet: + logging.info("About to get train-other-500 cuts") + return load_manifest(self.args.manifest_dir / "cuts_train-other-500.json.gz") + + @lru_cache() + def dev_clean_cuts(self) -> CutSet: + logging.info("About to get dev-clean cuts") + return load_manifest(self.args.manifest_dir / "cuts_dev-clean.json.gz") + + @lru_cache() + def dev_other_cuts(self) -> CutSet: + logging.info("About to get dev-other cuts") + return load_manifest(self.args.manifest_dir / "cuts_dev-other.json.gz") + + @lru_cache() + def test_clean_cuts(self) -> CutSet: + logging.info("About to get test-clean cuts") + return load_manifest(self.args.manifest_dir / "cuts_test-clean.json.gz") + + @lru_cache() + def test_other_cuts(self) -> CutSet: + logging.info("About to get test-other cuts") + return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz") diff --git a/egs/librispeech/ASR/pruned2_knowledge/beam_search.py b/egs/librispeech/ASR/pruned2_knowledge/beam_search.py new file mode 100644 index 000000000..785a8f097 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/beam_search.py @@ -0,0 +1,760 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from dataclasses import dataclass +from typing import Dict, List, Optional + +import k2 +import torch +from model import Transducer + +from icefall.decode import one_best_decoding +from icefall.utils import get_texts + + +def fast_beam_search( + model: Transducer, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, +) -> List[List[int]]: + """It limits the maximum number of symbols per frame to 1. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a HLG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + Returns: + Return the decoded result. + """ + assert encoder_out.ndim == 3 + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + B, T, C = encoder_out.shape + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(k2.RnntDecodingStream(decoding_graph)) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + log_probs = logits.log_softmax(dim=-1) + decoding_streams.advance(log_probs) + decoding_streams.terminate_and_flush_to_streams() + lattice = decoding_streams.format_output(encoder_out_lens.tolist()) + + best_path = one_best_decoding(lattice) + hyps = get_texts(best_path) + return hyps + + +def greedy_search( + model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int +) -> List[int]: + """Greedy search for a single utterance. + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + max_sym_per_frame: + Maximum number of symbols per frame. If it is set to 0, the WER + would be 100%. + Returns: + Return the decoded result. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + + device = model.device + + decoder_input = torch.tensor( + [blank_id] * context_size, device=device, dtype=torch.int64 + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + hyp = [blank_id] * context_size + + # Maximum symbols per utterance. + max_sym_per_utt = 1000 + + # symbols per frame + sym_per_frame = 0 + + # symbols per utterance decoded so far + sym_per_utt = 0 + + while t < T and sym_per_utt < max_sym_per_utt: + if sym_per_frame >= max_sym_per_frame: + sym_per_frame = 0 + t += 1 + continue + + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits is (1, 1, 1, vocab_size) + + y = logits.argmax().item() + if y != blank_id: + hyp.append(y) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + sym_per_utt += 1 + sym_per_frame += 1 + else: + sym_per_frame = 0 + t += 1 + hyp = hyp[context_size:] # remove blanks + + return hyp + + +def greedy_search_batch( + model: Transducer, encoder_out: torch.Tensor +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + Returns: + Return a list-of-list of token IDs containing the decoded results. + len(ans) equals to encoder_out.size(0). + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + device = model.device + + batch_size = encoder_out.size(0) + T = encoder_out.size(1) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + + hyps = [[blank_id] * context_size for _ in range(batch_size)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (batch_size, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + encoder_out = model.joiner.encoder_proj(encoder_out) + + # decoder_out: (batch_size, 1, decoder_out_dim) + for t in range(T): + current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits'shape (batch_size, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size) + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + ans = [h[context_size:] for h in hyps] + return ans + + +@dataclass +class Hypothesis: + # The predicted tokens so far. + # Newly predicted tokens are appended to `ys`. + ys: List[int] + + # The log prob of ys. + # It contains only one entry. + log_prob: torch.Tensor + + @property + def key(self) -> str: + """Return a string representation of self.ys""" + return "_".join(map(str, self.ys)) + + +class HypothesisList(object): + def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None: + """ + Args: + data: + A dict of Hypotheses. Its key is its `value.key`. + """ + if data is None: + self._data = {} + else: + self._data = data + + @property + def data(self) -> Dict[str, Hypothesis]: + return self._data + + def add(self, hyp: Hypothesis) -> None: + """Add a Hypothesis to `self`. + + If `hyp` already exists in `self`, its probability is updated using + `log-sum-exp` with the existed one. + + Args: + hyp: + The hypothesis to be added. + """ + key = hyp.key + if key in self: + old_hyp = self._data[key] # shallow copy + torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob) + else: + self._data[key] = hyp + + def get_most_probable(self, length_norm: bool = False) -> Hypothesis: + """Get the most probable hypothesis, i.e., the one with + the largest `log_prob`. + + Args: + length_norm: + If True, the `log_prob` of a hypothesis is normalized by the + number of tokens in it. + Returns: + Return the hypothesis that has the largest `log_prob`. + """ + if length_norm: + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) + else: + return max(self._data.values(), key=lambda hyp: hyp.log_prob) + + def remove(self, hyp: Hypothesis) -> None: + """Remove a given hypothesis. + + Caution: + `self` is modified **in-place**. + + Args: + hyp: + The hypothesis to be removed from `self`. + Note: It must be contained in `self`. Otherwise, + an exception is raised. + """ + key = hyp.key + assert key in self, f"{key} does not exist" + del self._data[key] + + def filter(self, threshold: torch.Tensor) -> "HypothesisList": + """Remove all Hypotheses whose log_prob is less than threshold. + + Caution: + `self` is not modified. Instead, a new HypothesisList is returned. + + Returns: + Return a new HypothesisList containing all hypotheses from `self` + with `log_prob` being greater than the given `threshold`. + """ + ans = HypothesisList() + for _, hyp in self._data.items(): + if hyp.log_prob > threshold: + ans.add(hyp) # shallow copy + return ans + + def topk(self, k: int) -> "HypothesisList": + """Return the top-k hypothesis.""" + hyps = list(self._data.items()) + + hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k] + + ans = HypothesisList(dict(hyps)) + return ans + + def __contains__(self, key: str): + return key in self._data + + def __iter__(self): + return iter(self._data.values()) + + def __len__(self) -> int: + return len(self._data) + + def __str__(self) -> str: + s = [] + for key in self: + s.append(key) + return ", ".join(s) + + +def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape: + """Return a ragged shape with axes [utt][num_hyps]. + + Args: + hyps: + len(hyps) == batch_size. It contains the current hypothesis for + each utterance in the batch. + Returns: + Return a ragged shape with 2 axes [utt][num_hyps]. Note that + the shape is on CPU. + """ + num_hyps = [len(h) for h in hyps] + + # torch.cumsum() is inclusive sum, so we put a 0 at the beginning + # to get exclusive sum later. + num_hyps.insert(0, 0) + + num_hyps = torch.tensor(num_hyps) + row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32) + ans = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=row_splits[-1].item() + ) + return ans + + +def modified_beam_search( + model: Transducer, + encoder_out: torch.Tensor, + beam: int = 4, +) -> List[List[int]]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + beam: + Number of active paths during the beam search. + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + + batch_size = encoder_out.size(0) + T = encoder_out.size(1) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = model.device + B = [HypothesisList() for _ in range(batch_size)] + for i in range(batch_size): + B[i].add( + Hypothesis( + ys=[blank_id] * context_size, + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + ) + ) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + + hyps_shape = _get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token != blank_id: + new_ys.append(new_token) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) + B[i].add(new_hyp) + + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + ans = [h.ys[context_size:] for h in best_hyps] + + return ans + + +def _deprecated_modified_beam_search( + model: Transducer, + encoder_out: torch.Tensor, + beam: int = 4, +) -> List[int]: + """It limits the maximum number of symbols per frame to 1. + + It decodes only one utterance at a time. We keep it only for reference. + The function :func:`modified_beam_search` should be preferred as it + supports batch decoding. + + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + Returns: + Return the decoded result. + """ + + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + + device = model.device + + T = encoder_out.size(1) + + B = HypothesisList() + B.add( + Hypothesis( + ys=[blank_id] * context_size, + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + ) + ) + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # current_encoder_out is of shape (1, 1, 1, encoder_out_dim) + # fmt: on + A = list(B) + B = HypothesisList() + + ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A]) + # ys_log_probs is of shape (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyp in A], + device=device, + dtype=torch.int64, + ) + # decoder_input is of shape (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_output is of shape (num_hyps, 1, 1, joiner_dim) + + current_encoder_out = current_encoder_out.expand( + decoder_out.size(0), 1, 1, -1 + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) + # logits is of shape (num_hyps, 1, 1, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + # now logits is of shape (num_hyps, vocab_size) + log_probs = logits.log_softmax(dim=-1) + + log_probs.add_(ys_log_probs) + + log_probs = log_probs.reshape(-1) + topk_log_probs, topk_indexes = log_probs.topk(beam) + + # topk_hyp_indexes are indexes into `A` + topk_hyp_indexes = topk_indexes // logits.size(-1) + topk_token_indexes = topk_indexes % logits.size(-1) + + topk_hyp_indexes = topk_hyp_indexes.tolist() + topk_token_indexes = topk_token_indexes.tolist() + + for i in range(len(topk_hyp_indexes)): + hyp = A[topk_hyp_indexes[i]] + new_ys = hyp.ys[:] + new_token = topk_token_indexes[i] + if new_token != blank_id: + new_ys.append(new_token) + new_log_prob = topk_log_probs[i] + new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) + B.add(new_hyp) + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + + return ys + + +def beam_search( + model: Transducer, + encoder_out: torch.Tensor, + beam: int = 4, +) -> List[int]: + """ + It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf + + espnet/nets/beam_search_transducer.py#L247 is used as a reference. + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + Returns: + Return the decoded result. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + + device = model.device + + decoder_input = torch.tensor( + [blank_id] * context_size, + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + + B = HypothesisList() + B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0)) + + max_sym_per_utt = 20000 + + sym_per_utt = 0 + + decoder_cache: Dict[str, torch.Tensor] = {} + + while t < T and sym_per_utt < max_sym_per_utt: + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + A = B + B = HypothesisList() + + joint_cache: Dict[str, torch.Tensor] = {} + + # TODO(fangjun): Implement prefix search to update the `log_prob` + # of hypotheses in A + + while True: + y_star = A.get_most_probable() + A.remove(y_star) + + cached_key = y_star.key + + if cached_key not in decoder_cache: + decoder_input = torch.tensor( + [y_star.ys[-context_size:]], + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + decoder_cache[cached_key] = decoder_out + else: + decoder_out = decoder_cache[cached_key] + + cached_key += f"-t-{t}" + if cached_key not in joint_cache: + logits = model.joiner( + current_encoder_out, + decoder_out.unsqueeze(1), + project_input=False, + ) + + # TODO(fangjun): Scale the blank posterior + log_prob = logits.log_softmax(dim=-1) + # log_prob is (1, 1, 1, vocab_size) + log_prob = log_prob.squeeze() + # Now log_prob is (vocab_size,) + joint_cache[cached_key] = log_prob + else: + log_prob = joint_cache[cached_key] + + # First, process the blank symbol + skip_log_prob = log_prob[blank_id] + new_y_star_log_prob = y_star.log_prob + skip_log_prob + + # ys[:] returns a copy of ys + B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob)) + + # Second, process other non-blank labels + values, indices = log_prob.topk(beam + 1) + for i, v in zip(indices.tolist(), values.tolist()): + if i == blank_id: + continue + new_ys = y_star.ys + [i] + new_log_prob = y_star.log_prob + v + A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob)) + + # Check whether B contains more than "beam" elements more probable + # than the most probable in A + A_most_probable = A.get_most_probable() + + kept_B = B.filter(A_most_probable.log_prob) + + if len(kept_B) >= beam: + B = kept_B.topk(beam) + break + + t += 1 + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + return ys diff --git a/egs/librispeech/ASR/pruned2_knowledge/conformer.py b/egs/librispeech/ASR/pruned2_knowledge/conformer.py new file mode 100644 index 000000000..de367c234 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/conformer.py @@ -0,0 +1,1041 @@ +#!/usr/bin/env python3 +# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import warnings +from typing import Optional, Tuple + +import torch +from encoder_interface import EncoderInterface +from sampling import KnowledgeBaseLookup, create_knowledge_base +from scaling import ( + ActivationBalancer, + BasicNorm, + DoubleSwish, + ScaledConv1d, + ScaledConv2d, + ScaledLinear, +) +from torch import Tensor, nn + +from icefall.utils import make_pad_mask + + +class Conformer(EncoderInterface): + """ + Args: + num_features (int): Number of input features + subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers) + d_model (int): attention dimension, also the output dimension + nhead (int): number of head + dim_feedforward (int): feedforward dimention + num_encoder_layers (int): number of encoder layers + dropout (float): dropout rate + layer_dropout (float): layer-dropout rate. + cnn_module_kernel (int): Kernel size of convolution module + vgg_frontend (bool): whether to use vgg frontend. + """ + + def __init__( + self, + num_features: int, + subsampling_factor: int = 4, + d_model: int = 256, + nhead: int = 4, + dim_feedforward: int = 2048, + num_encoder_layers: int = 12, + dropout: float = 0.1, + layer_dropout: float = 0.075, + cnn_module_kernel: int = 31, + knowledge_M: int = 256, + knowledge_N: int = 2, + knowledge_D: int = 512, + knowledge_K: int = 16, + ) -> None: + super(Conformer, self).__init__() + + self.num_features = num_features + self.subsampling_factor = subsampling_factor + if subsampling_factor != 4: + raise NotImplementedError("Support only 'subsampling_factor=4'.") + + self.knowledge_base = create_knowledge_base( + knowledge_M, knowledge_N, knowledge_D + ) + + # self.encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, T//subsampling_factor, d_model). + # That is, it does two things simultaneously: + # (1) subsampling: T -> T//subsampling_factor + # (2) embedding: num_features -> d_model + self.encoder_embed = Conv2dSubsampling(num_features, d_model) + + self.encoder_pos = RelPositionalEncoding(d_model, dropout) + + # Pass in a lambda that creates a new ConformerEncoderLayer with these + # args. Don't use deepcopy because we need the knowledge_base + # to be shared. + encoder_layer_fn = lambda: ConformerEncoderLayer( # noqa: E731 + self.knowledge_base, + d_model, + nhead, + dim_feedforward, + dropout, + layer_dropout, + cnn_module_kernel, + knowledge_M, + knowledge_N, + knowledge_D, + knowledge_K, + ) + self.encoder = ConformerEncoder(encoder_layer_fn, num_encoder_layers) + + def forward( + self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0 + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + warmup: + A floating point value that gradually increases from 0 throughout + training; when it is >= 1.0 we are "fully warmed up". It is used + to turn modules on sequentially. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (batch_size, output_seq_len, d_model) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + """ + x = self.encoder_embed(x) + x, pos_emb = self.encoder_pos(x) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + # Caution: We assume the subsampling factor is 4! + lengths = ((x_lens - 1) // 2 - 1) // 2 + assert x.size(0) == lengths.max().item() + mask = make_pad_mask(lengths) + + x = self.encoder( + x, pos_emb, src_key_padding_mask=mask, warmup=warmup + ) # (T, N, C) + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + return x, lengths + + +class ConformerEncoderLayer(nn.Module): + """ + ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks. + See: "Conformer: Convolution-augmented Transformer for Speech Recognition" + + Args: + knowledge_base: shared knowledge base parameter matrix, to be passed to constructors + of lookup modules + d_model: the number of expected features in the input (required). + nhead: the number of heads in the multiheadattention models (required). + dim_feedforward: the dimension of the feedforward network model (default=2048). + dropout: the dropout value (default=0.1). + cnn_module_kernel (int): Kernel size of convolution module. + knowledge_M, knowledge_N, knowledge_D, knowledge_K: parameters for knowledge-base, + see docs for KnowlegeBaseLookup. + + Examples:: + >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = encoder_layer(src, pos_emb) + """ + + def __init__( + self, + knowledge_base: nn.Parameter, + d_model: int, + nhead: int, + dim_feedforward: int = 2048, + dropout: float = 0.1, + layer_dropout: float = 0.075, + cnn_module_kernel: int = 31, + knowledge_M: int = 256, + knowledge_N: int = 2, + knowledge_D: int = 512, + knowledge_K: int = 16, + ) -> None: + super(ConformerEncoderLayer, self).__init__() + + self.layer_dropout = layer_dropout + + self.d_model = d_model + + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) + + self.feed_forward = nn.Sequential( + ScaledLinear(d_model, dim_feedforward), + ActivationBalancer(channel_dim=-1), + DoubleSwish(), + nn.Dropout(dropout), + ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), + ) + + self.feed_forward_macaron = nn.Sequential( + ScaledLinear(d_model, dim_feedforward), + ActivationBalancer(channel_dim=-1), + DoubleSwish(), + nn.Dropout(dropout), + ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), + ) + + self.conv_module = ConvolutionModule(d_model, cnn_module_kernel) + + self.lookup = KnowledgeBaseLookup( + knowledge_M, knowledge_N, knowledge_D, knowledge_K, d_model, knowledge_base + ) + + self.norm_final = BasicNorm(d_model) + + # try to ensure the output is close to zero-mean (or at least, zero-median). + self.balancer = ActivationBalancer( + channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0 + ) + + self.dropout = nn.Dropout(dropout) + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + warmup: float = 1.0, + ) -> Tensor: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + src_mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + warmup: controls selective bypass of of layers; if < 1.0, we will + bypass layers more frequently. + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + src_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, N is the batch size, E is the feature number + """ + src_orig = src + + warmup_scale = min(0.1 + warmup, 1.0) + # alpha = 1.0 means fully use this encoder layer, 0.0 would mean + # completely bypass it. + if self.training: + alpha = ( + warmup_scale + if torch.rand(()).item() <= (1.0 - self.layer_dropout) + else 0.1 + ) + else: + alpha = 1.0 + + # macaron style feed forward module + src = src + self.dropout(self.feed_forward_macaron(src)) + + # multi-headed self-attention module + src_att = self.self_attn( + src, + src, + src, + pos_emb=pos_emb, + attn_mask=src_mask, + key_padding_mask=src_key_padding_mask, + )[0] + src = src + self.dropout(src_att) + + # convolution module + src = src + self.dropout(self.conv_module(src)) + + # feed forward module + src = src + self.dropout(self.feed_forward(src)) + + # knowledge-base lookup + src = src + self.dropout(self.lookup(src)) + + src = self.norm_final(self.balancer(src)) + + if alpha != 1.0: + src = alpha * src + (1 - alpha) * src_orig + + return src + + +class ConformerEncoder(nn.Module): + r"""ConformerEncoder is a stack of N encoder layers + + Args: + encoder_layer: an instance of the ConformerEncoderLayer() class (required). + num_layers: the number of sub-encoder-layers in the encoder (required). + + Examples:: + >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8) + >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = conformer_encoder(src, pos_emb) + """ + + def __init__(self, encoder_layer_fn, num_layers: int) -> None: + super().__init__() + self.layers = nn.ModuleList([encoder_layer_fn() for i in range(num_layers)]) + self.num_layers = num_layers + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + warmup: float = 1.0, + ) -> Tensor: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + pos_emb: Positional embedding tensor (required). + mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + """ + output = src + + for i, mod in enumerate(self.layers): + output = mod( + output, + pos_emb, + src_mask=mask, + src_key_padding_mask=src_key_padding_mask, + warmup=warmup, + ) + + return output + + +class RelPositionalEncoding(torch.nn.Module): + """Relative positional encoding module. + + See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py + + Args: + d_model: Embedding dimension. + dropout_rate: Dropout rate. + max_len: Maximum input length. + + """ + + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: + """Construct an PositionalEncoding object.""" + super(RelPositionalEncoding, self).__init__() + self.d_model = d_model + self.dropout = torch.nn.Dropout(p=dropout_rate) + self.pe = None + self.extend_pe(torch.tensor(0.0).expand(1, max_len)) + + def extend_pe(self, x: Tensor) -> None: + """Reset the positional encodings.""" + if self.pe is not None: + # self.pe contains both positive and negative parts + # the length of self.pe is 2 * input_len - 1 + if self.pe.size(1) >= x.size(1) * 2 - 1: + # Note: TorchScript doesn't implement operator== for torch.Device + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): + self.pe = self.pe.to(dtype=x.dtype, device=x.device) + return + # Suppose `i` means to the position of query vecotr and `j` means the + # position of key vector. We use position relative positions when keys + # are to the left (i>j) and negative relative positions otherwise (i Tuple[Tensor, Tensor]: + """Add positional encoding. + + Args: + x (torch.Tensor): Input tensor (batch, time, `*`). + + Returns: + torch.Tensor: Encoded tensor (batch, time, `*`). + torch.Tensor: Encoded tensor (batch, 2*time-1, `*`). + + """ + self.extend_pe(x) + pos_emb = self.pe[ + :, + self.pe.size(1) // 2 + - x.size(1) + + 1 : self.pe.size(1) // 2 # noqa E203 + + x.size(1), + ] + return self.dropout(x), self.dropout(pos_emb) + + +class RelPositionMultiheadAttention(nn.Module): + r"""Multi-Head Attention layer with relative position encoding + + See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + + Args: + embed_dim: total dimension of the model. + num_heads: parallel attention heads. + dropout: a Dropout layer on attn_output_weights. Default: 0.0. + + Examples:: + + >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) + >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + ) -> None: + super(RelPositionMultiheadAttention, self).__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + assert ( + self.head_dim * num_heads == self.embed_dim + ), "embed_dim must be divisible by num_heads" + + self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True) + self.out_proj = ScaledLinear( + embed_dim, embed_dim, bias=True, initial_scale=0.25 + ) + + # linear transformation for positional encoding. + self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False) + # these two learnable bias are used in matrix c and matrix d + # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 + self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) + self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim)) + self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach()) + self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach()) + self._reset_parameters() + + def _pos_bias_u(self): + return self.pos_bias_u * self.pos_bias_u_scale.exp() + + def _pos_bias_v(self): + return self.pos_bias_v * self.pos_bias_v_scale.exp() + + def _reset_parameters(self) -> None: + nn.init.normal_(self.pos_bias_u, std=0.01) + nn.init.normal_(self.pos_bias_v, std=0.01) + + def forward( + self, + query: Tensor, + key: Tensor, + value: Tensor, + pos_emb: Tensor, + key_padding_mask: Optional[Tensor] = None, + need_weights: bool = True, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Optional[Tensor]]: + r""" + Args: + query, key, value: map a query and a set of key-value pairs to an output. + pos_emb: Positional embedding tensor + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. When given a binary mask and a value is True, + the corresponding value on the attention layer will be ignored. When given + a byte mask and a value is non-zero, the corresponding value on the attention + layer will be ignored + need_weights: output attn_output_weights. + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + - Inputs: + - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is + the embedding dimension. + - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the position + with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + - Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_output_weights: :math:`(N, L, S)` where N is the batch size, + L is the target sequence length, S is the source sequence length. + """ + return self.multi_head_attention_forward( + query, + key, + value, + pos_emb, + self.embed_dim, + self.num_heads, + self.in_proj.get_weight(), + self.in_proj.get_bias(), + self.dropout, + self.out_proj.get_weight(), + self.out_proj.get_bias(), + training=self.training, + key_padding_mask=key_padding_mask, + need_weights=need_weights, + attn_mask=attn_mask, + ) + + def rel_shift(self, x: Tensor) -> Tensor: + """Compute relative positional encoding. + + Args: + x: Input tensor (batch, head, time1, 2*time1-1). + time1 means the length of query vector. + + Returns: + Tensor: tensor of shape (batch, head, time1, time2) + (note: time2 has the same value as time1, but it is for + the key, while time1 is for the query). + """ + (batch_size, num_heads, time1, n) = x.shape + assert n == 2 * time1 - 1 + # Note: TorchScript requires explicit arg for stride() + batch_stride = x.stride(0) + head_stride = x.stride(1) + time1_stride = x.stride(2) + n_stride = x.stride(3) + return x.as_strided( + (batch_size, num_heads, time1, time1), + (batch_stride, head_stride, time1_stride - n_stride, n_stride), + storage_offset=n_stride * (time1 - 1), + ) + + def multi_head_attention_forward( + self, + query: Tensor, + key: Tensor, + value: Tensor, + pos_emb: Tensor, + embed_dim_to_check: int, + num_heads: int, + in_proj_weight: Tensor, + in_proj_bias: Tensor, + dropout_p: float, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + training: bool = True, + key_padding_mask: Optional[Tensor] = None, + need_weights: bool = True, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Optional[Tensor]]: + r""" + Args: + query, key, value: map a query and a set of key-value pairs to an output. + pos_emb: Positional embedding tensor + embed_dim_to_check: total dimension of the model. + num_heads: parallel attention heads. + in_proj_weight, in_proj_bias: input projection weight and bias. + dropout_p: probability of an element to be zeroed. + out_proj_weight, out_proj_bias: the output projection weight and bias. + training: apply dropout if is ``True``. + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. This is an binary mask. When the value is True, + the corresponding value on the attention layer will be filled with -inf. + need_weights: output attn_output_weights. + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + Inputs: + - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is + the embedding dimension. + - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence + length, N is the batch size, E is the embedding dimension. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_output_weights: :math:`(N, L, S)` where N is the batch size, + L is the target sequence length, S is the source sequence length. + """ + + tgt_len, bsz, embed_dim = query.size() + assert embed_dim == embed_dim_to_check + assert key.size(0) == value.size(0) and key.size(1) == value.size(1) + + head_dim = embed_dim // num_heads + assert ( + head_dim * num_heads == embed_dim + ), "embed_dim must be divisible by num_heads" + + scaling = float(head_dim) ** -0.5 + + if torch.equal(query, key) and torch.equal(key, value): + # self-attention + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) + + elif torch.equal(key, value): + # encoder-decoder attention + # This is inline in_proj function with in_proj_weight and in_proj_bias + _b = in_proj_bias + _start = 0 + _end = embed_dim + _w = in_proj_weight[_start:_end, :] + if _b is not None: + _b = _b[_start:_end] + q = nn.functional.linear(query, _w, _b) + + # This is inline in_proj function with in_proj_weight and in_proj_bias + _b = in_proj_bias + _start = embed_dim + _end = None + _w = in_proj_weight[_start:, :] + if _b is not None: + _b = _b[_start:] + k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1) + + else: + # This is inline in_proj function with in_proj_weight and in_proj_bias + _b = in_proj_bias + _start = 0 + _end = embed_dim + _w = in_proj_weight[_start:_end, :] + if _b is not None: + _b = _b[_start:_end] + q = nn.functional.linear(query, _w, _b) + + # This is inline in_proj function with in_proj_weight and in_proj_bias + _b = in_proj_bias + _start = embed_dim + _end = embed_dim * 2 + _w = in_proj_weight[_start:_end, :] + if _b is not None: + _b = _b[_start:_end] + k = nn.functional.linear(key, _w, _b) + + # This is inline in_proj function with in_proj_weight and in_proj_bias + _b = in_proj_bias + _start = embed_dim * 2 + _end = None + _w = in_proj_weight[_start:, :] + if _b is not None: + _b = _b[_start:] + v = nn.functional.linear(value, _w, _b) + + if attn_mask is not None: + assert ( + attn_mask.dtype == torch.float32 + or attn_mask.dtype == torch.float64 + or attn_mask.dtype == torch.float16 + or attn_mask.dtype == torch.uint8 + or attn_mask.dtype == torch.bool + ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( + attn_mask.dtype + ) + if attn_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for attn_mask is deprecated. Use bool tensor instead." + ) + attn_mask = attn_mask.to(torch.bool) + + if attn_mask.dim() == 2: + attn_mask = attn_mask.unsqueeze(0) + if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: + raise RuntimeError("The size of the 2D attn_mask is not correct.") + elif attn_mask.dim() == 3: + if list(attn_mask.size()) != [ + bsz * num_heads, + query.size(0), + key.size(0), + ]: + raise RuntimeError("The size of the 3D attn_mask is not correct.") + else: + raise RuntimeError( + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) + ) + # attn_mask's dim is 3 now. + + # convert ByteTensor key_padding_mask to bool + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." + ) + key_padding_mask = key_padding_mask.to(torch.bool) + + q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim) + k = k.contiguous().view(-1, bsz, num_heads, head_dim) + v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) + + src_len = k.size(0) + + if key_padding_mask is not None: + assert key_padding_mask.size(0) == bsz, "{} == {}".format( + key_padding_mask.size(0), bsz + ) + assert key_padding_mask.size(1) == src_len, "{} == {}".format( + key_padding_mask.size(1), src_len + ) + + q = q.transpose(0, 1) # (batch, time1, head, d_k) + + pos_emb_bsz = pos_emb.size(0) + assert pos_emb_bsz in (1, bsz) # actually it is 1 + p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim) + p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k) + + q_with_bias_u = (q + self._pos_bias_u()).transpose( + 1, 2 + ) # (batch, head, time1, d_k) + + q_with_bias_v = (q + self._pos_bias_v()).transpose( + 1, 2 + ) # (batch, head, time1, d_k) + + # compute attention score + # first compute matrix a and matrix c + # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) + + # compute matrix b and matrix d + matrix_bd = torch.matmul( + q_with_bias_v, p.transpose(-2, -1) + ) # (batch, head, time1, 2*time1-1) + matrix_bd = self.rel_shift(matrix_bd) + + attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2) + + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) + + assert list(attn_output_weights.size()) == [ + bsz * num_heads, + tgt_len, + src_len, + ] + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + attn_output_weights.masked_fill_(attn_mask, float("-inf")) + else: + attn_output_weights += attn_mask + + if key_padding_mask is not None: + attn_output_weights = attn_output_weights.view( + bsz, num_heads, tgt_len, src_len + ) + attn_output_weights = attn_output_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2), + float("-inf"), + ) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, tgt_len, src_len + ) + + attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1) + attn_output_weights = nn.functional.dropout( + attn_output_weights, p=dropout_p, training=training + ) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] + attn_output = ( + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + if need_weights: + # average attention weights over heads + attn_output_weights = attn_output_weights.view( + bsz, num_heads, tgt_len, src_len + ) + return attn_output, attn_output_weights.sum(dim=1) / num_heads + else: + return attn_output, None + + +class ConvolutionModule(nn.Module): + """ConvolutionModule in Conformer model. + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py + + Args: + channels (int): The number of channels of conv layers. + kernel_size (int): Kernerl size of conv layers. + bias (bool): Whether to use bias in conv layers (default=True). + + """ + + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: + """Construct an ConvolutionModule object.""" + super(ConvolutionModule, self).__init__() + # kernerl_size should be a odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0 + + self.pointwise_conv1 = ScaledConv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + + # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, + # but sometimes, for some reason, for layer 0 the rms ends up being very large, + # between 50 and 100 for different channels. This will cause very peaky and + # sparse derivatives for the sigmoid gating function, which will tend to make + # the loss function not learn effectively. (for most layers the average absolute values + # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different + # layers, which likely breaks down as 0.5 for the "linear" half and + # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we + # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, + # it will be in a better position to start learning something, i.e. to latch onto + # the correct range. + self.deriv_balancer1 = ActivationBalancer( + channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0 + ) + + self.depthwise_conv = ScaledConv1d( + channels, + channels, + kernel_size, + stride=1, + padding=(kernel_size - 1) // 2, + groups=channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + channel_dim=1, min_positive=0.05, max_positive=1.0 + ) + + self.activation = DoubleSwish() + + self.pointwise_conv2 = ScaledConv1d( + channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.25, + ) + + def forward(self, x: Tensor) -> Tensor: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + + Returns: + Tensor: Output tensor (#time, batch, channels). + + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + # 1D Depthwise Conv + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1) + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/4 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = ((T-1)//2 - 1)//2, which approximates T' == T//4 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, ((T-1)//2 - 1)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer1_channels: + Number of channels in layer2 + """ + assert in_channels >= 7 + super().__init__() + + self.conv = nn.Sequential( + ScaledConv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=1, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ScaledConv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ScaledConv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=2, + ), + ActivationBalancer(channel_dim=1), + DoubleSwish(), + ) + self.out = ScaledLinear( + layer3_channels * (((in_channels - 1) // 2 - 1) // 2), out_channels + ) + # set learn_eps=False because out_norm is preceded by `out`, and `out` + # itself has learned scale, so the extra degree of freedom is not + # needed. + self.out_norm = BasicNorm(out_channels, learn_eps=False) + # constrain median of output to be close to zero. + self.out_balancer = ActivationBalancer( + channel_dim=-1, min_positive=0.45, max_positive=0.55 + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + + Returns: + Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + x = self.conv(x) + # Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2) + b, c, t, f = x.size() + x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) + # Now x is of shape (N, ((T-1)//2 - 1))//2, odim) + x = self.out_norm(x) + x = self.out_balancer(x) + return x + + +if __name__ == "__main__": + feature_dim = 50 + c = Conformer(num_features=feature_dim, d_model=128, nhead=4) + batch_size = 5 + seq_len = 20 + # Just make sure the forward pass runs. + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + warmup=0.5, + ) diff --git a/egs/librispeech/ASR/pruned2_knowledge/decode.py b/egs/librispeech/ASR/pruned2_knowledge/decode.py new file mode 100755 index 000000000..40d14bb5a --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/decode.py @@ -0,0 +1,534 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned2_knowledge/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned2_knowledge/exp \ + --max-duration 100 \ + --decoding-method greedy_search + +(2) beam search +./pruned2_knowledge/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned2_knowledge/exp \ + --max-duration 100 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned2_knowledge/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned2_knowledge/exp \ + --max-duration 100 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search +./pruned2_knowledge/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned2_knowledge/exp \ + --max-duration 1500 \ + --decoding-method fast_beam_search \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +""" + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import get_params, get_transducer_model + +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--avg-last-n", + type=int, + default=0, + help="""If positive, --epoch and --avg are ignored and it + will use the last n checkpoints exp_dir/checkpoint-xxx.pt + where xxx is the number of processed batches while + saving that checkpoint. + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned2_knowledge/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = model.device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif params.decoding_method == "fast_beam_search": + return { + ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ): hyps + } + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 100 + else: + log_interval = 2 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if params.avg_last_n > 0: + filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n] + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + + model.to(device) + model.eval() + model.device = device + + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned2_knowledge/decoder.py b/egs/librispeech/ASR/pruned2_knowledge/decoder.py new file mode 100644 index 000000000..0b9c886c7 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/decoder.py @@ -0,0 +1,101 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +import torch.nn.functional as F +from scaling import ScaledConv1d, ScaledEmbedding + + +class Decoder(nn.Module): + """This class modifies the stateless decoder from the following paper: + + RNN-transducer with stateless prediction network + https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 + + It removes the recurrent connection from the decoder, i.e., the prediction + network. Different from the above paper, it adds an extra Conv1d + right after the embedding layer. + + TODO: Implement https://arxiv.org/pdf/2109.07513.pdf + """ + + def __init__( + self, + vocab_size: int, + decoder_dim: int, + blank_id: int, + context_size: int, + ): + """ + Args: + vocab_size: + Number of tokens of the modeling unit including blank. + decoder_dim: + Dimension of the input embedding, and of the decoder output. + blank_id: + The ID of the blank symbol. + context_size: + Number of previous words to use to predict the next word. + 1 means bigram; 2 means trigram. n means (n+1)-gram. + """ + super().__init__() + + self.embedding = ScaledEmbedding( + num_embeddings=vocab_size, + embedding_dim=decoder_dim, + padding_idx=blank_id, + ) + self.blank_id = blank_id + + assert context_size >= 1, context_size + self.context_size = context_size + self.vocab_size = vocab_size + if context_size > 1: + self.conv = ScaledConv1d( + in_channels=decoder_dim, + out_channels=decoder_dim, + kernel_size=context_size, + padding=0, + groups=decoder_dim, + bias=False, + ) + + def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + need_pad: + True to left pad the input. Should be True during training. + False to not pad the input. Should be False during inference. + Returns: + Return a tensor of shape (N, U, decoder_dim). + """ + y = y.to(torch.int64) + embedding_out = self.embedding(y) + if self.context_size > 1: + embedding_out = embedding_out.permute(0, 2, 1) + if need_pad is True: + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) + else: + # During inference time, there is no need to do extra padding + # as we only need one output + assert embedding_out.size(-1) == self.context_size + embedding_out = self.conv(embedding_out) + embedding_out = embedding_out.permute(0, 2, 1) + embedding_out = F.relu(embedding_out) + return embedding_out diff --git a/egs/librispeech/ASR/pruned2_knowledge/decoder2.py b/egs/librispeech/ASR/pruned2_knowledge/decoder2.py new file mode 100644 index 000000000..0c9cee431 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/decoder2.py @@ -0,0 +1,261 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F +from subsampling import ScaledConv1d +from torch import Tensor + + +class Decoder(nn.Module): + """This class modifies the stateless decoder from the following paper: + + RNN-transducer with stateless prediction network + https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 + + It removes the recurrent connection from the decoder, i.e., the prediction + network. Different from the above paper, it adds an extra Conv1d + right after the embedding layer. + + TODO: Implement https://arxiv.org/pdf/2109.07513.pdf + """ + + def __init__( + self, + vocab_size: int, + embedding_dim: int, + blank_id: int, + context_size: int, + ): + """ + Args: + vocab_size: + Number of tokens of the modeling unit including blank. + embedding_dim: + Dimension of the input embedding. + blank_id: + The ID of the blank symbol. + context_size: + Number of previous words to use to predict the next word. + 1 means bigram; 2 means trigram. n means (n+1)-gram. + """ + super().__init__() + self.embedding = ScaledEmbedding( + num_embeddings=vocab_size, + embedding_dim=embedding_dim, + padding_idx=blank_id, + ) + self.blank_id = blank_id + + assert context_size >= 1, context_size + self.context_size = context_size + if context_size > 1: + self.conv = ScaledConv1d( + in_channels=embedding_dim, + out_channels=embedding_dim, + kernel_size=context_size, + padding=0, + groups=embedding_dim, + bias=False, + ) + + def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + need_pad: + True to left pad the input. Should be True during training. + False to not pad the input. Should be False during inference. + Returns: + Return a tensor of shape (N, U, embedding_dim). + """ + y = y.to(torch.int64) + embedding_out = self.embedding(y) + if self.context_size > 1: + embedding_out = embedding_out.permute(0, 2, 1) + if need_pad is True: + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) + else: + # During inference time, there is no need to do extra padding + # as we only need one output + assert embedding_out.size(-1) == self.context_size + embedding_out = self.conv(embedding_out) + embedding_out = embedding_out.permute(0, 2, 1) + return embedding_out + + +class ScaledEmbedding(nn.Module): + r"""A simple lookup table that stores embeddings of a fixed dictionary and size. + + This module is often used to store word embeddings and retrieve them using indices. + The input to the module is a list of indices, and the output is the corresponding + word embeddings. + + Args: + num_embeddings (int): size of the dictionary of embeddings + embedding_dim (int): the size of each embedding vector + padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx` + (initialized to zeros) whenever it encounters the index. + max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` + is renormalized to have norm :attr:`max_norm`. + norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. + scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of + the words in the mini-batch. Default ``False``. + sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. + See Notes for more details regarding sparse gradients. + + Attributes: + weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) + initialized from :math:`\mathcal{N}(0, 1)` + + Shape: + - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract + - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` + + .. note:: + Keep in mind that only a limited number of optimizers support + sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), + :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) + + .. note:: + With :attr:`padding_idx` set, the embedding vector at + :attr:`padding_idx` is initialized to all zeros. However, note that this + vector can be modified afterwards, e.g., using a customized + initialization method, and thus changing the vector used to pad the + output. The gradient for this vector from :class:`~torch.nn.Embedding` + is always zero. + + Examples:: + + >>> # an Embedding module containing 10 tensors of size 3 + >>> embedding = nn.Embedding(10, 3) + >>> # a batch of 2 samples of 4 indices each + >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) + >>> embedding(input) + tensor([[[-0.0251, -1.6902, 0.7172], + [-0.6431, 0.0748, 0.6969], + [ 1.4970, 1.3448, -0.9685], + [-0.3677, -2.7265, -0.1685]], + + [[ 1.4970, 1.3448, -0.9685], + [ 0.4362, -0.4004, 0.9400], + [-0.6431, 0.0748, 0.6969], + [ 0.9124, -2.3616, 1.1151]]]) + + + >>> # example with padding_idx + >>> embedding = nn.Embedding(10, 3, padding_idx=0) + >>> input = torch.LongTensor([[0,2,0,5]]) + >>> embedding(input) + tensor([[[ 0.0000, 0.0000, 0.0000], + [ 0.1535, -2.0309, 0.9315], + [ 0.0000, 0.0000, 0.0000], + [-0.1655, 0.9897, 0.0635]]]) + """ + __constants__ = [ + "num_embeddings", + "embedding_dim", + "padding_idx", + "scale_grad_by_freq", + "sparse", + ] + + num_embeddings: int + embedding_dim: int + padding_idx: int + scale_grad_by_freq: bool + weight: Tensor + sparse: bool + + def __init__( + self, + num_embeddings: int, + embedding_dim: int, + padding_idx: Optional[int] = None, + scale_grad_by_freq: bool = False, + sparse: bool = False, + scale_speed: float = 5.0, + ) -> None: + super(ScaledEmbedding, self).__init__() + self.num_embeddings = num_embeddings + self.embedding_dim = embedding_dim + if padding_idx is not None: + if padding_idx > 0: + assert ( + padding_idx < self.num_embeddings + ), "Padding_idx must be within num_embeddings" + elif padding_idx < 0: + assert ( + padding_idx >= -self.num_embeddings + ), "Padding_idx must be within num_embeddings" + padding_idx = self.num_embeddings + padding_idx + self.padding_idx = padding_idx + self.scale_grad_by_freq = scale_grad_by_freq + + self.scale_speed = scale_speed + self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters() + self.sparse = sparse + + self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) + self.reset_parameters() + + def reset_parameters(self) -> None: + nn.init.normal_(self.weight, std=0.05) + nn.init.constant_(self.scale, torch.tensor(1.0 / 0.05).log() / self.scale_speed) + + if self.padding_idx is not None: + with torch.no_grad(): + self.weight[self.padding_idx].fill_(0) + + def forward(self, input: Tensor) -> Tensor: + scale = (self.scale * self.scale_speed).exp() + if input.numel() < self.num_embeddings: + return ( + F.embedding( + input, + self.weight, + self.padding_idx, + None, + 2.0, # None, 2.0 relate to normalization + self.scale_grad_by_freq, + self.sparse, + ) + * scale + ) + else: + return F.embedding( + input, + self.weight * scale, + self.padding_idx, + None, + 2.0, # None, 2.0 relates to normalization + self.scale_grad_by_freq, + self.sparse, + ) + + def extra_repr(self) -> str: + s = "{num_embeddings}, {embedding_dim}, scale_speed={scale_speed}, scale={scale}" + if self.padding_idx is not None: + s += ", padding_idx={padding_idx}" + if self.scale_grad_by_freq is not False: + s += ", scale_grad_by_freq={scale_grad_by_freq}" + if self.sparse is not False: + s += ", sparse=True" + return s.format(**self.__dict__) diff --git a/egs/librispeech/ASR/pruned2_knowledge/encoder_interface.py b/egs/librispeech/ASR/pruned2_knowledge/encoder_interface.py new file mode 100644 index 000000000..257facce4 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/encoder_interface.py @@ -0,0 +1,43 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple + +import torch +import torch.nn as nn + + +class EncoderInterface(nn.Module): + def forward( + self, x: torch.Tensor, x_lens: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (batch_size, input_seq_len, num_features) + containing the input features. + x_lens: + A tensor of shape (batch_size,) containing the number of frames + in `x` before padding. + Returns: + Return a tuple containing two tensors: + - encoder_out, a tensor of (batch_size, out_seq_len, output_dim) + containing unnormalized probabilities, i.e., the output of a + linear layer. + - encoder_out_lens, a tensor of shape (batch_size,) containing + the number of frames in `encoder_out` before padding. + """ + raise NotImplementedError("Please implement it in a subclass") diff --git a/egs/librispeech/ASR/pruned2_knowledge/export.py b/egs/librispeech/ASR/pruned2_knowledge/export.py new file mode 100755 index 000000000..51020aa30 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/export.py @@ -0,0 +1,179 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" +Usage: +./pruned2_knowledge/export.py \ + --exp-dir ./pruned2_knowledge/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file exp_dir/pretrained.pt + +To use the generated file with `pruned2_knowledge/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned2_knowledge/decode.py \ + --exp-dir ./pruned2_knowledge/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 100 \ + --bpe-model data/lang_bpe_500/bpe.model +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from train import get_params, get_transducer_model + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned2_knowledge/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + return parser + + +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + assert args.jit is False, "Support torchscript will be added later" + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + + model.eval() + + model.to("cpu") + model.eval() + + if params.jit: + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torch.jit.script") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned2_knowledge/joiner.py b/egs/librispeech/ASR/pruned2_knowledge/joiner.py new file mode 100644 index 000000000..68c663b66 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/joiner.py @@ -0,0 +1,65 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +from scaling import ScaledLinear + + +class Joiner(nn.Module): + def __init__( + self, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + super().__init__() + + self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim) + self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim) + self.output_linear = ScaledLinear(joiner_dim, vocab_size) + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + project_input: bool = True, + ) -> torch.Tensor: + """ + Args: + encoder_out: + Output from the encoder. Its shape is (N, T, s_range, C). + decoder_out: + Output from the decoder. Its shape is (N, T, s_range, C). + project_input: + If true, apply input projections encoder_proj and decoder_proj. + If this is false, it is the user's responsibility to do this + manually. + Returns: + Return a tensor of shape (N, T, s_range, C). + """ + assert encoder_out.ndim == decoder_out.ndim == 4 + assert encoder_out.shape[:-1] == decoder_out.shape[:-1] + + if project_input: + logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out) + else: + logit = encoder_out + decoder_out + + logit = self.output_linear(torch.tanh(logit)) + + return logit diff --git a/egs/librispeech/ASR/pruned2_knowledge/model.py b/egs/librispeech/ASR/pruned2_knowledge/model.py new file mode 100644 index 000000000..ca8c28af1 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/model.py @@ -0,0 +1,189 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import ScaledLinear + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) + self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + warmup: float = 1.0, + ) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + warmup: + A value warmup >= 0 that determines which modules are active, values + warmup > 1 "are fully warmed up" and all modules will be active. + Returns: + Return the transducer loss. + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup) + assert torch.all(x_lens > 0) + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens + + lm = self.simple_lm_proj(decoder_out) + am = self.simple_am_proj(encoder_out) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss) diff --git a/egs/librispeech/ASR/pruned2_knowledge/optim.py b/egs/librispeech/ASR/pruned2_knowledge/optim.py new file mode 100644 index 000000000..76cd4e11e --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/optim.py @@ -0,0 +1,316 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Union + +import torch +from torch.optim import Optimizer + + +class Eve(Optimizer): + r""" + Implements Eve algorithm. This is a modified version of AdamW with a special + way of setting the weight-decay / shrinkage-factor, which is designed to make the + rms of the parameters approach a particular target_rms (default: 0.1). This is + for use with networks with 'scaled' versions of modules (see scaling.py), which + will be close to invariant to the absolute scale on the parameter matrix. + + The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. + The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. + Eve is unpublished so far. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay coefficient (default: 3e-4; + this value means that the weight would decay significantly after + about 3k minibatches. Is not multiplied by learning rate, but + is conditional on RMS-value of parameter being > target_rms. + target_rms (float, optional): target root-mean-square value of + parameters, if they fall below this we will stop applying weight decay. + + + .. _Adam\: A Method for Stochastic Optimization: + https://arxiv.org/abs/1412.6980 + .. _Decoupled Weight Decay Regularization: + https://arxiv.org/abs/1711.05101 + .. _On the Convergence of Adam and Beyond: + https://openreview.net/forum?id=ryQu7f-RZ + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.98), + eps=1e-8, + weight_decay=1e-3, + target_rms=0.1, + ): + + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0 <= weight_decay <= 0.1: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0 < target_rms <= 10.0: + raise ValueError("Invalid target_rms value: {}".format(target_rms)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + target_rms=target_rms, + ) + super(Eve, self).__init__(params, defaults) + + def __setstate__(self, state): + super(Eve, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group["params"]: + if p.grad is None: + continue + + # Perform optimization step + grad = p.grad + if grad.is_sparse: + raise RuntimeError("AdamW does not support sparse gradients") + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + + beta1, beta2 = group["betas"] + + state["step"] += 1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( + group["eps"] + ) + + step_size = group["lr"] / bias_correction1 + target_rms = group["target_rms"] + weight_decay = group["weight_decay"] + + if p.numel() > 1: + # avoid applying this weight-decay on "scaling factors" + # (which are scalar). + is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) + p.mul_(1 - (weight_decay * is_above_target_rms)) + p.addcdiv_(exp_avg, denom, value=-step_size) + + return loss + + +class LRScheduler(object): + """ + Base-class for learning rate schedulers where the learning-rate depends on both the + batch and the epoch. + """ + + def __init__(self, optimizer: Optimizer, verbose: bool = False): + # Attach optimizer + if not isinstance(optimizer, Optimizer): + raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) + self.optimizer = optimizer + self.verbose = verbose + + for group in optimizer.param_groups: + group.setdefault("initial_lr", group["lr"]) + + self.base_lrs = [group["initial_lr"] for group in optimizer.param_groups] + + self.epoch = 0 + self.batch = 0 + + def state_dict(self): + """Returns the state of the scheduler as a :class:`dict`. + + It contains an entry for every variable in self.__dict__ which + is not the optimizer. + """ + return { + "base_lrs": self.base_lrs, + "epoch": self.epoch, + "batch": self.batch, + } + + def load_state_dict(self, state_dict): + """Loads the schedulers state. + + Args: + state_dict (dict): scheduler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_last_lr(self) -> List[float]: + """Return last computed learning rate by current scheduler. Will be a list of float.""" + return self._last_lr + + def get_lr(self): + # Compute list of learning rates from self.epoch and self.batch and + # self.base_lrs; this must be overloaded by the user. + # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] + raise NotImplementedError + + def step_batch(self, batch: Optional[int] = None) -> None: + # Step the batch index, or just set it. If `batch` is specified, it + # must be the batch index from the start of training, i.e. summed over + # all epochs. + # You can call this in any order; if you don't provide 'batch', it should + # of course be called once per batch. + if batch is not None: + self.batch = batch + else: + self.batch = self.batch + 1 + self._set_lrs() + + def step_epoch(self, epoch: Optional[int] = None): + # Step the epoch index, or just set it. If you provide the 'epoch' arg, + # you should call this at the start of the epoch; if you don't provide the 'epoch' + # arg, you should call it at the end of the epoch. + if epoch is not None: + self.epoch = epoch + else: + self.epoch = self.epoch + 1 + self._set_lrs() + + def _set_lrs(self): + values = self.get_lr() + assert len(values) == len(self.optimizer.param_groups) + + for i, data in enumerate(zip(self.optimizer.param_groups, values)): + param_group, lr = data + param_group["lr"] = lr + self.print_lr(self.verbose, i, lr) + self._last_lr = [group["lr"] for group in self.optimizer.param_groups] + + def print_lr(self, is_verbose, group, lr): + """Display the current learning rate.""" + if is_verbose: + print( + f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" + f" of group {group} to {lr:.4e}." + ) + + +class Eden(LRScheduler): + """ + Eden scheduler. + lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * + (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) + + E.g. suggest initial-lr = 0.003 (passed to optimizer). + + Args: + optimizer: the optimizer to change the learning rates on + lr_batches: the number of batches after which we start significantly + decreasing the learning rate, suggest 5000. + lr_epochs: the number of epochs after which we start significantly + decreasing the learning rate, suggest 6 if you plan to do e.g. + 20 to 40 epochs, but may need smaller number if dataset is huge + and you will do few epochs. + """ + + def __init__( + self, + optimizer: Optimizer, + lr_batches: Union[int, float], + lr_epochs: Union[int, float], + verbose: bool = False, + ): + super(Eden, self).__init__(optimizer, verbose) + self.lr_batches = lr_batches + self.lr_epochs = lr_epochs + + def get_lr(self): + factor = ( + (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 + ) ** -0.25 * ( + ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 + ) + return [x * factor for x in self.base_lrs] + + +def _test_eden(): + m = torch.nn.Linear(100, 100) + optim = Eve(m.parameters(), lr=0.003) + + scheduler = Eden(optim, lr_batches=30, lr_epochs=2, verbose=True) + + for epoch in range(10): + scheduler.step_epoch(epoch) # sets epoch to `epoch` + + for step in range(20): + x = torch.randn(200, 100).detach() + x.requires_grad = True + y = m(x) + dy = torch.randn(200, 100).detach() + f = (y * dy).sum() + f.backward() + + optim.step() + scheduler.step_batch() + optim.zero_grad() + print("last lr = ", scheduler.get_last_lr()) + print("state dict = ", scheduler.state_dict()) + + +if __name__ == "__main__": + _test_eden() diff --git a/egs/librispeech/ASR/pruned2_knowledge/sampling.py b/egs/librispeech/ASR/pruned2_knowledge/sampling.py new file mode 100644 index 000000000..5b595c76c --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/sampling.py @@ -0,0 +1,355 @@ +#!/usr/bin/env python3 + +# This was copied from /ceph-dan/torch-sampling/torch_sampling/sampling_ref.py, +# its git history is there. + +import random +import timeit +from typing import Optional, Tuple + +import torch +from scaling import ScaledLinear +from torch import Tensor, nn +from torch.cuda.amp import GradScaler, custom_bwd, custom_fwd +from torch_scheduled_sampling import sample_combined + +# The main exports of this file are the module KnowledgeBaseLookup and the +# function create_knowledge_base. + + +def create_knowledge_base(M: int, N: int, D: int) -> nn.Parameter: + std = 0.1 + a = (3**0.5) * std # this sqrt(3) thing is intended to get variance of + # 0.1 from uniform distribution + ans = nn.Parameter(torch.ones(M**N, D)) + nn.init.uniform_(ans, -a, a) + return ans + + +def join_indexes(indexes: Tensor, M: int) -> Tensor: + """ + Combines N-tuples of indexes into single indexes that can be used for + lookup in the knowledge base. Args: + indexes: tensor of torch.int64 of shape (*, K, N), with elements in + {0..M-1} + M: the size of the original softmaxes, is upper bound on elements + in indexes + Returns: + joined_indexes: of shape (*, K), joined_indexes[...,k] equals + joined_indexes[...,0,k] + joined_indexes[...,1,k]*(M**1) ... + joined_indexes[...,1,k]*(M**(N-1))] + """ + N = indexes.shape[-1] + n_powers = M ** torch.arange(N, device=indexes.device) # [ 1, M, ..., M**(N-1) ] + return (indexes * n_powers).sum(dim=-1) + + +# Note, we don't use this, we +def weighted_matrix_lookup( + weights: Tensor, indexes: Tensor, knowledge_base: Tensor +) -> Tensor: + """ + Weighted combination of specified rows of a matrix. + weights: Tensor of shape (*, K), can contain any value but probably in [0..1]. + indexes: Tensor of shape (*, K), with elements in [0..C-1] + knowledge_base: Tensor of shape (C-1, D), whose rows we'll be looking up + Returns: + tensor of shape (*, D), containing weighted sums of rows of + `knowledge_base` + """ + if True: + return WeightedMatrixLookupFunction.apply(weights, indexes, knowledge_base) + else: + # simpler but less memory-efficient implementation + lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten()) + D = knowledge_base.shape[-1] + weights = weights.unsqueeze(-2) # (*, 1, K) + lookup = lookup.reshape(*indexes.shape, D) # (*, K, D) + ans = torch.matmul(weights, lookup) # ans: (*, 1, D) + ans = ans.squeeze(-2) + assert list(ans.shape) == list(weights.shape[:-2]) + [D] + return ans + + +class WeightedMatrixLookupFunction(torch.autograd.Function): + @staticmethod + @custom_fwd + def forward( + ctx, weights: Tensor, indexes: Tensor, knowledge_base: Tensor + ) -> Tensor: + """ + Weighted combination of specified rows of a matrix. + weights: Tensor of shape (*, K), can contain any value but probably in [0..1]. + indexes: Tensor of shape (*, K), with elements in [0..C-1] + knowledge_base: Tensor of shape (C, D), whose rows we'll be looking up + Returns: + tensor of shape (*, D), containing weighted sums of rows of + `knowledge_base` + """ + if random.random() < 0.001: + print("dtype[1] = ", weights.dtype) + ctx.save_for_backward( + weights.detach(), indexes.detach(), knowledge_base.detach() + ) + with torch.no_grad(): + lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten()) + D = knowledge_base.shape[-1] + weights = weights.unsqueeze(-2) # (*, 1, K) + lookup = lookup.reshape(*indexes.shape, D) # (*, K, D) + ans = torch.matmul(weights, lookup) # ans: (*, 1, D) + ans = ans.squeeze(-2) # (*, D) + return ans + + @staticmethod + @custom_bwd + def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None, Tensor]: + # ans_grad: (*, D) + weights, indexes, knowledge_base = ctx.saved_tensors + knowledge_base.requires_grad = True + dtype = ans_grad.dtype + ans_grad = ans_grad.to(weights.dtype) + assert weights.requires_grad is False + D = knowledge_base.shape[-1] + with torch.enable_grad(): + # we'll use torch's autograd to differentiate this operation, which + # is nontrivial [and anyway we need `lookup` to compute weight grad. + # We don't save `lookup` because it's large, that is the reason + # we override Torch autograd. + lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten()) + lookup = lookup.reshape(*indexes.shape, D) # (*, K, D) + weights = weights.unsqueeze(-1) # (*, K, 1) + # forward pass: was: + ## ans = torch.matmul(weights, lookup) + ## ans: (*, 1, D) + ## ans = ans.squeeze(-2) # ans, ans_grad: (*, D) + weights_grad = torch.matmul( + lookup, ans_grad.unsqueeze(-1) # (*, K, D) + ) # (*, D, 1) + weights_grad = weights_grad.squeeze(-1) # (*, K, 1) -> (*, K) + lookup_grad = weights * ans_grad.unsqueeze( + -2 + ) # (*, K, 1) * (*, 1, D) = (*, K, D) + lookup.backward(gradient=lookup_grad) + return weights_grad.to(dtype), None, knowledge_base.grad.to(dtype) + + +class PenalizeNegentropyFunction(torch.autograd.Function): + """ + Function that does nothing in forward pass, but in backprop, it is as + if you had added: `- tot_entropy * alpha` to the loss function, where + tot_entropy is the the entropy of the average of the input distributions, + times the number of input distributions. (We multiply by this because + our overall loss function is proportional to the number of frames). + + This will tend to make the entropy want to become as large as possible, + making (-tot_entropy * alpha) as negative as possible. + + Args: + logprobs: Tensor of shape (*, num_classes), should be the result of + calling some_tensor.log_softmax(dim=-1) + Returns: + logprobs + """ + + @staticmethod + def forward(ctx, logprobs: Tensor, alpha: float): + ctx.save_for_backward(logprobs.detach()) + ctx.alpha = alpha + return logprobs + + @staticmethod + def backward(ctx, logprobs_grad: Tensor) -> Tuple[Tensor, None]: + (logprobs,) = ctx.saved_tensors + with torch.enable_grad(): + logprobs.requires_grad = True + # `negentropy` is the negative entropy of the average distribution. + # distributions. It will be <= 0. + l = logprobs.reshape(-1, logprobs.shape[-1]) # noqa: E741 + scale = ctx.alpha * l.shape[0] + avg_dist = l.exp().mean(dim=0) + negentropy = (avg_dist * (avg_dist + 1.0e-20).log()).sum() + if random.random() < 0.0005: + negentropy_individual = (l * l.exp()).sum(dim=-1).mean() + print( + "Negentropy[individual,combined] = ", + negentropy_individual.item(), + ", ", + negentropy.item(), + ) + loss = negentropy * scale + loss.backward() + return logprobs_grad + logprobs.grad, None + + +class KnowledgeBaseLookup(nn.Module): + """ + Create knowledge-base lookup module. (The knowledge-base parameter, which is + large, is shared between these modules). + Args: + M: int, softmax size, e.g. in [32..128] + N: int, number of softmaxes, in [2..3] + D: int, embedding dimension in knowledge base, e.g. 256 + K: number of samples (affects speed/accuracy tradeoff), e.g. 16. + embedding_dim: the dimension to project from and to, e.g. the + d_model of the conformer. + """ + + def __init__( + self, + M: int, + N: int, + D: int, + K: int, + embedding_dim: int, + knowledge_base: nn.Parameter, + negentropy_penalty: float = 0.001, + ): + super(KnowledgeBaseLookup, self).__init__() + self.knowledge_base = knowledge_base # shared! + self.in_proj = ScaledLinear(embedding_dim, M * N, initial_scale=1.0) + # initial_scale = 4.0 because the knowlege_base activations are + # quite small -- if we use our optimizer they'll have stddev <= 0.1. + self.out_proj = ScaledLinear(D, embedding_dim, initial_scale=4.0) + self.M = M + self.N = N + self.K = K + self.negentropy_penalty = negentropy_penalty + + def forward(self, x: Tensor) -> Tensor: + """ + Forward function that does knowledge-base lookup. + Args: + x: input, of shape (*, E) where E is embedding_dim + as passed to constructor + y: output of knowledge-base lookup, of shape (*, E) + + # TODO: later we can try multiplying by a projection of x or something like that. + """ + x = self.in_proj(x) # now (*, M*N) + x = x.reshape(*x.shape[:-1], self.N, self.M) # now (*, N, M) + x = x.log_softmax(dim=-1) # now normalized logprobs, dim= (*, N, M) + x = PenalizeNegentropyFunction.apply(x, self.negentropy_penalty) + + _, indexes, weights = sample_combined(x, self.K, input_is_log=True) + x = weighted_matrix_lookup(weights, indexes, self.knowledge_base) # now (*, D) + x = self.out_proj(x) # now (*, self.embedding_dim) + return x + + +def _test_knowledge_base_lookup(): + K = 16 + N = 2 + M = 128 + D = 256 + E = 255 + + knowledge_base: nn.Parameter = create_knowledge_base(M, N, D) + m = KnowledgeBaseLookup(M, N, D, K, E, knowledge_base) + + B = 30 + T = 40 + x = torch.randn(B, T, E) + x.requires_grad = True + y = m(x) + assert y.shape == x.shape + y.sum().backward() # make sure backward doesn't crash.. + print("y = ", y) + print("x.grad = ", x.grad) + print("knowlege_base.grad norm = ", knowledge_base.grad.norm()) + + dtype = torch.float32 + device = torch.device("cuda") + train_pairs = [ + ( + torch.randn(B, T, E, device=device, dtype=dtype), + torch.randn(B, T, E, device=device, dtype=dtype), + ) + for _ in range(10) + ] + from optim import Eve + + optimizer = Eve(m.parameters(), lr=0.005, eps=1.0e-04) + m = m.to(device).to(dtype) + + start = timeit.default_timer() + + # Epoch 0, batch 0, loss 1.0109944343566895 + # Epoch 10, batch 0, loss 1.0146660804748535 + # Epoch 20, batch 0, loss 1.0119813680648804 + # Epoch 30, batch 0, loss 1.0105408430099487 + # Epoch 40, batch 0, loss 1.0077732801437378 + # Epoch 50, batch 0, loss 1.0050103664398193 + # Epoch 60, batch 0, loss 1.0033129453659058 + # Epoch 70, batch 0, loss 1.0014232397079468 + # Epoch 80, batch 0, loss 0.9977912306785583 + # Epoch 90, batch 0, loss 0.8274348974227905 + # Epoch 100, batch 0, loss 0.3368612825870514 + # Epoch 110, batch 0, loss 0.11323091387748718 + # Time taken: 17.591704960912466 + for epoch in range(150): + for n, (x, y) in enumerate(train_pairs): + y_out = m(x) + loss = ((y_out - y) ** 2).mean() * 100.0 + if n % 10 == 0 and epoch % 10 == 0: + print(f"Epoch {epoch}, batch {n}, loss {loss.item()}") + loss.backward() + optimizer.step() + optimizer.zero_grad() + + stop = timeit.default_timer() + print("Time taken: ", stop - start) + + +def _test_knowledge_base_lookup_autocast(): + K = 16 + N = 2 + M = 128 + D = 256 + E = 255 + + knowledge_base: nn.Parameter = create_knowledge_base(M, N, D) + m = KnowledgeBaseLookup(M, N, D, K, E, knowledge_base) + + B = 30 + T = 40 + x = torch.randn(B, T, E) + x.requires_grad = True + y = m(x) + assert y.shape == x.shape + y.sum().backward() # make sure backward doesn't crash.. + print("y = ", y) + print("x.grad = ", x.grad) + print("knowlege_base.grad norm = ", knowledge_base.grad.norm()) + + device = torch.device("cuda") + train_pairs = [ + (torch.randn(B, T, E, device=device), torch.randn(B, T, E, device=device)) + for _ in range(10) + ] + from optim import Eve + + optimizer = Eve(m.parameters(), lr=0.005, eps=1.0e-04) + m = m.to(device) + + scaler = GradScaler(enabled=True) + + start = timeit.default_timer() + + for epoch in range(150): + for n, (x, y) in enumerate(train_pairs): + y_out = m(x) + with torch.cuda.amp.autocast(enabled=True): + loss = ((y_out - y) ** 2).mean() * 100.0 + if n % 10 == 0 and epoch % 10 == 0: + print(f"Epoch {epoch}, batch {n}, loss {loss.item()}") + scaler.scale(loss).backward() + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + stop = timeit.default_timer() + print("Time taken: ", stop - start) + + +if __name__ == "__main__": + _test_knowledge_base_lookup() + _test_knowledge_base_lookup_autocast() diff --git a/egs/librispeech/ASR/pruned2_knowledge/scaling.py b/egs/librispeech/ASR/pruned2_knowledge/scaling.py new file mode 100644 index 000000000..527c735eb --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/scaling.py @@ -0,0 +1,688 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import collections +from itertools import repeat +from typing import Optional, Tuple + +import torch +import torch.nn as nn +from torch import Tensor +from torch.cuda.amp import custom_bwd, custom_fwd + + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.Iterable): + return x + return tuple(repeat(x, n)) + + return parse + + +_single = _ntuple(1) +_pair = _ntuple(2) + + +class ActivationBalancerFunction(torch.autograd.Function): + @staticmethod + @custom_fwd + def forward( + ctx, + x: Tensor, + channel_dim: int, + min_positive: float, # e.g. 0.05 + max_positive: float, # e.g. 0.95 + max_factor: float, # e.g. 0.01 + min_abs: float, # e.g. 0.2 + max_abs: float, # e.g. 100.0 + ) -> Tensor: + if x.requires_grad: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + xgt0 = x > 0 + proportion_positive = torch.mean( + xgt0.to(x.dtype), dim=sum_dims, keepdim=True + ) + factor1 = ( + (min_positive - proportion_positive).relu() + * (max_factor / min_positive) + if min_positive != 0.0 + else 0.0 + ) + factor2 = ( + (proportion_positive - max_positive).relu() + * (max_factor / (max_positive - 1.0)) + if max_positive != 1.0 + else 0.0 + ) + factor = factor1 + factor2 + if isinstance(factor, float): + factor = torch.zeros_like(proportion_positive) + + mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True) + below_threshold = mean_abs < min_abs + above_threshold = mean_abs > max_abs + + ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold) + ctx.max_factor = max_factor + ctx.sum_dims = sum_dims + return x + + @staticmethod + @custom_bwd + def backward( + ctx, x_grad: Tensor + ) -> Tuple[Tensor, None, None, None, None, None, None]: + factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors + dtype = x_grad.dtype + scale_factor = ( + (below_threshold.to(dtype) - above_threshold.to(dtype)) + * (xgt0.to(dtype) - 0.5) + * (ctx.max_factor * 2.0) + ) + + neg_delta_grad = x_grad.abs() * (factor + scale_factor) + return x_grad - neg_delta_grad, None, None, None, None, None, None + + +class BasicNorm(torch.nn.Module): + """ + This is intended to be a simpler, and hopefully cheaper, replacement for + LayerNorm. The observation this is based on, is that Transformer-type + networks, especially with pre-norm, sometimes seem to set one of the + feature dimensions to a large constant value (e.g. 50), which "defeats" + the LayerNorm because the output magnitude is then not strongly dependent + on the other (useful) features. Presumably the weight and bias of the + LayerNorm are required to allow it to do this. + + So the idea is to introduce this large constant value as an explicit + parameter, that takes the role of the "eps" in LayerNorm, so the network + doesn't have to do this trick. We make the "eps" learnable. + + Args: + num_channels: the number of channels, e.g. 512. + channel_dim: the axis/dimension corresponding to the channel, + interprted as an offset from the input's ndim if negative. + shis is NOT the num_channels; it should typically be one of + {-2, -1, 0, 1, 2, 3}. + eps: the initial "epsilon" that we add as ballast in: + scale = ((input_vec**2).mean() + epsilon)**-0.5 + Note: our epsilon is actually large, but we keep the name + to indicate the connection with conventional LayerNorm. + learn_eps: if true, we learn epsilon; if false, we keep it + at the initial value. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int = -1, # CAUTION: see documentation. + eps: float = 0.25, + learn_eps: bool = True, + ) -> None: + super(BasicNorm, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + if learn_eps: + self.eps = nn.Parameter(torch.tensor(eps).log().detach()) + else: + self.register_buffer("eps", torch.tensor(eps).log().detach()) + + def forward(self, x: Tensor) -> Tensor: + assert x.shape[self.channel_dim] == self.num_channels + scales = ( + torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp() + ) ** -0.5 + return x * scales + + +class ScaledLinear(nn.Linear): + """ + A modified version of nn.Linear where the parameters are scaled before + use, via: + weight = self.weight * self.weight_scale.exp() + bias = self.bias * self.bias_scale.exp() + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + initial_speed: this affects how fast the parameter will + learn near the start of training; you can set it to a + value less than one if you suspect that a module + is contributing to instability near the start of training. + Nnote: regardless of the use of this option, it's best to + use schedulers like Noam that have a warm-up period. + Alternatively you can set it to more than 1 if you want it to + initially train faster. Must be greater than 0. + """ + + def __init__( + self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs + ): + super(ScaledLinear, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + + self._reset_parameters( + initial_speed + ) # Overrides the reset_parameters in nn.Linear + + def _reset_parameters(self, initial_speed: float): + std = 0.1 / initial_speed + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def forward(self, input: Tensor) -> Tensor: + return torch.nn.functional.linear(input, self.get_weight(), self.get_bias()) + + +class ScaledConv1d(nn.Conv1d): + # See docs for ScaledLinear + def __init__( + self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs + ): + super(ScaledConv1d, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + self._reset_parameters( + initial_speed + ) # Overrides the reset_parameters in base class + + def _reset_parameters(self, initial_speed: float): + std = 0.1 / initial_speed + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def forward(self, input: Tensor) -> Tensor: + F = torch.nn.functional + if self.padding_mode != "zeros": + return F.conv1d( + F.pad( + input, + self._reversed_padding_repeated_twice, + mode=self.padding_mode, + ), + self.get_weight(), + self.get_bias(), + self.stride, + _single(0), + self.dilation, + self.groups, + ) + return F.conv1d( + input, + self.get_weight(), + self.get_bias(), + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + +class ScaledConv2d(nn.Conv2d): + # See docs for ScaledLinear + def __init__( + self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs + ): + super(ScaledConv2d, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + self._reset_parameters( + initial_speed + ) # Overrides the reset_parameters in base class + + def _reset_parameters(self, initial_speed: float): + std = 0.1 / initial_speed + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def _conv_forward(self, input, weight): + F = torch.nn.functional + if self.padding_mode != "zeros": + return F.conv2d( + F.pad( + input, + self._reversed_padding_repeated_twice, + mode=self.padding_mode, + ), + weight, + self.get_bias(), + self.stride, + _pair(0), + self.dilation, + self.groups, + ) + return F.conv2d( + input, + weight, + self.get_bias(), + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + def forward(self, input: Tensor) -> Tensor: + return self._conv_forward(input, self.get_weight()) + + +class ActivationBalancer(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to encourage, for + each channel, that it is positive at least a proportion `threshold` of the + time. It does this by multiplying negative derivative values by up to + (1+max_factor), and positive derivative values by up to (1-max_factor), + interpolated from 1 at the threshold to those extremal values when none + of the inputs are positive. + + + Args: + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + min_positive: the minimum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_positive: the maximum, per channel, of the proportion of the time + that (x > 0), above which we start to modify the derivatives. + max_factor: the maximum factor by which we modify the derivatives for + either the sign constraint or the magnitude constraint; + e.g. with max_factor=0.02, the the derivatives would be multiplied by + values in the range [0.98..1.02]. + min_abs: the minimum average-absolute-value per channel, which + we allow, before we start to modify the derivatives to prevent + this. + max_abs: the maximum average-absolute-value per channel, which + we allow, before we start to modify the derivatives to prevent + this. + """ + + def __init__( + self, + channel_dim: int, + min_positive: float = 0.05, + max_positive: float = 0.95, + max_factor: float = 0.01, + min_abs: float = 0.2, + max_abs: float = 100.0, + ): + super(ActivationBalancer, self).__init__() + self.channel_dim = channel_dim + self.min_positive = min_positive + self.max_positive = max_positive + self.max_factor = max_factor + self.min_abs = min_abs + self.max_abs = max_abs + + def forward(self, x: Tensor) -> Tensor: + return ActivationBalancerFunction.apply( + x, + self.channel_dim, + self.min_positive, + self.max_positive, + self.max_factor, + self.min_abs, + self.max_abs, + ) + + +class DoubleSwishFunction(torch.autograd.Function): + """ + double_swish(x) = x * torch.sigmoid(x-1) + This is a definition, originally motivated by its close numerical + similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). + + Memory-efficient derivative computation: + double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) + double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). + Now, s'(x) = s(x) * (1-s(x)). + double_swish'(x) = x * s'(x) + s(x). + = x * s(x) * (1-s(x)) + s(x). + = double_swish(x) * (1-s(x)) + s(x) + ... so we just need to remember s(x) but not x itself. + """ + + @staticmethod + @custom_fwd + def forward(ctx, x: Tensor) -> Tensor: + x = x.detach() + s = torch.sigmoid(x - 1.0) + y = x * s + ctx.save_for_backward(s, y) + return y + + @staticmethod + @custom_bwd + def backward(ctx, y_grad: Tensor) -> Tensor: + s, y = ctx.saved_tensors + return (y * (1 - s) + s) * y_grad + + +class DoubleSwish(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return double-swish activation function which is an approximation to Swish(Swish(x)), + that we approximate closely with x * sigmoid(x-1). + """ + return DoubleSwishFunction.apply(x) + + +class ScaledEmbedding(nn.Module): + r"""This is a modified version of nn.Embedding that introduces a learnable scale + on the parameters. Note: due to how we initialize it, it's best used with + schedulers like Noam that have a warmup period. + + It is a simple lookup table that stores embeddings of a fixed dictionary and size. + + This module is often used to store word embeddings and retrieve them using indices. + The input to the module is a list of indices, and the output is the corresponding + word embeddings. + + Args: + num_embeddings (int): size of the dictionary of embeddings + embedding_dim (int): the size of each embedding vector + padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx` + (initialized to zeros) whenever it encounters the index. + max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` + is renormalized to have norm :attr:`max_norm`. + norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. + scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of + the words in the mini-batch. Default ``False``. + sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. + See Notes for more details regarding sparse gradients. + + initial_speed (float, optional): This affects how fast the parameter will + learn near the start of training; you can set it to a value less than + one if you suspect that a module is contributing to instability near + the start of training. Nnote: regardless of the use of this option, + it's best to use schedulers like Noam that have a warm-up period. + Alternatively you can set it to more than 1 if you want it to + initially train faster. Must be greater than 0. + + + Attributes: + weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) + initialized from :math:`\mathcal{N}(0, 1)` + + Shape: + - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract + - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` + + .. note:: + Keep in mind that only a limited number of optimizers support + sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), + :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) + + .. note:: + With :attr:`padding_idx` set, the embedding vector at + :attr:`padding_idx` is initialized to all zeros. However, note that this + vector can be modified afterwards, e.g., using a customized + initialization method, and thus changing the vector used to pad the + output. The gradient for this vector from :class:`~torch.nn.Embedding` + is always zero. + + Examples:: + + >>> # an Embedding module containing 10 tensors of size 3 + >>> embedding = nn.Embedding(10, 3) + >>> # a batch of 2 samples of 4 indices each + >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) + >>> embedding(input) + tensor([[[-0.0251, -1.6902, 0.7172], + [-0.6431, 0.0748, 0.6969], + [ 1.4970, 1.3448, -0.9685], + [-0.3677, -2.7265, -0.1685]], + + [[ 1.4970, 1.3448, -0.9685], + [ 0.4362, -0.4004, 0.9400], + [-0.6431, 0.0748, 0.6969], + [ 0.9124, -2.3616, 1.1151]]]) + + + >>> # example with padding_idx + >>> embedding = nn.Embedding(10, 3, padding_idx=0) + >>> input = torch.LongTensor([[0,2,0,5]]) + >>> embedding(input) + tensor([[[ 0.0000, 0.0000, 0.0000], + [ 0.1535, -2.0309, 0.9315], + [ 0.0000, 0.0000, 0.0000], + [-0.1655, 0.9897, 0.0635]]]) + + """ + __constants__ = [ + "num_embeddings", + "embedding_dim", + "padding_idx", + "scale_grad_by_freq", + "sparse", + ] + + num_embeddings: int + embedding_dim: int + padding_idx: int + scale_grad_by_freq: bool + weight: Tensor + sparse: bool + + def __init__( + self, + num_embeddings: int, + embedding_dim: int, + padding_idx: Optional[int] = None, + scale_grad_by_freq: bool = False, + sparse: bool = False, + initial_speed: float = 1.0, + ) -> None: + super(ScaledEmbedding, self).__init__() + self.num_embeddings = num_embeddings + self.embedding_dim = embedding_dim + if padding_idx is not None: + if padding_idx > 0: + assert ( + padding_idx < self.num_embeddings + ), "Padding_idx must be within num_embeddings" + elif padding_idx < 0: + assert ( + padding_idx >= -self.num_embeddings + ), "Padding_idx must be within num_embeddings" + padding_idx = self.num_embeddings + padding_idx + self.padding_idx = padding_idx + self.scale_grad_by_freq = scale_grad_by_freq + + self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters() + self.sparse = sparse + + self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) + self.reset_parameters(initial_speed) + + def reset_parameters(self, initial_speed: float = 1.0) -> None: + std = 0.1 / initial_speed + nn.init.normal_(self.weight, std=std) + nn.init.constant_(self.scale, torch.tensor(1.0 / std).log()) + + if self.padding_idx is not None: + with torch.no_grad(): + self.weight[self.padding_idx].fill_(0) + + def forward(self, input: Tensor) -> Tensor: + F = torch.nn.functional + scale = self.scale.exp() + if input.numel() < self.num_embeddings: + return ( + F.embedding( + input, + self.weight, + self.padding_idx, + None, + 2.0, # None, 2.0 relate to normalization + self.scale_grad_by_freq, + self.sparse, + ) + * scale + ) + else: + return F.embedding( + input, + self.weight * scale, + self.padding_idx, + None, + 2.0, # None, 2.0 relates to normalization + self.scale_grad_by_freq, + self.sparse, + ) + + def extra_repr(self) -> str: + s = "{num_embeddings}, {embedding_dim}, scale={scale}" + if self.padding_idx is not None: + s += ", padding_idx={padding_idx}" + if self.scale_grad_by_freq is not False: + s += ", scale_grad_by_freq={scale_grad_by_freq}" + if self.sparse is not False: + s += ", sparse=True" + return s.format(**self.__dict__) + + +def _test_activation_balancer_sign(): + probs = torch.arange(0, 1, 0.01) + N = 1000 + x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1)) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + channel_dim=0, + min_positive=0.05, + max_positive=0.95, + max_factor=0.2, + min_abs=0.0, + ) + + y_grad = torch.sign(torch.randn(probs.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_sign: x = ", x) + print("_test_activation_balancer_sign: y grad = ", y_grad) + print("_test_activation_balancer_sign: x grad = ", x.grad) + + +def _test_activation_balancer_magnitude(): + magnitudes = torch.arange(0, 1, 0.01) + N = 1000 + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + channel_dim=0, + min_positive=0.0, + max_positive=1.0, + max_factor=0.2, + min_abs=0.2, + max_abs=0.8, + ) + + y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_magnitude: x = ", x) + print("_test_activation_balancer_magnitude: y grad = ", y_grad) + print("_test_activation_balancer_magnitude: x grad = ", x.grad) + + +def _test_basic_norm(): + num_channels = 128 + m = BasicNorm(num_channels=num_channels, channel_dim=1) + + x = torch.randn(500, num_channels) + + y = m(x) + + assert y.shape == x.shape + x_rms = (x**2).mean().sqrt() + y_rms = (y**2).mean().sqrt() + print("x rms = ", x_rms) + print("y rms = ", y_rms) + assert y_rms < x_rms + assert y_rms > 0.5 * x_rms + + +def _test_double_swish_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 0.5 + x.requires_grad = True + m = DoubleSwish() + torch.autograd.gradcheck(m, x) + + +if __name__ == "__main__": + _test_activation_balancer_sign() + _test_activation_balancer_magnitude() + _test_basic_norm() + _test_double_swish_deriv() diff --git a/egs/librispeech/ASR/pruned2_knowledge/scaling_tmp.py b/egs/librispeech/ASR/pruned2_knowledge/scaling_tmp.py new file mode 100644 index 000000000..3f21133a0 --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/scaling_tmp.py @@ -0,0 +1,717 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Optional, Tuple + +import torch +import torch.nn as nn +from torch import Tensor + + +def _activation_balancer_loss( + mean_pos: Tensor, + mean_neg: Tensor, + min_positive: float, # e.g. 0.05 + max_positive: float, # e.g. 0.95 + max_factor: float, # e.g. 0.01 + min_abs: float, # e.g. 0.2 + max_abs: float, # e.g. 100.0 + eps: float = 1.0e-10, +): + """ + Returns a loss-function for the ActivationBalancer module. This loss + function is not exposed to the user but is used internally, and eventually + its derivatives are scaled by some heuristic related to derivative magnitudes, + and added to the backpropped deriv. + + Args: + mean_pos: a Tensor of arbitrary dimension, probably something like (1, num_channels, 1, 1), + containing the mean of only the positive parts of the input features, i.e. + of x.relu(). + mean_neg: a Tensor of arbitrary dimension, probably something like (1, num_channels, 1, 1), + containing the mean of only the negative parts of the input features, i.e. + of (-x).relu(). + min_positive: the minimum allowed value of mean_pos / (mean_pos + mean_neg) before we + start penalizing. + max_positive: the maximum allowed value of mean_pos / (mean_pos + mean_neg) before we + start penalizing. + """ + loss_parts = [] + + x_mean = mean_pos - mean_neg + x_mean_abs = (mean_pos + mean_neg + eps).detach() + x_rel_mean = x_mean / x_mean_abs + + if min_positive != 0.0: + # e.g. x_mean_floor = -0.95 + 0.05 = -0.9 + x_rel_mean_floor = -(1 - min_positive) + min_positive + min_positive_loss = (x_rel_mean_floor - x_rel_mean).relu().sum() * ( + 1.0 / (2 * min_positive) + ) + # this part of the loss would be 1.0 * num_channels if all these constraints were + # 100% violated. + loss_parts.append(min_positive_loss) + + if max_positive != 1.0: + # e.g. x_mean_floor = -0.05 + 0.95 = 0.8 + x_rel_mean_ceil = -(1.0 - max_positive) + max_positive + max_positive_loss = (x_rel_mean - x_rel_mean_ceil).relu().sum() * ( + 1.0 / (1 - x_rel_mean_ceil) + ) + # this part of the loss would be 1.0 * num_channels if all these constraints were + # 100% violated. + loss_parts.append(max_positive_loss) + + if min_abs != 0.0: + min_abs_loss = (min_abs - x_mean_abs).relu().sum() / min_abs + # this part of the loss would be 1.0 * num_channels if all these constraints were + # 100% violated. + loss_parts.append(min_abs_loss) + + if max_abs != 0.0: + max_abs_loss = (x_mean_abs / max_abs).log().relu() + # this part of the loss would be [something logarithmic] * num_channels if all these constraints were + # 100% violated. + loss_parts.append(max_abs_loss) + + # the min_positive and 1 - max_positive are "ballast" added to the + denom = mean_pos + mean_neg + (min_positive + (1 - max_positive)) + # num + + if min_positive != 0.0: + pass + + +class ActivationBalancerFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + channel_dim: int, + min_positive: float, # e.g. 0.05 + max_positive: float, # e.g. 0.95 + max_factor: float, # e.g. 0.01 + min_abs: float, # e.g. 0.2 + max_abs: float, # e.g. 100.0 + ) -> Tensor: + if x.requires_grad: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + xgt0 = x > 0 + proportion_positive = torch.mean( + xgt0.to(x.dtype), dim=sum_dims, keepdim=True + ) + factor1 = ( + (min_positive - proportion_positive).relu() + * (max_factor / min_positive) + if min_positive != 0.0 + else 0.0 + ) + factor2 = ( + (proportion_positive - max_positive).relu() + * (max_factor / (max_positive - 1.0)) + if max_positive != 1.0 + else 0.0 + ) + factor = factor1 + factor2 + if isinstance(factor, float): + factor = torch.zeros_like(proportion_positive) + + mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True) + below_threshold = mean_abs < min_abs + above_threshold = mean_abs > max_abs + + ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold) + ctx.max_factor = max_factor + ctx.sum_dims = sum_dims + return x + + @staticmethod + def backward( + ctx, x_grad: Tensor + ) -> Tuple[Tensor, None, None, None, None, None, None]: + factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors + dtype = x_grad.dtype + scale_factor = ( + (below_threshold.to(dtype) - above_threshold.to(dtype)) + * (xgt0.to(dtype) - 0.5) + * (ctx.max_factor * 2.0) + ) + + neg_delta_grad = x_grad.abs() * (factor + scale_factor) + return x_grad - neg_delta_grad, None, None, None, None, None, None + + +class BasicNorm(torch.nn.Module): + """ + This is intended to be a simpler, and hopefully cheaper, replacement for + LayerNorm. The observation this is based on, is that Transformer-type + networks, especially with pre-norm, sometimes seem to set one of the + feature dimensions to a large constant value (e.g. 50), which "defeats" + the LayerNorm because the output magnitude is then not strongly dependent + on the other (useful) features. Presumably the weight and bias of the + LayerNorm are required to allow it to do this. + + So the idea is to introduce this large constant value as an explicit + parameter, that takes the role of the "eps" in LayerNorm, so the network + doesn't have to do this trick. We make the "eps" learnable. + + Args: + num_channels: the number of channels, e.g. 512. + channel_dim: the axis/dimension corresponding to the channel, + interprted as an offset from the input's ndim if negative. + shis is NOT the num_channels; it should typically be one of + {-2, -1, 0, 1, 2, 3}. + eps: the initial "epsilon" that we add as ballast in: + scale = ((input_vec**2).mean() + epsilon)**-0.5 + Note: our epsilon is actually large, but we keep the name + to indicate the connection with conventional LayerNorm. + learn_eps: if true, we learn epsilon; if false, we keep it + at the initial value. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int = -1, # CAUTION: see documentation. + eps: float = 0.25, + learn_eps: bool = True, + ) -> None: + super(BasicNorm, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + if learn_eps: + self.eps = nn.Parameter(torch.tensor(eps).log().detach()) + else: + self.register_buffer("eps", torch.tensor(eps).log().detach()) + + def forward(self, x: Tensor) -> Tensor: + assert x.shape[self.channel_dim] == self.num_channels + scales = ( + torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp() + ) ** -0.5 + return x * scales + + +class ScaledLinear(nn.Linear): + """ + A modified version of nn.Linear where the parameters are scaled before + use, via: + weight = self.weight * self.weight_scale.exp() + bias = self.bias * self.bias_scale.exp() + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + + Note: it uses the default initialization for the weight and bias, + inherited from nn.Linear. For modules with small fan-in, this + may be larger than optimal. + """ + + def __init__(self, *args, initial_scale: float = 1.0, **kwargs): + super(ScaledLinear, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + + self._reset_parameters() # Overrides the reset_parameters in nn.Linear + + def _reset_parameters(self): + std = 0.01 + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + if self.bias is not None: + self.bias_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def forward(self, input: Tensor) -> Tensor: + return torch.nn.functional.linear(input, self.get_weight(), self.get_bias()) + + +class ScaledConv1d(nn.Conv1d): + def __init__(self, *args, initial_scale=1.0, **kwargs): + super(ScaledConv1d, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + self._reset_parameters() # Overrides the reset_parameters in base class + + def _reset_parameters(self): + std = 0.01 + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + if self.bias is not None: + self.bias_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def forward(self, input: Tensor) -> Tensor: + F = torch.nn.functional + if self.padding_mode != "zeros": + return F.conv1d( + F.pad( + input, + self._reversed_padding_repeated_twice, + mode=self.padding_mode, + ), + self.get_weight(), + self.get_bias(), + self.stride, + _single(0), # noqa: F821 + self.dilation, + self.groups, + ) + return F.conv1d( + input, + self.get_weight(), + self.get_bias(), + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + +class ScaledConv2d(nn.Conv2d): + def __init__(self, *args, initial_scale=1.0, **kwargs): + super(ScaledConv2d, self).__init__(*args, **kwargs) + initial_scale = torch.tensor(initial_scale).log() + self.weight_scale = nn.Parameter(initial_scale.clone().detach()) + if self.bias is not None: + self.bias_scale = nn.Parameter(initial_scale.clone().detach()) + else: + self.register_parameter("bias_scale", None) + self._reset_parameters() # Overrides the reset_parameters in base class + + def _reset_parameters(self): + std = 0.01 + a = (3**0.5) * std + nn.init.uniform_(self.weight, -a, a) + if self.bias is not None: + nn.init.constant_(self.bias, 0.0) + fan_in = self.weight.shape[1] * self.weight[0][0].numel() + scale = fan_in**-0.5 # 1/sqrt(fan_in) + with torch.no_grad(): + self.weight_scale += torch.tensor(scale / std).log() + if self.bias is not None: + self.bias_scale += torch.tensor(scale / std).log() + + def get_weight(self): + return self.weight * self.weight_scale.exp() + + def get_bias(self): + return None if self.bias is None else self.bias * self.bias_scale.exp() + + def _conv_forward(self, input, weight): + F = torch.nn.functional + if self.padding_mode != "zeros": + return F.conv2d( + F.pad( + input, + self._reversed_padding_repeated_twice, + mode=self.padding_mode, + ), + weight, + self.get_bias(), + self.stride, + _pair(0), # noqa: F821 + self.dilation, + self.groups, + ) + return F.conv2d( + input, + weight, + self.get_bias(), + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + def forward(self, input: Tensor) -> Tensor: + return self._conv_forward(input, self.get_weight()) + + +class ActivationBalancer(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to encourage, for + each channel, that it is positive at least a proportion `threshold` of the + time. It does this by multiplying negative derivative values by up to + (1+max_factor), and positive derivative values by up to (1-max_factor), + interpolated from 1 at the threshold to those extremal values when none + of the inputs are positive. + + + Args: + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + min_positive: the minimum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_positive: the maximum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_factor: the maximum factor by which we modify the derivatives for + either the sign constraint or the magnitude constraint; + e.g. with max_factor=0.02, the the derivatives would be multiplied by + values in the range [0.98..1.02]. + min_abs: the minimum average-absolute-value per channel, which + we allow, before we start to modify the derivatives to prevent + this. + max_abs: the maximum average-absolute-value per channel, which + we allow, before we start to modify the derivatives to prevent + this. + """ + + def __init__( + self, + channel_dim: int, + min_positive: float = 0.05, + max_positive: float = 0.95, + max_factor: float = 0.01, + min_abs: float = 0.2, + max_abs: float = 100.0, + ): + super(ActivationBalancer, self).__init__() + self.channel_dim = channel_dim + self.min_positive = min_positive + self.max_positive = max_positive + self.max_factor = max_factor + self.min_abs = min_abs + self.max_abs = max_abs + + def forward(self, x: Tensor) -> Tensor: + return ActivationBalancerFunction.apply( + x, + self.channel_dim, + self.min_positive, + self.max_positive, + self.max_factor, + self.min_abs, + self.max_abs, + ) + + +class DoubleSwishFunction(torch.autograd.Function): + """ + double_swish(x) = x * torch.sigmoid(x-1) + This is a definition, originally motivated by its close numerical + similarity to swish(swish(x), where swish(x) = x * sigmoid(x). + + Memory-efficient derivative computation: + double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) + double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). + Now, s'(x) = s(x) * (1-s(x)). + double_swish'(x) = x * s'(x) + s(x). + = x * s(x) * (1-s(x)) + s(x). + = double_swish(x) * (1-s(x)) + s(x) + ... so we just need to remember s(x) but not x itself. + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + x = x.detach() + s = torch.sigmoid(x - 1.0) + y = x * s + ctx.save_for_backward(s, y) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + s, y = ctx.saved_tensors + return (y * (1 - s) + s) * y_grad + + +class DoubleSwish(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return double-swish activation function which is an approximation to Swish(Swish(x)), + that we approximate closely with x * sigmoid(x-1). + """ + return DoubleSwishFunction.apply(x) + + +class ScaledEmbedding(nn.Module): + r"""A simple lookup table that stores embeddings of a fixed dictionary and size. + + This module is often used to store word embeddings and retrieve them using indices. + The input to the module is a list of indices, and the output is the corresponding + word embeddings. + + Args: + num_embeddings (int): size of the dictionary of embeddings + embedding_dim (int): the size of each embedding vector + padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx` + (initialized to zeros) whenever it encounters the index. + max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` + is renormalized to have norm :attr:`max_norm`. + norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. + scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of + the words in the mini-batch. Default ``False``. + sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. + See Notes for more details regarding sparse gradients. + + Attributes: + weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) + initialized from :math:`\mathcal{N}(0, 1)` + + Shape: + - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract + - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` + + .. note:: + Keep in mind that only a limited number of optimizers support + sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), + :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) + + .. note:: + With :attr:`padding_idx` set, the embedding vector at + :attr:`padding_idx` is initialized to all zeros. However, note that this + vector can be modified afterwards, e.g., using a customized + initialization method, and thus changing the vector used to pad the + output. The gradient for this vector from :class:`~torch.nn.Embedding` + is always zero. + + Examples:: + + >>> # an Embedding module containing 10 tensors of size 3 + >>> embedding = nn.Embedding(10, 3) + >>> # a batch of 2 samples of 4 indices each + >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) + >>> embedding(input) + tensor([[[-0.0251, -1.6902, 0.7172], + [-0.6431, 0.0748, 0.6969], + [ 1.4970, 1.3448, -0.9685], + [-0.3677, -2.7265, -0.1685]], + + [[ 1.4970, 1.3448, -0.9685], + [ 0.4362, -0.4004, 0.9400], + [-0.6431, 0.0748, 0.6969], + [ 0.9124, -2.3616, 1.1151]]]) + + + >>> # example with padding_idx + >>> embedding = nn.Embedding(10, 3, padding_idx=0) + >>> input = torch.LongTensor([[0,2,0,5]]) + >>> embedding(input) + tensor([[[ 0.0000, 0.0000, 0.0000], + [ 0.1535, -2.0309, 0.9315], + [ 0.0000, 0.0000, 0.0000], + [-0.1655, 0.9897, 0.0635]]]) + """ + __constants__ = [ + "num_embeddings", + "embedding_dim", + "padding_idx", + "scale_grad_by_freq", + "sparse", + ] + + num_embeddings: int + embedding_dim: int + padding_idx: int + scale_grad_by_freq: bool + weight: Tensor + sparse: bool + + def __init__( + self, + num_embeddings: int, + embedding_dim: int, + padding_idx: Optional[int] = None, + scale_grad_by_freq: bool = False, + sparse: bool = False, + ) -> None: + super(ScaledEmbedding, self).__init__() + self.num_embeddings = num_embeddings + self.embedding_dim = embedding_dim + if padding_idx is not None: + if padding_idx > 0: + assert ( + padding_idx < self.num_embeddings + ), "Padding_idx must be within num_embeddings" + elif padding_idx < 0: + assert ( + padding_idx >= -self.num_embeddings + ), "Padding_idx must be within num_embeddings" + padding_idx = self.num_embeddings + padding_idx + self.padding_idx = padding_idx + self.scale_grad_by_freq = scale_grad_by_freq + + self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters() + self.sparse = sparse + + self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) + self.reset_parameters() + + def reset_parameters(self) -> None: + std = 0.01 + nn.init.normal_(self.weight, std=std) + nn.init.constant_(self.scale, torch.tensor(1.0 / std).log()) + + if self.padding_idx is not None: + with torch.no_grad(): + self.weight[self.padding_idx].fill_(0) + + def forward(self, input: Tensor) -> Tensor: + F = torch.nn.functional + scale = self.scale.exp() + if input.numel() < self.num_embeddings: + return ( + F.embedding( + input, + self.weight, + self.padding_idx, + None, + 2.0, # None, 2.0 relate to normalization + self.scale_grad_by_freq, + self.sparse, + ) + * scale + ) + else: + return F.embedding( + input, + self.weight * scale, + self.padding_idx, + None, + 2.0, # None, 2.0 relates to normalization + self.scale_grad_by_freq, + self.sparse, + ) + + def extra_repr(self) -> str: + s = "{num_embeddings}, {embedding_dim}, scale={scale}" + if self.padding_idx is not None: + s += ", padding_idx={padding_idx}" + if self.scale_grad_by_freq is not False: + s += ", scale_grad_by_freq={scale_grad_by_freq}" + if self.sparse is not False: + s += ", sparse=True" + return s.format(**self.__dict__) + + +def _test_activation_balancer_sign(): + channel_dim = 0 + probs = torch.arange(0, 1, 0.01) + N = 1000 + x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1)) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + channel_dim=0, + min_positive=0.05, + max_positive=0.95, + max_factor=0.2, + min_abs=0.0, + ) + + y_grad = torch.sign(torch.randn(probs.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_sign: x = ", x) + print("_test_activation_balancer_sign: y grad = ", y_grad) + print("_test_activation_balancer_sign: x grad = ", x.grad) + + +def _test_activation_balancer_magnitude(): + channel_dim = 0 + magnitudes = torch.arange(0, 1, 0.01) + N = 1000 + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + channel_dim=0, + min_positive=0.0, + max_positive=1.0, + max_factor=0.2, + min_abs=0.2, + max_abs=0.8, + ) + + y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_magnitude: x = ", x) + print("_test_activation_balancer_magnitude: y grad = ", y_grad) + print("_test_activation_balancer_magnitude: x grad = ", x.grad) + + +def _test_basic_norm(): + num_channels = 128 + m = BasicNorm(num_channels=num_channels, channel_dim=1) + + x = torch.randn(500, num_channels) + + y = m(x) + + assert y.shape == x.shape + x_rms = (x**2).mean().sqrt() + y_rms = (y**2).mean().sqrt() + print("x rms = ", x_rms) + print("y rms = ", y_rms) + assert y_rms < x_rms + assert y_rms > 0.5 * x_rms + + +def _test_double_swish_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 0.5 + x.requires_grad = True + m = DoubleSwish() + torch.autograd.gradcheck(m, x) + + +if __name__ == "__main__": + _test_activation_balancer_sign() + _test_activation_balancer_magnitude() + _test_basic_norm() + _test_double_swish_deriv() diff --git a/egs/librispeech/ASR/pruned2_knowledge/train.py b/egs/librispeech/ASR/pruned2_knowledge/train.py new file mode 100755 index 000000000..123d448bb --- /dev/null +++ b/egs/librispeech/ASR/pruned2_knowledge/train.py @@ -0,0 +1,984 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned2_knowledge/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 0 \ + --exp-dir pruned2_knowledge/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./pruned2_knowledge/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 0 \ + --use_fp16 1 \ + --exp-dir pruned2_knowledge/exp \ + --full-libri 1 \ + --max-duration 550 + +""" + + +import argparse +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from conformer import Conformer +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, Eve +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import save_checkpoint_with_global_batch_idx +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + transducer_stateless2/exp/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned2_knowledge/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--initial-lr", + type=float, + default=0.003, + help="The initial learning rate. This value should not need to be changed.", + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate decreases. + We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=8000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=20, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for conformer + "feature_dim": 80, + "subsampling_factor": 4, + "encoder_dim": 512, + "nhead": 8, + "dim_feedforward": 2048, + "num_encoder_layers": 18, + # parameters for decoder + "decoder_dim": 512, + # parameters for joiner + "joiner_dim": 512, + # parameters for Noam + "model_warm_step": 3000, # arg given to model, not for lrate + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Conformer and Transformer + encoder = Conformer( + num_features=params.feature_dim, + subsampling_factor=params.subsampling_factor, + d_model=params.encoder_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 0: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, + warmup: float = 1.0, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + warmup=warmup, + ) + # after the main warmup step, we keep pruned_loss_scale small + # for the same amount of time (model_warm_step), to avoid + # overwhelming the simple_loss and causing it to diverge, + # in case it had not fully learned the alignment yet. + pruned_loss_scale = ( + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) + ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=(params.batch_idx_train / params.model_warm_step), + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}" + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + model.device = device + + optimizer = Eve(model.parameters(), lr=params.initial_lr) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + librispeech = LibriSpeechAsrDataModule(args) + + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs): + scheduler.step_epoch(epoch) + fix_random_seed(params.seed + epoch) + train_dl.sampler.set_epoch(epoch) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: nn.Module, + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 0 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + # warmup = 0.0 is so that the derivs for the pruned loss stay zero + # (i.e. are not remembered by the decaying-average in adam), because + # we want to avoid these params being subject to shrinkage in adam. + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=0.0, + ) + loss.backward() + optimizer.step() + optimizer.zero_grad() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py index 2d5724d30..0e3b7ff74 100755 --- a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py +++ b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py @@ -204,8 +204,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -272,9 +271,7 @@ def decode_one_batch( value=LOG_EPS, ) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -289,10 +286,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -415,9 +409,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -450,8 +442,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -494,9 +485,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -528,9 +517,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -557,9 +546,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py index 318cd5094..008f40fb1 100644 --- a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py +++ b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py @@ -272,13 +272,9 @@ class Emformer(EncoderInterface): # Caution: We assume the subsampling factor is 4! x_lens = (((x_lens - 1) >> 1) - 1) >> 1 - emformer_out, emformer_out_lens, states = self.model.infer( - x, x_lens, states - ) + emformer_out, emformer_out_lens, states = self.model.infer(x, x_lens, states) - if x.size(1) != ( - self.model.segment_length + self.model.right_context_length - ): + if x.size(1) != (self.model.segment_length + self.model.right_context_length): raise ValueError( "Incorrect input shape." f"{x.size(1)} vs {self.model.segment_length} + " diff --git a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py index 2375f5001..3612a2bfd 100755 --- a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py +++ b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py @@ -133,8 +133,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) @@ -170,9 +169,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -199,9 +198,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -273,9 +272,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py index 2f019bcdb..ed6848879 100644 --- a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py +++ b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py @@ -122,9 +122,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens diff --git a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py index dd23309b3..3601e1e11 100755 --- a/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py +++ b/egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py @@ -209,8 +209,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -233,8 +232,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -566,11 +564,7 @@ def compute_loss( function enables autograd during computation; when it is False, it disables autograd. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -599,9 +593,7 @@ def compute_loss( info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -782,9 +774,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -892,10 +882,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -906,7 +896,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./emformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py index 7af9cc3d7..830b37cfb 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py @@ -509,9 +509,9 @@ def greedy_search( y = logits.argmax().item() if y not in (blank_id, unk_id): hyp.append(y) - decoder_input = torch.tensor( - [hyp[-context_size:]], device=device - ).reshape(1, context_size) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) decoder_out = model.decoder(decoder_input, need_pad=False) @@ -670,9 +670,7 @@ class HypothesisList(object): if use_max: old_hyp.log_prob = max(old_hyp.log_prob, hyp.log_prob) else: - torch.logaddexp( - old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob - ) + torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob) else: self._data[key] = hyp @@ -688,9 +686,7 @@ class HypothesisList(object): Return the hypothesis that has the largest `log_prob`. """ if length_norm: - return max( - self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys) - ) + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) else: return max(self._data.values(), key=lambda hyp: hyp.log_prob) @@ -892,9 +888,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -1088,9 +1082,7 @@ def beam_search( t = 0 B = HypothesisList() - B.add( - Hypothesis(ys=[blank_id] * context_size, log_prob=0.0), use_max=use_max - ) + B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0), use_max=use_max) max_sym_per_utt = 20000 @@ -1130,9 +1122,7 @@ def beam_search( cached_key += f"-t-{t}" if cached_key not in joint_cache: - logits = model.joiner( - current_encoder_out, decoder_out.unsqueeze(1) - ) + logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1)) # TODO(fangjun): Scale the blank posterior diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless/decode.py index 3977f8443..0444afe40 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/decode.py @@ -128,11 +128,7 @@ from beam_search import ( ) from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, @@ -206,6 +202,7 @@ def get_parser(): - beam_search - modified_beam_search - fast_beam_search + - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG @@ -230,7 +227,7 @@ def get_parser(): help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. - Used only when --decoding-method is fast_beam_search, + Used only when --decoding-method is fast_beam_search, fast_beam_search_LG fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, @@ -241,7 +238,7 @@ def get_parser(): type=float, default=0.01, help=""" - Used only when --decoding_method is fast_beam_search_nbest_LG. + Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG. It specifies the scale for n-gram LM scores. """, ) @@ -250,7 +247,7 @@ def get_parser(): "--max-contexts", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -259,7 +256,7 @@ def get_parser(): "--max-states", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -268,8 +265,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -355,8 +351,8 @@ def decode_one_batch( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return the decoding result. See above description for the format of @@ -382,12 +378,13 @@ def decode_one_batch( simulate_streaming=True, ) else: - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] - if params.decoding_method == "fast_beam_search": + if ( + params.decoding_method == "fast_beam_search" + or params.decoding_method == "fast_beam_search_LG" + ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, @@ -397,8 +394,12 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - for hyp in sp.decode(hyp_tokens): - hyps.append(hyp.split()) + if params.decoding_method == "fast_beam_search": + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, @@ -442,10 +443,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -496,8 +494,8 @@ def decode_one_batch( if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" - if "LG" in params.decoding_method: - key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: @@ -526,8 +524,8 @@ def decode_dataset( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return a dict, whose key may be "greedy_search" if greedy search @@ -576,9 +574,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -611,8 +607,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -643,6 +638,7 @@ def main(): "greedy_search", "beam_search", "fast_beam_search", + "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", @@ -666,12 +662,10 @@ def main(): if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" - if "LG" in params.decoding_method: - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -709,8 +703,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -737,7 +730,7 @@ def main(): model.device = device if "fast_beam_search" in params.decoding_method: - if params.decoding_method == "fast_beam_search_nbest_LG": + if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" @@ -748,9 +741,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/decode_stream.py b/egs/librispeech/ASR/pruned_transducer_stateless/decode_stream.py index 386248554..e522943c0 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless/decode_stream.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/decode_stream.py @@ -75,9 +75,7 @@ class DecodeStream(object): # encoder.streaming_forward self.done_frames: int = 0 - self.pad_length = ( - params.right_context + 2 - ) * params.subsampling_factor + 3 + self.pad_length = (params.right_context + 2) * params.subsampling_factor + 3 if params.decoding_method == "greedy_search": self.hyp = [params.blank_id] * params.context_size @@ -91,13 +89,11 @@ class DecodeStream(object): ) elif params.decoding_method == "fast_beam_search": # The rnnt_decoding_stream for fast_beam_search. - self.rnnt_decoding_stream: k2.RnntDecodingStream = ( - k2.RnntDecodingStream(decoding_graph) + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") @property def done(self) -> bool: @@ -126,13 +122,10 @@ class DecodeStream(object): """Consume chunk_size frames of features""" chunk_length = chunk_size + self.pad_length - ret_length = min( - self.num_frames - self.num_processed_frames, chunk_length - ) + ret_length = min(self.num_frames - self.num_processed_frames, chunk_length) ret_features = self.features[ - self.num_processed_frames : self.num_processed_frames # noqa - + ret_length + self.num_processed_frames : self.num_processed_frames + ret_length # noqa ] self.num_processed_frames += chunk_size diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py index f4355e8a0..72593173c 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py @@ -92,9 +92,7 @@ class Decoder(nn.Module): if self.context_size > 1: embedding_out = embedding_out.permute(0, 2, 1) if need_pad is True: - embedding_out = F.pad( - embedding_out, pad=(self.context_size - 1, 0) - ) + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) else: # During inference time, there is no need to do extra padding # as we only need one output diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/export.py b/egs/librispeech/ASR/pruned_transducer_stateless/export.py index b5a151878..a19f9ab9a 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/export.py @@ -105,8 +105,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -192,9 +191,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/model.py b/egs/librispeech/ASR/pruned_transducer_stateless/model.py index 73b651b3f..2cca7fa27 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/model.py @@ -130,9 +130,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py index eb95827af..2ed1725b4 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py @@ -168,8 +168,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -221,10 +220,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -292,9 +290,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -381,9 +377,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/streaming_beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless/streaming_beam_search.py index dcf6dc42f..9e09200a1 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless/streaming_beam_search.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/streaming_beam_search.py @@ -166,14 +166,10 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): - topk_log_probs, topk_indexes = ragged_log_probs[i].topk( - num_active_paths - ) + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths) with warnings.catch_warnings(): warnings.simplefilter("ignore") diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless/streaming_decode.py index d2cae4f9f..fbc39fb65 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/streaming_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/streaming_decode.py @@ -51,11 +51,7 @@ from streaming_beam_search import ( from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import ( AttributeDict, setup_logger, @@ -162,8 +158,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -269,9 +264,7 @@ def decode_one_chunk( ) if params.decoding_method == "greedy_search": - greedy_search( - model=model, encoder_out=encoder_out, streams=decode_streams - ) + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( @@ -291,9 +284,7 @@ def decode_one_chunk( num_active_paths=params.num_active_paths, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] @@ -349,9 +340,7 @@ def decode_dataset( decode_results = [] # Contain decode streams currently running. decode_streams = [] - initial_states = model.encoder.get_init_state( - params.left_context, device=device - ) + initial_states = model.encoder.get_init_state(params.left_context, device=device) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( @@ -422,9 +411,7 @@ def decode_dataset( elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} @@ -460,8 +447,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -533,8 +519,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless/test_model.py index 1858d6bf0..fc82d8c69 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/test_model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/test_model.py @@ -23,7 +23,6 @@ To run this file, do: python ./pruned_transducer_stateless/test_model.py """ -import torch from train import get_params, get_transducer_model @@ -43,8 +42,6 @@ def test_model(): num_param = sum([p.numel() for p in model.parameters()]) print(f"Number of model parameters: {num_param}") - model.__class__.forward = torch.jit.ignore(model.__class__.forward) - torch.jit.script(model) def test_model_streaming(): @@ -63,8 +60,6 @@ def test_model_streaming(): num_param = sum([p.numel() for p in model.parameters()]) print(f"Number of model parameters: {num_param}") - model.__class__.forward = torch.jit.ignore(model.__class__.forward) - torch.jit.script(model) def main(): diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/train.py b/egs/librispeech/ASR/pruned_transducer_stateless/train.py index 193c5050c..cf4032027 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless/train.py @@ -203,8 +203,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -227,8 +226,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -562,9 +560,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -584,9 +580,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -777,9 +771,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -881,10 +873,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -895,7 +887,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) @@ -929,9 +947,7 @@ def run(rank, world_size, args): cur_lr = optimizer._rate if tb_writer is not None: - tb_writer.add_scalar( - "train/learning_rate", cur_lr, params.batch_idx_train - ) + tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train) tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) if rank == 0: diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless2/beam_search.py index 0004a24eb..7388af389 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/beam_search.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/beam_search.py @@ -1,4 +1,5 @@ -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Xiaoyu Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -15,8 +16,8 @@ # limitations under the License. import warnings -from dataclasses import dataclass -from typing import Dict, List, Optional, Union +from dataclasses import dataclass, field +from typing import Dict, List, Optional, Tuple, Union import k2 import sentencepiece as spm @@ -25,6 +26,9 @@ from model import Transducer from icefall import NgramLm, NgramLmStateCost from icefall.decode import Nbest, one_best_decoding +from icefall.lm_wrapper import LmScorer +from icefall.rnn_lm.model import RnnLmModel +from icefall.transformer_lm.model import TransformerLM from icefall.utils import ( DecodingResults, add_eos, @@ -535,7 +539,7 @@ def greedy_search( device = next(model.parameters()).device decoder_input = torch.tensor( - [blank_id] * context_size, device=device, dtype=torch.int64 + [-1] * (context_size - 1) + [blank_id], device=device, dtype=torch.int64 ).reshape(1, context_size) decoder_out = model.decoder(decoder_input, need_pad=False) @@ -578,9 +582,9 @@ def greedy_search( if y not in (blank_id, unk_id): hyp.append(y) timestamp.append(t) - decoder_input = torch.tensor( - [hyp[-context_size:]], device=device - ).reshape(1, context_size) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) decoder_out = model.decoder(decoder_input, need_pad=False) decoder_out = model.joiner.decoder_proj(decoder_out) @@ -596,7 +600,7 @@ def greedy_search( return hyp else: return DecodingResults( - tokens=[hyp], + hyps=[hyp], timestamps=[timestamp], ) @@ -644,7 +648,7 @@ def greedy_search_batch( assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) - hyps = [[blank_id] * context_size for _ in range(N)] + hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)] # timestamp[n][i] is the frame index after subsampling # on which hyp[n][i] is decoded @@ -710,7 +714,7 @@ def greedy_search_batch( return ans else: return DecodingResults( - tokens=ans, + hyps=ans, timestamps=ans_timestamps, ) @@ -727,8 +731,15 @@ class Hypothesis: # timestamp[i] is the frame index after subsampling # on which ys[i] is decoded - timestamp: List[int] + timestamp: List[int] = field(default_factory=list) + # the lm score for next token given the current ys + lm_score: Optional[torch.Tensor] = None + + # the RNNLM states (h and c in LSTM) + state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None + + # N-gram LM state state_cost: Optional[NgramLmStateCost] = None @property @@ -766,9 +777,7 @@ class HypothesisList(object): key = hyp.key if key in self: old_hyp = self._data[key] # shallow copy - torch.logaddexp( - old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob - ) + torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob) else: self._data[key] = hyp @@ -784,9 +793,7 @@ class HypothesisList(object): Return the hypothesis that has the largest `log_prob`. """ if length_norm: - return max( - self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys) - ) + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) else: return max(self._data.values(), key=lambda hyp: hyp.log_prob) @@ -981,9 +988,7 @@ def modified_beam_search( logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) - log_probs = (logits / temperature).log_softmax( - dim=-1 - ) # (num_hyps, vocab_size) + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) log_probs.add_(ys_log_probs) @@ -995,9 +1000,7 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -1040,7 +1043,7 @@ def modified_beam_search( return ans else: return DecodingResults( - tokens=ans, + hyps=ans, timestamps=ans_timestamps, ) @@ -1167,7 +1170,7 @@ def _deprecated_modified_beam_search( if not return_timestamps: return ys else: - return DecodingResults(tokens=[ys], timestamps=[best_hyp.timestamp]) + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) def beam_search( @@ -1327,7 +1330,7 @@ def beam_search( if not return_timestamps: return ys else: - return DecodingResults(tokens=[ys], timestamps=[best_hyp.timestamp]) + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) def fast_beam_search_with_nbest_rescoring( @@ -1667,9 +1670,7 @@ def fast_beam_search_with_nbest_rnn_rescoring( for rnn_scale in rnn_lm_scale_list: key = f"ngram_lm_scale_{n_scale}_rnn_lm_scale_{rnn_scale}" tot_scores = ( - am_scores.values - + n_scale * ngram_lm_scores - + rnn_scale * rnn_lm_scores + am_scores.values + n_scale * ngram_lm_scores + rnn_scale * rnn_lm_scores ) ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = ragged_tot_scores.argmax() @@ -1795,9 +1796,7 @@ def modified_beam_search_ngram_rescoring( logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) - log_probs = (logits / temperature).log_softmax( - dim=-1 - ) # (num_hyps, vocab_size) + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) log_probs.add_(ys_log_probs) vocab_size = log_probs.size(-1) @@ -1807,9 +1806,7 @@ def modified_beam_search_ngram_rescoring( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) @@ -1832,9 +1829,7 @@ def modified_beam_search_ngram_rescoring( state_cost = hyp.state_cost # We only keep AM scores in new_hyp.log_prob - new_log_prob = ( - topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale - ) + new_log_prob = topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale new_hyp = Hypothesis( ys=new_ys, log_prob=new_log_prob, state_cost=state_cost @@ -1851,3 +1846,537 @@ def modified_beam_search_ngram_rescoring( ans.append(sorted_ans[unsorted_indices[i]]) return ans + + +def modified_beam_search_LODR( + model: Transducer, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + sp: spm.SentencePieceProcessor, + LODR_lm: NgramLm, + LODR_lm_scale: float, + LM: LmScorer, + beam: int = 4, +) -> List[List[int]]: + """This function implements LODR (https://arxiv.org/abs/2203.16776) with + `modified_beam_search`. It uses a bi-gram language model as the estimate + of the internal language model and subtracts its score during shallow fusion + with an external language model. This implementation uses a RNNLM as the + external language model. + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + sp: + Sentence piece generator. + LODR_lm: + A low order n-gram LM, whose score will be subtracted during shallow fusion + LODR_lm_scale: + The scale of the LODR_lm + LM: + A neural net LM, e.g an RNNLM or transformer LM + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = sp.piece_to_id("") + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[blank_id] * context_size, + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, # state of the NN LM + lm_score=init_score.reshape(-1), + state_cost=NgramLmStateCost( + LODR_lm + ), # state of the source domain ngram + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + LM will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + # forward NN LM to get new states and scores + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + # current score of hyp + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + + ys.append(new_token) + state_cost = hyp.state_cost.forward_one_step(new_token) + + # calculate the score of the latest token + current_ngram_score = state_cost.lm_score - hyp.state_cost.lm_score + + assert current_ngram_score <= 0.0, ( + state_cost.lm_score, + hyp.state_cost.lm_score, + ) + # score = score + TDLM_score - LODR_score + # LODR_LM_scale should be a negative number here + hyp_log_prob += ( + lm_score[new_token] * lm_scale + + LODR_lm_scale * current_ngram_score + ) # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + else: + state_cost = hyp.state_cost + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + state_cost=state_cost, + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +def modified_beam_search_lm_shallow_fusion( + model: Transducer, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + sp: spm.SentencePieceProcessor, + LM: LmScorer, + beam: int = 4, + return_timestamps: bool = False, +) -> List[List[int]]: + """Modified_beam_search + NN LM shallow fusion + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + sp: + Sentence piece generator. + LM (LmScorer): + A neural net LM, e.g RNN or Transformer + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = sp.piece_to_id("") + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[blank_id] * context_size, + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, + lm_score=init_score.reshape(-1), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for (t, batch_size) in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + lm_scores = torch.cat( + [hyp.lm_score.reshape(1, -1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + `LM` will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] # a list of list + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + + ys.append(new_token) + new_timestamp.append(t) + + hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + timestamp=new_timestamp, + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + sorted_timestamps = [h.timestamp for h in best_hyps] + ans = [] + ans_timestamps = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(sorted_timestamps[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + tokens=ans, + timestamps=ans_timestamps, + ) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless2/conformer.py index b04a74a19..f94ffef59 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/conformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/conformer.py @@ -214,10 +214,7 @@ class Conformer(EncoderInterface): NOTE: the returned tensors are on the given device. """ - if ( - len(self._init_state) == 2 - and self._init_state[0].size(1) == left_context - ): + if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context: # Note: It is OK to share the init state as it is # not going to be modified by the model return self._init_state @@ -439,9 +436,7 @@ class ConformerEncoderLayer(nn.Module): self.d_model = d_model - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( ScaledLinear(d_model, dim_feedforward), @@ -459,9 +454,7 @@ class ConformerEncoderLayer(nn.Module): ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), ) - self.conv_module = ConvolutionModule( - d_model, cnn_module_kernel, causal=causal - ) + self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal) self.norm_final = BasicNorm(d_model) @@ -527,9 +520,7 @@ class ConformerEncoderLayer(nn.Module): src = src + self.dropout(src_att) # convolution module - conv, _ = self.conv_module( - src, src_key_padding_mask=src_key_padding_mask - ) + conv, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask) src = src + self.dropout(conv) # feed forward module @@ -785,9 +776,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() if is_jit_tracing(): @@ -811,9 +800,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x_size_1 * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -1127,9 +1114,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -1198,31 +1185,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -1264,23 +1242,15 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d - matrix_bd = torch.matmul( - q_with_bias_v, p - ) # (batch, head, time1, 2*time1-1) + matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd, left_context) - attn_output_weights = ( - matrix_ac + matrix_bd - ) # (batch, head, time1, time2) + attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) if not is_jit_tracing(): assert list(attn_output_weights.size()) == [ @@ -1322,21 +1292,17 @@ class RelPositionMultiheadAttention(nn.Module): ): if attn_mask.size(0) != 1: attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len) - combined_mask = attn_mask | key_padding_mask.unsqueeze( - 1 - ).unsqueeze(2) + combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2) else: # attn_mask.shape == (1, tgt_len, src_len) - combined_mask = attn_mask.unsqueeze( - 0 - ) | key_padding_mask.unsqueeze(1).unsqueeze(2) + combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze( + 1 + ).unsqueeze(2) attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) - attn_output_weights = attn_output_weights.masked_fill( - combined_mask, 0.0 - ) + attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, src_len ) @@ -1355,13 +1321,9 @@ class RelPositionMultiheadAttention(nn.Module): ] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -1498,16 +1460,12 @@ class ConvolutionModule(nn.Module): # manualy padding self.lorder zeros to the left x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) else: - assert ( - not self.training - ), "Cache should be None in training time" + assert not self.training, "Cache should be None in training time" assert cache.size(0) == self.lorder x = torch.cat([cache.permute(1, 2, 0), x], dim=2) if right_context > 0: cache = x.permute(2, 0, 1)[ - -(self.lorder + right_context) : ( # noqa - -right_context - ), + -(self.lorder + right_context) : (-right_context), # noqa ..., ] else: @@ -1621,6 +1579,8 @@ class Conv2dSubsampling(nn.Module): if __name__ == "__main__": + torch.set_num_threads(1) + torch.set_num_interop_threads(1) feature_dim = 50 c = Conformer(num_features=feature_dim, d_model=128, nhead=4) batch_size = 5 diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless2/decode.py index 3b834b919..5f135f219 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/decode.py @@ -132,11 +132,7 @@ from beam_search import ( ) from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, @@ -212,6 +208,7 @@ def get_parser(): - beam_search - modified_beam_search - fast_beam_search + - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG @@ -247,8 +244,8 @@ def get_parser(): type=float, default=0.01, help=""" - Used only when --decoding_method is fast_beam_search_nbest_LG. - It specifies the scale for n-gram LM scores. + Used only when --decoding_method is fast_beam_search_LG and + fast_beam_search_nbest_LG. It specifies the scale for n-gram LM scores. """, ) @@ -256,7 +253,7 @@ def get_parser(): "--max-contexts", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -265,7 +262,7 @@ def get_parser(): "--max-states", type=int, default=64, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -274,8 +271,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -363,9 +359,10 @@ def decode_one_batch( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, - fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, + fast_beam_search_nbest, fast_beam_search_nbest_oracle, and + fast_beam_search_nbest_LG. Returns: Return the decoding result. See above description for the format of the returned dict. @@ -395,13 +392,14 @@ def decode_one_batch( simulate_streaming=True, ) else: - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] - if params.decoding_method == "fast_beam_search": + if ( + params.decoding_method == "fast_beam_search" + or params.decoding_method == "fast_beam_search_LG" + ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, @@ -411,8 +409,12 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - for hyp in sp.decode(hyp_tokens): - hyps.append(hyp.split()) + if params.decoding_method == "fast_beam_search": + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, @@ -456,10 +458,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -518,8 +517,8 @@ def decode_one_batch( if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" - if "LG" in params.decoding_method: - key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: @@ -548,9 +547,10 @@ def decode_dataset( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, - fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, + fast_beam_search_nbest, fast_beam_search_nbest_oracle, and + fast_beam_search_nbest_LG. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. @@ -598,9 +598,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -633,8 +631,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -663,6 +660,7 @@ def main(): "greedy_search", "beam_search", "fast_beam_search", + "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", @@ -686,12 +684,10 @@ def main(): if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" - if "LG" in params.decoding_method: - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -729,8 +725,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -757,7 +752,7 @@ def main(): model.device = device if "fast_beam_search" in params.decoding_method: - if params.decoding_method == "fast_beam_search_nbest_LG": + if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" @@ -768,9 +763,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless2/decoder.py index e01167285..b59928103 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/decoder.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/decoder.py @@ -101,13 +101,17 @@ class Decoder(nn.Module): need_pad = bool(need_pad) y = y.to(torch.int64) - embedding_out = self.embedding(y) + # this stuff about clamp() is a temporary fix for a mismatch + # at utterance start, we use negative ids in beam_search.py + if torch.jit.is_tracing(): + # This is for exporting to PNNX via ONNX + embedding_out = self.embedding(y) + else: + embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1) if self.context_size > 1: embedding_out = embedding_out.permute(0, 2, 1) if need_pad: - embedding_out = F.pad( - embedding_out, pad=(self.context_size - 1, 0) - ) + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) else: # During inference time, there is no need to do extra padding # as we only need one output diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/export.py b/egs/librispeech/ASR/pruned_transducer_stateless2/export.py index f1a8ea589..984caf5f2 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/export.py @@ -51,11 +51,7 @@ import sentencepiece as spm import torch from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import str2bool @@ -120,8 +116,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -173,8 +168,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -222,9 +216,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless2/joiner.py index 6a9d08033..1954f4724 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/joiner.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/joiner.py @@ -60,9 +60,7 @@ class Joiner(nn.Module): assert encoder_out.shape == decoder_out.shape if project_input: - logit = self.encoder_proj(encoder_out) + self.decoder_proj( - decoder_out - ) + logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out) else: logit = encoder_out + decoder_out diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/model.py b/egs/librispeech/ASR/pruned_transducer_stateless2/model.py index ba7616c61..272d06c37 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/model.py @@ -66,9 +66,7 @@ class Transducer(nn.Module): self.decoder = decoder self.joiner = joiner - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) def forward( @@ -81,6 +79,7 @@ class Transducer(nn.Module): lm_scale: float = 0.0, warmup: float = 1.0, reduction: str = "sum", + delay_penalty: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: @@ -108,6 +107,12 @@ class Transducer(nn.Module): "sum" to sum the losses over all utterances in the batch. "none" to return the loss in a 1-D tensor for each utterance in the batch. + delay_penalty: + A constant value used to penalize symbol delay, to encourage + streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details. + Returns: Returns: Return the transducer loss. @@ -145,9 +150,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens @@ -164,6 +167,7 @@ class Transducer(nn.Module): am_only_scale=am_scale, boundary=boundary, reduction=reduction, + delay_penalty=delay_penalty, return_grad=True, ) @@ -196,6 +200,7 @@ class Transducer(nn.Module): ranges=ranges, termination_symbol=blank_id, boundary=boundary, + delay_penalty=delay_penalty, reduction=reduction, ) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless2/optim.py index 041a81f45..2d7f557ad 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/optim.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/optim.py @@ -72,17 +72,11 @@ class Eve(Optimizer): if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: - raise ValueError( - "Invalid beta parameter at index 0: {}".format(betas[0]) - ) + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: - raise ValueError( - "Invalid beta parameter at index 1: {}".format(betas[1]) - ) + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0 <= weight_decay <= 0.1: - raise ValueError( - "Invalid weight_decay value: {}".format(weight_decay) - ) + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0 < target_rms <= 10.0: raise ValueError("Invalid target_rms value: {}".format(target_rms)) defaults = dict( @@ -118,9 +112,7 @@ class Eve(Optimizer): # Perform optimization step grad = p.grad if grad.is_sparse: - raise RuntimeError( - "AdamW does not support sparse gradients" - ) + raise RuntimeError("AdamW does not support sparse gradients") state = self.state[p] @@ -147,7 +139,7 @@ class Eve(Optimizer): # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) - denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_( + denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( group["eps"] ) @@ -158,9 +150,7 @@ class Eve(Optimizer): if p.numel() > 1: # avoid applying this weight-decay on "scaling factors" # (which are scalar). - is_above_target_rms = p.norm() > ( - target_rms * (p.numel() ** 0.5) - ) + is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) p.mul_(1 - (weight_decay * is_above_target_rms)) p.addcdiv_(exp_avg, denom, value=-step_size) @@ -180,18 +170,14 @@ class LRScheduler(object): def __init__(self, optimizer: Optimizer, verbose: bool = False): # Attach optimizer if not isinstance(optimizer, Optimizer): - raise TypeError( - "{} is not an Optimizer".format(type(optimizer).__name__) - ) + raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) self.optimizer = optimizer self.verbose = verbose for group in optimizer.param_groups: group.setdefault("initial_lr", group["lr"]) - self.base_lrs = [ - group["initial_lr"] for group in optimizer.param_groups - ] + self.base_lrs = [group["initial_lr"] for group in optimizer.param_groups] self.epoch = 0 self.batch = 0 @@ -299,10 +285,9 @@ class Eden(LRScheduler): def get_lr(self): factor = ( - (self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2 + (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 ) ** -0.25 * ( - ((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2) - ** -0.25 + ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 ) return [x * factor for x in self.base_lrs] diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py index f52cb22ab..013964720 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py @@ -168,8 +168,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -222,10 +221,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -293,9 +291,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -382,9 +378,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py index 8c572a9ef..963ebdc2d 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py @@ -89,9 +89,7 @@ class ActivationBalancerFunction(torch.autograd.Function): below_threshold = mean_abs < min_abs above_threshold = mean_abs > max_abs - ctx.save_for_backward( - factor, xgt0, below_threshold, above_threshold - ) + ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold) ctx.max_factor = max_factor ctx.sum_dims = sum_dims return x @@ -137,7 +135,7 @@ class GradientFilterFunction(torch.autograd.Function): eps = 1.0e-20 dim = ctx.batch_dim norm_dims = [d for d in range(x_grad.ndim) if d != dim] - norm_of_batch = (x_grad ** 2).mean(dim=norm_dims, keepdim=True).sqrt() + norm_of_batch = (x_grad**2).mean(dim=norm_dims, keepdim=True).sqrt() median_norm = norm_of_batch.median() cutoff = median_norm * ctx.threshold @@ -229,8 +227,7 @@ class BasicNorm(torch.nn.Module): if not is_jit_tracing(): assert x.shape[self.channel_dim] == self.num_channels scales = ( - torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) - + self.eps.exp() + torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp() ) ** -0.5 return x * scales @@ -282,12 +279,12 @@ class ScaledLinear(nn.Linear): def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed - a = (3 ** 0.5) * std + a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() - scale = fan_in ** -0.5 # 1/sqrt(fan_in) + scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() @@ -301,9 +298,7 @@ class ScaledLinear(nn.Linear): return self.bias * self.bias_scale.exp() def forward(self, input: Tensor) -> Tensor: - return torch.nn.functional.linear( - input, self.get_weight(), self.get_bias() - ) + return torch.nn.functional.linear(input, self.get_weight(), self.get_bias()) class ScaledConv1d(nn.Conv1d): @@ -331,12 +326,12 @@ class ScaledConv1d(nn.Conv1d): def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed - a = (3 ** 0.5) * std + a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() - scale = fan_in ** -0.5 # 1/sqrt(fan_in) + scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() @@ -400,12 +395,12 @@ class ScaledConv2d(nn.Conv2d): def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed - a = (3 ** 0.5) * std + a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() - scale = fan_in ** -0.5 # 1/sqrt(fan_in) + scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() @@ -476,9 +471,7 @@ class ScaledLSTM(nn.LSTM): setattr(self, scale_name, param) self._scales.append(param) - self.grad_filter = GradientFilter( - batch_dim=1, threshold=grad_norm_threshold - ) + self.grad_filter = GradientFilter(batch_dim=1, threshold=grad_norm_threshold) self._reset_parameters( initial_speed @@ -486,8 +479,8 @@ class ScaledLSTM(nn.LSTM): def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed - a = (3 ** 0.5) * std - scale = self.hidden_size ** -0.5 + a = (3**0.5) * std + scale = self.hidden_size**-0.5 v = scale / std for idx, name in enumerate(self._flat_weights_names): if "weight" in name: @@ -559,15 +552,11 @@ class ScaledLSTM(nn.LSTM): """Get scaled weights, and resets their data pointer.""" flat_weights = [] for idx in range(len(self._flat_weights_names)): - flat_weights.append( - self._flat_weights[idx] * self._scales[idx].exp() - ) + flat_weights.append(self._flat_weights[idx] * self._scales[idx].exp()) self._flatten_parameters(flat_weights) return flat_weights - def forward( - self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None - ): + def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None): # This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa # The change for calling `_VF.lstm()` is: # self._flat_weights -> self._get_flat_weights() @@ -663,16 +652,16 @@ class ActivationBalancer(torch.nn.Module): def forward(self, x: Tensor) -> Tensor: if random.random() >= self.balance_prob: return x - else: - return ActivationBalancerFunction.apply( - x, - self.channel_dim, - self.min_positive, - self.max_positive, - self.max_factor / self.balance_prob, - self.min_abs, - self.max_abs, - ) + + return ActivationBalancerFunction.apply( + x, + self.channel_dim, + self.min_positive, + self.max_positive, + self.max_factor / self.balance_prob, + self.min_abs, + self.max_abs, + ) class DoubleSwishFunction(torch.autograd.Function): @@ -915,9 +904,7 @@ def _test_activation_balancer_sign(): def _test_activation_balancer_magnitude(): magnitudes = torch.arange(0, 1, 0.01) N = 1000 - x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze( - -1 - ) + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) x = x.detach() x.requires_grad = True m = ActivationBalancer( @@ -947,8 +934,8 @@ def _test_basic_norm(): y = m(x) assert y.shape == x.shape - x_rms = (x ** 2).mean().sqrt() - y_rms = (y ** 2).mean().sqrt() + x_rms = (x**2).mean().sqrt() + y_rms = (y**2).mean().sqrt() print("x rms = ", x_rms) print("y rms = ", y_rms) assert y_rms < x_rms @@ -1007,11 +994,11 @@ def _test_grad_filter(): print( "_test_grad_filter: x_out_grad norm = ", - (x_out_grad ** 2).mean(dim=(0, 2)).sqrt(), + (x_out_grad**2).mean(dim=(0, 2)).sqrt(), ) print( "_test_grad_filter: x.grad norm = ", - (x.grad ** 2).mean(dim=(0, 2)).sqrt(), + (x.grad**2).mean(dim=(0, 2)).sqrt(), ) print("_test_grad_filter: w_out_grad = ", w_out_grad) print("_test_grad_filter: w.grad = ", w.grad) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py index 9bcd2f9f9..e6e0fb1c8 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py @@ -153,9 +153,7 @@ def modified_beam_search( index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) - logits = model.joiner( - current_encoder_out, decoder_out, project_input=False - ) + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) # logits is of shape (num_hyps, 1, 1, vocab_size) logits = logits.squeeze(1).squeeze(1) @@ -172,14 +170,10 @@ def modified_beam_search( log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) - ragged_log_probs = k2.RaggedTensor( - shape=log_probs_shape, value=log_probs - ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) for i in range(batch_size): - topk_log_probs, topk_indexes = ragged_log_probs[i].topk( - num_active_paths - ) + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths) with warnings.catch_warnings(): warnings.simplefilter("ignore") diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_decode.py index d76a03946..bb08246d9 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/streaming_decode.py @@ -51,11 +51,7 @@ from streaming_beam_search import ( from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import ( AttributeDict, setup_logger, @@ -162,8 +158,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -271,9 +266,7 @@ def decode_one_chunk( encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": - greedy_search( - model=model, encoder_out=encoder_out, streams=decode_streams - ) + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( @@ -293,9 +286,7 @@ def decode_one_chunk( num_active_paths=params.num_active_paths, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] @@ -351,9 +342,7 @@ def decode_dataset( decode_results = [] # Contain decode streams currently running. decode_streams = [] - initial_states = model.encoder.get_init_state( - params.left_context, device=device - ) + initial_states = model.encoder.get_init_state(params.left_context, device=device) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( @@ -425,9 +414,7 @@ def decode_dataset( elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} @@ -462,8 +449,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -536,8 +522,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless2/train.py b/egs/librispeech/ASR/pruned_transducer_stateless2/train.py index 5c2f67534..6c19f2cb0 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless2/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless2/train.py @@ -96,9 +96,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -210,8 +208,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need to " - "be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -234,8 +231,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -258,8 +254,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -317,6 +312,16 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -607,6 +612,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -623,9 +629,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -638,14 +642,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -656,9 +655,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -826,9 +823,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -936,10 +931,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -950,7 +945,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless3/asr_datamodule.py index 1df7f9ee5..b7735be85 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/asr_datamodule.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/asr_datamodule.py @@ -27,10 +27,7 @@ from lhotse.dataset import ( K2SpeechRecognitionDataset, SpecAugment, ) -from lhotse.dataset.input_strategies import ( - OnTheFlyFeatures, - PrecomputedFeatures, -) +from lhotse.dataset.input_strategies import OnTheFlyFeatures, PrecomputedFeatures from torch.utils.data import DataLoader from icefall.utils import str2bool @@ -167,9 +164,7 @@ class AsrDataModule: if cuts_musan is not None: logging.info("Enable MUSAN") transforms.append( - CutMix( - cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True - ) + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") @@ -178,9 +173,7 @@ class AsrDataModule: if self.args.enable_spec_aug: logging.info("Enable SpecAugment") - logging.info( - f"Time warp factor: {self.args.spec_aug_time_warp_factor}" - ) + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") input_transforms.append( SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, @@ -250,9 +243,7 @@ class AsrDataModule: if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures( - Fbank(FbankConfig(num_mel_bins=80)) - ), + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py b/egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py index 5784a78ba..b4804ecde 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py @@ -79,11 +79,7 @@ from gigaspeech import GigaSpeech from gigaspeech_scoring import asr_text_post_processing from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import ( AttributeDict, setup_logger, @@ -192,8 +188,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -280,9 +275,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if params.decoding_method == "fast_beam_search": @@ -312,10 +305,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -446,9 +436,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -481,8 +469,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -532,9 +519,7 @@ def main(): params.suffix += f"-num-paths-{params.num_paths}" params.suffix += f"-nbest-scale-{params.nbest_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -567,8 +552,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless3/decode.py index 0f30792e3..109a94a69 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/decode.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 # -# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang +# Xiaoyu Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -90,8 +91,41 @@ Usage: --beam 20.0 \ --max-contexts 8 \ --max-states 64 -""" +(8) modified beam search (with LM shallow fusion) +./pruned_transducer_stateless3/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless3/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.3 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + +(9) modified beam search with LM shallow fusion + LODR +./pruned_transducer_stateless3/decode.py \ + --epoch 28 \ + --avg 15 \ + --max-duration 600 \ + --exp-dir ./pruned_transducer_stateless3/exp \ + --decoding-method modified_beam_search_LODR \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.4 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 \ +""" import argparse import logging @@ -116,15 +150,15 @@ from beam_search import ( greedy_search, greedy_search_batch, modified_beam_search, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, + modified_beam_search_ngram_rescoring, ) from librispeech import LibriSpeech from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall import LmScorer, NgramLm +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.lexicon import Lexicon from icefall.rnn_lm.model import RnnLmModel from icefall.utils import ( @@ -202,9 +236,13 @@ def get_parser(): - beam_search - modified_beam_search - fast_beam_search + - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG + - modified_beam_search_ngram_rescoring + - modified_beam_search_lm_shallow_fusion + - modified_beam_search_LODR If you use fast_beam_search_nbest_LG, you have to specify `--lang-dir`, which should contain `LG.pt`. """, @@ -226,7 +264,7 @@ def get_parser(): help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. - Used only when --decoding-method is fast_beam_search, + Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, @@ -237,7 +275,7 @@ def get_parser(): type=float, default=0.01, help=""" - Used only when --decoding_method is fast_beam_search_nbest_LG. + Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG. It specifies the scale for n-gram LM scores. """, ) @@ -246,7 +284,7 @@ def get_parser(): "--max-contexts", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -255,7 +293,7 @@ def get_parser(): "--max-states", type=int, default=64, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is, fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -264,9 +302,9 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) + parser.add_argument( "--max-sym-per-frame", type=int, @@ -346,61 +384,58 @@ def get_parser(): ) parser.add_argument( - "--rnn-lm-exp-dir", - type=str, - default="rnn_lm/exp", - help="""Used only when --method is rnn-lm. + "--rnn-lm-scale", + type=float, + default=0.0, + help="""Used only when --method is modified-beam-search_rnnlm_shallow_fusion. It specifies the path to RNN LM exp dir. """, ) parser.add_argument( - "--rnn-lm-epoch", - type=int, - default=7, - help="""Used only when --method is rnn-lm. - It specifies the checkpoint to use. - """, - ) - - parser.add_argument( - "--rnn-lm-avg", - type=int, - default=2, - help="""Used only when --method is rnn-lm. - It specifies the number of checkpoints to average. - """, - ) - - parser.add_argument( - "--rnn-lm-embedding-dim", - type=int, - default=2048, - help="Embedding dim of the model", - ) - - parser.add_argument( - "--rnn-lm-hidden-dim", - type=int, - default=2048, - help="Hidden dim of the model", - ) - - parser.add_argument( - "--rnn-lm-num-layers", - type=int, - default=4, - help="Number of RNN layers the model", - ) - parser.add_argument( - "--rnn-lm-tie-weights", + "--use-shallow-fusion", type=str2bool, - default=True, - help="""True to share the weights between the input embedding layer and the - last output linear layer + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true """, ) + parser.add_argument( + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + + parser.add_argument( + "--tokens-ngram", + type=int, + default=3, + help="""Token Ngram used for rescoring. + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", + ) + + parser.add_argument( + "--backoff-id", + type=int, + default=500, + help="""ID of the backoff symbol. + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", + ) + add_model_arguments(parser) return parser @@ -414,7 +449,10 @@ def decode_one_batch( word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, G: Optional[k2.Fsa] = None, - rnn_lm_model: torch.nn.Module = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + rnn_lm_model: Optional[RnnLmModel] = None, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: @@ -440,14 +478,21 @@ def decode_one_batch( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. G: Optional. Used only when decoding method is fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring. It an FsaVec containing an acceptor. + LM: + A neural net LM for shallow fusion. Only used when `--use-shallow-fusion` + set to true. + ngram_lm: + A ngram lm. Used in LODR decoding. + ngram_lm_scale: + The scale of the ngram language model. Returns: Return the decoding result. See above description for the format of the returned dict. @@ -477,13 +522,14 @@ def decode_one_batch( simulate_streaming=True, ) else: - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] - if params.decoding_method == "fast_beam_search": + if ( + params.decoding_method == "fast_beam_search" + or params.decoding_method == "fast_beam_search_LG" + ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, @@ -494,8 +540,12 @@ def decode_one_batch( max_states=params.max_states, temperature=params.temperature, ) - for hyp in sp.decode(hyp_tokens): - hyps.append(hyp.split()) + if params.decoding_method == "fast_beam_search": + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, @@ -542,10 +592,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -609,6 +656,41 @@ def decode_one_batch( nbest_scale=params.nbest_scale, temperature=params.temperature, ) + elif params.decoding_method == "modified_beam_search_ngram_rescoring": + hyp_tokens = modified_beam_search_ngram_rescoring( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) else: batch_size = encoder_out.size(0) @@ -678,15 +760,12 @@ def decode_one_batch( if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" - if "LG" in params.decoding_method: - key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: return { - ( - f"beam_size_{params.beam_size}_" - f"temperature_{params.temperature}" - ): hyps + (f"beam_size_{params.beam_size}_temperature_{params.temperature}"): hyps } @@ -698,7 +777,10 @@ def decode_dataset( word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, G: Optional[k2.Fsa] = None, - rnn_lm_model: torch.nn.Module = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + rnn_lm_model: Optional[RnnLmModel] = None, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[Tuple[List[str], List[str]]]]: """Decode dataset. @@ -714,14 +796,16 @@ def decode_dataset( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. G: Optional. Used only when decoding method is fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring. It's an FsaVec containing an acceptor. + LM: + A neural network LM, used during shallow fusion Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. @@ -754,7 +838,10 @@ def decode_dataset( decoding_graph=decoding_graph, batch=batch, G=G, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, rnn_lm_model=rnn_lm_model, + LM=LM, ) for name, hyps in hyps_dict.items(): @@ -771,9 +858,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -806,8 +891,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -891,6 +975,7 @@ def load_ngram_LM( def main(): parser = get_parser() AsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) @@ -901,12 +986,16 @@ def main(): "greedy_search", "beam_search", "fast_beam_search", + "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", "modified_beam_search", "fast_beam_search_with_nbest_rescoring", "fast_beam_search_with_nbest_rnn_rescoring", + "modified_beam_search_LODR", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_ngram_rescoring", ) params.res_dir = params.exp_dir / params.decoding_method @@ -927,18 +1016,29 @@ def main(): if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" - if "LG" in params.decoding_method: - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" params.suffix += f"-temperature-{params.temperature}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" params.suffix += f"-temperature-{params.temperature}" + if "ngram" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if params.use_shallow_fusion: + if params.lm_type == "rnn": + params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}" + elif params.lm_type == "transformer": + params.suffix += f"-transformer-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") @@ -972,8 +1072,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -1002,7 +1101,7 @@ def main(): G = None if "fast_beam_search" in params.decoding_method: - if params.decoding_method == "fast_beam_search_nbest_LG": + if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" @@ -1023,15 +1122,10 @@ def main(): word_table=word_table, device=device, ) - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) logging.info(f"G properties_str: {G.properties_str}") rnn_lm_model = None - if ( - params.decoding_method - == "fast_beam_search_with_nbest_rnn_rescoring" - ): + if params.decoding_method == "fast_beam_search_with_nbest_rnn_rescoring": rnn_lm_model = RnnLmModel( vocab_size=params.vocab_size, embedding_dim=params.rnn_lm_embedding_dim, @@ -1056,15 +1150,42 @@ def main(): rnn_lm_model.eval() else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) rnn_lm_model = None else: decoding_graph = None word_table = None rnn_lm_model = None + # only load N-gram LM when needed + if "ngram" in params.decoding_method or "LODR" in params.decoding_method: + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"lm filename: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + # only load the neural network LM if doing shallow fusion + if params.use_shallow_fusion: + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + + else: + LM = None + num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") @@ -1091,7 +1212,10 @@ def main(): word_table=word_table, decoding_graph=decoding_graph, G=G, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, rnn_lm_model=rnn_lm_model, + LM=LM, ) save_results( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/export.py b/egs/librispeech/ASR/pruned_transducer_stateless3/export.py index 47217ba05..239bdc12f 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/export.py @@ -128,11 +128,7 @@ import torch.nn as nn from scaling_converter import convert_scaled_to_non_scaled from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import str2bool @@ -235,8 +231,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -509,13 +504,9 @@ def export_joiner_model_onnx( - projected_decoder_out: a tensor of shape (N, joiner_dim) """ - encoder_proj_filename = str(joiner_filename).replace( - ".onnx", "_encoder_proj.onnx" - ) + encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx") - decoder_proj_filename = str(joiner_filename).replace( - ".onnx", "_decoder_proj.onnx" - ) + decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx") encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] @@ -616,8 +607,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -715,9 +705,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/gigaspeech.py b/egs/librispeech/ASR/pruned_transducer_stateless3/gigaspeech.py index 36f32c6b3..598434f54 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/gigaspeech.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/gigaspeech.py @@ -52,18 +52,14 @@ class GigaSpeech: ) pattern = re.compile(r"gigaspeech_cuts_XL.([0-9]+).jsonl.gz") - idx_filenames = [ - (int(pattern.search(f).group(1)), f) for f in filenames - ] + idx_filenames = [(int(pattern.search(f).group(1)), f) for f in filenames] idx_filenames = sorted(idx_filenames, key=lambda x: x[0]) sorted_filenames = [f[1] for f in idx_filenames] logging.info(f"Loading {len(sorted_filenames)} splits") - return lhotse.combine( - lhotse.load_manifest_lazy(p) for p in sorted_filenames - ) + return lhotse.combine(lhotse.load_manifest_lazy(p) for p in sorted_filenames) def train_L_cuts(self) -> CutSet: f = self.manifest_dir / "gigaspeech_cuts_L_raw.jsonl.gz" diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless3/jit_pretrained.py index 162f8c7db..0669284b3 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/jit_pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/jit_pretrained.py @@ -142,10 +142,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -330,9 +329,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/librispeech.py b/egs/librispeech/ASR/pruned_transducer_stateless3/librispeech.py index 6dba8e9fe..9f2cb6225 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/librispeech.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/librispeech.py @@ -72,3 +72,12 @@ class LibriSpeech: f = self.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz" logging.info(f"About to get dev-other cuts from {f}") return load_manifest_lazy(f) + + def train_all_shuf_cuts(self) -> CutSet: + logging.info( + "About to get the shuffled train-clean-100, \ + train-clean-360 and train-other-500 cuts" + ) + return load_manifest_lazy( + self.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz" + ) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/model.py b/egs/librispeech/ASR/pruned_transducer_stateless3/model.py index 0d5f7cc6d..d45f6dadc 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/model.py @@ -84,9 +84,7 @@ class Transducer(nn.Module): self.decoder_giga = decoder_giga self.joiner_giga = joiner_giga - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) if decoder_giga is not None: @@ -106,6 +104,7 @@ class Transducer(nn.Module): lm_scale: float = 0.0, warmup: float = 1.0, reduction: str = "sum", + delay_penalty: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: @@ -136,6 +135,11 @@ class Transducer(nn.Module): "sum" to sum the losses over all utterances in the batch. "none" to return the loss in a 1-D tensor for each utterance in the batch. + delay_penalty: + A constant value used to penalize symbol delay, to encourage + streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details. Returns: Return the transducer loss. @@ -184,9 +188,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = encoder_out_lens @@ -203,6 +205,7 @@ class Transducer(nn.Module): am_only_scale=am_scale, boundary=boundary, reduction=reduction, + delay_penalty=delay_penalty, return_grad=True, ) @@ -235,6 +238,7 @@ class Transducer(nn.Module): ranges=ranges, termination_symbol=blank_id, boundary=boundary, + delay_penalty=delay_penalty, reduction=reduction, ) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check.py b/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check.py index d03d1d7ef..163d737e3 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check.py @@ -203,9 +203,7 @@ def test_joiner( ) # Now test encoder_proj - joiner_encoder_proj_inputs = { - encoder_proj_input_name: encoder_out.numpy() - } + joiner_encoder_proj_inputs = {encoder_proj_input_name: encoder_out.numpy()} joiner_encoder_proj_out = joiner_encoder_proj_session.run( [encoder_proj_output_name], joiner_encoder_proj_inputs )[0] @@ -214,16 +212,10 @@ def test_joiner( torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out) assert torch.allclose( joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5 - ), ( - (joiner_encoder_proj_out - torch_joiner_encoder_proj_out) - .abs() - .max() - ) + ), ((joiner_encoder_proj_out - torch_joiner_encoder_proj_out).abs().max()) # Now test decoder_proj - joiner_decoder_proj_inputs = { - decoder_proj_input_name: decoder_out.numpy() - } + joiner_decoder_proj_inputs = {decoder_proj_input_name: decoder_out.numpy()} joiner_decoder_proj_out = joiner_decoder_proj_session.run( [decoder_proj_output_name], joiner_decoder_proj_inputs )[0] @@ -232,11 +224,7 @@ def test_joiner( torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out) assert torch.allclose( joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5 - ), ( - (joiner_decoder_proj_out - torch_joiner_decoder_proj_out) - .abs() - .max() - ) + ), ((joiner_decoder_proj_out - torch_joiner_decoder_proj_out).abs().max()) @torch.no_grad() @@ -288,9 +276,7 @@ def main(): if __name__ == "__main__": torch.manual_seed(20220727) - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_pretrained.py index ea5d4e674..550cf6aad 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/onnx_pretrained.py @@ -140,10 +140,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -191,11 +190,7 @@ def greedy_search( projected_encoder_out = joiner_encoder_proj.run( [joiner_encoder_proj.get_outputs()[0].name], - { - joiner_encoder_proj.get_inputs()[ - 0 - ].name: packed_encoder_out.data.numpy() - }, + {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()}, )[0] blank_id = 0 # hard-code to 0 @@ -382,9 +377,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py index 19b636a23..7c3dfc660 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py @@ -177,8 +177,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -231,10 +230,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -302,9 +300,7 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) @@ -391,9 +387,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py index 1e7e808c7..a6540c584 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py @@ -87,7 +87,7 @@ def scaled_linear_to_linear(scaled_linear: ScaledLinear) -> nn.Linear: in_features=scaled_linear.in_features, out_features=scaled_linear.out_features, bias=True, # otherwise, it throws errors when converting to PNNX format - # device=weight.device, # Pytorch version before v1.9.0 does not has + # device=weight.device, # Pytorch version before v1.9.0 does not have # this argument. Comment out for now, we will # see if it will raise error for versions # after v1.9.0 @@ -234,9 +234,7 @@ def scaled_lstm_to_lstm(scaled_lstm: ScaledLSTM) -> nn.LSTM: assert lstm._flat_weights_names == scaled_lstm._flat_weights_names for idx in range(len(scaled_lstm._flat_weights_names)): - scaled_weight = ( - scaled_lstm._flat_weights[idx] * scaled_lstm._scales[idx].exp() - ) + scaled_weight = scaled_lstm._flat_weights[idx] * scaled_lstm._scales[idx].exp() lstm._flat_weights[idx].data.copy_(scaled_weight) return lstm @@ -284,7 +282,7 @@ def convert_scaled_to_non_scaled( if not inplace: model = copy.deepcopy(model) - excluded_patterns = r"self_attn\.(in|out)_proj" + excluded_patterns = r"(self|src)_attn\.(in|out)_proj" p = re.compile(excluded_patterns) d = {} diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py index 10bb44e00..0e5111f33 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py @@ -52,11 +52,7 @@ from streaming_beam_search import ( from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import ( AttributeDict, setup_logger, @@ -163,8 +159,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -272,9 +267,7 @@ def decode_one_chunk( encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": - greedy_search( - model=model, encoder_out=encoder_out, streams=decode_streams - ) + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( @@ -294,9 +287,7 @@ def decode_one_chunk( num_active_paths=params.num_active_paths, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] @@ -352,9 +343,7 @@ def decode_dataset( decode_results = [] # Contain decode streams currently running. decode_streams = [] - initial_states = model.encoder.get_init_state( - params.left_context, device=device - ) + initial_states = model.encoder.get_init_state(params.left_context, device=device) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( @@ -426,9 +415,7 @@ def decode_dataset( elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} @@ -461,8 +448,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -535,8 +521,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py b/egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py index 66ffbd3ec..598fcf344 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py @@ -90,9 +90,7 @@ def test_conv2d_subsampling(): onnx_y = torch.from_numpy(onnx_y) torch_y = jit_model(x) - assert torch.allclose(onnx_y, torch_y, atol=1e-05), ( - (onnx_y - torch_y).abs().max() - ) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() os.remove(filename) @@ -147,9 +145,7 @@ def test_rel_pos(): onnx_pos_emb = torch.from_numpy(onnx_pos_emb) torch_y, torch_pos_emb = jit_model(x) - assert torch.allclose(onnx_y, torch_y, atol=1e-05), ( - (onnx_y - torch_y).abs().max() - ) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), ( (onnx_pos_emb - torch_pos_emb).abs().max() @@ -197,9 +193,7 @@ def test_conformer_encoder_layer(): encoder_layer.eval() encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True) - jit_model = torch.jit.trace( - encoder_layer, (x, pos_emb, src_key_padding_mask) - ) + jit_model = torch.jit.trace(encoder_layer, (x, pos_emb, src_key_padding_mask)) torch.onnx.export( encoder_layer, @@ -236,9 +230,7 @@ def test_conformer_encoder_layer(): onnx_y = torch.from_numpy(onnx_y) torch_y = jit_model(x, pos_emb, src_key_padding_mask) - assert torch.allclose(onnx_y, torch_y, atol=1e-05), ( - (onnx_y - torch_y).abs().max() - ) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape) @@ -322,9 +314,7 @@ def test_conformer_encoder(): onnx_y = torch.from_numpy(onnx_y) torch_y = jit_model(x, pos_emb, src_key_padding_mask) - assert torch.allclose(onnx_y, torch_y, atol=1e-05), ( - (onnx_y - torch_y).abs().max() - ) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape) @@ -379,9 +369,7 @@ def test_conformer(): onnx_y_lens = torch.from_numpy(onnx_y_lens) torch_y, torch_y_lens = jit_model(x, x_lens) - assert torch.allclose(onnx_y, torch_y, atol=1e-05), ( - (onnx_y - torch_y).abs().max() - ) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), ( (onnx_y_lens - torch_y_lens).abs().max() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py index e9dfe6d5e..42de2410a 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py @@ -52,17 +52,9 @@ def test_scaled_conv2d(): torch.jit.script(conv2d) -def test_activation_balancer(): - act = ActivationBalancer( - channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0 - ) - torch.jit.script(act) - - def main(): test_scaled_conv1d() test_scaled_conv2d() - test_activation_balancer() if __name__ == "__main__": diff --git a/egs/librispeech/ASR/pruned_transducer_stateless3/train.py b/egs/librispeech/ASR/pruned_transducer_stateless3/train.py index a74975caf..fdafa5a87 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless3/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless3/train.py @@ -92,9 +92,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -163,8 +161,7 @@ def get_parser(): "--full-libri", type=str2bool, default=True, - help="When enabled, use 960h LibriSpeech. " - "Otherwise, use 100h subset.", + help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", ) parser.add_argument( @@ -214,8 +211,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -238,8 +234,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -262,8 +257,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -328,6 +322,16 @@ def get_parser(): help="The probability to select a batch from the GigaSpeech dataset", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -645,6 +649,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -661,9 +666,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -676,14 +679,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -694,9 +692,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -908,9 +904,7 @@ def train_one_epoch( f"train/current_{prefix}_", params.batch_idx_train, ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) libri_tot_loss.write_summary( tb_writer, "train/libri_tot_", params.batch_idx_train ) @@ -941,7 +935,10 @@ def train_one_epoch( params.best_train_loss = params.train_loss -def filter_short_and_long_utterances(cuts: CutSet) -> CutSet: +def filter_short_and_long_utterances( + cuts: CutSet, + sp: spm.SentencePieceProcessor, +) -> CutSet: def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds # @@ -951,7 +948,33 @@ def filter_short_and_long_utterances(cuts: CutSet) -> CutSet: # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True cuts = cuts.filter(remove_short_and_long_utt) @@ -1042,12 +1065,12 @@ def run(rank, world_size, args): librispeech = LibriSpeech(manifest_dir=args.manifest_dir) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() - train_cuts = filter_short_and_long_utterances(train_cuts) + train_cuts = filter_short_and_long_utterances(train_cuts, sp) gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir) # XL 10k hours @@ -1064,13 +1087,11 @@ def run(rank, world_size, args): logging.info("Using the S subset of GigaSpeech (250 hours)") train_giga_cuts = gigaspeech.train_S_cuts() - train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts) + train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts, sp) train_giga_cuts = train_giga_cuts.repeat(times=None) if args.enable_musan: - cuts_musan = load_manifest( - Path(args.manifest_dir) / "musan_cuts.jsonl.gz" - ) + cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz") else: cuts_musan = None diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless4/decode.py index 85097a01a..f5cbc21f7 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless4/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/decode.py @@ -243,6 +243,7 @@ def get_parser(): - beam_search - modified_beam_search - fast_beam_search + - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG @@ -267,7 +268,7 @@ def get_parser(): help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. - Used only when --decoding-method is fast_beam_search, + Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, @@ -278,7 +279,7 @@ def get_parser(): type=float, default=0.01, help=""" - Used only when --decoding_method is fast_beam_search_nbest_LG. + Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG. It specifies the scale for n-gram LM scores. """, ) @@ -287,7 +288,7 @@ def get_parser(): "--max-contexts", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -296,7 +297,7 @@ def get_parser(): "--max-states", type=int, default=64, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -305,8 +306,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -394,8 +394,8 @@ def decode_one_batch( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return the decoding result and timestamps. See above description for the @@ -426,11 +426,12 @@ def decode_one_batch( simulate_streaming=True, ) else: - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) - if params.decoding_method == "fast_beam_search": + if ( + params.decoding_method == "fast_beam_search" + or params.decoding_method == "fast_beam_search_LG" + ): res = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, @@ -481,10 +482,7 @@ def decode_one_batch( nbest_scale=params.nbest_scale, return_timestamps=True, ) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: res = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -527,7 +525,7 @@ def decode_one_batch( ) tokens.extend(res.tokens) timestamps.extend(res.timestamps) - res = DecodingResults(tokens=tokens, timestamps=timestamps) + res = DecodingResults(hyps=tokens, timestamps=timestamps) hyps, timestamps = parse_hyp_and_timestamp( decoding_method=params.decoding_method, @@ -547,8 +545,8 @@ def decode_one_batch( if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" - if "LG" in params.decoding_method: - key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: (hyps, timestamps)} else: @@ -562,9 +560,7 @@ def decode_dataset( sp: spm.SentencePieceProcessor, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, -) -> Dict[ - str, List[Tuple[str, List[str], List[str], List[float], List[float]]] -]: +) -> Dict[str, List[Tuple[str, List[str], List[str], List[float], List[float]]]]: """Decode dataset. Args: @@ -579,8 +575,8 @@ def decode_dataset( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return a dict, whose key may be "greedy_search" if greedy search @@ -639,9 +635,7 @@ def decode_dataset( cut_ids, hyps, texts, timestamps_hyp, timestamps_ref ): ref_words = ref_text.split() - this_batch.append( - (cut_id, ref_words, hyp_words, time_ref, time_hyp) - ) + this_batch.append((cut_id, ref_words, hyp_words, time_ref, time_hyp)) results[name].extend(this_batch) @@ -650,9 +644,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -690,8 +682,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -718,9 +709,7 @@ def save_results( note = "" logging.info(s) - s = "\nFor {}, symbol-delay of different settings are:\n".format( - test_set_name - ) + s = "\nFor {}, symbol-delay of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_delays: s += "{}\tmean: {}s, variance: {}{}\n".format(key, val[0], val[1], note) @@ -742,6 +731,7 @@ def main(): "greedy_search", "beam_search", "fast_beam_search", + "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", @@ -765,12 +755,10 @@ def main(): if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" - if "LG" in params.decoding_method: - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -807,9 +795,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -836,9 +824,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -886,7 +874,7 @@ def main(): model.eval() if "fast_beam_search" in params.decoding_method: - if params.decoding_method == "fast_beam_search_nbest_LG": + if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" @@ -897,9 +885,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/export.py b/egs/librispeech/ASR/pruned_transducer_stateless4/export.py index ce7518ceb..8f33f5b05 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless4/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/export.py @@ -50,6 +50,7 @@ from pathlib import Path import sentencepiece as spm import torch +from scaling_converter import convert_scaled_to_non_scaled from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( @@ -133,8 +134,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -183,9 +183,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -212,9 +212,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -262,6 +262,7 @@ def main(): model.eval() if params.jit: + convert_scaled_to_non_scaled(model, inplace=True) # We won't use the forward() method of the model in C++, so just ignore # it here. # Otherwise, one of its arguments is a ragged tensor and is not @@ -282,9 +283,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/lstmp.py b/egs/librispeech/ASR/pruned_transducer_stateless4/lstmp.py new file mode 120000 index 000000000..9aa06f82f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/lstmp.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/lstmp.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless4/scaling_converter.py new file mode 120000 index 000000000..3b667058d --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py index 7af9ea9b8..c4e3cef16 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py @@ -175,8 +175,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -284,9 +283,7 @@ def decode_one_chunk( encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": - greedy_search( - model=model, encoder_out=encoder_out, streams=decode_streams - ) + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( @@ -306,9 +303,7 @@ def decode_one_chunk( num_active_paths=params.num_active_paths, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] @@ -364,9 +359,7 @@ def decode_dataset( decode_results = [] # Contain decode streams currently running. decode_streams = [] - initial_states = model.encoder.get_init_state( - params.left_context, device=device - ) + initial_states = model.encoder.get_init_state(params.left_context, device=device) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( @@ -438,9 +431,7 @@ def decode_dataset( elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} @@ -473,8 +464,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -547,9 +537,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -576,9 +566,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4/train.py b/egs/librispeech/ASR/pruned_transducer_stateless4/train.py index 4c55fd609..9bd7df401 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless4/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless4/train.py @@ -101,9 +101,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -239,8 +237,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -263,8 +260,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -335,6 +331,16 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -611,11 +617,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -638,6 +640,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -654,9 +657,7 @@ def compute_loss( # If either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -669,14 +670,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -687,9 +683,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -868,9 +862,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -986,10 +978,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -1000,7 +992,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py index 427b06294..b3a7d71bc 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py @@ -214,10 +214,7 @@ class Conformer(EncoderInterface): (num_encoder_layers, cnn_module_kernel - 1, encoder_dim). NOTE: the returned tensors are on the given device. """ - if ( - len(self._init_state) == 2 - and self._init_state[0].size(1) == left_context - ): + if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context: # Note: It is OK to share the init state as it is # not going to be modified by the model return self._init_state @@ -439,9 +436,7 @@ class ConformerEncoderLayer(nn.Module): self.d_model = d_model - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( ScaledLinear(d_model, dim_feedforward), @@ -459,9 +454,7 @@ class ConformerEncoderLayer(nn.Module): ScaledLinear(dim_feedforward, d_model, initial_scale=0.25), ) - self.conv_module = ConvolutionModule( - d_model, cnn_module_kernel, causal=causal - ) + self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal) self.norm_final = BasicNorm(d_model) @@ -527,9 +520,7 @@ class ConformerEncoderLayer(nn.Module): src = src + self.dropout(src_att) # convolution module - conv, _ = self.conv_module( - src, src_key_padding_mask=src_key_padding_mask - ) + conv, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask) src = src + self.dropout(conv) # feed forward module @@ -802,9 +793,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -820,9 +809,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x_size_1 * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -848,9 +835,7 @@ class RelPositionalEncoding(torch.nn.Module): pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) - def forward( - self, x: torch.Tensor, left_context: int = 0 - ) -> Tuple[Tensor, Tensor]: + def forward(self, x: torch.Tensor, left_context: int = 0) -> Tuple[Tensor, Tensor]: """Add positional encoding. Args: @@ -1118,9 +1103,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -1189,31 +1174,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -1253,23 +1229,15 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d - matrix_bd = torch.matmul( - q_with_bias_v, p - ) # (batch, head, time1, 2*time1-1) + matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd, left_context) - attn_output_weights = ( - matrix_ac + matrix_bd - ) # (batch, head, time1, time2) + attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -1310,21 +1278,17 @@ class RelPositionMultiheadAttention(nn.Module): ): if attn_mask.size(0) != 1: attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len) - combined_mask = attn_mask | key_padding_mask.unsqueeze( - 1 - ).unsqueeze(2) + combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2) else: # attn_mask.shape == (1, tgt_len, src_len) - combined_mask = attn_mask.unsqueeze( - 0 - ) | key_padding_mask.unsqueeze(1).unsqueeze(2) + combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze( + 1 + ).unsqueeze(2) attn_output_weights = attn_output_weights.view( bsz, num_heads, tgt_len, src_len ) - attn_output_weights = attn_output_weights.masked_fill( - combined_mask, 0.0 - ) + attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, src_len ) @@ -1336,13 +1300,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -1481,16 +1441,12 @@ class ConvolutionModule(nn.Module): # manualy padding self.lorder zeros to the left x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) else: - assert ( - not self.training - ), "Cache should be None in training time" + assert not self.training, "Cache should be None in training time" assert cache.size(0) == self.lorder x = torch.cat([cache.permute(1, 2, 0), x], dim=2) if right_context > 0: cache = x.permute(2, 0, 1)[ - -(self.lorder + right_context) : ( # noqa - -right_context - ), + -(self.lorder + right_context) : (-right_context), # noqa ..., ] else: @@ -1666,9 +1622,7 @@ class RandomCombine(nn.Module): self.stddev = stddev self.final_log_weight = ( - torch.tensor( - (final_weight / (1 - final_weight)) * (self.num_inputs - 1) - ) + torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1)) .log() .item() ) @@ -1765,16 +1719,14 @@ class RandomCombine(nn.Module): # final contains self.num_inputs - 1 in all elements final = torch.full((num_frames,), self.num_inputs - 1, device=device) # nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. - nonfinal = torch.randint( - self.num_inputs - 1, (num_frames,), device=device - ) + nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device) indexes = torch.where( torch.rand(num_frames, device=device) < final_prob, final, nonfinal ) - ans = torch.nn.functional.one_hot( - indexes, num_classes=self.num_inputs - ).to(dtype=dtype) + ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to( + dtype=dtype + ) return ans def _get_random_mixed_weights( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless5/decode.py index 632932214..90b0fcf4b 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/decode.py @@ -1,7 +1,8 @@ #!/usr/bin/env python3 # # Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, -# Zengwei Yao) +# Zengwei Yao, +# Xiaoyu Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -25,7 +26,6 @@ Usage: --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 600 \ --decoding-method greedy_search - (2) beam search (not recommended) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -34,7 +34,6 @@ Usage: --max-duration 600 \ --decoding-method beam_search \ --beam-size 4 - (3) modified beam search ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -43,7 +42,6 @@ Usage: --max-duration 600 \ --decoding-method modified_beam_search \ --beam-size 4 - (4) fast beam search (one best) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -54,7 +52,6 @@ Usage: --beam 20.0 \ --max-contexts 8 \ --max-states 64 - (5) fast beam search (nbest) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -67,7 +64,6 @@ Usage: --max-states 64 \ --num-paths 200 \ --nbest-scale 0.5 - (6) fast beam search (nbest oracle WER) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -80,7 +76,6 @@ Usage: --max-states 64 \ --num-paths 200 \ --nbest-scale 0.5 - (7) fast beam search (with LG) ./pruned_transducer_stateless5/decode.py \ --epoch 28 \ @@ -91,6 +86,41 @@ Usage: --beam 20.0 \ --max-contexts 8 \ --max-states 64 + +(8) modified beam search with RNNLM shallow fusion +./pruned_transducer_stateless5/decode.py \ + --epoch 35 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.3 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + +(9) modified beam search with LM shallow fusion + LODR +./pruned_transducer_stateless5/decode.py \ + --epoch 28 \ + --avg 15 \ + --max-duration 600 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --decoding-method modified_beam_search_LODR \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.4 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 \ + """ @@ -115,9 +145,13 @@ from beam_search import ( greedy_search, greedy_search_batch, modified_beam_search, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, + modified_beam_search_ngram_rescoring, ) from train import add_model_arguments, get_params, get_transducer_model +from icefall import LmScorer, NgramLm from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, @@ -210,9 +244,12 @@ def get_parser(): - beam_search - modified_beam_search - fast_beam_search + - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG + - modified_beam_search_lm_shallow_fusion # for rnn lm shallow fusion + - modified_beam_search_LODR If you use fast_beam_search_nbest_LG, you have to specify `--lang-dir`, which should contain `LG.pt`. """, @@ -234,7 +271,7 @@ def get_parser(): help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. - Used only when --decoding-method is fast_beam_search, + Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, @@ -245,16 +282,30 @@ def get_parser(): type=float, default=0.01, help=""" - Used only when --decoding_method is fast_beam_search_nbest_LG. + Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG. It specifies the scale for n-gram LM scores. """, ) + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + parser.add_argument( "--max-contexts", type=int, default=8, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -263,7 +314,7 @@ def get_parser(): "--max-states", type=int, default=64, - help="""Used only when --decoding-method is + help="""Used only when --decoding-method is fast_beam_search_LG, fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) @@ -272,9 +323,9 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) + parser.add_argument( "--max-sym-per-frame", type=int, @@ -311,19 +362,49 @@ def get_parser(): ) parser.add_argument( - "--decode-chunk-size", - type=int, - default=16, - help="The chunk size for decoding (in frames after subsampling)", + "--use-shallow-fusion", + type=str2bool, + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true + """, ) parser.add_argument( - "--left-context", - type=int, - default=64, - help="left context can be seen during decoding (in frames after subsampling)", + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], ) + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + + parser.add_argument( + "--tokens-ngram", + type=int, + default=3, + help="""Token Ngram used for rescoring. + Used only when the decoding method is + modified_beam_search_ngram_rescoring, or LODR + """, + ) + + parser.add_argument( + "--backoff-id", + type=int, + default=500, + help="""ID of the backoff symbol. + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", + ) add_model_arguments(parser) return parser @@ -336,6 +417,9 @@ def decode_one_batch( batch: dict, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: @@ -361,9 +445,16 @@ def decode_one_batch( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural net LM for shallow fusion. Only used when `--use-shallow-fusion` + set to true. + ngram_lm: + A ngram lm. Used in LODR decoding. + ngram_lm_scale: + The scale of the ngram language model. Returns: Return the decoding result. See above description for the format of the returned dict. @@ -393,13 +484,14 @@ def decode_one_batch( simulate_streaming=True, ) else: - encoder_out, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] - if params.decoding_method == "fast_beam_search": + if ( + params.decoding_method == "fast_beam_search" + or params.decoding_method == "fast_beam_search_LG" + ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, @@ -409,8 +501,12 @@ def decode_one_batch( max_contexts=params.max_contexts, max_states=params.max_states, ) - for hyp in sp.decode(hyp_tokens): - hyps.append(hyp.split()) + if params.decoding_method == "fast_beam_search": + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, @@ -454,10 +550,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -474,6 +567,41 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_ngram_rescoring": + hyp_tokens = modified_beam_search_ngram_rescoring( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) else: batch_size = encoder_out.size(0) @@ -508,8 +636,8 @@ def decode_one_batch( if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" - if "LG" in params.decoding_method: - key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: @@ -523,6 +651,9 @@ def decode_dataset( sp: spm.SentencePieceProcessor, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. @@ -538,9 +669,11 @@ def decode_dataset( word_table: The word symbol table. decoding_graph: - The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used - only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + The decoding graph. Can be either a `k2.trivial_graph` or LG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural network LM, used during shallow fusion Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. @@ -572,6 +705,9 @@ def decode_dataset( decoding_graph=decoding_graph, word_table=word_table, batch=batch, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + LM=LM, ) for name, hyps in hyps_dict.items(): @@ -588,9 +724,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -623,8 +757,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -643,6 +776,7 @@ def save_results( def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) @@ -653,10 +787,13 @@ def main(): "greedy_search", "beam_search", "fast_beam_search", + "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", "modified_beam_search", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_LODR", ) params.res_dir = params.exp_dir / params.decoding_method @@ -664,11 +801,9 @@ def main(): params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" - if params.simulate_streaming: params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" params.suffix += f"-left-context-{params.left_context}" - if "fast_beam_search" in params.decoding_method: params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" @@ -676,16 +811,27 @@ def main(): if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" - if "LG" in params.decoding_method: - params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + if "ngram" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if params.use_shallow_fusion: + if params.lm_type == "rnn": + params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}" + elif params.lm_type == "transformer": + params.suffix += f"-transformer-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) + if params.use_averaged_model: params.suffix += "-use-averaged-model" @@ -718,9 +864,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -747,9 +893,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -796,8 +942,37 @@ def main(): model.to(device) model.eval() + # only load N-gram LM when needed + if "ngram" in params.decoding_method or "LODR" in params.decoding_method: + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"lm filename: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + # only load the neural network LM if doing shallow fusion + if params.use_shallow_fusion: + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + + else: + LM = None + if "fast_beam_search" in params.decoding_method: - if params.decoding_method == "fast_beam_search_nbest_LG": + if "LG" in params.decoding_method: lexicon = Lexicon(params.lang_dir) word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" @@ -808,9 +983,7 @@ def main(): decoding_graph.scores *= params.ngram_lm_scale else: word_table = None - decoding_graph = k2.trivial_graph( - params.vocab_size - 1, device=device - ) + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None @@ -839,6 +1012,9 @@ def main(): sp=sp, word_table=word_table, decoding_graph=decoding_graph, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + LM=LM, ) save_results( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/export.py b/egs/librispeech/ASR/pruned_transducer_stateless5/export.py index b2e5b430e..54f656859 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/export.py @@ -50,6 +50,7 @@ from pathlib import Path import sentencepiece as spm import torch +from scaling_converter import convert_scaled_to_non_scaled from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( @@ -133,8 +134,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -181,9 +181,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -210,9 +210,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -264,6 +264,7 @@ def main(): # it here. # Otherwise, one of its arguments is a ragged tensor and is not # torch scriptabe. + convert_scaled_to_non_scaled(model, inplace=True) model.__class__.forward = torch.jit.ignore(model.__class__.forward) logging.info("Using torch.jit.script") model = torch.jit.script(model) @@ -280,9 +281,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/lstmp.py b/egs/librispeech/ASR/pruned_transducer_stateless5/lstmp.py new file mode 120000 index 000000000..4f377cd01 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/lstmp.py @@ -0,0 +1 @@ +../lstm_transducer_stateless2/lstmp.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless5/pretrained.py index 1e100fcbd..74a2210c3 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/pretrained.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/pretrained.py @@ -166,8 +166,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -198,10 +197,9 @@ def read_sound_files( ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) - assert sample_rate == expected_sample_rate, ( - f"expected sample rate: {expected_sample_rate}. " - f"Given: {sample_rate}" - ) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans @@ -264,15 +262,11 @@ def main(): features = fbank(waves) feature_lengths = [f.size(0) for f in features] - features = pad_sequence( - features, batch_first=True, padding_value=math.log(1e-10) - ) + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) - encoder_out, encoder_out_lens = model.encoder( - x=features, x_lens=feature_lengths - ) + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) num_waves = encoder_out.size(0) hyps = [] @@ -344,9 +338,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless5/scaling_converter.py new file mode 120000 index 000000000..3b667058d --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless5/streaming_decode.py index 6fee9483e..064811f1c 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/streaming_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/streaming_decode.py @@ -175,8 +175,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -284,9 +283,7 @@ def decode_one_chunk( encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": - greedy_search( - model=model, encoder_out=encoder_out, streams=decode_streams - ) + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) elif params.decoding_method == "fast_beam_search": processed_lens = processed_lens + encoder_out_lens fast_beam_search_one_best( @@ -306,9 +303,7 @@ def decode_one_chunk( num_active_paths=params.num_active_paths, ) else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] @@ -364,9 +359,7 @@ def decode_dataset( decode_results = [] # Contain decode streams currently running. decode_streams = [] - initial_states = model.encoder.get_init_state( - params.left_context, device=device - ) + initial_states = model.encoder.get_init_state(params.left_context, device=device) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( @@ -438,9 +431,7 @@ def decode_dataset( elif params.decoding_method == "modified_beam_search": key = f"num_active_paths_{params.num_active_paths}" else: - raise ValueError( - f"Unsupported decoding method: {params.decoding_method}" - ) + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") return {key: decode_results} @@ -473,8 +464,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -547,9 +537,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -576,9 +566,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/train.py b/egs/librispeech/ASR/pruned_transducer_stateless5/train.py index 1fa668293..847c80ab0 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/train.py @@ -89,9 +89,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def add_model_arguments(parser: argparse.ArgumentParser): @@ -248,8 +246,7 @@ def get_parser(): "--initial-lr", type=float, default=0.003, - help="The initial learning rate. This value should not need " - "to be changed.", + help="The initial learning rate. This value should not need to be changed.", ) parser.add_argument( @@ -272,8 +269,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -296,8 +292,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -368,6 +363,16 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--delay-penalty", + type=float, + default=0.0, + help="""A constant value used to penalize symbol delay, + to encourage streaming models to emit symbols earlier. + See https://github.com/k2-fsa/k2/issues/955 and + https://arxiv.org/pdf/2211.00490.pdf for more details.""", + ) + add_model_arguments(parser) return parser @@ -635,11 +640,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -662,6 +663,7 @@ def compute_loss( lm_scale=params.lm_scale, warmup=warmup, reduction="none", + delay_penalty=params.delay_penalty if warmup >= 2.0 else 0, ) simple_loss_is_finite = torch.isfinite(simple_loss) pruned_loss_is_finite = torch.isfinite(pruned_loss) @@ -679,9 +681,7 @@ def compute_loss( # If the batch contains more than 10 utterances AND # if either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -694,14 +694,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss assert loss.requires_grad == is_training @@ -712,9 +707,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -897,9 +890,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -1012,16 +1003,16 @@ def run(rank, world_size, args): if params.print_diagnostics: opts = diagnostics.TensorDiagnosticOptions( - 2 ** 22 + 2**22 ) # allow 4 megabytes per sub-module diagnostic = diagnostics.attach_diagnostics(model, opts) librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -1032,7 +1023,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py index 53788b3f7..0667e7f61 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py @@ -90,10 +90,7 @@ class Conformer(EncoderInterface): output_layers = [] if middle_output_layer is not None: - assert ( - middle_output_layer >= 0 - and middle_output_layer < num_encoder_layers - ) + assert middle_output_layer >= 0 and middle_output_layer < num_encoder_layers output_layers.append(middle_output_layer) # The last layer is always needed. @@ -178,9 +175,7 @@ class ConformerEncoderLayer(nn.Module): self.d_model = d_model - self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0 - ) + self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0) self.feed_forward = nn.Sequential( ScaledLinear(d_model, dim_feedforward), @@ -362,9 +357,7 @@ class RelPositionalEncoding(torch.nn.Module): """ - def __init__( - self, d_model: int, dropout_rate: float, max_len: int = 5000 - ) -> None: + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model @@ -379,9 +372,7 @@ class RelPositionalEncoding(torch.nn.Module): # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: # Note: TorchScript doesn't implement operator== for torch.Device - if self.pe.dtype != x.dtype or str(self.pe.device) != str( - x.device - ): + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vector and `j` means the @@ -656,9 +647,9 @@ class RelPositionMultiheadAttention(nn.Module): if torch.equal(query, key) and torch.equal(key, value): # self-attention - q, k, v = nn.functional.linear( - query, in_proj_weight, in_proj_bias - ).chunk(3, dim=-1) + q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk( + 3, dim=-1 + ) elif torch.equal(key, value): # encoder-decoder attention @@ -727,31 +718,22 @@ class RelPositionMultiheadAttention(nn.Module): if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError( - "The size of the 2D attn_mask is not correct." - ) + raise RuntimeError("The size of the 2D attn_mask is not correct.") elif attn_mask.dim() == 3: if list(attn_mask.size()) != [ bsz * num_heads, query.size(0), key.size(0), ]: - raise RuntimeError( - "The size of the 3D attn_mask is not correct." - ) + raise RuntimeError("The size of the 3D attn_mask is not correct.") else: raise RuntimeError( - "attn_mask's dimension {} is not supported".format( - attn_mask.dim() - ) + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) ) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool - if ( - key_padding_mask is not None - and key_padding_mask.dtype == torch.uint8 - ): + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." ) @@ -790,9 +772,7 @@ class RelPositionMultiheadAttention(nn.Module): # first compute matrix a and matrix c # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3 k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) - matrix_ac = torch.matmul( - q_with_bias_u, k - ) # (batch, head, time1, time2) + matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2) # compute matrix b and matrix d matrix_bd = torch.matmul( @@ -800,13 +780,9 @@ class RelPositionMultiheadAttention(nn.Module): ) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd) - attn_output_weights = ( - matrix_ac + matrix_bd - ) # (batch, head, time1, time2) + attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2) - attn_output_weights = attn_output_weights.view( - bsz * num_heads, tgt_len, -1 - ) + attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1) assert list(attn_output_weights.size()) == [ bsz * num_heads, @@ -840,13 +816,9 @@ class RelPositionMultiheadAttention(nn.Module): attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = ( - attn_output.transpose(0, 1) - .contiguous() - .view(tgt_len, bsz, embed_dim) - ) - attn_output = nn.functional.linear( - attn_output, out_proj_weight, out_proj_bias + attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads @@ -869,9 +841,7 @@ class ConvolutionModule(nn.Module): """ - def __init__( - self, channels: int, kernel_size: int, bias: bool = True - ) -> None: + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py index 74df04006..fd9de052a 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py @@ -208,8 +208,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", @@ -267,9 +266,7 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - layer_results, encoder_out_lens = model.encoder( - x=feature, x_lens=feature_lens - ) + layer_results, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) encoder_out = layer_results[-1] hyps = [] @@ -285,10 +282,7 @@ def decode_one_batch( ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) - elif ( - params.decoding_method == "greedy_search" - and params.max_sym_per_frame == 1 - ): + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, @@ -411,9 +405,7 @@ def decode_dataset( if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -446,8 +438,7 @@ def save_results( test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( - params.res_dir - / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) @@ -490,9 +481,7 @@ def main(): params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" elif "beam_search" in params.decoding_method: - params.suffix += ( - f"-{params.decoding_method}-beam-size-{params.beam_size}" - ) + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" @@ -524,9 +513,9 @@ def main(): if not params.use_averaged_model: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" @@ -553,9 +542,9 @@ def main(): model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: - filenames = find_checkpoints( - params.exp_dir, iteration=-params.iter - )[: params.avg + 1] + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/export.py b/egs/librispeech/ASR/pruned_transducer_stateless6/export.py index cff9c7377..b6190e8a6 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/export.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/export.py @@ -51,11 +51,7 @@ import sentencepiece as spm import torch from train import get_params, get_transducer_model -from icefall.checkpoint import ( - average_checkpoints, - find_checkpoints, - load_checkpoint, -) +from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.utils import str2bool @@ -120,8 +116,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) return parser @@ -160,8 +155,7 @@ def main(): ] if len(filenames) == 0: raise ValueError( - f"No checkpoints found for" - f" --iter {params.iter}, --avg {params.avg}" + f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( @@ -209,9 +203,7 @@ def main(): if __name__ == "__main__": - formatter = ( - "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" - ) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py b/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py index 21409287c..86cf34877 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py @@ -21,9 +21,10 @@ import os from pathlib import Path import torch -from vq_utils import CodebookIndexExtractor from asr_datamodule import LibriSpeechAsrDataModule from hubert_xlarge import HubertXlargeFineTuned +from vq_utils import CodebookIndexExtractor + from icefall.utils import AttributeDict, str2bool diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py index 49b557814..b8440f90a 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py @@ -23,7 +23,6 @@ from pathlib import Path from typing import Dict, List, Tuple import torch - from asr_datamodule import LibriSpeechAsrDataModule from hubert_xlarge import HubertXlargeFineTuned @@ -99,9 +98,7 @@ def decode_dataset( if batch_idx % 20 == 0: batch_str = f"{batch_idx}/{num_batches}" - logging.info( - f"batch {batch_str}, cuts processed until now is {num_cuts}" - ) + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results @@ -124,9 +121,7 @@ def save_results( ) test_set_wers[key] = wer - logging.info( - "Wrote detailed error stats to {}".format(errs_filename) - ) + logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt" @@ -155,9 +150,7 @@ def main(): # reset some parameters needed by hubert. params.update(HubertXlargeFineTuned.get_params()) - params.res_dir = ( - params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}" - ) + params.res_dir = params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}" setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search") logging.info("Decoding started") @@ -190,9 +183,7 @@ def main(): params=params, ) - save_results( - params=params, test_set_name=test_set, results_dict=results_dict - ) + save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py index 55ce7b00d..4f9417c9f 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py @@ -22,11 +22,7 @@ from pathlib import Path from typing import Dict, List, Tuple import torch -from fairseq import ( - checkpoint_utils, - tasks, - utils, -) +from fairseq import checkpoint_utils, tasks, utils from fairseq.data.data_utils import post_process from omegaconf import OmegaConf @@ -51,9 +47,7 @@ def _load_hubert_model(params: AttributeDict): "data": str(params.hubert_model_dir), } ) - model_path = Path(params.hubert_model_dir) / ( - params.teacher_model_id + ".pt" - ) + model_path = Path(params.hubert_model_dir) / (params.teacher_model_id + ".pt") task = tasks.setup_task(cfg_task) processor = task.target_dictionary models, saved_cfg = checkpoint_utils.load_model_ensemble( @@ -151,9 +145,7 @@ class HubertXlargeFineTuned: supervisions = batch["supervisions"] num_samples = supervisions["num_samples"] B, T = features.shape - padding_mask = torch.arange(0, T).expand(B, T) > num_samples.reshape( - [-1, 1] - ) + padding_mask = torch.arange(0, T).expand(B, T) > num_samples.reshape([-1, 1]) padding_mask = padding_mask.to(self.params.device) features = features.to(self.params.device) @@ -163,9 +155,7 @@ class HubertXlargeFineTuned: features = features.transpose(1, 2) features = self.w2v_model.layer_norm(features) - padding_mask = self.w2v_model.forward_padding_mask( - features, padding_mask - ) + padding_mask = self.w2v_model.forward_padding_mask(features, padding_mask) if self.w2v_model.post_extract_proj is not None: features = self.w2v_model.post_extract_proj(features) @@ -212,9 +202,7 @@ class HubertXlargeFineTuned: toks = encoder_out.argmax(dim=-1) blank = 0 toks = [tok.unique_consecutive() for tok in toks] - hyps = [ - self.processor.string(tok[tok != blank].int().cpu()) for tok in toks - ] + hyps = [self.processor.string(tok[tok != blank].int().cpu()) for tok in toks] hyps = [post_process(hyp, "letter") for hyp in hyps] return hyps diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/model.py b/egs/librispeech/ASR/pruned_transducer_stateless6/model.py index 7716d19cf..daadb70c9 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/model.py @@ -69,9 +69,7 @@ class Transducer(nn.Module): self.decoder = decoder self.joiner = joiner - self.simple_am_proj = ScaledLinear( - encoder_dim, vocab_size, initial_speed=0.5 - ) + self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) from icefall import is_module_available @@ -180,9 +178,7 @@ class Transducer(nn.Module): y_padded = y.pad(mode="constant", padding_value=0) y_padded = y_padded.to(torch.int64) - boundary = torch.zeros( - (x.size(0), 4), dtype=torch.int64, device=x.device - ) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) boundary[:, 2] = y_lens boundary[:, 3] = x_lens @@ -237,9 +233,7 @@ class Transducer(nn.Module): return (simple_loss, pruned_loss, codebook_loss) @staticmethod - def concat_successive_codebook_indexes( - middle_layer_output, codebook_indexes - ): + def concat_successive_codebook_indexes(middle_layer_output, codebook_indexes): # Output rate of hubert is 50 frames per second, # while that of current encoder is 25. # Following code handling two issues: diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/train.py b/egs/librispeech/ASR/pruned_transducer_stateless6/train.py index 25d1c4ca6..57753599a 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/train.py @@ -101,9 +101,7 @@ from icefall.utils import ( str2bool, ) -LRSchedulerType = Union[ - torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler -] +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] def get_parser(): @@ -203,8 +201,7 @@ def get_parser(): "--context-size", type=int, default=2, - help="The context size in the decoder. 1 means bigram; " - "2 means tri-gram", + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) parser.add_argument( @@ -227,8 +224,7 @@ def get_parser(): "--am-scale", type=float, default=0.0, - help="The scale to smooth the loss with am (output of encoder network)" - "part.", + help="The scale to smooth the loss with am (output of encoder network) part.", ) parser.add_argument( @@ -569,9 +565,7 @@ def save_checkpoint( def extract_codebook_indexes(batch): cuts = batch["supervisions"]["cut"] # -100 is identical to ignore_value in CE loss computation. - cuts_pre_mixed = [ - c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts - ] + cuts_pre_mixed = [c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts] codebook_indexes, codebook_indexes_lens = collate_custom_field( cuts_pre_mixed, "codebook_indexes", pad_value=-100 ) @@ -604,11 +598,7 @@ def compute_loss( warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ - device = ( - model.device - if isinstance(model, DDP) - else next(model.parameters()).device - ) + device = model.device if isinstance(model, DDP) else next(model.parameters()).device feature = batch["inputs"] # at entry, feature is (N, T, C) assert feature.ndim == 3 @@ -655,9 +645,7 @@ def compute_loss( # If the batch contains more than 10 utterances AND # if either all simple_loss or pruned_loss is inf or nan, # we stop the training process by raising an exception - if torch.all(~simple_loss_is_finite) or torch.all( - ~pruned_loss_is_finite - ): + if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite): raise ValueError( "There are too many utterances in this batch " "leading to inf or nan losses." @@ -670,14 +658,9 @@ def compute_loss( # overwhelming the simple_loss and causing it to diverge, # in case it had not fully learned the alignment yet. pruned_loss_scale = ( - 0.0 - if warmup < 1.0 - else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) - ) - loss = ( - params.simple_loss_scale * simple_loss - + pruned_loss_scale * pruned_loss + 0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) ) + loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss if is_training and params.enable_distillation: assert codebook_loss is not None loss += params.codebook_loss_scale * codebook_loss @@ -690,9 +673,7 @@ def compute_loss( # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2 # (2) If some utterances in the batch lead to inf/nan loss, they # are filtered out. - info["frames"] = ( - (feature_lens // params.subsampling_factor).sum().item() - ) + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa info["utterances"] = feature.size(0) @@ -873,9 +854,7 @@ def train_one_epoch( loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train ) - tot_loss.write_summary( - tb_writer, "train/tot_", params.batch_idx_train - ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) if batch_idx > 0 and batch_idx % params.valid_interval == 0: logging.info("Computing validation loss") @@ -991,10 +970,10 @@ def run(rank, world_size, args): librispeech = LibriSpeechAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -1005,7 +984,33 @@ def run(rank, world_size, args): # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold - return 1.0 <= c.duration <= 20.0 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./conformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 1) // 2 - 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True train_cuts = train_cuts.filter(remove_short_and_long_utt) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py b/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py index 47cf2b14b..14ff86f23 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py @@ -69,7 +69,8 @@ class CodebookIndexExtractor: # vq_dir is the root dir for quantization, containing: # training data, trained quantizer, and extracted codebook indexes self.vq_dir = ( - self.params.exp_dir / f"vq/{self.params.teacher_model_id}/" + self.params.exp_dir + / f"vq/{self.params.teacher_model_id}_layer{self.params.embedding_layer}_cb{self.params.num_codebooks}/" ) self.vq_dir.mkdir(parents=True, exist_ok=True) @@ -81,7 +82,10 @@ class CodebookIndexExtractor: # It's doesn't matter whether ori_manifest_dir is str or Path. # Set it to Path to be consistent. self.ori_manifest_dir = Path("./data/fbank/") - self.dst_manifest_dir = Path("./data/vq_fbank/") + self.dst_manifest_dir = Path( + f"./data/vq_fbank_layer" + + f"{self.params.embedding_layer}_cb{self.params.num_codebooks}/" + ) self.dst_manifest_dir.mkdir(parents=True, exist_ok=True) @@ -208,9 +212,7 @@ class CodebookIndexExtractor: start = cur_offset % (data.shape[0] + 1 - B) end = start + B cur_offset += B - yield data[start:end, :].to(self.params.device).to( - dtype=torch.float - ) + yield data[start:end, :].to(self.params.device).to(dtype=torch.float) for x in minibatch_generator(train, repeat=True): trainer.step(x) @@ -227,9 +229,7 @@ class CodebookIndexExtractor: """ for subset in self.params.subsets: logging.info(f"About to split {subset}.") - ori_manifest = ( - f"./data/fbank/librispeech_cuts_train-{subset}.jsonl.gz" - ) + ori_manifest = f"./data/fbank/librispeech_cuts_train-{subset}.jsonl.gz" split_cmd = f"lhotse split {self.params.world_size} {ori_manifest} {self.manifest_dir}" os.system(f"{split_cmd}") @@ -240,23 +240,46 @@ class CodebookIndexExtractor: logging.info("Start to join manifest files.") for subset in self.params.subsets: vq_manifest_path = ( - self.dst_manifest_dir - / f"librispeech_cuts_train-{subset}-vq.jsonl.gz" + self.dst_manifest_dir / f"librispeech_cuts_train-{subset}-vq.jsonl.gz" ) ori_manifest_path = ( - self.ori_manifest_dir - / f"librispeech_cuts_train-{subset}.jsonl.gz" + self.ori_manifest_dir / f"librispeech_cuts_train-{subset}.jsonl.gz" ) dst_vq_manifest_path = ( - self.dst_manifest_dir - / f"librispeech_cuts_train-{subset}.jsonl.gz" + self.dst_manifest_dir / f"librispeech_cuts_train-{subset}.jsonl.gz" ) cuts_vq = load_manifest(vq_manifest_path) cuts_ori = load_manifest(ori_manifest_path) - cuts_vq = cuts_vq.sort_like(cuts_ori) - for cut_idx, (cut_vq, cut_ori) in enumerate(zip(cuts_vq, cuts_ori)): - assert cut_vq.id == cut_ori.id - cut_ori.codebook_indexes = cut_vq.codebook_indexes + assert len(cuts_vq) == len(cuts_ori), "Cuts should have the same length!" + + if set(cuts_vq.ids) == set(cuts_ori.ids): + # IDs match exactly + cuts_vq = cuts_vq.sort_like(cuts_ori) + for cut_idx, (cut_vq, cut_ori) in enumerate(zip(cuts_vq, cuts_ori)): + assert cut_vq.id == cut_ori.id, (cut_vq.id, cut_ori.id) + cut_ori.codebook_indexes = cut_vq.codebook_indexes + else: + # in case of ID mismatch, remap them + # get the mapping between audio and cut ID + logging + ori_id_map = {} + for id in cuts_ori.ids: + # some text normalization + if "sp" in id: + clean_id = "-".join(id.split("-")[:3]) + "_" + id.split("_")[-1] + else: + clean_id = "-".join(id.split("-")[:3]) + ori_id_map[clean_id] = id + + for id in cuts_vq.ids: + if "sp" in id: + clean_id = "-".join(id.split("-")[:3]) + "_" + id.split("_")[-1] + else: + clean_id = "-".join(id.split("-")[:3]) + assert clean_id in ori_id_map, clean_id + cuts_ori[ori_id_map[clean_id]].codebook_indexes = cuts_vq[ + id + ].codebook_indexes CutSet.from_cuts(cuts_ori).to_jsonl(dst_vq_manifest_path) logging.info(f"Processed {subset}.") @@ -267,10 +290,12 @@ class CodebookIndexExtractor: Merge generated vq included manfiests and storage to self.dst_manifest_dir. """ for subset in self.params.subsets: - vq_manifests = f"{self.manifest_dir}/with_codebook_indexes-librispeech-cuts_train-{subset}*.jsonl.gz" + vq_manifests = ( + f"{self.manifest_dir}/" + + f"with_codebook_indexes-librispeech-cuts_train-{subset}*.jsonl.gz" + ) dst_vq_manifest = ( - self.dst_manifest_dir - / f"librispeech_cuts_train-{subset}-vq.jsonl.gz" + self.dst_manifest_dir / f"librispeech_cuts_train-{subset}-vq.jsonl.gz" ) if 1 == self.params.world_size: merge_cmd = f"cp {vq_manifests} {dst_vq_manifest}" @@ -330,9 +355,7 @@ class CodebookIndexExtractor: def load_ori_dl(self, subset): if self.params.world_size == 1: - ori_manifest_path = ( - f"./data/fbank/librispeech_cuts_train-{subset}.jsonl.gz" - ) + ori_manifest_path = f"./data/fbank/librispeech_cuts_train-{subset}.jsonl.gz" else: ori_manifest_path = ( self.manifest_dir diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/__init__.py b/egs/librispeech/ASR/pruned_transducer_stateless7/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless7/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless7/beam_search.py new file mode 120000 index 000000000..8554e44cc --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7/decode.py new file mode 100755 index 000000000..b9bce465f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/decode.py @@ -0,0 +1,1017 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao, +# Xiaoyu Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(8) modified beam search with RNNLM shallow fusion +./pruned_transducer_stateless5/decode.py \ + --epoch 35 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search_lm_shallow_fusion \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.3 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + +(9) modified beam search with LM shallow fusion + LODR +./pruned_transducer_stateless5/decode.py \ + --epoch 28 \ + --avg 15 \ + --max-duration 600 \ + --exp-dir ./pruned_transducer_stateless5/exp \ + --decoding-method modified_beam_search_LODR \ + --beam-size 4 \ + --lm-type rnn \ + --lm-scale 0.4 \ + --lm-exp-dir /path/to/LM \ + --rnn-lm-epoch 99 \ + --rnn-lm-avg 1 \ + --rnn-lm-num-layers 3 \ + --rnn-lm-tie-weights 1 + --tokens-ngram 2 \ + --ngram-lm-scale -0.16 \ + +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, + modified_beam_search_ngram_rescoring, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall import LmScorer, NgramLm +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + - modified_beam_search_lm_shallow_fusion # for rnn lm shallow fusion + - modified_beam_search_LODR + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--use-shallow-fusion", + type=str2bool, + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true + """, + ) + + parser.add_argument( + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + + parser.add_argument( + "--tokens-ngram", + type=int, + default=3, + help="""Token Ngram used for rescoring. + Used only when the decoding method is + modified_beam_search_ngram_rescoring, or LODR + """, + ) + + parser.add_argument( + "--backoff-id", + type=int, + default=500, + help="""ID of the backoff symbol. + Used only when the decoding method is + modified_beam_search_ngram_rescoring""", + ) + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural net LM for shallow fusion. Only used when `--use-shallow-fusion` + set to true. + ngram_lm: + A ngram lm. Used in LODR decoding. + ngram_lm_scale: + The scale of the ngram language model. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + sp=sp, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + ngram_lm: Optional[NgramLm] = None, + ngram_lm_scale: float = 1.0, + LM: Optional[LmScorer] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural network LM, used during shallow fusion + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + LM=LM, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_LODR", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if "ngram" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + if params.use_shallow_fusion: + if params.lm_type == "rnn": + params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}" + elif params.lm_type == "transformer": + params.suffix += f"-transformer-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + # only load N-gram LM when needed + if "ngram" in params.decoding_method or "LODR" in params.decoding_method: + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"lm filename: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + # only load the neural network LM if doing shallow fusion + if params.use_shallow_fusion: + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + + else: + LM = None + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + LM=LM, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless7/decoder.py new file mode 100644 index 000000000..5f90e6375 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/decoder.py @@ -0,0 +1,102 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Decoder(nn.Module): + """This class modifies the stateless decoder from the following paper: + + RNN-transducer with stateless prediction network + https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 + + It removes the recurrent connection from the decoder, i.e., the prediction + network. Different from the above paper, it adds an extra Conv1d + right after the embedding layer. + + TODO: Implement https://arxiv.org/pdf/2109.07513.pdf + """ + + def __init__( + self, + vocab_size: int, + decoder_dim: int, + blank_id: int, + context_size: int, + ): + """ + Args: + vocab_size: + Number of tokens of the modeling unit including blank. + decoder_dim: + Dimension of the input embedding, and of the decoder output. + blank_id: + The ID of the blank symbol. + context_size: + Number of previous words to use to predict the next word. + 1 means bigram; 2 means trigram. n means (n+1)-gram. + """ + super().__init__() + + self.embedding = nn.Embedding( + num_embeddings=vocab_size, + embedding_dim=decoder_dim, + padding_idx=blank_id, + ) + self.blank_id = blank_id + + assert context_size >= 1, context_size + self.context_size = context_size + self.vocab_size = vocab_size + if context_size > 1: + self.conv = nn.Conv1d( + in_channels=decoder_dim, + out_channels=decoder_dim, + kernel_size=context_size, + padding=0, + groups=decoder_dim // 4, # group size == 4 + bias=False, + ) + + def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + need_pad: + True to left pad the input. Should be True during training. + False to not pad the input. Should be False during inference. + Returns: + Return a tensor of shape (N, U, decoder_dim). + """ + y = y.to(torch.int64) + # this stuff about clamp() is a temporary fix for a mismatch + # at utterance start, we use negative ids in beam_search.py + embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1) + if self.context_size > 1: + embedding_out = embedding_out.permute(0, 2, 1) + if need_pad is True: + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) + else: + # During inference time, there is no need to do extra padding + # as we only need one output + assert embedding_out.size(-1) == self.context_size + embedding_out = self.conv(embedding_out) + embedding_out = embedding_out.permute(0, 2, 1) + embedding_out = F.relu(embedding_out) + return embedding_out diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/export.py b/egs/librispeech/ASR/pruned_transducer_stateless7/export.py new file mode 100755 index 000000000..db8b5eb2b --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/export.py @@ -0,0 +1,583 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export to ONNX format + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --onnx 1 + +It will generate the following files in the given `exp_dir`. +Check `onnx_check.py` for how to use them. + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + +Please see ./onnx_pretrained.py for usage of the generated files + +Check +https://github.com/k2-fsa/sherpa-onnx +for how to use the exported models outside of icefall. + +(3) Export `model.state_dict()` + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless7/decode.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +import torch.nn as nn +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--onnx", + type=str2bool, + default=False, + help="""If True, --jit is ignored and it exports the model + to onnx format. It will generate the following files: + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + + Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +def export_encoder_model_onnx( + encoder_model: nn.Module, + encoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the given encoder model to ONNX format. + The exported model has two inputs: + + - x, a tensor of shape (N, T, C); dtype is torch.float32 + - x_lens, a tensor of shape (N,); dtype is torch.int64 + + and it has two outputs: + + - encoder_out, a tensor of shape (N, T, C) + - encoder_out_lens, a tensor of shape (N,) + + Note: The warmup argument is fixed to 1. + + Args: + encoder_model: + The input encoder model + encoder_filename: + The filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + x = torch.zeros(1, 101, 80, dtype=torch.float32) + x_lens = torch.tensor([101], dtype=torch.int64) + + # encoder_model = torch.jit.script(encoder_model) + # It throws the following error for the above statement + # + # RuntimeError: Exporting the operator __is_ to ONNX opset version + # 11 is not supported. Please feel free to request support or + # submit a pull request on PyTorch GitHub. + # + # I cannot find which statement causes the above error. + # torch.onnx.export() will use torch.jit.trace() internally, which + # works well for the current reworked model + torch.onnx.export( + encoder_model, + (x, x_lens), + encoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["x", "x_lens"], + output_names=["encoder_out", "encoder_out_lens"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "x_lens": {0: "N"}, + "encoder_out": {0: "N", 1: "T"}, + "encoder_out_lens": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_filename}") + + +def export_decoder_model_onnx( + decoder_model: nn.Module, + decoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the decoder model to ONNX format. + + The exported model has one input: + + - y: a torch.int64 tensor of shape (N, decoder_model.context_size) + + and has one output: + + - decoder_out: a torch.float32 tensor of shape (N, 1, C) + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The decoder model to be exported. + decoder_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) + need_pad = False # Always False, so we can use torch.jit.trace() here + # Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script() + # in this case + torch.onnx.export( + decoder_model, + (y, need_pad), + decoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["y", "need_pad"], + output_names=["decoder_out"], + dynamic_axes={ + "y": {0: "N"}, + "decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_filename}") + + +def export_joiner_model_onnx( + joiner_model: nn.Module, + joiner_filename: str, + opset_version: int = 11, +) -> None: + """Export the joiner model to ONNX format. + The exported joiner model has two inputs: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + - projected_decoder_out: a tensor of shape (N, joiner_dim) + + and produces one output: + + - logit: a tensor of shape (N, vocab_size) + + The exported encoder_proj model has one input: + + - encoder_out: a tensor of shape (N, encoder_out_dim) + + and produces one output: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + + The exported decoder_proj model has one input: + + - decoder_out: a tensor of shape (N, decoder_out_dim) + + and produces one output: + + - projected_decoder_out: a tensor of shape (N, joiner_dim) + """ + encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx") + decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx") + + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + joiner_dim = joiner_model.decoder_proj.weight.shape[0] + + projected_encoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + projected_decoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + + project_input = False + # Note: It uses torch.jit.trace() internally + torch.onnx.export( + joiner_model, + (projected_encoder_out, projected_decoder_out, project_input), + joiner_filename, + verbose=False, + opset_version=opset_version, + input_names=[ + "encoder_out", + "decoder_out", + "project_input", + ], + output_names=["logit"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "decoder_out": {0: "N"}, + "logit": {0: "N"}, + }, + ) + logging.info(f"Saved to {joiner_filename}") + + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.encoder_proj, + encoder_out, + encoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["encoder_out"], + output_names=["projected_encoder_out"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "projected_encoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_proj_filename}") + + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.decoder_proj, + decoder_out, + decoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["decoder_out"], + output_names=["projected_decoder_out"], + dynamic_axes={ + "decoder_out": {0: "N"}, + "projected_decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_proj_filename}") + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.onnx is True: + convert_scaled_to_non_scaled(model, inplace=True) + opset_version = 13 + logging.info("Exporting to onnx format") + encoder_filename = params.exp_dir / "encoder.onnx" + export_encoder_model_onnx( + model.encoder, + encoder_filename, + opset_version=opset_version, + ) + + decoder_filename = params.exp_dir / "decoder.onnx" + export_decoder_model_onnx( + model.decoder, + decoder_filename, + opset_version=opset_version, + ) + + joiner_filename = params.exp_dir / "joiner.onnx" + export_joiner_model_onnx( + model.joiner, + joiner_filename, + opset_version=opset_version, + ) + elif params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7/jit_pretrained.py new file mode 100755 index 000000000..5af6dae25 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/jit_pretrained.py @@ -0,0 +1,272 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +./pruned_transducer_stateless7/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless7/exp/cpu_jit.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--nn-model-filename", + type=str, + required=True, + help="Path to the torchscript model cpu_jit.pt", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + model: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + Returns: + Return the decoded results for each utterance. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = encoder_out.device + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + context_size = model.decoder.context_size + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ).squeeze(1) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = packed_encoder_out.data[start:end] + current_encoder_out = current_encoder_out + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, + decoder_out, + ) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ) + decoder_out = decoder_out.squeeze(1) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.nn_model_filename) + + model.eval() + + model.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + + hyps = greedy_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless7/joiner.py new file mode 100644 index 000000000..3ddac2cf2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/joiner.py @@ -0,0 +1,65 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn + + +class Joiner(nn.Module): + def __init__( + self, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + super().__init__() + + self.encoder_proj = nn.Linear(encoder_dim, joiner_dim) + self.decoder_proj = nn.Linear(decoder_dim, joiner_dim) + self.output_linear = nn.Linear(joiner_dim, vocab_size) + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + project_input: bool = True, + ) -> torch.Tensor: + """ + Args: + encoder_out: + Output from the encoder. Its shape is (N, T, s_range, C). + decoder_out: + Output from the decoder. Its shape is (N, T, s_range, C). + project_input: + If true, apply input projections encoder_proj and decoder_proj. + If this is false, it is the user's responsibility to do this + manually. + Returns: + Return a tensor of shape (N, T, s_range, C). + """ + assert encoder_out.ndim == decoder_out.ndim + assert encoder_out.ndim in (2, 4) + assert encoder_out.shape[:-1] == decoder_out.shape[:-1] + + if project_input: + logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out) + else: + logit = encoder_out + decoder_out + + logit = self.output_linear(torch.tanh(logit)) + + return logit diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/model.py b/egs/librispeech/ASR/pruned_transducer_stateless7/model.py new file mode 100644 index 000000000..0e59b0f2f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/model.py @@ -0,0 +1,195 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import random + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import penalize_abs_values_gt + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + + self.simple_am_proj = nn.Linear( + encoder_dim, + vocab_size, + ) + self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return the transducer loss. + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, x_lens = self.encoder(x, x_lens) + assert torch.all(x_lens > 0) + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens + + lm = self.simple_lm_proj(decoder_out) + am = self.simple_am_proj(encoder_out) + + # if self.training and random.random() < 0.25: + # lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04) + # if self.training and random.random() < 0.25: + # am = penalize_abs_values_gt(am, 30.0, 1.0e-04) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_check.py b/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_check.py new file mode 100755 index 000000000..63acc0922 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_check.py @@ -0,0 +1,286 @@ +#!/usr/bin/env python3 +# +# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +This script checks that exported onnx models produce the same output +with the given torchscript model for the same input. +""" + +import argparse +import logging + +import onnxruntime as ort +import torch + +from icefall import is_module_available + +if not is_module_available("onnxruntime"): + raise ValueError("Please 'pip install onnxruntime' first.") + + +ort.set_default_logger_severity(3) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--jit-filename", + required=True, + type=str, + help="Path to the torchscript model", + ) + + parser.add_argument( + "--onnx-encoder-filename", + required=True, + type=str, + help="Path to the onnx encoder model", + ) + + parser.add_argument( + "--onnx-decoder-filename", + required=True, + type=str, + help="Path to the onnx decoder model", + ) + + parser.add_argument( + "--onnx-joiner-filename", + required=True, + type=str, + help="Path to the onnx joiner model", + ) + + parser.add_argument( + "--onnx-joiner-encoder-proj-filename", + required=True, + type=str, + help="Path to the onnx joiner encoder projection model", + ) + + parser.add_argument( + "--onnx-joiner-decoder-proj-filename", + required=True, + type=str, + help="Path to the onnx joiner decoder projection model", + ) + + return parser + + +def test_encoder( + model: torch.jit.ScriptModule, + encoder_session: ort.InferenceSession, +): + inputs = encoder_session.get_inputs() + outputs = encoder_session.get_outputs() + input_names = [n.name for n in inputs] + output_names = [n.name for n in outputs] + + assert inputs[0].shape == ["N", "T", 80] + assert inputs[1].shape == ["N"] + + for N in [1, 5]: + for T in [12, 50]: + print("N, T", N, T) + x = torch.rand(N, T, 80, dtype=torch.float32) + x_lens = torch.randint(low=10, high=T + 1, size=(N,)) + x_lens[0] = T + + encoder_inputs = { + input_names[0]: x.numpy(), + input_names[1]: x_lens.numpy(), + } + + torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens) + + encoder_out, encoder_out_lens = encoder_session.run( + output_names, + encoder_inputs, + ) + + torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens) + + encoder_out = torch.from_numpy(encoder_out) + assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), ( + (encoder_out - torch_encoder_out).abs().max(), + encoder_out.shape, + torch_encoder_out.shape, + ) + + +def test_decoder( + model: torch.jit.ScriptModule, + decoder_session: ort.InferenceSession, +): + inputs = decoder_session.get_inputs() + outputs = decoder_session.get_outputs() + input_names = [n.name for n in inputs] + output_names = [n.name for n in outputs] + + assert inputs[0].shape == ["N", 2] + for N in [1, 5, 10]: + y = torch.randint(low=1, high=500, size=(10, 2)) + + decoder_inputs = {input_names[0]: y.numpy()} + decoder_out = decoder_session.run( + output_names, + decoder_inputs, + )[0] + decoder_out = torch.from_numpy(decoder_out) + + torch_decoder_out = model.decoder(y, need_pad=False) + assert torch.allclose(decoder_out, torch_decoder_out, atol=1e-5), ( + (decoder_out - torch_decoder_out).abs().max() + ) + + +def test_joiner( + model: torch.jit.ScriptModule, + joiner_session: ort.InferenceSession, + joiner_encoder_proj_session: ort.InferenceSession, + joiner_decoder_proj_session: ort.InferenceSession, +): + joiner_inputs = joiner_session.get_inputs() + joiner_outputs = joiner_session.get_outputs() + joiner_input_names = [n.name for n in joiner_inputs] + joiner_output_names = [n.name for n in joiner_outputs] + + assert joiner_inputs[0].shape == ["N", 1, 1, 512] + assert joiner_inputs[1].shape == ["N", 1, 1, 512] + + joiner_encoder_proj_inputs = joiner_encoder_proj_session.get_inputs() + encoder_proj_input_name = joiner_encoder_proj_inputs[0].name + + assert joiner_encoder_proj_inputs[0].shape == ["N", 384] + + joiner_encoder_proj_outputs = joiner_encoder_proj_session.get_outputs() + encoder_proj_output_name = joiner_encoder_proj_outputs[0].name + + joiner_decoder_proj_inputs = joiner_decoder_proj_session.get_inputs() + decoder_proj_input_name = joiner_decoder_proj_inputs[0].name + + assert joiner_decoder_proj_inputs[0].shape == ["N", 512] + + joiner_decoder_proj_outputs = joiner_decoder_proj_session.get_outputs() + decoder_proj_output_name = joiner_decoder_proj_outputs[0].name + + for N in [1, 5, 10]: + encoder_out = torch.rand(N, 384) + decoder_out = torch.rand(N, 512) + + projected_encoder_out = torch.rand(N, 1, 1, 512) + projected_decoder_out = torch.rand(N, 1, 1, 512) + + joiner_inputs = { + joiner_input_names[0]: projected_encoder_out.numpy(), + joiner_input_names[1]: projected_decoder_out.numpy(), + } + joiner_out = joiner_session.run(joiner_output_names, joiner_inputs)[0] + joiner_out = torch.from_numpy(joiner_out) + + torch_joiner_out = model.joiner( + projected_encoder_out, + projected_decoder_out, + project_input=False, + ) + assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), ( + (joiner_out - torch_joiner_out).abs().max() + ) + + # Now test encoder_proj + joiner_encoder_proj_inputs = {encoder_proj_input_name: encoder_out.numpy()} + joiner_encoder_proj_out = joiner_encoder_proj_session.run( + [encoder_proj_output_name], joiner_encoder_proj_inputs + )[0] + joiner_encoder_proj_out = torch.from_numpy(joiner_encoder_proj_out) + + torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out) + assert torch.allclose( + joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5 + ), ((joiner_encoder_proj_out - torch_joiner_encoder_proj_out).abs().max()) + + # Now test decoder_proj + joiner_decoder_proj_inputs = {decoder_proj_input_name: decoder_out.numpy()} + joiner_decoder_proj_out = joiner_decoder_proj_session.run( + [decoder_proj_output_name], joiner_decoder_proj_inputs + )[0] + joiner_decoder_proj_out = torch.from_numpy(joiner_decoder_proj_out) + + torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out) + assert torch.allclose( + joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5 + ), ((joiner_decoder_proj_out - torch_joiner_decoder_proj_out).abs().max()) + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + logging.info(vars(args)) + + model = torch.jit.load(args.jit_filename) + + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + logging.info("Test encoder") + encoder_session = ort.InferenceSession( + args.onnx_encoder_filename, + sess_options=options, + ) + test_encoder(model, encoder_session) + + logging.info("Test decoder") + decoder_session = ort.InferenceSession( + args.onnx_decoder_filename, + sess_options=options, + ) + test_decoder(model, decoder_session) + + logging.info("Test joiner") + joiner_session = ort.InferenceSession( + args.onnx_joiner_filename, + sess_options=options, + ) + joiner_encoder_proj_session = ort.InferenceSession( + args.onnx_joiner_encoder_proj_filename, + sess_options=options, + ) + joiner_decoder_proj_session = ort.InferenceSession( + args.onnx_joiner_decoder_proj_filename, + sess_options=options, + ) + test_joiner( + model, + joiner_session, + joiner_encoder_proj_session, + joiner_decoder_proj_session, + ) + logging.info("Finished checking ONNX models") + + +if __name__ == "__main__": + torch.manual_seed(20220727) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_pretrained.py new file mode 100755 index 000000000..3a06ee293 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/onnx_pretrained.py @@ -0,0 +1,388 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads ONNX models and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --onnx 1 + +Usage of this script: + +./pruned_transducer_stateless7/onnx_pretrained.py \ + --encoder-model-filename ./pruned_transducer_stateless7/exp/encoder.onnx \ + --decoder-model-filename ./pruned_transducer_stateless7/exp/decoder.onnx \ + --joiner-model-filename ./pruned_transducer_stateless7/exp/joiner.onnx \ + --joiner-encoder-proj-model-filename ./pruned_transducer_stateless7/exp/joiner_encoder_proj.onnx \ + --joiner-decoder-proj-model-filename ./pruned_transducer_stateless7/exp/joiner_decoder_proj.onnx \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import numpy as np +import onnxruntime as ort +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--encoder-model-filename", + type=str, + required=True, + help="Path to the encoder onnx model. ", + ) + + parser.add_argument( + "--decoder-model-filename", + type=str, + required=True, + help="Path to the decoder onnx model. ", + ) + + parser.add_argument( + "--joiner-model-filename", + type=str, + required=True, + help="Path to the joiner onnx model. ", + ) + + parser.add_argument( + "--joiner-encoder-proj-model-filename", + type=str, + required=True, + help="Path to the joiner encoder_proj onnx model. ", + ) + + parser.add_argument( + "--joiner-decoder-proj-model-filename", + type=str, + required=True, + help="Path to the joiner decoder_proj onnx model. ", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="Context size of the decoder model", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + decoder: ort.InferenceSession, + joiner: ort.InferenceSession, + joiner_encoder_proj: ort.InferenceSession, + joiner_decoder_proj: ort.InferenceSession, + encoder_out: np.ndarray, + encoder_out_lens: np.ndarray, + context_size: int, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + decoder: + The decoder model. + joiner: + The joiner model. + joiner_encoder_proj: + The joiner encoder projection model. + joiner_decoder_proj: + The joiner decoder projection model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + context_size: + The context size of the decoder model. + Returns: + Return the decoded results for each utterance. + """ + encoder_out = torch.from_numpy(encoder_out) + encoder_out_lens = torch.from_numpy(encoder_out_lens) + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + projected_encoder_out = joiner_encoder_proj.run( + [joiner_encoder_proj.get_outputs()[0].name], + {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()}, + )[0] + + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input_nodes = decoder.get_inputs() + decoder_output_nodes = decoder.get_outputs() + + joiner_input_nodes = joiner.get_inputs() + joiner_output_nodes = joiner.get_outputs() + + decoder_input = torch.tensor( + hyps, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = decoder.run( + [decoder_output_nodes[0].name], + { + decoder_input_nodes[0].name: decoder_input.numpy(), + }, + )[0].squeeze(1) + projected_decoder_out = joiner_decoder_proj.run( + [joiner_decoder_proj.get_outputs()[0].name], + {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, + )[0] + + projected_decoder_out = torch.from_numpy(projected_decoder_out) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = projected_encoder_out[start:end] + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + projected_decoder_out = projected_decoder_out[:batch_size] + + logits = joiner.run( + [joiner_output_nodes[0].name], + { + joiner_input_nodes[0].name: np.expand_dims( + np.expand_dims(current_encoder_out, axis=1), axis=1 + ), + joiner_input_nodes[1] + .name: projected_decoder_out.unsqueeze(1) + .unsqueeze(1) + .numpy(), + }, + )[0] + logits = torch.from_numpy(logits).squeeze(1).squeeze(1) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + dtype=torch.int64, + ) + decoder_out = decoder.run( + [decoder_output_nodes[0].name], + { + decoder_input_nodes[0].name: decoder_input.numpy(), + }, + )[0].squeeze(1) + projected_decoder_out = joiner_decoder_proj.run( + [joiner_decoder_proj.get_outputs()[0].name], + {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, + )[0] + projected_decoder_out = torch.from_numpy(projected_decoder_out) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + session_opts = ort.SessionOptions() + session_opts.inter_op_num_threads = 1 + session_opts.intra_op_num_threads = 1 + + encoder = ort.InferenceSession( + args.encoder_model_filename, + sess_options=session_opts, + ) + + decoder = ort.InferenceSession( + args.decoder_model_filename, + sess_options=session_opts, + ) + + joiner = ort.InferenceSession( + args.joiner_model_filename, + sess_options=session_opts, + ) + + joiner_encoder_proj = ort.InferenceSession( + args.joiner_encoder_proj_model_filename, + sess_options=session_opts, + ) + + joiner_decoder_proj = ort.InferenceSession( + args.joiner_decoder_proj_model_filename, + sess_options=session_opts, + ) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = args.sample_rate + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + expected_sample_rate=args.sample_rate, + ) + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) + + encoder_input_nodes = encoder.get_inputs() + encoder_out_nodes = encoder.get_outputs() + encoder_out, encoder_out_lens = encoder.run( + [encoder_out_nodes[0].name, encoder_out_nodes[1].name], + { + encoder_input_nodes[0].name: features.numpy(), + encoder_input_nodes[1].name: feature_lengths.numpy(), + }, + ) + + hyps = greedy_search( + decoder=decoder, + joiner=joiner, + joiner_encoder_proj=joiner_encoder_proj, + joiner_decoder_proj=joiner_decoder_proj, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + context_size=args.context_size, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py new file mode 100644 index 000000000..374b78cb3 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py @@ -0,0 +1,1061 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import logging +import random +from collections import defaultdict +from typing import List, Optional, Tuple, Union + +import torch +from lhotse.utils import fix_random_seed +from scaling import ActivationBalancer +from torch import Tensor +from torch.optim import Optimizer + + +class BatchedOptimizer(Optimizer): + """ + This class adds to class Optimizer the capability to optimize parameters in batches: + it will stack the parameters and their grads for you so the optimizer can work + on tensors with an extra leading dimension. This is intended for speed with GPUs, + as it reduces the number of kernels launched in the optimizer. + + Args: + params: + """ + + def __init__(self, params, defaults): + super(BatchedOptimizer, self).__init__(params, defaults) + + @contextlib.contextmanager + def batched_params(self, param_group, group_params_names): + """ + This function returns (technically, yields) a list of + of tuples (p, state), where + p is a `fake` parameter that is stacked (over axis 0) from real parameters + that share the same shape, and its gradient is also stacked; + `state` is the state corresponding to this batch of parameters + (it will be physically located in the "state" for one of the real + parameters, the last one that has any particular shape and dtype). + + This function is decorated as a context manager so that it can + write parameters back to their "real" locations. + + The idea is, instead of doing: + + for p in group["params"]: + state = self.state[p] + ... + + you can do: + + with self.batched_params(group["params"]) as batches: + for p, state, p_names in batches: + ... + + + Args: + group: a parameter group, which is a list of parameters; should be + one of self.param_groups. + group_params_names: name for each parameter in group, + which is List[str]. + """ + batches = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter + batches_names = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str + + assert len(param_group) == len(group_params_names) + for p, named_p in zip(param_group, group_params_names): + key = (str(p.dtype), *p.shape) + batches[key].append(p) + batches_names[key].append(named_p) + + batches_names_keys = list(batches_names.keys()) + sorted_idx = sorted( + range(len(batches_names)), key=lambda i: batches_names_keys[i] + ) + batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx] + batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] + + stacked_params_dict = dict() + + # turn batches into a list, in deterministic order. + # tuples will contain tuples of (stacked_param, state, stacked_params_names), + # one for each batch in `batches`. + tuples = [] + + for batch, batch_names in zip(batches, batches_names): + p = batch[0] + # we arbitrarily store the state in the + # state corresponding to the 1st parameter in the + # group. class Optimizer will take care of saving/loading state. + state = self.state[p] + p_stacked = torch.stack(batch) + grad = torch.stack( + [torch.zeros_like(p) if p.grad is None else p.grad for p in batch] + ) + p_stacked.grad = grad + stacked_params_dict[key] = p_stacked + tuples.append((p_stacked, state, batch_names)) + + yield tuples # <-- calling code will do the actual optimization here! + + for ((stacked_params, _state, _names), batch) in zip(tuples, batches): + for i, p in enumerate(batch): # batch is list of Parameter + p.copy_(stacked_params[i]) + + +class ScaledAdam(BatchedOptimizer): + """ + Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update + proportional to the norm of that parameter; and also learn the scale of the parameter, + in log space, subject to upper and lower limits (as if we had factored each parameter as + param = underlying_param * log_scale.exp()) + + + Args: + params: The parameters or param_groups to optimize (like other Optimizer subclasses) + lr: The learning rate. We will typically use a learning rate schedule that starts + at 0.03 and decreases over time, i.e. much higher than other common + optimizers. + clipping_scale: (e.g. 2.0) + A scale for gradient-clipping: if specified, the normalized gradients + over the whole model will be clipped to have 2-norm equal to + `clipping_scale` times the median 2-norm over the most recent period + of `clipping_update_period` minibatches. By "normalized gradients", + we mean after multiplying by the rms parameter value for this tensor + [for non-scalars]; this is appropriate because our update is scaled + by this quantity. + betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. + Must satisfy 0 < beta <= beta2 < 1. + scalar_lr_scale: A scaling factor on the learning rate, that we use to update the + scale of each parameter tensor and scalar parameters of the mode.. + If each parameter were decomposed + as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale + would be a the scaling factor on the learning rate of p_scale. + eps: A general-purpose epsilon to prevent division by zero + param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be >= this value) + param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be <= this value) + scalar_max: Maximum absolute value for scalar parameters (applicable if your + model has any parameters with numel() == 1). + size_update_period: The periodicity, in steps, with which we update the size (scale) + of the parameter tensor. This is provided to save a little time + in the update. + clipping_update_period: if clipping_scale is specified, this is the period + """ + + def __init__( + self, + params, + lr=3e-02, + clipping_scale=None, + betas=(0.9, 0.98), + scalar_lr_scale=0.1, + eps=1.0e-08, + param_min_rms=1.0e-05, + param_max_rms=3.0, + scalar_max=10.0, + size_update_period=4, + clipping_update_period=100, + parameters_names=None, + show_dominant_parameters=True, + ): + + assert parameters_names is not None, ( + "Please prepare parameters_names," + "which is a List[List[str]]. Each List[str] is for a group" + "and each str is for a parameter" + ) + defaults = dict( + lr=lr, + clipping_scale=clipping_scale, + betas=betas, + scalar_lr_scale=scalar_lr_scale, + eps=eps, + param_min_rms=param_min_rms, + param_max_rms=param_max_rms, + scalar_max=scalar_max, + size_update_period=size_update_period, + clipping_update_period=clipping_update_period, + ) + + super(ScaledAdam, self).__init__(params, defaults) + assert len(self.param_groups) == len(parameters_names) + self.parameters_names = parameters_names + self.show_dominant_parameters = show_dominant_parameters + + def __setstate__(self, state): + super(ScaledAdam, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + batch = True + + for group, group_params_names in zip(self.param_groups, self.parameters_names): + + with self.batched_params(group["params"], group_params_names) as batches: + + # batches is list of pairs (stacked_param, state). stacked_param is like + # a regular parameter, and will have a .grad, but the 1st dim corresponds to + # a stacking dim, it is not a real dim. + + if ( + len(batches[0][1]) == 0 + ): # if len(first state) == 0: not yet initialized + clipping_scale = 1 + else: + clipping_scale = self._get_clipping_scale(group, batches) + + for p, state, _ in batches: + # Perform optimization step. + # grad is not going to be None, we handled that when creating the batches. + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + # State initialization + if len(state) == 0: + self._init_state(group, p, state) + + self._step_one_batch(group, p, state, clipping_scale) + + return loss + + def _init_state(self, group: dict, p: Tensor, state: dict): + """ + Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p + is actually the batch dimension, corresponding to batched-together + parameters of a given shape. + + + Args: + group: Dict to look up configuration values. + p: The parameter that we are initializing the state for + state: Dict from string to whatever state we are initializing + """ + size_update_period = group["size_update_period"] + + state["step"] = 0 + + kwargs = {"device": p.device, "dtype": p.dtype} + + # 'delta' implements conventional momentum. There are + # several different kinds of update going on, so rather than + # compute "exp_avg" like in Adam, we store and decay a + # parameter-change "delta", which combines all forms of + # update. this is equivalent to how it's done in Adam, + # except for the first few steps. + state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + batch_size = p.shape[0] + numel = p.numel() // batch_size + numel = p.numel() + + if numel > 1: + # "param_rms" just periodically records the scalar root-mean-square value of + # the parameter tensor. + # it has a shape like (batch_size, 1, 1, 1, 1) + param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + state["param_rms"] = param_rms + + state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) + state["scale_grads"] = torch.zeros( + size_update_period, *param_rms.shape, **kwargs + ) + + # exp_avg_sq is the weighted sum of scaled gradients. as in Adam. + state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + def _get_clipping_scale( + self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] + ) -> float: + """ + Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients + by this amount before applying the rest of the update. + + Args: + group: the parameter group, an item in self.param_groups + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + """ + assert len(tuples) >= 1 + clipping_scale = group["clipping_scale"] + (first_p, first_state, _) = tuples[0] + step = first_state["step"] + if clipping_scale is None or step == 0: + # no clipping. return early on step == 0 because the other + # parameters' state won't have been initialized yet. + return 1.0 + clipping_update_period = group["clipping_update_period"] + + tot_sumsq = torch.tensor(0.0, device=first_p.device) + for (p, state, param_names) in tuples: + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + if p.numel() == p.shape[0]: # a batch of scalars + tot_sumsq += (grad**2).sum() # sum() to change shape [1] to [] + else: + tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() + + tot_norm = tot_sumsq.sqrt() + if "model_norms" not in first_state: + first_state["model_norms"] = torch.zeros( + clipping_update_period, device=p.device + ) + first_state["model_norms"][step % clipping_update_period] = tot_norm + + if step % clipping_update_period == 0: + # Print some stats. + # We don't reach here if step == 0 because we would have returned + # above. + sorted_norms = first_state["model_norms"].sort()[0].to("cpu") + quartiles = [] + for n in range(0, 5): + index = min( + clipping_update_period - 1, (clipping_update_period // 4) * n + ) + quartiles.append(sorted_norms[index].item()) + + median = quartiles[2] + threshold = clipping_scale * median + first_state["model_norm_threshold"] = threshold + percent_clipped = ( + first_state["num_clipped"] * 100.0 / clipping_update_period + if "num_clipped" in first_state + else 0.0 + ) + first_state["num_clipped"] = 0 + quartiles = " ".join(["%.3e" % x for x in quartiles]) + logging.info( + f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " + f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" + ) + + if step < clipping_update_period: + return 1.0 # We have not yet estimated a norm to clip to. + else: + try: + model_norm_threshold = first_state["model_norm_threshold"] + except KeyError: + logging.info( + "Warning: model_norm_threshold not in state: possibly " + "you changed config when restarting, adding clipping_scale option?" + ) + return 1.0 + ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) + if ans < 1.0: + first_state["num_clipped"] += 1 + if ans < 0.1: + logging.warn( + f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" + ) + if self.show_dominant_parameters: + assert p.shape[0] == len(param_names) + self._show_gradient_dominating_parameter(tuples, tot_sumsq) + return ans + + def _show_gradient_dominating_parameter( + self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor + ): + """ + Show information of parameter wihch dominanting tot_sumsq. + + Args: + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + tot_sumsq: sumsq of all parameters. Though it's could be calculated + from tuples, we still pass it to save some time. + """ + all_sumsq_orig = {} + for (p, state, batch_param_names) in tuples: + # p is a stacked batch parameters. + batch_grad = p.grad + if p.numel() == p.shape[0]: # a batch of scalars + batch_sumsq_orig = batch_grad**2 + # Dummpy values used by following `zip` statement. + batch_rms_orig = torch.ones(p.shape[0]) + else: + batch_rms_orig = state["param_rms"] + batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( + dim=list(range(1, batch_grad.ndim)) + ) + + for name, sumsq_orig, rms, grad in zip( + batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad + ): + + proportion_orig = sumsq_orig / tot_sumsq + all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) + + assert torch.isclose( + sum([value[0] for value in all_sumsq_orig.values()]).cpu(), + torch.tensor(1.0), + ) + sorted_by_proportion = { + k: v + for k, v in sorted( + all_sumsq_orig.items(), key=lambda item: item[1][0], reverse=True + ) + } + dominant_param_name = next(iter(sorted_by_proportion)) + ( + dominant_proportion, + dominant_sumsq, + dominant_rms, + dominant_grad, + ) = sorted_by_proportion[dominant_param_name] + logging.info( + f"Parameter Dominanting tot_sumsq {dominant_param_name}" + f" with proportion {dominant_proportion:.2f}," + f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" + f"={dominant_sumsq:.3e}," + f" grad_sumsq = {(dominant_grad**2).sum():.3e}," + f" orig_rms_sq={(dominant_rms**2).item():.3e}" + ) + + def _step_one_batch( + self, group: dict, p: Tensor, state: dict, clipping_scale: float + ): + """ + Do the step for one parameter, which is actually going to be a batch of + `real` parameters, with dim 0 as the batch dim. + Args: + group: dict to look up configuration values + p: parameter to update (actually multiple parameters stacked together + as a batch) + state: state-dict for p, to look up the optimizer state + """ + lr = group["lr"] + size_update_period = group["size_update_period"] + beta1 = group["betas"][0] + + grad = p.grad + if clipping_scale != 1.0: + grad = grad * clipping_scale + step = state["step"] + delta = state["delta"] + + delta.mul_(beta1) + batch_size = p.shape[0] + numel = p.numel() // batch_size + if numel > 1: + # Update the size/scale of p, and set param_rms + scale_grads = state["scale_grads"] + scale_grads[step % size_update_period] = (p * grad).sum( + dim=list(range(1, p.ndim)), keepdim=True + ) + if step % size_update_period == size_update_period - 1: + param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) + param_rms.copy_( + (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + ) + if step > 0: + # self._size_update() learns the overall scale on the + # parameter, by shrinking or expanding it. + self._size_update(group, scale_grads, p, state) + + if numel == 1: + # For parameters with 1 element we just use regular Adam. + # Updates delta. + self._step_scalar(group, p, state) + else: + self._step(group, p, state) + + state["step"] = step + 1 + + def _size_update( + self, group: dict, scale_grads: Tensor, p: Tensor, state: dict + ) -> None: + """ + Called only where p.numel() > 1, this updates the scale of the parameter. + If we imagine: p = underlying_param * scale.exp(), and we are doing + gradient descent on underlying param and on scale, this function does the update + on `scale`. + + Args: + group: dict to look up configuration values + scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing + grads w.r.t. the scales. + p: The parameter to update + state: The state-dict of p + """ + + param_rms = state["param_rms"] + beta1, beta2 = group["betas"] + size_lr = group["lr"] * group["scalar_lr_scale"] + param_min_rms = group["param_min_rms"] + param_max_rms = group["param_max_rms"] + eps = group["eps"] + step = state["step"] + batch_size = p.shape[0] + + size_update_period = scale_grads.shape[0] + # correct beta2 for the size update period: we will have + # faster decay at this level. + beta2_corr = beta2**size_update_period + + scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..) + scale_exp_avg_sq.mul_(beta2_corr).add_( + (scale_grads**2).mean(dim=0), # mean over dim `size_update_period` + alpha=1 - beta2_corr, + ) # shape is (batch_size, 1, 1, ...) + + # The 1st time we reach here is when size_step == 1. + size_step = (step + 1) // size_update_period + bias_correction2 = 1 - beta2_corr**size_step + # we don't bother with bias_correction1; this will help prevent divergence + # at the start of training. + + denom = scale_exp_avg_sq.sqrt() + eps + + scale_step = ( + -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom + ) + + is_too_small = param_rms < param_min_rms + is_too_large = param_rms > param_max_rms + + # when the param gets too small, just don't shrink it any further. + scale_step.masked_fill_(is_too_small, 0.0) + # when it gets too large, stop it from getting any larger. + scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) + delta = state["delta"] + # the factor of (1-beta1) relates to momentum. + delta.add_(p * scale_step, alpha=(1 - beta1)) + + def _step(self, group: dict, p: Tensor, state: dict): + """ + This function does the core update of self.step(), in the case where the members of + the batch have more than 1 element. + + Args: + group: A dict which will be used to look up configuration values + p: The parameter to be updated + grad: The grad of p + state: The state-dict corresponding to parameter p + + This function modifies p. + """ + grad = p.grad + lr = group["lr"] + beta1, beta2 = group["betas"] + eps = group["eps"] + param_min_rms = group["param_min_rms"] + step = state["step"] + + exp_avg_sq = state["exp_avg_sq"] + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) + + this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0) + bias_correction2 = 1 - beta2 ** (this_step + 1) + if bias_correction2 < 0.99: + # note: not in-place. + exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) + + denom = exp_avg_sq.sqrt() + denom += eps + grad = grad / denom + + alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) + + delta = state["delta"] + delta.add_(grad * alpha) + p.add_(delta) + + def _step_scalar(self, group: dict, p: Tensor, state: dict): + """ + A simplified form of the core update for scalar tensors, where we cannot get a good + estimate of the parameter rms. + """ + beta1, beta2 = group["betas"] + scalar_max = group["scalar_max"] + eps = group["eps"] + lr = group["lr"] * group["scalar_lr_scale"] + grad = p.grad + + exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + # bias_correction2 is like in Adam. Don't bother with bias_correction1; + # slower update at the start will help stability anyway. + bias_correction2 = 1 - beta2 ** (state["step"] + 1) + denom = (exp_avg_sq / bias_correction2).sqrt() + eps + + delta = state["delta"] + delta.add_(grad / denom, alpha=-lr * (1 - beta1)) + p.clamp_(min=-scalar_max, max=scalar_max) + p.add_(delta) + + +class LRScheduler(object): + """ + Base-class for learning rate schedulers where the learning-rate depends on both the + batch and the epoch. + """ + + def __init__(self, optimizer: Optimizer, verbose: bool = False): + # Attach optimizer + if not isinstance(optimizer, Optimizer): + raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) + self.optimizer = optimizer + self.verbose = verbose + + for group in optimizer.param_groups: + group.setdefault("base_lr", group["lr"]) + + self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] + + self.epoch = 0 + self.batch = 0 + + def state_dict(self): + """Returns the state of the scheduler as a :class:`dict`. + + It contains an entry for every variable in self.__dict__ which + is not the optimizer. + """ + return { + "base_lrs": self.base_lrs, + "epoch": self.epoch, + "batch": self.batch, + } + + def load_state_dict(self, state_dict): + """Loads the schedulers state. + + Args: + state_dict (dict): scheduler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_last_lr(self) -> List[float]: + """Return last computed learning rate by current scheduler. Will be a list of float.""" + return self._last_lr + + def get_lr(self): + # Compute list of learning rates from self.epoch and self.batch and + # self.base_lrs; this must be overloaded by the user. + # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] + raise NotImplementedError + + def step_batch(self, batch: Optional[int] = None) -> None: + # Step the batch index, or just set it. If `batch` is specified, it + # must be the batch index from the start of training, i.e. summed over + # all epochs. + # You can call this in any order; if you don't provide 'batch', it should + # of course be called once per batch. + if batch is not None: + self.batch = batch + else: + self.batch = self.batch + 1 + self._set_lrs() + + def step_epoch(self, epoch: Optional[int] = None): + # Step the epoch index, or just set it. If you provide the 'epoch' arg, + # you should call this at the start of the epoch; if you don't provide the 'epoch' + # arg, you should call it at the end of the epoch. + if epoch is not None: + self.epoch = epoch + else: + self.epoch = self.epoch + 1 + self._set_lrs() + + def _set_lrs(self): + values = self.get_lr() + assert len(values) == len(self.optimizer.param_groups) + + for i, data in enumerate(zip(self.optimizer.param_groups, values)): + param_group, lr = data + param_group["lr"] = lr + self.print_lr(self.verbose, i, lr) + self._last_lr = [group["lr"] for group in self.optimizer.param_groups] + + def print_lr(self, is_verbose, group, lr): + """Display the current learning rate.""" + if is_verbose: + logging.info( + f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" + f" of group {group} to {lr:.4e}." + ) + + +class Eden(LRScheduler): + """ + Eden scheduler. + The basic formula (before warmup) is: + lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * + (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup + where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches + and then stays constant at 1. + + + E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam + + Args: + optimizer: the optimizer to change the learning rates on + lr_batches: the number of batches after which we start significantly + decreasing the learning rate, suggest 5000. + lr_epochs: the number of epochs after which we start significantly + decreasing the learning rate, suggest 6 if you plan to do e.g. + 20 to 40 epochs, but may need smaller number if dataset is huge + and you will do few epochs. + """ + + def __init__( + self, + optimizer: Optimizer, + lr_batches: Union[int, float], + lr_epochs: Union[int, float], + warmup_batches: Union[int, float] = 500.0, + verbose: bool = False, + ): + super(Eden, self).__init__(optimizer, verbose) + self.lr_batches = lr_batches + self.lr_epochs = lr_epochs + self.warmup_batches = warmup_batches + + def get_lr(self): + factor = ( + (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 + ) ** -0.25 * ( + ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 + ) + warmup_factor = ( + 1.0 + if self.batch >= self.warmup_batches + else 0.5 + 0.5 * (self.batch / self.warmup_batches) + ) + + return [x * factor * warmup_factor for x in self.base_lrs] + + +def _test_eden(): + m = torch.nn.Linear(100, 100) + optim = ScaledAdam(m.parameters(), lr=0.03) + + scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True) + + for epoch in range(10): + scheduler.step_epoch(epoch) # sets epoch to `epoch` + + for step in range(20): + x = torch.randn(200, 100).detach() + x.requires_grad = True + y = m(x) + dy = torch.randn(200, 100).detach() + f = (y * dy).sum() + f.backward() + + optim.step() + scheduler.step_batch() + optim.zero_grad() + + logging.info(f"last lr = {scheduler.get_last_lr()}") + logging.info(f"state dict = {scheduler.state_dict()}") + + +# This is included mostly as a baseline for ScaledAdam. +class Eve(Optimizer): + """ + Implements Eve algorithm. This is a modified version of AdamW with a special + way of setting the weight-decay / shrinkage-factor, which is designed to make the + rms of the parameters approach a particular target_rms (default: 0.1). This is + for use with networks with 'scaled' versions of modules (see scaling.py), which + will be close to invariant to the absolute scale on the parameter matrix. + + The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. + The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. + Eve is unpublished so far. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay coefficient (default: 3e-4; + this value means that the weight would decay significantly after + about 3k minibatches. Is not multiplied by learning rate, but + is conditional on RMS-value of parameter being > target_rms. + target_rms (float, optional): target root-mean-square value of + parameters, if they fall below this we will stop applying weight decay. + + + .. _Adam: A Method for Stochastic Optimization: + https://arxiv.org/abs/1412.6980 + .. _Decoupled Weight Decay Regularization: + https://arxiv.org/abs/1711.05101 + .. _On the Convergence of Adam and Beyond: + https://openreview.net/forum?id=ryQu7f-RZ + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.98), + eps=1e-8, + weight_decay=1e-3, + target_rms=0.1, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0 <= weight_decay <= 0.1: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0 < target_rms <= 10.0: + raise ValueError("Invalid target_rms value: {}".format(target_rms)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + target_rms=target_rms, + ) + super(Eve, self).__init__(params, defaults) + + def __setstate__(self, state): + super(Eve, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group["params"]: + if p.grad is None: + continue + + # Perform optimization step + grad = p.grad + if grad.is_sparse: + raise RuntimeError("AdamW does not support sparse gradients") + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + + beta1, beta2 = group["betas"] + + state["step"] += 1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( + group["eps"] + ) + + step_size = group["lr"] / bias_correction1 + target_rms = group["target_rms"] + weight_decay = group["weight_decay"] + + if p.numel() > 1: + # avoid applying this weight-decay on "scaling factors" + # (which are scalar). + is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) + p.mul_(1 - (weight_decay * is_above_target_rms)) + + p.addcdiv_(exp_avg, denom, value=-step_size) + + if random.random() < 0.0005: + step = (exp_avg / denom) * step_size + logging.info( + f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}" + ) + + return loss + + +def _test_scaled_adam(hidden_dim: int): + import timeit + + from scaling import ScaledLinear + + E = 100 + B = 4 + T = 2 + logging.info("in test_eve_cain") + # device = torch.device('cuda') + device = torch.device("cpu") + dtype = torch.float32 + + fix_random_seed(42) + # these input_magnitudes and output_magnitudes are to test that + # Abel is working as we expect and is able to adjust scales of + # different dims differently. + input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + + for iter in [1, 0]: + fix_random_seed(42) + Linear = torch.nn.Linear if iter == 0 else ScaledLinear + + m = torch.nn.Sequential( + Linear(E, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, E), + ).to(device) + + train_pairs = [ + ( + 100.0 + * torch.randn(B, T, E, device=device, dtype=dtype) + * input_magnitudes, + torch.randn(B, T, E, device=device, dtype=dtype) * output_magnitudes, + ) + for _ in range(20) + ] + + if iter == 0: + optim = Eve(m.parameters(), lr=0.003) + elif iter == 1: + optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0) + scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False) + + start = timeit.default_timer() + avg_loss = 0.0 + for epoch in range(180): + scheduler.step_epoch() + # if epoch == 100 and iter in [2,3]: + # optim.reset_speedup() # check it doesn't crash. + + # if epoch == 130: + # opts = diagnostics.TensorDiagnosticOptions( + # 2 ** 22 + # ) # allow 4 megabytes per sub-module + # diagnostic = diagnostics.attach_diagnostics(m, opts) + + for n, (x, y) in enumerate(train_pairs): + y_out = m(x) + loss = ((y_out - y) ** 2).mean() * 100.0 + if epoch == 0 and n == 0: + avg_loss = loss.item() + else: + avg_loss = 0.98 * avg_loss + 0.02 * loss.item() + if n == 0 and epoch % 5 == 0: + # norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item() + # norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item() + # norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item() + # norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item() + # scale1 = '%.2e' % (m[0].weight_scale.exp().item()) + # scale1b = '%.2e' % (m[0].bias_scale.exp().item()) + # scale2 = '%.2e' % (m[2].weight_scale.exp().item()) + # scale2b = '%.2e' % (m[2].bias_scale.exp().item()) + lr = scheduler.get_last_lr()[0] + logging.info( + f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}" + ) # , norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b} + loss.log().backward() + optim.step() + optim.zero_grad() + scheduler.step_batch() + + # diagnostic.print_diagnostics() + + stop = timeit.default_timer() + logging.info(f"Iter={iter}, Time taken: {stop - start}") + + logging.info(f"last lr = {scheduler.get_last_lr()}") + # logging.info("state dict = ", scheduler.state_dict()) + # logging.info("optim state_dict = ", optim.state_dict()) + logging.info(f"input_magnitudes = {input_magnitudes}") + logging.info(f"output_magnitudes = {output_magnitudes}") + + +if __name__ == "__main__": + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + logging.getLogger().setLevel(logging.INFO) + import subprocess + + s = subprocess.check_output( + "git status -uno .; git log -1; git diff HEAD .", shell=True + ) + logging.info(s) + import sys + + if len(sys.argv) > 1: + hidden_dim = int(sys.argv[1]) + else: + hidden_dim = 200 + + _test_scaled_adam(hidden_dim) + _test_eden() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7/pretrained.py new file mode 100755 index 000000000..d05bafcfb --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/pretrained.py @@ -0,0 +1,355 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless7/export.py \ + --exp-dir ./pruned_transducer_stateless7/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless7/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless7/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless7/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless7/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless7/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless7/exp/pretrained.pt is generated by +./pruned_transducer_stateless7/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless7/scaling.py new file mode 100644 index 000000000..156b91f09 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/scaling.py @@ -0,0 +1,1179 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import collections +import logging +import random +from functools import reduce +from itertools import repeat +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor +from torch.nn import Embedding as ScaledEmbedding + + +class ActivationBalancerFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + scale_factor: Tensor, + sign_factor: Optional[Tensor], + channel_dim: int, + ) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + ctx.channel_dim = channel_dim + xgt0 = x > 0 + if sign_factor is None: + ctx.save_for_backward(xgt0, scale_factor) + else: + ctx.save_for_backward(xgt0, scale_factor, sign_factor) + return x + + @staticmethod + def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: + if len(ctx.saved_tensors) == 3: + xgt0, scale_factor, sign_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + scale_factor = scale_factor.unsqueeze(-1) + sign_factor = sign_factor.unsqueeze(-1) + factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + else: + xgt0, scale_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + scale_factor = scale_factor.unsqueeze(-1) + factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + neg_delta_grad = x_grad.abs() * factor + return ( + x_grad - neg_delta_grad, + None, + None, + None, + ) + + +def _compute_scale_factor( + x: Tensor, + channel_dim: int, + min_abs: float, + max_abs: float, + gain_factor: float, + max_factor: float, +) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32) + + if min_abs == 0.0: + below_threshold = 0.0 + else: + # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if + # x_abs)_mean , min_abs. + below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp( + min=0, max=max_factor + ) + + above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp( + min=0, max=max_factor + ) + + return below_threshold - above_threshold + + +def _compute_sign_factor( + x: Tensor, + channel_dim: int, + min_positive: float, + max_positive: float, + gain_factor: float, + max_factor: float, +) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims) + if min_positive == 0.0: + factor1 = 0.0 + else: + # 0 if proportion_positive >= min_positive, else can be + # as large as max_factor. + factor1 = ( + (min_positive - proportion_positive) * (gain_factor / min_positive) + ).clamp_(min=0, max=max_factor) + + if max_positive == 1.0: + factor2 = 0.0 + else: + # 0 if self.proportion_positive <= max_positive, else can be + # as large as -max_factor. + factor2 = ( + (proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive)) + ).clamp_(min=0, max=max_factor) + sign_factor = factor1 - factor2 + # require min_positive != 0 or max_positive != 1: + assert not isinstance(sign_factor, float) + return sign_factor + + +class ActivationScaleBalancerFunction(torch.autograd.Function): + """ + This object is used in class ActivationBalancer when the user specified + min_positive=0, max_positive=1, so there are no constraints on the signs + of the activations and only the absolute value has a constraint. + """ + + @staticmethod + def forward( + ctx, + x: Tensor, + sign_factor: Tensor, + scale_factor: Tensor, + channel_dim: int, + ) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + ctx.channel_dim = channel_dim + xgt0 = x > 0 + ctx.save_for_backward(xgt0, sign_factor, scale_factor) + return x + + @staticmethod + def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: + xgt0, sign_factor, scale_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + sign_factor = sign_factor.unsqueeze(-1) + scale_factor = scale_factor.unsqueeze(-1) + + factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + neg_delta_grad = x_grad.abs() * factor + return ( + x_grad - neg_delta_grad, + None, + None, + None, + ) + + +class RandomClampFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + min: Optional[float], + max: Optional[float], + prob: float, + reflect: float, + ) -> Tensor: + x_clamped = torch.clamp(x, min=min, max=max) + mask = torch.rand_like(x) < prob + ans = torch.where(mask, x_clamped, x) + if x.requires_grad: + ctx.save_for_backward(ans == x) + ctx.reflect = reflect + if reflect != 0.0: + ans = ans * (1.0 + reflect) - (x * reflect) + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None, None, None, None]: + (is_same,) = ctx.saved_tensors + x_grad = ans_grad * is_same.to(ans_grad.dtype) + reflect = ctx.reflect + if reflect != 0.0: + x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect) + return x_grad, None, None, None, None + + +def random_clamp( + x: Tensor, + min: Optional[float] = None, + max: Optional[float] = None, + prob: float = 0.5, + reflect: float = 0.0, +): + return RandomClampFunction.apply(x, min, max, prob, reflect) + + +def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor: + """ + A randomized way of casting a floating point value to half precision. + """ + if x.dtype == torch.float16: + return x + x_abs = x.abs() + is_too_small = x_abs < min_abs + # for elements where is_too_small is true, random_val will contain +-min_abs with + # probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations, + # for those elements]. + random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs) + return torch.where(is_too_small, random_val, x).to(torch.float16) + + +class RandomGradFunction(torch.autograd.Function): + """ + Does nothing in forward pass; in backward pass, gets rid of very small grads using + randomized approach that preserves expectations (intended to reduce roundoff). + """ + + @staticmethod + def forward(ctx, x: Tensor, min_abs: float) -> Tensor: + ctx.min_abs = min_abs + return x + + @staticmethod + def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]: + if ans_grad.dtype == torch.float16: + return ( + random_cast_to_half(ans_grad.to(torch.float32), min_abs=ctx.min_abs), + None, + ) + else: + return ans_grad, None + + +class RandomGrad(torch.nn.Module): + """ + Gets rid of very small gradients using an expectation-preserving method, intended to increase + accuracy of training when using amp (automatic mixed precision) + """ + + def __init__(self, min_abs: float = 5.0e-06): + super(RandomGrad, self).__init__() + self.min_abs = min_abs + + def forward(self, x: Tensor): + if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing(): + return x + else: + return RandomGradFunction.apply(x, self.min_abs) + + +class SoftmaxFunction(torch.autograd.Function): + """ + Tries to handle half-precision derivatives in a randomized way that should + be more accurate for training than the default behavior. + """ + + @staticmethod + def forward(ctx, x: Tensor, dim: int): + ans = x.softmax(dim=dim) + # if x dtype is float16, x.softmax() returns a float32 because + # (presumably) that op does not support float16, and autocast + # is enabled. + if torch.is_autocast_enabled(): + ans = ans.to(torch.float16) + ctx.save_for_backward(ans) + ctx.x_dtype = x.dtype + ctx.dim = dim + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor): + (ans,) = ctx.saved_tensors + with torch.cuda.amp.autocast(enabled=False): + ans_grad = ans_grad.to(torch.float32) + ans = ans.to(torch.float32) + x_grad = ans_grad * ans + x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True) + return x_grad, None + + +def softmax(x: Tensor, dim: int): + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x.softmax(dim) + + return SoftmaxFunction.apply(x, dim) + + +class MaxEigLimiterFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + coeffs: Tensor, + direction: Tensor, + channel_dim: int, + grad_scale: float, + ) -> Tensor: + ctx.channel_dim = channel_dim + ctx.grad_scale = grad_scale + ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach()) + return x + + @staticmethod + def backward(ctx, x_grad, *args): + with torch.enable_grad(): + (x_orig, coeffs, new_direction) = ctx.saved_tensors + x_orig.requires_grad = True + num_channels = x_orig.shape[ctx.channel_dim] + x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels) + new_direction.requires_grad = False + x = x - x.mean(dim=0) + x_var = (x**2).mean() + x_residual = x - coeffs * new_direction + x_residual_var = (x_residual**2).mean() + # `variance_proportion` is the proportion of the variance accounted for + # by the top eigen-direction. This is to be minimized. + variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) + variance_proportion.backward() + x_orig_grad = x_orig.grad + x_extra_grad = ( + x_orig.grad + * ctx.grad_scale + * x_grad.norm() + / (x_orig_grad.norm() + 1.0e-20) + ) + return x_grad + x_extra_grad.detach(), None, None, None, None + + +class BasicNorm(torch.nn.Module): + """ + This is intended to be a simpler, and hopefully cheaper, replacement for + LayerNorm. The observation this is based on, is that Transformer-type + networks, especially with pre-norm, sometimes seem to set one of the + feature dimensions to a large constant value (e.g. 50), which "defeats" + the LayerNorm because the output magnitude is then not strongly dependent + on the other (useful) features. Presumably the weight and bias of the + LayerNorm are required to allow it to do this. + + So the idea is to introduce this large constant value as an explicit + parameter, that takes the role of the "eps" in LayerNorm, so the network + doesn't have to do this trick. We make the "eps" learnable. + + Args: + num_channels: the number of channels, e.g. 512. + channel_dim: the axis/dimension corresponding to the channel, + interprted as an offset from the input's ndim if negative. + shis is NOT the num_channels; it should typically be one of + {-2, -1, 0, 1, 2, 3}. + eps: the initial "epsilon" that we add as ballast in: + scale = ((input_vec**2).mean() + epsilon)**-0.5 + Note: our epsilon is actually large, but we keep the name + to indicate the connection with conventional LayerNorm. + learn_eps: if true, we learn epsilon; if false, we keep it + at the initial value. + eps_min: float + eps_max: float + """ + + def __init__( + self, + num_channels: int, + channel_dim: int = -1, # CAUTION: see documentation. + eps: float = 0.25, + learn_eps: bool = True, + eps_min: float = -3.0, + eps_max: float = 3.0, + ) -> None: + super(BasicNorm, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + if learn_eps: + self.eps = nn.Parameter(torch.tensor(eps).log().detach()) + else: + self.register_buffer("eps", torch.tensor(eps).log().detach()) + self.eps_min = eps_min + self.eps_max = eps_max + + def forward(self, x: Tensor) -> Tensor: + assert x.shape[self.channel_dim] == self.num_channels + eps = self.eps + if self.training and random.random() < 0.25: + # with probability 0.25, in training mode, clamp eps between the min + # and max; this will encourage it to learn parameters within the + # allowed range by making parameters that are outside the allowed + # range noisy. + + # gradients to allow the parameter to get back into the allowed + # region if it happens to exit it. + eps = eps.clamp(min=self.eps_min, max=self.eps_max) + scales = ( + torch.mean(x**2, dim=self.channel_dim, keepdim=True) + eps.exp() + ) ** -0.5 + return x * scales + + +def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear: + """ + Behaves like a constructor of a modified version of nn.Linear + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Linear(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +def ScaledConv1d(*args, initial_scale: float = 1.0, **kwargs) -> nn.Conv1d: + """ + Behaves like a constructor of a modified version of nn.Conv1d + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Conv1d(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +class ActivationBalancer(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to encourage, for + each channel, that it is positive at least a proportion `threshold` of the + time. It does this by multiplying negative derivative values by up to + (1+max_factor), and positive derivative values by up to (1-max_factor), + interpolated from 1 at the threshold to those extremal values when none + of the inputs are positive. + + Args: + num_channels: the number of channels + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + min_positive: the minimum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_positive: the maximum, per channel, of the proportion of the time + that (x > 0), above which we start to modify the derivatives. + max_factor: the maximum factor by which we modify the derivatives for + either the sign constraint or the magnitude constraint; + e.g. with max_factor=0.02, the the derivatives would be multiplied by + values in the range [0.98..1.02]. + sign_gain_factor: determines the 'gain' with which we increase the + change in gradient once the constraints on min_positive and max_positive + are violated. + scale_gain_factor: determines the 'gain' with which we increase the + change in gradient once the constraints on min_abs and max_abs + are violated. + min_abs: the minimum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + max_abs: the maximum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + min_prob: determines the minimum probability with which we modify the + gradients for the {min,max}_positive and {min,max}_abs constraints, + on each forward(). This is done randomly to prevent all layers + from doing it at the same time. Early in training we may use + higher probabilities than this; it will decay to this value. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int, + min_positive: float = 0.05, + max_positive: float = 0.95, + max_factor: float = 0.04, + sign_gain_factor: float = 0.01, + scale_gain_factor: float = 0.02, + min_abs: float = 0.2, + max_abs: float = 100.0, + min_prob: float = 0.1, + ): + super(ActivationBalancer, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.min_positive = min_positive + self.max_positive = max_positive + self.max_factor = max_factor + self.min_abs = min_abs + self.max_abs = max_abs + self.min_prob = min_prob + self.sign_gain_factor = sign_gain_factor + self.scale_gain_factor = scale_gain_factor + + # count measures how many times the forward() function has been called. + # We occasionally sync this to a tensor called `count`, that exists to + # make sure it is synced to disk when we load and save the model. + self.cpu_count = 0 + self.register_buffer("count", torch.tensor(0, dtype=torch.int64)) + + def forward(self, x: Tensor) -> Tensor: + if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing(): + return _no_op(x) + + count = self.cpu_count + self.cpu_count += 1 + + if random.random() < 0.01: + # Occasionally sync self.cpu_count with self.count. + # count affects the decay of 'prob'. don't do this on every iter, + # because syncing with the GPU is slow. + self.cpu_count = max(self.cpu_count, self.count.item()) + self.count.fill_(self.cpu_count) + + # the prob of doing some work exponentially decreases from 0.5 till it hits + # a floor at min_prob (==0.1, by default) + prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0))) + + if random.random() < prob: + sign_gain_factor = 0.5 + if self.min_positive != 0.0 or self.max_positive != 1.0: + sign_factor = _compute_sign_factor( + x, + self.channel_dim, + self.min_positive, + self.max_positive, + gain_factor=self.sign_gain_factor / prob, + max_factor=self.max_factor, + ) + else: + sign_factor = None + + scale_factor = _compute_scale_factor( + x.detach(), + self.channel_dim, + min_abs=self.min_abs, + max_abs=self.max_abs, + gain_factor=self.scale_gain_factor / prob, + max_factor=self.max_factor, + ) + return ActivationBalancerFunction.apply( + x, + scale_factor, + sign_factor, + self.channel_dim, + ) + else: + return _no_op(x) + + +def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor: + """ + Returns x unmodified, but in backprop will put a penalty for the excess of + the absolute values of elements of x over the limit "limit". E.g. if + limit == 10.0, then if x has any values over 10 it will get a penalty. + + Caution: the value of this penalty will be affected by grad scaling used + in automatic mixed precision training. For this reasons we use this, + it shouldn't really matter, or may even be helpful; we just use this + to disallow really implausible values of scores to be given to softmax. + """ + x_sign = x.sign() + over_limit = (x.abs() - limit) > 0 + # The following is a memory efficient way to penalize the absolute values of + # x that's over the limit. (The memory efficiency comes when you think + # about which items torch needs to cache for the autograd, and which ones it + # can throw away). The numerical value of aux_loss as computed here will + # actually be larger than it should be, by limit * over_limit.sum(), but it + # has the same derivative as the real aux_loss which is penalty * (x.abs() - + # limit).relu(). + aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x) + # note: we don't do sum() here on aux)_loss, but it's as if we had done + # sum() due to how with_loss() works. + x = with_loss(x, aux_loss) + # you must use x for something, or this will be ineffective. + return x + + +def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims. + if x.ndim == 2: + return x.diag() + else: + (batch, dim, dim) = x.shape + x = x.reshape(batch, dim * dim) + x = x[:, :: dim + 1] + assert x.shape == (batch, dim) + return x + + +def _whitening_metric(x: Tensor, num_groups: int): + """ + Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of + of the centered feature covariance are the same within each group's covariance matrix + and also between groups. + Args: + x: a Tensor of shape (*, num_channels) + num_groups: the number of groups of channels, a number >=1 that divides num_channels + Returns: + Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and + greater than 1.0 otherwise. + """ + assert x.dtype != torch.float16 + x = x.reshape(-1, x.shape[-1]) + (num_frames, num_channels) = x.shape + assert num_channels % num_groups == 0 + channels_per_group = num_channels // num_groups + x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1) + # x now has shape (num_groups, num_frames, channels_per_group) + # subtract the mean so we use the centered, not uncentered, covariance. + # My experience has been that when we "mess with the gradients" like this, + # it's better not do anything that tries to move the mean around, because + # that can easily cause instability. + x = x - x.mean(dim=1, keepdim=True) + # x_covar: (num_groups, channels_per_group, channels_per_group) + x_covar = torch.matmul(x.transpose(1, 2), x) + x_covar_mean_diag = _diag(x_covar).mean() + # the following expression is what we'd get if we took the matrix product + # of each covariance and measured the mean of its trace, i.e. + # the same as _diag(torch.matmul(x_covar, x_covar)).mean(). + x_covarsq_mean_diag = (x_covar**2).sum() / (num_groups * channels_per_group) + # this metric will be >= 1.0; the larger it is, the less 'white' the data was. + metric = x_covarsq_mean_diag / (x_covar_mean_diag**2 + 1.0e-20) + return metric + + +class WhiteningPenaltyFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, x: Tensor, num_groups: int, whitening_limit: float, grad_scale: float + ) -> Tensor: + ctx.save_for_backward(x) + ctx.num_groups = num_groups + ctx.whitening_limit = whitening_limit + ctx.grad_scale = grad_scale + return x + + @staticmethod + def backward(ctx, x_grad: Tensor): + (x_orig,) = ctx.saved_tensors + with torch.enable_grad(): + with torch.cuda.amp.autocast(enabled=False): + x_detached = x_orig.to(torch.float32).detach() + x_detached.requires_grad = True + + metric = _whitening_metric(x_detached, ctx.num_groups) + + if random.random() < 0.005 or __name__ == "__main__": + logging.info( + f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, " + f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}" + ) + + (metric - ctx.whitening_limit).relu().backward() + penalty_grad = x_detached.grad + scale = ctx.grad_scale * ( + x_grad.to(torch.float32).norm() / (penalty_grad.norm() + 1.0e-20) + ) + penalty_grad = penalty_grad * scale + return x_grad + penalty_grad.to(x_grad.dtype), None, None, None + + +class Whiten(nn.Module): + def __init__( + self, + num_groups: int, + whitening_limit: float, + prob: Union[float, Tuple[float, float]], + grad_scale: float, + ): + """ + Args: + num_groups: the number of groups to divide the channel dim into before + whitening. We will attempt to make the feature covariance + within each group, after mean subtraction, as "white" as possible, + while having the same trace across all groups. + whitening_limit: a value greater than 1.0, that dictates how much + freedom we have to violate the constraints. 1.0 would mean perfectly + white, with exactly the same trace across groups; larger values + give more freedom. E.g. 2.0. + prob: the probability with which we apply the gradient modification + (also affects the grad scale). May be supplied as a float, + or as a pair (min_prob, max_prob) + + grad_scale: determines the scale on the gradient term from this object, + relative to the rest of the gradient on the attention weights. + E.g. 0.02 (you may want to use smaller values than this if prob is large) + """ + super(Whiten, self).__init__() + assert num_groups >= 1 + assert whitening_limit >= 1 + assert grad_scale >= 0 + self.num_groups = num_groups + self.whitening_limit = whitening_limit + if isinstance(prob, float): + assert 0 < prob <= 1 + self.prob = prob + else: + (self.min_prob, self.max_prob) = prob + assert 0 < self.min_prob < self.max_prob <= 1 + self.prob = self.max_prob + + self.grad_scale = grad_scale + + def forward(self, x: Tensor) -> Tensor: + """ + In the forward pass, this function just returns the input unmodified. + In the backward pass, it will modify the gradients to ensure that the + distribution in each group has close to (lambda times I) as the covariance + after mean subtraction, with the same lambda across groups. + For whitening_limit > 1, there will be more freedom to violate this + constraint. + + Args: + x: the input of shape (*, num_channels) + + Returns: + x, unmodified. You should make sure + you use the returned value, or the graph will be freed + and nothing will happen in backprop. + """ + if not x.requires_grad or random.random() > self.prob or self.grad_scale == 0: + return _no_op(x) + else: + if hasattr(self, "min_prob") and random.random() < 0.25: + # occasionally switch between min_prob and max_prob, based on whether + # we are above or below the threshold. + if ( + _whitening_metric(x.to(torch.float32), self.num_groups) + > self.whitening_limit + ): + # there would be a change to the grad. + self.prob = self.max_prob + else: + self.prob = self.min_prob + + return WhiteningPenaltyFunction.apply( + x, self.num_groups, self.whitening_limit, self.grad_scale + ) + + +class WithLoss(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, y: Tensor): + ctx.y_shape = y.shape + return x + + @staticmethod + def backward(ctx, ans_grad: Tensor): + return ans_grad, torch.ones( + ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device + ) + + +def with_loss(x, y): + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x + # returns x but adds y.sum() to the loss function. + return WithLoss.apply(x, y) + + +def _no_op(x: Tensor) -> Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x + else: + # a no-op function that will have a node in the autograd graph, + # to avoid certain bugs relating to backward hooks + return x.chunk(1, dim=-1)[0] + + +class Identity(torch.nn.Module): + def __init__(self): + super(Identity, self).__init__() + + def forward(self, x): + return _no_op(x) + + +class MaxEig(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to discourage + that any given direction in activation space accounts for more than + a specified proportion of the covariance (e.g. 0.2). + + + Args: + num_channels: the number of channels + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + max_var_per_eig: the maximum proportion of the variance of the + features/channels, after mean subtraction, that can come from + any given eigenvalue. + min_prob: the minimum probability with which we apply this during any invocation + of forward(), assuming last time we applied the constraint it was + not active; supplied for speed. + scale: determines the scale with which we modify the gradients, relative + to the existing / unmodified gradients + """ + + def __init__( + self, + num_channels: int, + channel_dim: int, + max_var_per_eig: float = 0.2, + min_prob: float = 0.01, + scale: float = 0.01, + ): + super(MaxEig, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.scale = scale + assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels + self.max_var_per_eig = max_var_per_eig + + # we figure out the dominant direction using the power method: starting with + # a random vector, keep multiplying by the covariance and renormalizing. + with torch.no_grad(): + # arbitrary.. would use randn() but want to leave the rest of the model's + # random parameters unchanged for comparison + direction = torch.arange(num_channels).to(torch.float) + direction = direction / direction.norm() + self.register_buffer("max_eig_direction", direction) + + self.min_prob = min_prob + # cur_prob is the current probability we'll use to apply the ActivationBalancer. + # We'll regress this towards prob, each tiem we try to apply it and it is not + # active. + self.cur_prob = 1.0 + + def forward(self, x: Tensor) -> Tensor: + if ( + torch.jit.is_scripting() + or self.max_var_per_eig <= 0 + or random.random() > self.cur_prob + or torch.jit.is_tracing() + ): + return _no_op(x) + + with torch.cuda.amp.autocast(enabled=False): + eps = 1.0e-20 + orig_x = x + x = x.to(torch.float32) + with torch.no_grad(): + x = x.transpose(self.channel_dim, -1).reshape(-1, self.num_channels) + x = x - x.mean(dim=0) + new_direction, coeffs = self._find_direction_coeffs( + x, self.max_eig_direction + ) + x_var = (x**2).mean() + x_residual = x - coeffs * new_direction + x_residual_var = (x_residual**2).mean() + + # `variance_proportion` is the proportion of the variance accounted for + # by the top eigen-direction. + variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) + + # ensure new direction is nonzero even if x == 0, by including `direction`. + self._set_direction(0.1 * self.max_eig_direction + new_direction) + + if random.random() < 0.01 or __name__ == "__main__": + logging.info( + f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}" + ) + + if variance_proportion >= self.max_var_per_eig: + # The constraint is active. Note, we should quite rarely + # reach here, only near the beginning of training if we are + # starting to diverge, should this constraint be active. + cur_prob = self.cur_prob + self.cur_prob = 1.0 # next time, do the update with probability 1.0. + return MaxEigLimiterFunction.apply( + orig_x, coeffs, new_direction, self.channel_dim, self.scale + ) + else: + # let self.cur_prob exponentially approach self.min_prob, as + # long as the constraint is inactive. + self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob + return orig_x + + def _set_direction(self, direction: Tensor): + """ + Sets self.max_eig_direction to a normalized version of `direction` + """ + direction = direction.detach() + direction = direction / direction.norm() + direction_sum = direction.sum().item() + if direction_sum - direction_sum == 0: # no inf/nan + self.max_eig_direction[:] = direction + else: + logging.info( + f"Warning: sum of direction in MaxEig is {direction_sum}, " + "num_channels={self.num_channels}, channel_dim={self.channel_dim}" + ) + + def _find_direction_coeffs( + self, x: Tensor, prev_direction: Tensor + ) -> Tuple[Tensor, Tensor, Tensor]: + """ + Figure out (an approximation to) the proportion of the variance of a set of + feature vectors that can be attributed to the top eigen-direction. + Args: + x: a Tensor of shape (num_frames, num_channels), with num_frames > 1. + prev_direction: a Tensor of shape (num_channels,), that is our previous estimate + of the top eigen-direction, or a random direction if this is the first + iteration. Does not have to be normalized, but should be nonzero. + + Returns: (cur_direction, coeffs), where: + cur_direction: a Tensor of shape (num_channels,) that is the current + estimate of the top eigen-direction. + coeffs: a Tensor of shape (num_frames, 1) that minimizes, or + approximately minimizes, (x - coeffs * cur_direction).norm() + """ + (num_frames, num_channels) = x.shape + assert num_channels > 1 and num_frames > 1 + assert prev_direction.shape == (num_channels,) + # `coeffs` are the coefficients of `prev_direction` in x. + # actually represent the coeffs up to a constant positive factor. + coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10 + cur_direction = (x * coeffs).sum(dim=0) / ((coeffs**2).sum() + 1.0e-20) + return cur_direction, coeffs + + +class DoubleSwishFunction(torch.autograd.Function): + """ + double_swish(x) = x * torch.sigmoid(x-1) + This is a definition, originally motivated by its close numerical + similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). + + Memory-efficient derivative computation: + double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) + double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). + Now, s'(x) = s(x) * (1-s(x)). + double_swish'(x) = x * s'(x) + s(x). + = x * s(x) * (1-s(x)) + s(x). + = double_swish(x) * (1-s(x)) + s(x) + ... so we just need to remember s(x) but not x itself. + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + requires_grad = x.requires_grad + x_dtype = x.dtype + if x.dtype == torch.float16: + x = x.to(torch.float32) + + s = torch.sigmoid(x - 1.0) + y = x * s + + if requires_grad: + deriv = y * (1 - s) + s + # notes on derivative of x * sigmoid(x - 1): + # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29 + # min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund + # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound. + # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which + # floors), should be expectation-preserving. + floor = -0.043637 + ceil = 1.2 + d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like( + deriv + ) + if __name__ == "__main__": + # for self-testing only. + assert d_scaled.min() >= 0.0 + assert d_scaled.max() < 256.0 + d_int = d_scaled.to(torch.uint8) + ctx.save_for_backward(d_int) + if x.dtype == torch.float16 or torch.is_autocast_enabled(): + y = y.to(torch.float16) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + (d,) = ctx.saved_tensors + # the same constants as used in forward pass. + floor = -0.043637 + ceil = 1.2 + d = d * ((ceil - floor) / 255.0) + floor + return y_grad * d + + +class DoubleSwish(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return double-swish activation function which is an approximation to Swish(Swish(x)), + that we approximate closely with x * sigmoid(x-1). + """ + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x * torch.sigmoid(x - 1.0) + return DoubleSwishFunction.apply(x) + + +def _test_max_eig(): + for proportion in [0.1, 0.5, 10.0]: + logging.info(f"proportion = {proportion}") + x = torch.randn(100, 128) + direction = torch.randn(128) + coeffs = torch.randn(100, 1) + x += proportion * direction * coeffs + + x.requires_grad = True + + num_channels = 128 + m = MaxEig( + num_channels, 1, 0.5, scale=0.1 # channel_dim # max_var_per_eig + ) # grad_scale + + for _ in range(4): + y = m(x) + + y_grad = torch.randn_like(x) + y.backward(gradient=y_grad) + + if proportion < 0.2: + assert torch.allclose(x.grad, y_grad, atol=1.0e-02) + elif proportion > 1.0: + assert not torch.allclose(x.grad, y_grad) + + +def _test_whiten(): + for proportion in [0.1, 0.5, 10.0]: + logging.info(f"_test_whiten(): proportion = {proportion}") + x = torch.randn(100, 128) + direction = torch.randn(128) + coeffs = torch.randn(100, 1) + x += proportion * direction * coeffs + + x.requires_grad = True + + num_channels = 128 + m = Whiten( + 1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit, + ) # grad_scale + + for _ in range(4): + y = m(x) + + y_grad = torch.randn_like(x) + y.backward(gradient=y_grad) + + if proportion < 0.2: + assert torch.allclose(x.grad, y_grad) + elif proportion > 1.0: + assert not torch.allclose(x.grad, y_grad) + + +def _test_activation_balancer_sign(): + probs = torch.arange(0, 1, 0.01) + N = 1000 + x = 1.0 * ((2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + probs.numel(), + channel_dim=0, + min_positive=0.05, + max_positive=0.95, + max_factor=0.2, + min_abs=0.0, + ) + + y_grad = torch.sign(torch.randn(probs.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_sign: x = ", x) + print("_test_activation_balancer_sign: y grad = ", y_grad) + print("_test_activation_balancer_sign: x grad = ", x.grad) + + +def _test_activation_balancer_magnitude(): + magnitudes = torch.arange(0, 1, 0.01) + N = 1000 + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + magnitudes.numel(), + channel_dim=0, + min_positive=0.0, + max_positive=1.0, + max_factor=0.2, + min_abs=0.2, + max_abs=0.8, + min_prob=1.0, + ) + + y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_magnitude: x = ", x) + print("_test_activation_balancer_magnitude: y grad = ", y_grad) + print("_test_activation_balancer_magnitude: x grad = ", x.grad) + + +def _test_basic_norm(): + num_channels = 128 + m = BasicNorm(num_channels=num_channels, channel_dim=1) + + x = torch.randn(500, num_channels) + + y = m(x) + + assert y.shape == x.shape + x_rms = (x**2).mean().sqrt() + y_rms = (y**2).mean().sqrt() + print("x rms = ", x_rms) + print("y rms = ", y_rms) + assert y_rms < x_rms + assert y_rms > 0.5 * x_rms + + +def _test_double_swish_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 3.0 + x.requires_grad = True + m = DoubleSwish() + + tol = (1.2 - (-0.043637)) / 255.0 + torch.autograd.gradcheck(m, x, atol=tol) + + # for self-test. + x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 + x.requires_grad = True + y = m(x) + + +def _test_softmax(): + a = torch.randn(2, 10, dtype=torch.float64) + b = a.clone() + a.requires_grad = True + b.requires_grad = True + a.softmax(dim=1)[:, 0].sum().backward() + print("a grad = ", a.grad) + softmax(b, dim=1)[:, 0].sum().backward() + print("b grad = ", b.grad) + assert torch.allclose(a.grad, b.grad) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_softmax() + _test_whiten() + _test_max_eig() + _test_activation_balancer_sign() + _test_activation_balancer_magnitude() + _test_basic_norm() + _test_double_swish_deriv() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py new file mode 100644 index 000000000..56165d1f9 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py @@ -0,0 +1,114 @@ +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +This file replaces various modules in a model. +Specifically, ActivationBalancer is replaced with an identity operator; +Whiten is also replaced with an identity operator; +BasicNorm is replaced by a module with `exp` removed. +""" + +import copy +from typing import List + +import torch +import torch.nn as nn +from scaling import ActivationBalancer, BasicNorm, Whiten + + +class NonScaledNorm(nn.Module): + """See BasicNorm for doc""" + + def __init__( + self, + num_channels: int, + eps_exp: float, + channel_dim: int = -1, # CAUTION: see documentation. + ): + super().__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.eps_exp = eps_exp + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if not torch.jit.is_tracing(): + assert x.shape[self.channel_dim] == self.num_channels + scales = ( + torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp + ).pow(-0.5) + return x * scales + + +def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm: + assert isinstance(basic_norm, BasicNorm), type(BasicNorm) + norm = NonScaledNorm( + num_channels=basic_norm.num_channels, + eps_exp=basic_norm.eps.data.exp().item(), + channel_dim=basic_norm.channel_dim, + ) + return norm + + +# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa +# get_submodule was added to nn.Module at v1.9.0 +def get_submodule(model, target): + if target == "": + return model + atoms: List[str] = target.split(".") + mod: torch.nn.Module = model + for item in atoms: + if not hasattr(mod, item): + raise AttributeError( + mod._get_name() + " has no " "attribute `" + item + "`" + ) + mod = getattr(mod, item) + if not isinstance(mod, torch.nn.Module): + raise AttributeError("`" + item + "` is not " "an nn.Module") + return mod + + +def convert_scaled_to_non_scaled( + model: nn.Module, + inplace: bool = False, +): + """ + Args: + model: + The model to be converted. + inplace: + If True, the input model is modified inplace. + If False, the input model is copied and we modify the copied version. + Return: + Return a model without scaled layers. + """ + if not inplace: + model = copy.deepcopy(model) + + d = {} + for name, m in model.named_modules(): + if isinstance(m, BasicNorm): + d[name] = convert_basic_norm(m) + elif isinstance(m, (ActivationBalancer, Whiten)): + d[name] = nn.Identity() + + for k, v in d.items(): + if "." in k: + parent, child = k.rsplit(".", maxsplit=1) + setattr(get_submodule(model, parent), child, v) + else: + setattr(model, k, v) + + return model diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless7/test_model.py new file mode 100755 index 000000000..cdf914df3 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/test_model.py @@ -0,0 +1,68 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./pruned_transducer_stateless7/test_model.py +""" + +import torch + +from scaling_converter import convert_scaled_to_non_scaled +from train import get_params, get_transducer_model + + +def test_model(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + # Test jit script + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + print("Using torch.jit.script") + model = torch.jit.script(model) + + +def main(): + test_model() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/test_onnx.py b/egs/librispeech/ASR/pruned_transducer_stateless7/test_onnx.py new file mode 100644 index 000000000..2440d267c --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/test_onnx.py @@ -0,0 +1,374 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file is to test that models can be exported to onnx. +""" +import os + +from icefall import is_module_available + +if not is_module_available("onnxruntime"): + raise ValueError("Please 'pip install onnxruntime' first.") + +import onnxruntime as ort +import torch +from scaling_converter import convert_scaled_to_non_scaled +from zipformer import ( + Conv2dSubsampling, + RelPositionalEncoding, + Zipformer, + ZipformerEncoder, + ZipformerEncoderLayer, +) + +ort.set_default_logger_severity(3) + + +def test_conv2d_subsampling(): + filename = "conv2d_subsampling.onnx" + opset_version = 13 + N = 30 + T = 50 + num_features = 80 + d_model = 512 + x = torch.rand(N, T, num_features) + + encoder_embed = Conv2dSubsampling(num_features, d_model) + encoder_embed.eval() + encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True) + + torch.onnx.export( + encoder_embed, + x, + filename, + verbose=False, + opset_version=opset_version, + input_names=["x"], + output_names=["y"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "y": {0: "N", 1: "T"}, + }, + ) + + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + session = ort.InferenceSession( + filename, + sess_options=options, + ) + + input_nodes = session.get_inputs() + assert input_nodes[0].name == "x" + assert input_nodes[0].shape == ["N", "T", num_features] + + inputs = {input_nodes[0].name: x.numpy()} + + onnx_y = session.run(["y"], inputs)[0] + + onnx_y = torch.from_numpy(onnx_y) + torch_y = encoder_embed(x) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() + + os.remove(filename) + + +def test_rel_pos(): + filename = "rel_pos.onnx" + + opset_version = 13 + N = 30 + T = 50 + num_features = 80 + d_model = 512 + x = torch.rand(N, T, num_features) + + encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1) + encoder_pos.eval() + encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True) + + x = x.permute(1, 0, 2) + + torch.onnx.export( + encoder_pos, + x, + filename, + verbose=False, + opset_version=opset_version, + input_names=["x"], + output_names=["pos_emb"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "pos_emb": {0: "N", 1: "T"}, + }, + ) + + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + session = ort.InferenceSession( + filename, + sess_options=options, + ) + + input_nodes = session.get_inputs() + assert input_nodes[0].name == "x" + assert input_nodes[0].shape == ["N", "T", num_features] + + inputs = {input_nodes[0].name: x.numpy()} + onnx_pos_emb = session.run(["pos_emb"], inputs) + onnx_pos_emb = torch.from_numpy(onnx_pos_emb[0]) + + torch_pos_emb = encoder_pos(x) + assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), ( + (onnx_pos_emb - torch_pos_emb).abs().max() + ) + print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum()) + + os.remove(filename) + + +def test_zipformer_encoder_layer(): + filename = "zipformer_encoder_layer.onnx" + opset_version = 13 + N = 30 + T = 50 + + d_model = 384 + attention_dim = 192 + nhead = 8 + feedforward_dim = 1024 + dropout = 0.1 + cnn_module_kernel = 31 + pos_dim = 4 + + x = torch.rand(N, T, d_model) + + encoder_pos = RelPositionalEncoding(d_model, dropout) + encoder_pos.eval() + encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True) + + x = x.permute(1, 0, 2) + pos_emb = encoder_pos(x) + + encoder_layer = ZipformerEncoderLayer( + d_model, + attention_dim, + nhead, + feedforward_dim, + dropout, + cnn_module_kernel, + pos_dim, + ) + encoder_layer.eval() + encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True) + + torch.onnx.export( + encoder_layer, + (x, pos_emb), + filename, + verbose=False, + opset_version=opset_version, + input_names=["x", "pos_emb"], + output_names=["y"], + dynamic_axes={ + "x": {0: "T", 1: "N"}, + "pos_emb": {0: "N", 1: "T"}, + "y": {0: "T", 1: "N"}, + }, + ) + + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + session = ort.InferenceSession( + filename, + sess_options=options, + ) + + input_nodes = session.get_inputs() + inputs = { + input_nodes[0].name: x.numpy(), + input_nodes[1].name: pos_emb.numpy(), + } + onnx_y = session.run(["y"], inputs)[0] + onnx_y = torch.from_numpy(onnx_y) + + torch_y = encoder_layer(x, pos_emb) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() + + print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape) + + os.remove(filename) + + +def test_zipformer_encoder(): + filename = "zipformer_encoder.onnx" + + opset_version = 13 + N = 3 + T = 15 + + d_model = 512 + attention_dim = 192 + nhead = 8 + feedforward_dim = 1024 + dropout = 0.1 + cnn_module_kernel = 31 + pos_dim = 4 + num_encoder_layers = 12 + + warmup_batches = 4000.0 + warmup_begin = warmup_batches / (num_encoder_layers + 1) + warmup_end = warmup_batches / (num_encoder_layers + 1) + + x = torch.rand(N, T, d_model) + + encoder_layer = ZipformerEncoderLayer( + d_model, + attention_dim, + nhead, + feedforward_dim, + dropout, + cnn_module_kernel, + pos_dim, + ) + encoder = ZipformerEncoder( + encoder_layer, num_encoder_layers, dropout, warmup_begin, warmup_end + ) + encoder.eval() + encoder = convert_scaled_to_non_scaled(encoder, inplace=True) + + # jit_model = torch.jit.trace(encoder, (pos_emb)) + + torch_y = encoder(x) + + torch.onnx.export( + encoder, + (x), + filename, + verbose=False, + opset_version=opset_version, + input_names=["x"], + output_names=["y"], + dynamic_axes={ + "x": {0: "T", 1: "N"}, + "y": {0: "T", 1: "N"}, + }, + ) + + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + session = ort.InferenceSession( + filename, + sess_options=options, + ) + + input_nodes = session.get_inputs() + inputs = { + input_nodes[0].name: x.numpy(), + } + onnx_y = session.run(["y"], inputs)[0] + onnx_y = torch.from_numpy(onnx_y) + + torch_y = encoder(x) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() + + print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape) + + os.remove(filename) + + +def test_zipformer(): + filename = "zipformer.onnx" + opset_version = 11 + N = 3 + T = 15 + num_features = 80 + x = torch.rand(N, T, num_features) + x_lens = torch.full((N,), fill_value=T, dtype=torch.int64) + + zipformer = Zipformer(num_features=num_features) + zipformer.eval() + zipformer = convert_scaled_to_non_scaled(zipformer, inplace=True) + + # jit_model = torch.jit.trace(zipformer, (x, x_lens)) + torch.onnx.export( + zipformer, + (x, x_lens), + filename, + verbose=False, + opset_version=opset_version, + input_names=["x", "x_lens"], + output_names=["y", "y_lens"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "x_lens": {0: "N"}, + "y": {0: "N", 1: "T"}, + "y_lens": {0: "N"}, + }, + ) + options = ort.SessionOptions() + options.inter_op_num_threads = 1 + options.intra_op_num_threads = 1 + + session = ort.InferenceSession( + filename, + sess_options=options, + ) + + input_nodes = session.get_inputs() + inputs = { + input_nodes[0].name: x.numpy(), + input_nodes[1].name: x_lens.numpy(), + } + onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs) + onnx_y = torch.from_numpy(onnx_y) + onnx_y_lens = torch.from_numpy(onnx_y_lens) + + torch_y, torch_y_lens = zipformer(x, x_lens) + assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max() + + assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), ( + (onnx_y_lens - torch_y_lens).abs().max() + ) + print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape) + print(onnx_y_lens, torch_y_lens) + + os.remove(filename) + + +@torch.no_grad() +def main(): + test_conv2d_subsampling() + test_rel_pos() + test_zipformer_encoder_layer() + test_zipformer_encoder() + test_zipformer() + + +if __name__ == "__main__": + torch.manual_seed(20221011) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/train.py b/egs/librispeech/ASR/pruned_transducer_stateless7/train.py new file mode 100755 index 000000000..792a243e5 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/train.py @@ -0,0 +1,1258 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./pruned_transducer_stateless7/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7/exp \ + --full-libri 1 \ + --max-duration 550 + +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + filter_uneven_sized_batch, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "frame_shift_ms": 10.0, + "allowed_excess_duration_ratio": 0.1, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + # For the uneven-sized batch, the total duration after padding would possibly + # cause OOM. Hence, for each batch, which is sorted descendingly by length, + # we simply drop the last few shortest samples, so that the retained total frames + # (after padding) would not exceed `allowed_max_frames`: + # `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`, + # where `max_frames = max_duration * 1000 // frame_shift_ms`. + # We set allowed_excess_duration_ratio=0.1. + max_frames = params.max_duration * 1000 // params.frame_shift_ms + allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio)) + batch = filter_uneven_sized_batch(batch, allowed_max_frames) + + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py new file mode 100644 index 000000000..5cde57812 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py @@ -0,0 +1,1902 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import itertools +import logging +import math +import random +import warnings +from typing import List, Optional, Tuple, Union + +import torch +from encoder_interface import EncoderInterface +from scaling import ( + ScaledLinear, # not as in other dirs.. just scales down initial parameter values. +) +from scaling import ( + ActivationBalancer, + BasicNorm, + DoubleSwish, + Identity, + MaxEig, + ScaledConv1d, + Whiten, + _diag, + penalize_abs_values_gt, + random_clamp, + softmax, +) +from torch import Tensor, nn + +from icefall.dist import get_rank +from icefall.utils import make_pad_mask + + +class Zipformer(EncoderInterface): + """ + Args: + num_features (int): Number of input features + d_model: (int,int): embedding dimension of 2 encoder stacks + attention_dim: (int,int): attention dimension of 2 encoder stacks + nhead (int, int): number of heads + dim_feedforward (int, int): feedforward dimension in 2 encoder stacks + num_encoder_layers (int): number of encoder layers + dropout (float): dropout rate + cnn_module_kernel (int): Kernel size of convolution module + vgg_frontend (bool): whether to use vgg frontend. + warmup_batches (float): number of batches to warm up over + """ + + def __init__( + self, + num_features: int, + output_downsampling_factor: int = 2, + encoder_dims: Tuple[int] = (384, 384), + attention_dim: Tuple[int] = (256, 256), + encoder_unmasked_dims: Tuple[int] = (256, 256), + zipformer_downsampling_factors: Tuple[int] = (2, 4), + nhead: Tuple[int] = (8, 8), + feedforward_dim: Tuple[int] = (1536, 2048), + num_encoder_layers: Tuple[int] = (12, 12), + dropout: float = 0.1, + cnn_module_kernels: Tuple[int] = (31, 31), + pos_dim: int = 4, + warmup_batches: float = 4000.0, + ) -> None: + super(Zipformer, self).__init__() + + self.num_features = num_features + assert 0 < encoder_dims[0] <= encoder_dims[1] + self.encoder_dims = encoder_dims + self.encoder_unmasked_dims = encoder_unmasked_dims + self.zipformer_downsampling_factors = zipformer_downsampling_factors + self.output_downsampling_factor = output_downsampling_factor + + # will be written to, see set_batch_count() + self.batch_count = 0 + self.warmup_end = warmup_batches + + for u, d in zip(encoder_unmasked_dims, encoder_dims): + assert u <= d, (u, d) + + # self.encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, (T - 7)//2, encoder_dims). + # That is, it does two things simultaneously: + # (1) subsampling: T -> (T - 7)//2 + # (2) embedding: num_features -> encoder_dims + self.encoder_embed = Conv2dSubsampling( + num_features, encoder_dims[0], dropout=dropout + ) + + # each one will be ZipformerEncoder or DownsampledZipformerEncoder + encoders = [] + + num_encoders = len(encoder_dims) + for i in range(num_encoders): + encoder_layer = ZipformerEncoderLayer( + encoder_dims[i], + attention_dim[i], + nhead[i], + feedforward_dim[i], + dropout, + cnn_module_kernels[i], + pos_dim, + ) + + # For the segment of the warmup period, we let the Conv2dSubsampling + # layer learn something. Then we start to warm up the other encoders. + encoder = ZipformerEncoder( + encoder_layer, + num_encoder_layers[i], + dropout, + warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1), + warmup_end=warmup_batches * (i + 2) / (num_encoders + 1), + ) + + if zipformer_downsampling_factors[i] != 1: + encoder = DownsampledZipformerEncoder( + encoder, + input_dim=encoder_dims[i - 1] if i > 0 else encoder_dims[0], + output_dim=encoder_dims[i], + downsample=zipformer_downsampling_factors[i], + ) + encoders.append(encoder) + self.encoders = nn.ModuleList(encoders) + + # initializes self.skip_layers and self.skip_modules + self._init_skip_modules() + + self.downsample_output = AttentionDownsample( + encoder_dims[-1], encoder_dims[-1], downsample=output_downsampling_factor + ) + + def _get_layer_skip_dropout_prob(self): + if not self.training: + return 0.0 + batch_count = self.batch_count + min_dropout_prob = 0.025 + + if batch_count > self.warmup_end: + return min_dropout_prob + else: + return 0.5 - (batch_count / self.warmup_end) * (0.5 - min_dropout_prob) + + def _init_skip_modules(self): + """ + If self.zipformer_downampling_factors = (1, 2, 4, 8, 4, 2), then at the input of layer + indexed 4 (in zero indexing), with has subsapling_factor=4, we combine the output of + layers 2 and 3; and at the input of layer indexed 5, which which has subsampling_factor=2, + we combine the outputs of layers 1 and 5. + """ + skip_layers = [] + skip_modules = [] + z = self.zipformer_downsampling_factors + for i in range(len(z)): + if i <= 1 or z[i - 1] <= z[i]: + skip_layers.append(None) + skip_modules.append(SimpleCombinerIdentity()) + else: + # TEMP + for j in range(i - 2, -1, -1): + if z[j] <= z[i] or j == 0: + # TEMP logging statement. + logging.info( + f"At encoder stack {i}, which has downsampling_factor={z[i]}, we will " + f"combine the outputs of layers {j} and {i-1}, with downsampling_factors={z[j]} and {z[i-1]}." + ) + skip_layers.append(j) + skip_modules.append( + SimpleCombiner( + self.encoder_dims[j], + self.encoder_dims[i - 1], + min_weight=(0.0, 0.25), + ) + ) + break + self.skip_layers = skip_layers + self.skip_modules = nn.ModuleList(skip_modules) + + def get_feature_masks(self, x: torch.Tensor) -> List[float]: + # Note: The actual return type is Union[List[float], List[Tensor]], + # but to make torch.jit.script() work, we use List[float] + """ + In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of + randomized feature masks, one per encoder. + On e.g. 15% of frames, these masks will zero out all encoder dims larger than + some supplied number, e.g. >256, so in effect on those frames we are using + a smaller encoder dim. + + We generate the random masks at this level because we want the 2 masks to 'agree' + all the way up the encoder stack. This will mean that the 1st mask will have + mask values repeated self.zipformer_downsampling_factors times. + + Args: + x: the embeddings (needed for the shape and dtype and device), of shape + (num_frames, batch_size, encoder_dims0) + """ + num_encoders = len(self.encoder_dims) + if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing(): + return [1.0] * num_encoders + + (num_frames0, batch_size, _encoder_dims0) = x.shape + + assert self.encoder_dims[0] == _encoder_dims0, ( + self.encoder_dims, + _encoder_dims0, + ) + + max_downsampling_factor = max(self.zipformer_downsampling_factors) + + num_frames_max = num_frames0 + max_downsampling_factor - 1 + + feature_mask_dropout_prob = 0.15 + + # frame_mask_max shape: (num_frames_max, batch_size, 1) + frame_mask_max = ( + torch.rand(num_frames_max, batch_size, 1, device=x.device) + > feature_mask_dropout_prob + ).to(x.dtype) + + feature_masks = [] + for i in range(num_encoders): + ds = self.zipformer_downsampling_factors[i] + upsample_factor = max_downsampling_factor // ds + + frame_mask = ( + frame_mask_max.unsqueeze(1) + .expand(num_frames_max, upsample_factor, batch_size, 1) + .reshape(num_frames_max * upsample_factor, batch_size, 1) + ) + num_frames = (num_frames0 + ds - 1) // ds + frame_mask = frame_mask[:num_frames] + feature_mask = torch.ones( + num_frames, + batch_size, + self.encoder_dims[i], + dtype=x.dtype, + device=x.device, + ) + u = self.encoder_unmasked_dims[i] + feature_mask[:, :, u:] *= frame_mask + feature_masks.append(feature_mask) + + return feature_masks + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (batch_size, output_seq_len, encoder_dims[-1]) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + """ + x = self.encoder_embed(x) + + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + lengths = (x_lens - 7) >> 1 + assert x.size(0) == lengths.max().item(), (x.shape, lengths, lengths.max()) + mask = make_pad_mask(lengths) + + outputs = [] + feature_masks = self.get_feature_masks(x) + + for i, (module, skip_module) in enumerate( + zip(self.encoders, self.skip_modules) + ): + ds = self.zipformer_downsampling_factors[i] + k = self.skip_layers[i] + if isinstance(k, int): + layer_skip_dropout_prob = self._get_layer_skip_dropout_prob() + if torch.jit.is_scripting() or torch.jit.is_tracing(): + x = skip_module(outputs[k], x) + elif (not self.training) or random.random() > layer_skip_dropout_prob: + x = skip_module(outputs[k], x) + x = module( + x, + feature_mask=feature_masks[i], + src_key_padding_mask=None if mask is None else mask[..., ::ds], + ) + outputs.append(x) + + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + lengths = (lengths + 1) >> 1 + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + return x, lengths + + +class ZipformerEncoderLayer(nn.Module): + """ + ZipformerEncoderLayer is made up of self-attn, feedforward and convolution networks. + + Args: + d_model: the number of expected features in the input (required). + nhead: the number of heads in the multiheadattention models (required). + feedforward_dim: the dimension of the feedforward network model (default=2048). + dropout: the dropout value (default=0.1). + cnn_module_kernel (int): Kernel size of convolution module. + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = encoder_layer(src, pos_emb) + """ + + def __init__( + self, + d_model: int, + attention_dim: int, + nhead: int, + feedforward_dim: int = 2048, + dropout: float = 0.1, + cnn_module_kernel: int = 31, + pos_dim: int = 4, + ) -> None: + super(ZipformerEncoderLayer, self).__init__() + + self.d_model = d_model + + # will be written to, see set_batch_count() + self.batch_count = 0 + + self.self_attn = RelPositionMultiheadAttention( + d_model, + attention_dim, + nhead, + pos_dim, + dropout=0.0, + ) + + self.pooling = PoolingModule(d_model) + + self.feed_forward1 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward2 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward3 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.conv_module1 = ConvolutionModule(d_model, cnn_module_kernel) + + self.conv_module2 = ConvolutionModule(d_model, cnn_module_kernel) + + self.norm_final = BasicNorm(d_model) + + self.bypass_scale = nn.Parameter(torch.tensor(0.5)) + + # try to ensure the output is close to zero-mean (or at least, zero-median). + self.balancer = ActivationBalancer( + d_model, + channel_dim=-1, + min_positive=0.45, + max_positive=0.55, + max_abs=6.0, + ) + self.whiten = Whiten( + num_groups=1, whitening_limit=5.0, prob=(0.025, 0.25), grad_scale=0.01 + ) + + def get_bypass_scale(self): + if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing(): + return self.bypass_scale + if random.random() < 0.1: + # ensure we get grads if self.bypass_scale becomes out of range + return self.bypass_scale + # hardcode warmup period for bypass scale + warmup_period = 20000.0 + initial_clamp_min = 0.75 + final_clamp_min = 0.25 + if self.batch_count > warmup_period: + clamp_min = final_clamp_min + else: + clamp_min = initial_clamp_min - (self.batch_count / warmup_period) * ( + initial_clamp_min - final_clamp_min + ) + return self.bypass_scale.clamp(min=clamp_min, max=1.0) + + def get_dynamic_dropout_rate(self): + # return dropout rate for the dynamic modules (self_attn, pooling, convolution); this + # starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable + # at the beginning, by making the network focus on the feedforward modules. + if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing(): + return 0.0 + warmup_period = 2000.0 + initial_dropout_rate = 0.2 + final_dropout_rate = 0.0 + if self.batch_count > warmup_period: + return final_dropout_rate + else: + return initial_dropout_rate - ( + initial_dropout_rate * final_dropout_rate + ) * (self.batch_count / warmup_period) + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + src_mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + batch_split: if not None, this layer will only be applied to + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + src_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, N is the batch size, E is the feature number + """ + src_orig = src + + # macaron style feed forward module + src = src + self.feed_forward1(src) + + # dropout rate for submodules that interact with time. + dynamic_dropout = self.get_dynamic_dropout_rate() + + # pooling module + if torch.jit.is_scripting() or torch.jit.is_tracing(): + src = src + self.pooling(src, key_padding_mask=src_key_padding_mask) + elif random.random() >= dynamic_dropout: + src = src + self.pooling(src, key_padding_mask=src_key_padding_mask) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=src_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + + src = src + self.self_attn.forward2(src, attn_weights) + + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + else: + use_self_attn = random.random() >= dynamic_dropout + if use_self_attn: + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=src_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + if random.random() >= dynamic_dropout: + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + if use_self_attn: + src = src + self.self_attn.forward2(src, attn_weights) + + if random.random() >= dynamic_dropout: + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward3(src) + + src = self.norm_final(self.balancer(src)) + + delta = src - src_orig + + src = src_orig + delta * self.get_bypass_scale() + + return self.whiten(src) + + +class ZipformerEncoder(nn.Module): + r"""ZipformerEncoder is a stack of N encoder layers + + Args: + encoder_layer: an instance of the ZipformerEncoderLayer() class (required). + num_layers: the number of sub-encoder-layers in the encoder (required). + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> zipformer_encoder = ZipformerEncoder(encoder_layer, num_layers=6) + >>> src = torch.rand(10, 32, 512) + >>> out = zipformer_encoder(src) + """ + + def __init__( + self, + encoder_layer: nn.Module, + num_layers: int, + dropout: float, + warmup_begin: float, + warmup_end: float, + ) -> None: + super().__init__() + # will be written to, see set_batch_count() Note: in inference time this + # may be zero but should be treated as large, we can check if + # self.training is true. + self.batch_count = 0 + self.warmup_begin = warmup_begin + self.warmup_end = warmup_end + # module_seed is for when we need a random number that is unique to the module but + # shared across jobs. It's used to randomly select how many layers to drop, + # so that we can keep this consistent across worker tasks (for efficiency). + self.module_seed = torch.randint(0, 1000, ()).item() + + self.encoder_pos = RelPositionalEncoding(encoder_layer.d_model, dropout) + + self.layers = nn.ModuleList( + [copy.deepcopy(encoder_layer) for i in range(num_layers)] + ) + self.num_layers = num_layers + + assert 0 <= warmup_begin <= warmup_end, (warmup_begin, warmup_end) + + delta = (1.0 / num_layers) * (warmup_end - warmup_begin) + cur_begin = warmup_begin + for i in range(num_layers): + self.layers[i].warmup_begin = cur_begin + cur_begin += delta + self.layers[i].warmup_end = cur_begin + + def get_layers_to_drop(self, rnd_seed: int): + ans = set() + if not self.training: + return ans + + batch_count = self.batch_count + num_layers = len(self.layers) + + def get_layerdrop_prob(layer: int) -> float: + layer_warmup_begin = self.layers[layer].warmup_begin + layer_warmup_end = self.layers[layer].warmup_end + + initial_layerdrop_prob = 0.5 + final_layerdrop_prob = 0.05 + + if batch_count == 0: + # As a special case, if batch_count == 0, return 0 (drop no + # layers). This is rather ugly, I'm afraid; it is intended to + # enable our scan_pessimistic_batches_for_oom() code to work correctly + # so if we are going to get OOM it will happen early. + # also search for 'batch_count' with quotes in this file to see + # how we initialize the warmup count to a random number between + # 0 and 10. + return 0.0 + elif batch_count < layer_warmup_begin: + return initial_layerdrop_prob + elif batch_count > layer_warmup_end: + return final_layerdrop_prob + else: + # linearly interpolate + t = (batch_count - layer_warmup_begin) / layer_warmup_end + assert 0.0 <= t < 1.001, t + return initial_layerdrop_prob + t * ( + final_layerdrop_prob - initial_layerdrop_prob + ) + + shared_rng = random.Random(batch_count + self.module_seed) + independent_rng = random.Random(rnd_seed) + + layerdrop_probs = [get_layerdrop_prob(i) for i in range(num_layers)] + tot = sum(layerdrop_probs) + # Instead of drawing the samples independently, we first randomly decide + # how many layers to drop out, using the same random number generator between + # jobs so that all jobs drop out the same number (this is for speed). + # Then we use an approximate approach to drop out the individual layers + # with their specified probs while reaching this exact target. + num_to_drop = int(tot) + int(shared_rng.random() < (tot - int(tot))) + + layers = list(range(num_layers)) + independent_rng.shuffle(layers) + + # go through the shuffled layers until we get the required number of samples. + if num_to_drop > 0: + for layer in itertools.cycle(layers): + if independent_rng.random() < layerdrop_probs[layer]: + ans.add(layer) + if len(ans) == num_to_drop: + break + if shared_rng.random() < 0.005 or __name__ == "__main__": + logging.info( + f"warmup_begin={self.warmup_begin:.1f}, warmup_end={self.warmup_end:.1f}, " + f"batch_count={batch_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}" + ) + return ans + + def forward( + self, + src: Tensor, + # Note: The type of feature_mask should be Union[float, Tensor], + # but to make torch.jit.script() work, we use `float` here + feature_mask: float = 1.0, + mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. + mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: (x, x_no_combine), both of shape (S, N, E) + """ + pos_emb = self.encoder_pos(src) + output = src + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + layers_to_drop = [] + else: + rnd_seed = src.numel() + random.randint(0, 1000) + layers_to_drop = self.get_layers_to_drop(rnd_seed) + + output = output * feature_mask + + for i, mod in enumerate(self.layers): + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + if i in layers_to_drop: + continue + output = mod( + output, + pos_emb, + src_mask=mask, + src_key_padding_mask=src_key_padding_mask, + ) + + output = output * feature_mask + + return output + + +class DownsampledZipformerEncoder(nn.Module): + r""" + DownsampledZipformerEncoder is a zipformer encoder evaluated at a reduced frame rate, + after convolutional downsampling, and then upsampled again at the output, and combined + with the origin input, so that the output has the same shape as the input. + """ + + def __init__( + self, encoder: nn.Module, input_dim: int, output_dim: int, downsample: int + ): + super(DownsampledZipformerEncoder, self).__init__() + self.downsample_factor = downsample + self.downsample = AttentionDownsample(input_dim, output_dim, downsample) + self.encoder = encoder + self.upsample = SimpleUpsample(output_dim, downsample) + self.out_combiner = SimpleCombiner( + input_dim, output_dim, min_weight=(0.0, 0.25) + ) + + def forward( + self, + src: Tensor, + # Note: the type of feature_mask should be Unino[float, Tensor], + # but to make torch.jit.script() happ, we use float here + feature_mask: float = 1.0, + mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. feature_mask is expected to be already downsampled by + self.downsample_factor. + mask: the mask for the src sequence (optional). CAUTION: we need to downsample + this, if we are to support it. Won't work correctly yet. + src_key_padding_mask: the mask for the src keys per batch (optional). Should + be downsampled already. + + Shape: + src: (S, N, E). + mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: output of shape (S, N, F) where F is the number of output features + (output_dim to constructor) + """ + src_orig = src + src = self.downsample(src) + ds = self.downsample_factor + if mask is not None: + mask = mask[::ds, ::ds] + + src = self.encoder( + src, + feature_mask=feature_mask, + mask=mask, + src_key_padding_mask=src_key_padding_mask, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return self.out_combiner(src_orig, src) + + +class AttentionDownsample(torch.nn.Module): + """ + Does downsampling with attention, by weighted sum, and a projection.. + """ + + def __init__(self, in_channels: int, out_channels: int, downsample: int): + """ + Require out_channels > in_channels. + """ + super(AttentionDownsample, self).__init__() + self.query = nn.Parameter(torch.randn(in_channels) * (in_channels**-0.5)) + + # fill in the extra dimensions with a projection of the input + if out_channels > in_channels: + self.extra_proj = nn.Linear( + in_channels * downsample, out_channels - in_channels, bias=False + ) + else: + self.extra_proj = None + self.downsample = downsample + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, in_channels) + Returns a tensor of shape + ( (seq_len+downsample-1)//downsample, batch_size, out_channels) + """ + (seq_len, batch_size, in_channels) = src.shape + ds = self.downsample + d_seq_len = (seq_len + ds - 1) // ds + + # Pad to an exact multiple of self.downsample + if seq_len != d_seq_len * ds: + # right-pad src, repeating the last element. + pad = d_seq_len * ds - seq_len + src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2]) + src = torch.cat((src, src_extra), dim=0) + assert src.shape[0] == d_seq_len * ds, (src.shape[0], d_seq_len, ds) + + src = src.reshape(d_seq_len, ds, batch_size, in_channels) + scores = (src * self.query).sum(dim=-1, keepdim=True) + + scores = penalize_abs_values_gt(scores, limit=10.0, penalty=1.0e-04) + + weights = scores.softmax(dim=1) + + # ans1 is the first `in_channels` channels of the output + ans = (src * weights).sum(dim=1) + src = src.permute(0, 2, 1, 3).reshape(d_seq_len, batch_size, ds * in_channels) + + if self.extra_proj is not None: + ans2 = self.extra_proj(src) + ans = torch.cat((ans, ans2), dim=2) + return ans + + +class SimpleUpsample(torch.nn.Module): + """ + A very simple form of upsampling that mostly just repeats the input, but + also adds a position-specific bias. + """ + + def __init__(self, num_channels: int, upsample: int): + super(SimpleUpsample, self).__init__() + self.bias = nn.Parameter(torch.randn(upsample, num_channels) * 0.01) + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, num_channels) + Returns a tensor of shape + ( (seq_len*upsample), batch_size, num_channels) + """ + upsample = self.bias.shape[0] + (seq_len, batch_size, num_channels) = src.shape + src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels) + src = src + self.bias.unsqueeze(1) + src = src.reshape(seq_len * upsample, batch_size, num_channels) + return src + + +class SimpleCombinerIdentity(nn.Module): + def __init__(self, *args, **kwargs): + super().__init__() + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + return src1 + + +class SimpleCombiner(torch.nn.Module): + """ + A very simple way of combining 2 vectors of 2 different dims, via a + learned weighted combination in the shared part of the dim. + Args: + dim1: the dimension of the first input, e.g. 256 + dim2: the dimension of the second input, e.g. 384. + The output will have the same dimension as dim2. + """ + + def __init__(self, dim1: int, dim2: int, min_weight: Tuple[float] = (0.0, 0.0)): + super(SimpleCombiner, self).__init__() + assert dim2 >= dim1, (dim2, dim1) + self.weight1 = nn.Parameter(torch.zeros(())) + self.min_weight = min_weight + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + """ + src1: (*, dim1) + src2: (*, dim2) + + Returns: a tensor of shape (*, dim2) + """ + assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape) + + weight1 = self.weight1 + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + if ( + self.training + and random.random() < 0.25 + and self.min_weight != (0.0, 0.0) + ): + weight1 = weight1.clamp( + min=self.min_weight[0], max=1.0 - self.min_weight[1] + ) + + src1 = src1 * weight1 + src2 = src2 * (1.0 - weight1) + + src1_dim = src1.shape[-1] + src2_dim = src2.shape[-1] + if src1_dim != src2_dim: + if src1_dim < src2_dim: + src1 = torch.nn.functional.pad(src1, (0, src2_dim - src1_dim)) + else: + src1 = src1[:src2_dim] + + return src1 + src2 + + +class RelPositionalEncoding(torch.nn.Module): + """Relative positional encoding module. + + See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py + + Args: + d_model: Embedding dimension. + dropout_rate: Dropout rate. + max_len: Maximum input length. + + """ + + def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None: + """Construct a PositionalEncoding object.""" + super(RelPositionalEncoding, self).__init__() + self.d_model = d_model + self.dropout = torch.nn.Dropout(dropout_rate) + self.pe = None + self.extend_pe(torch.tensor(0.0).expand(max_len)) + + def extend_pe(self, x: Tensor) -> None: + """Reset the positional encodings.""" + if self.pe is not None: + # self.pe contains both positive and negative parts + # the length of self.pe is 2 * input_len - 1 + if self.pe.size(1) >= x.size(0) * 2 - 1: + # Note: TorchScript doesn't implement operator== for torch.Device + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): + self.pe = self.pe.to(dtype=x.dtype, device=x.device) + return + # Suppose `i` means to the position of query vecotr and `j` means the + # position of key vector. We use position relative positions when keys + # are to the left (i>j) and negative relative positions otherwise (i Tensor: + """Add positional encoding. + + Args: + x (torch.Tensor): Input tensor (time, batch, `*`). + + Returns: + torch.Tensor: Encoded tensor (batch, time, `*`). + torch.Tensor: Encoded tensor (batch, 2*time-1, `*`). + + """ + self.extend_pe(x) + pos_emb = self.pe[ + :, + self.pe.size(1) // 2 + - x.size(0) + + 1 : self.pe.size(1) // 2 # noqa E203 + + x.size(0), + ] + return self.dropout(pos_emb) + + +class RelPositionMultiheadAttention(nn.Module): + r"""Multi-Head Attention layer with relative position encoding + + This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", + we have to write up the differences. + + + Args: + embed_dim: total dimension of the model. + attention_dim: dimension in the attention module, may be less or more than embed_dim + but must be a multiple of num_heads. + num_heads: parallel attention heads. + dropout: a Dropout layer on attn_output_weights. Default: 0.0. + + Examples:: + + >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) + >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) + """ + + def __init__( + self, + embed_dim: int, + attention_dim: int, + num_heads: int, + pos_dim: int, + dropout: float = 0.0, + ) -> None: + super(RelPositionMultiheadAttention, self).__init__() + self.embed_dim = embed_dim + self.attention_dim = attention_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = attention_dim // num_heads + self.pos_dim = pos_dim + assert self.head_dim % 2 == 0, self.head_dim + assert self.head_dim * num_heads == attention_dim, ( + self.head_dim, + num_heads, + attention_dim, + ) + + # the initial_scale is supposed to take over the "scaling" factor of + # head_dim ** -0.5, dividing it between the query and key. + in_proj_dim = ( + 2 * attention_dim # query, key + + attention_dim // 2 # value + + pos_dim * num_heads # positional encoding query + ) + + self.in_proj = ScaledLinear( + embed_dim, in_proj_dim, bias=True, initial_scale=self.head_dim**-0.25 + ) + + # self.whiten_values is applied on the values in forward(); + # it just copies the keys but prevents low-rank distribution by modifying grads. + self.whiten_values = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + self.whiten_keys = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + # linear transformation for positional encoding. + self.linear_pos = ScaledLinear( + embed_dim, num_heads * pos_dim, bias=False, initial_scale=0.05 + ) + + # the following are for diagnosics only, see --print-diagnostics option. + # they only copy their inputs. + self.copy_pos_query = Identity() + self.copy_query = Identity() + + self.out_proj = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + + self.in_proj2 = nn.Linear(embed_dim, attention_dim // 2, bias=False) + self.out_proj2 = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + # self.whiten_values2 is applied on the values in forward2() + self.whiten_values2 = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + def forward( + self, + x: Tensor, + pos_emb: Tensor, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x: input to be projected to query, key, value + pos_emb: Positional embedding tensor + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. When given a binary mask and a value is True, + the corresponding value on the attention layer will be ignored. When given + a byte mask and a value is non-zero, the corresponding value on the attention + layer will be ignored + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + - Inputs: + - x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the position + with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + - Returns: (attn_output, attn_weights) + + - attn_output: :math:`(S, N, E)` where S is the sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * N, S, S)` where N is the batch size, H is the num-heads + and S is the sequence length. + """ + x, weights = self.multi_head_attention_forward( + self.in_proj(x), + self.linear_pos(pos_emb), + self.attention_dim, + self.num_heads, + self.dropout, + self.out_proj.weight, + self.out_proj.bias, + training=self.training, + key_padding_mask=key_padding_mask, + attn_mask=attn_mask, + ) + return x, weights + + def multi_head_attention_forward( + self, + x_proj: Tensor, + pos: Tensor, + attention_dim: int, + num_heads: int, + dropout_p: float, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + training: bool = True, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x_proj: the projected input, to be split into query, key, value. + pos: head-specific biases arising from the positional embeddings. + attention_dim: dimension inside attention mechanism + num_heads: parallel attention heads. + dropout_p: probability of an element to be zeroed. + out_proj_weight, out_proj_bias: the output projection weight and bias. + training: apply dropout if is ``True``. + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. This is an binary mask. When the value is True, + the corresponding value on the attention layer will be filled with -inf. + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + Inputs: + - x: :math:`(L, N, 7 * A // 2)` where L is the target sequence length, N is the batch size, A is + the attention dimension. Will be split into (query, key, value, pos). + - pos: :math:`(N, 2*L-1, A//2)` or :math:`(1, 2*L-1, A//2)` where L is the sequence + length, N is the batch size, and A is the attention dim. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * H, S, S)` where N is the batch size, + H is the num-heads, S is the sequence length. + """ + + seq_len, bsz, _ = x_proj.size() + + head_dim = attention_dim // num_heads + pos_dim = self.pos_dim # positional-encoding dim per head + assert ( + head_dim * num_heads == attention_dim + ), f"attention_dim must be divisible by num_heads: {head_dim}, {num_heads}, {attention_dim}" + + # self-attention + q = x_proj[..., 0:attention_dim] + k = x_proj[..., attention_dim : 2 * attention_dim] + value_dim = attention_dim // 2 + v = x_proj[..., 2 * attention_dim : 2 * attention_dim + value_dim] + # p is the position-encoding query, its dimension is num_heads*pos_dim.. + p = x_proj[..., 2 * attention_dim + value_dim :] + + k = self.whiten_keys(k) # does nothing in the forward pass. + v = self.whiten_values(v) # does nothing in the forward pass. + q = self.copy_query(q) # for diagnostics only, does nothing. + p = self.copy_pos_query(p) # for diagnostics only, does nothing. + + if attn_mask is not None: + assert ( + attn_mask.dtype == torch.float32 + or attn_mask.dtype == torch.float64 + or attn_mask.dtype == torch.float16 + or attn_mask.dtype == torch.uint8 + or attn_mask.dtype == torch.bool + ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( + attn_mask.dtype + ) + if attn_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for attn_mask is deprecated. Use bool tensor instead." + ) + attn_mask = attn_mask.to(torch.bool) + + if attn_mask.dim() == 2: + attn_mask = attn_mask.unsqueeze(0) + if list(attn_mask.size()) != [1, seq_len, seq_len]: + raise RuntimeError("The size of the 2D attn_mask is not correct.") + elif attn_mask.dim() == 3: + if list(attn_mask.size()) != [ + bsz * num_heads, + seq_len, + seq_len, + ]: + raise RuntimeError("The size of the 3D attn_mask is not correct.") + else: + raise RuntimeError( + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) + ) + # attn_mask's dim is 3 now. + + # convert ByteTensor key_padding_mask to bool + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." + ) + key_padding_mask = key_padding_mask.to(torch.bool) + + q = q.reshape(seq_len, bsz, num_heads, head_dim) + p = p.reshape(seq_len, bsz, num_heads, pos_dim) + k = k.reshape(seq_len, bsz, num_heads, head_dim) + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + if key_padding_mask is not None: + assert key_padding_mask.size(0) == bsz, "{} == {}".format( + key_padding_mask.size(0), bsz + ) + assert key_padding_mask.size(1) == seq_len, "{} == {}".format( + key_padding_mask.size(1), seq_len + ) + + q = q.permute(1, 2, 0, 3) # (batch, head, time1, head_dim) + p = p.permute(1, 2, 0, 3) # (batch, head, time1, pos_dim) + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + + seq_len2 = 2 * seq_len - 1 + pos = pos.reshape(1, seq_len2, num_heads, pos_dim).permute(0, 2, 3, 1) + # pos shape now: (batch, head, pos_dim, seq_len2) + + # (batch, head, time1, pos_dim) x (1, head, pos_dim, seq_len2) -> (batch, head, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_weights = torch.matmul(p, pos) + # the following .as_strided() expression converts the last axis of pos_weights from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + if torch.jit.is_tracing(): + (batch_size, num_heads, time1, n) = pos_weights.shape + rows = torch.arange(start=time1 - 1, end=-1, step=-1) + cols = torch.arange(seq_len) + rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) + indexes = rows + cols + pos_weights = pos_weights.reshape(-1, n) + pos_weights = torch.gather(pos_weights, dim=1, index=indexes) + pos_weights = pos_weights.reshape(batch_size, num_heads, time1, seq_len) + else: + pos_weights = pos_weights.as_strided( + (bsz, num_heads, seq_len, seq_len), + ( + pos_weights.stride(0), + pos_weights.stride(1), + pos_weights.stride(2) - pos_weights.stride(3), + pos_weights.stride(3), + ), + storage_offset=pos_weights.stride(3) * (seq_len - 1), + ) + + # caution: they are really scores at this point. + attn_output_weights = torch.matmul(q, k) + pos_weights + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + if training and random.random() < 0.1: + # This is a harder way of limiting the attention scores to not be too large. + # It incurs a penalty if any of them has an absolute value greater than 50.0. + # this should be outside the normal range of the attention scores. We use + # this mechanism instead of, say, a limit on entropy, because once the entropy + # gets very small gradients through the softmax can become very small, and + # some mechanisms like that become ineffective. + attn_output_weights = penalize_abs_values_gt( + attn_output_weights, limit=25.0, penalty=1.0e-04 + ) + + # attn_output_weights: (batch, head, time1, time2) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + attn_output_weights = attn_output_weights.masked_fill( + attn_mask, float("-inf") + ) + else: + attn_output_weights = attn_output_weights + attn_mask + + if key_padding_mask is not None: + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2), + float("-inf"), + ) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + # Using this version of softmax, defined in scaling.py, + # should save a little of the memory used in backprop by, if + # we are in automatic mixed precision mode (amp) == autocast, + # only storing the half-precision output for backprop purposes. + attn_output_weights = softmax(attn_output_weights, dim=-1) + + # If we are using chunk-wise attention mask and setting a limited + # num_left_chunks, the attention may only see the padding values which + # will also be masked out by `key_padding_mask`. At this circumstances, + # the whole column of `attn_output_weights` will be `-inf` + # (i.e. be `nan` after softmax). So we fill `0.0` at the masking + # positions to avoid invalid loss value below. + if ( + attn_mask is not None + and attn_mask.dtype == torch.bool + and key_padding_mask is not None + ): + if attn_mask.size(0) != 1: + attn_mask = attn_mask.view(bsz, num_heads, seq_len, seq_len) + combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2) + else: + # attn_mask.shape == (1, tgt_len, src_len) + combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze( + 1 + ).unsqueeze(2) + + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + attn_output_weights = nn.functional.dropout( + attn_output_weights, p=dropout_p, training=training + ) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2] + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, attention_dim // 2) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + return attn_output, attn_output_weights + + def forward2( + self, + x: Tensor, + attn_weights: Tensor, + ) -> Tensor: + """ + Second forward function, where we re-use the attn_weights returned by the first forward function + but with different input. + Args: + x: input, of shape (seq_len, batch_size, embed_dim) + attn_weights: attention weights returned by forward(), of shape (batch_size * num_heads, seq_len, seq_len) + Returns: + output of the same shape as x, i.e. (seq_len, batch_size, embed_dim) + """ + num_heads = self.num_heads + (seq_len, bsz, embed_dim) = x.shape + head_dim = self.attention_dim // num_heads + # v: (tgt_len, bsz, embed_dim // 2) + v = self.in_proj2(x) + v = self.whiten_values2(v) # does nothing in the forward pass. + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + # now v: (bsz * num_heads, seq_len, head_dim // 2) + attn_output = torch.bmm(attn_weights, v) + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + if random.random() < 0.001 or __name__ == "__main__": + self._print_attn_stats(attn_weights, attn_output) + + # attn_output: (bsz * num_heads, seq_len, head_dim) + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, self.attention_dim // 2) + ) + # returned value is of shape (seq_len, bsz, embed_dim), like x. + return self.out_proj2(attn_output) + + def _print_attn_stats(self, attn_weights: Tensor, attn_output: Tensor): + # attn_weights: (batch_size * num_heads, seq_len, seq_len) + # attn_output: (bsz * num_heads, seq_len, head_dim) + (n, seq_len, head_dim) = attn_output.shape + num_heads = self.num_heads + bsz = n // num_heads + + with torch.no_grad(): + with torch.cuda.amp.autocast(enabled=False): + attn_weights = attn_weights.to(torch.float32) + attn_output = attn_output.to(torch.float32) + attn_weights_entropy = ( + -((attn_weights + 1.0e-20).log() * attn_weights) + .sum(dim=-1) + .reshape(bsz, num_heads, seq_len) + .mean(dim=(0, 2)) + ) + attn_output = attn_output.reshape(bsz, num_heads, seq_len, head_dim) + attn_output = attn_output.permute(1, 0, 2, 3).reshape( + num_heads, bsz * seq_len, head_dim + ) + attn_output_mean = attn_output.mean(dim=1, keepdim=True) + attn_output = attn_output - attn_output_mean + attn_covar = torch.matmul(attn_output.transpose(1, 2), attn_output) / ( + bsz * seq_len + ) + # attn_covar: (num_heads, head_dim, head_dim) + # eigs, _ = torch.symeig(attn_covar) + # logging.info(f"attn_weights_entropy = {attn_weights_entropy}, output_eigs = {eigs}") + + attn_covar = _diag(attn_covar).mean(dim=1) # (num_heads,) + embed_dim = self.in_proj2.weight.shape[1] + in_proj_covar = ( + self.in_proj2.weight.reshape(num_heads, head_dim, embed_dim) ** 2 + ).mean(dim=(1, 2)) + out_proj_covar = ( + self.out_proj2.weight.reshape(embed_dim, num_heads, head_dim) ** 2 + ).mean(dim=(0, 2)) + logging.info( + f"attn_weights_entropy = {attn_weights_entropy}, covar={attn_covar}, in_proj_covar={in_proj_covar}, out_proj_covar={out_proj_covar}" + ) + + +class PoolingModule(nn.Module): + """ + Averages the input over the time dimension and project with a square matrix. + """ + + def __init__(self, d_model: int): + super().__init__() + self.proj = ScaledLinear(d_model, d_model, initial_scale=0.1, bias=False) + + def forward(self, x: Tensor, key_padding_mask: Optional[Tensor] = None): + """ + Args: + x: a Tensor of shape (T, N, C) + key_padding_mask: a Tensor of bool, of shape (N, T), with True in masked + positions. + Returns: + a Tensor of shape (1, N, C) + """ + if key_padding_mask is not None: + if torch.jit.is_tracing(): + pooling_mask = (~key_padding_mask).to(x.dtype) + else: + pooling_mask = key_padding_mask.logical_not().to(x.dtype) # (N, T) + pooling_mask = pooling_mask / pooling_mask.sum(dim=1, keepdim=True) + pooling_mask = pooling_mask.transpose(0, 1).contiguous().unsqueeze(-1) + # now pooling_mask: (T, N, 1) + x = (x * pooling_mask).sum(dim=0, keepdim=True) + else: + num_frames = x.shape[0] + pooling_mask = 1.0 / num_frames + x = (x * pooling_mask).sum(dim=0, keepdim=True) + + x = self.proj(x) + return x + + +class FeedforwardModule(nn.Module): + """Feedforward module in Zipformer model.""" + + def __init__(self, d_model: int, feedforward_dim: int, dropout: float): + super(FeedforwardModule, self).__init__() + self.in_proj = nn.Linear(d_model, feedforward_dim) + self.balancer = ActivationBalancer( + feedforward_dim, channel_dim=-1, max_abs=10.0, min_prob=0.25 + ) + self.activation = DoubleSwish() + self.dropout = nn.Dropout(dropout) + self.out_proj = ScaledLinear(feedforward_dim, d_model, initial_scale=0.01) + + def forward(self, x: Tensor): + x = self.in_proj(x) + x = self.balancer(x) + x = self.activation(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +class ConvolutionModule(nn.Module): + """ConvolutionModule in Zipformer model. + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py + + Args: + channels (int): The number of channels of conv layers. + kernel_size (int): Kernerl size of conv layers. + bias (bool): Whether to use bias in conv layers (default=True). + + """ + + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: + """Construct an ConvolutionModule object.""" + super(ConvolutionModule, self).__init__() + # kernerl_size should be a odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0, kernel_size + + self.pointwise_conv1 = nn.Conv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + + # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, + # but sometimes, for some reason, for layer 0 the rms ends up being very large, + # between 50 and 100 for different channels. This will cause very peaky and + # sparse derivatives for the sigmoid gating function, which will tend to make + # the loss function not learn effectively. (for most layers the average absolute values + # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different + # layers, which likely breaks down as 0.5 for the "linear" half and + # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we + # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, + # it will be in a better position to start learning something, i.e. to latch onto + # the correct range. + self.deriv_balancer1 = ActivationBalancer( + 2 * channels, + channel_dim=1, + max_abs=10.0, + min_positive=0.05, + max_positive=1.0, + ) + + self.depthwise_conv = nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + padding=(kernel_size - 1) // 2, + groups=channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + channels, + channel_dim=1, + min_positive=0.05, + max_positive=1.0, + max_abs=20.0, + ) + + self.activation = DoubleSwish() + + self.pointwise_conv2 = ScaledConv1d( + channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.05, + ) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch (optional): + (batch, #time), contains bool in masked positions. + + Returns: + Tensor: Output tensor (#time, batch, channels). + + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + if src_key_padding_mask is not None: + x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + # 1D Depthwise Conv + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1) + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/4 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = (T-3)//2 - 2 == (T-7)//2 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + dropout: float = 0.1, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, (T-7)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer2_channels: + Number of channels in layer2 + layer3_channels: + Number of channels in layer3 + """ + assert in_channels >= 7, in_channels + super().__init__() + + self.conv = nn.Sequential( + nn.Conv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=(0, 1), # (time, freq) + ), + ActivationBalancer(layer1_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + padding=0, + ), + ActivationBalancer(layer2_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=(1, 2), # (time, freq) + ), + ActivationBalancer(layer3_channels, channel_dim=1), + DoubleSwish(), + ) + out_height = (((in_channels - 1) // 2) - 1) // 2 + self.out = ScaledLinear(out_height * layer3_channels, out_channels) + self.dropout = nn.Dropout(dropout) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + + Returns: + Return a tensor of shape (N, (T-7)//2, odim) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + x = self.conv(x) + # Now x is of shape (N, odim, (T-7)//2, ((idim-1)//2 - 1)//2) + b, c, t, f = x.size() + x = self.out(x.transpose(1, 2).reshape(b, t, c * f)) + # Now x is of shape (N, (T-7)//2, odim) + x = self.dropout(x) + return x + + +class AttentionCombine(nn.Module): + """ + This module combines a list of Tensors, all with the same shape, to + produce a single output of that same shape which, in training time, + is a random combination of all the inputs; but which in test time + will be just the last input. + + All but the last input will have a linear transform before we + randomly combine them; these linear transforms will be initialized + to the identity transform. + + The idea is that the list of Tensors will be a list of outputs of multiple + zipformer layers. This has a similar effect as iterated loss. (See: + DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER + NETWORKS). + """ + + def __init__( + self, + num_channels: int, + num_inputs: int, + random_prob: float = 0.25, + single_prob: float = 0.333, + ) -> None: + """ + Args: + num_channels: + the number of channels + num_inputs: + The number of tensor inputs, which equals the number of layers' + outputs that are fed into this module. E.g. in an 18-layer neural + net if we output layers 16, 12, 18, num_inputs would be 3. + random_prob: + the probability with which we apply a nontrivial mask, in training + mode. + single_prob: + the probability with which we mask to allow just a single + module's output (in training) + """ + super().__init__() + + self.random_prob = random_prob + self.single_prob = single_prob + self.weight = torch.nn.Parameter(torch.zeros(num_channels, num_inputs)) + self.bias = torch.nn.Parameter(torch.zeros(num_inputs)) + + assert 0 <= random_prob <= 1, random_prob + assert 0 <= single_prob <= 1, single_prob + + def forward(self, inputs: List[Tensor]) -> Tensor: + """Forward function. + Args: + inputs: + A list of Tensor, e.g. from various layers of a transformer. + All must be the same shape, of (*, num_channels) + Returns: + A Tensor of shape (*, num_channels). In test mode + this is just the final input. + """ + num_inputs = self.weight.shape[1] + assert len(inputs) == num_inputs + + # Shape of weights: (*, num_inputs) + num_channels = inputs[0].shape[-1] + num_frames = inputs[0].numel() // num_channels + + ndim = inputs[0].ndim + # stacked_inputs: (num_frames, num_channels, num_inputs) + stacked_inputs = torch.stack(inputs, dim=ndim).reshape( + (num_frames, num_channels, num_inputs) + ) + + scores = (stacked_inputs * self.weight).sum(dim=(1,)) + self.bias + + if random.random() < 0.002: + logging.info(f"Average scores are {scores.softmax(dim=1).mean(dim=0)}") + + if self.training: + # random masking.. + mask_start = torch.randint( + low=1, + high=int(num_inputs / self.random_prob), + size=(num_frames,), + device=scores.device, + ).unsqueeze(1) + # mask will have rows like: [ False, False, False, True, True, .. ] + arange = ( + torch.arange(num_inputs, device=scores.device) + .unsqueeze(0) + .expand(num_frames, num_inputs) + ) + mask = arange >= mask_start + + apply_single_prob = torch.logical_and( + torch.rand(size=(num_frames, 1), device=scores.device) + < self.single_prob, + mask_start < num_inputs, + ) + single_prob_mask = torch.logical_and( + apply_single_prob, arange < mask_start - 1 + ) + + mask = torch.logical_or(mask, single_prob_mask) + + scores = scores.masked_fill(mask, float("-inf")) + + if self.training and random.random() < 0.1: + scores = penalize_abs_values_gt(scores, limit=10.0, penalty=1.0e-04) + + weights = scores.softmax(dim=1) + + # (num_frames, num_channels, num_inputs) * (num_frames, num_inputs, 1) -> (num_frames, num_channels, 1), + ans = torch.matmul(stacked_inputs, weights.unsqueeze(2)) + # ans: (*, num_channels) + ans = ans.reshape(*tuple(inputs[0].shape[:-1]), num_channels) + + if __name__ == "__main__": + # for testing only... + print("Weights = ", weights.reshape(num_frames, num_inputs)) + return ans + + +def _test_random_combine(): + print("_test_random_combine()") + num_inputs = 3 + num_channels = 50 + m = AttentionCombine( + num_channels=num_channels, + num_inputs=num_inputs, + random_prob=0.5, + single_prob=0.0, + ) + + x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)] + + y = m(x) + assert y.shape == x[0].shape + assert torch.allclose(y, x[0]) # .. since actually all ones. + + +def _test_zipformer_main(): + feature_dim = 50 + batch_size = 5 + seq_len = 20 + feature_dim = 50 + # Just make sure the forward pass runs. + + c = Zipformer( + num_features=feature_dim, + encoder_dims=(64, 96), + encoder_unmasked_dims=(48, 64), + nhead=(4, 4), + ) + batch_size = 5 + seq_len = 20 + # Just make sure the forward pass runs. + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + assert ((seq_len - 7) // 2 + 1) // 2 == f[0].shape[1], (seq_len, f.shape[1]) + f[0].sum().backward() + c.eval() + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + f # to remove flake8 warnings + + +def _test_conv2d_subsampling(): + num_features = 80 + encoder_dims = 384 + dropout = 0.1 + encoder_embed = Conv2dSubsampling(num_features, encoder_dims, dropout=dropout) + for i in range(20, 40): + x = torch.rand(2, i, num_features) + y = encoder_embed(x) + assert (x.shape[1] - 7) // 2 == y.shape[1], (x.shape[1], y.shape[1]) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_random_combine() + _test_zipformer_main() + _test_conv2d_subsampling() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/__init__.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/beam_search.py new file mode 120000 index 000000000..8554e44cc --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py new file mode 100755 index 000000000..4b373e4c7 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py @@ -0,0 +1,818 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Liyong Guo, +# Quandong Wang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) ctc-decoding +./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method ctc-decoding + +(2) 1best +./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --decoding-method 1best + +(3) nbest +./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --decoding-method nbest + +(4) nbest-rescoring +./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --lm-dir data/lm \ + --decoding-method nbest-rescoring + +(5) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --lm-dir data/lm \ + --decoding-method whole-lattice-rescoring +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.decode import ( + get_lattice, + nbest_decoding, + nbest_oracle, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="ctc-decoding", + help="""Decoding method. + Supported values are: + - (1) ctc-decoding. Use CTC decoding. It uses a sentence piece + model, i.e., lang_dir/bpe.model, to convert word pieces to words. + It needs neither a lexicon nor an n-gram LM. + - (2) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (3) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (4) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (5) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + you have trained an RNN LM using ./rnn_lm/train.py + - (6) nbest-oracle. Its WER is the lower bound of any n-best + rescoring method can achieve. Useful for debugging n-best + rescoring method. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--hlg-scale", + type=float, + default=0.8, + help="""The scale to be applied to `hlg.scores`. + """, + ) + + parser.add_argument( + "--lm-dir", + type=str, + default="data/lm", + help="""The n-gram LM dir. + It should contain either G_4_gram.pt or G_4_gram.fst.txt + """, + ) + + add_model_arguments(parser) + + return parser + + +def get_decoding_params() -> AttributeDict: + """Parameters for decoding.""" + params = AttributeDict( + { + "frame_shift_ms": 10, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + batch: dict, + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + + Args: + params: + It's the return value of :func:`get_params`. + + - params.decoding_method is "1best", it uses 1best decoding without LM rescoring. + - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring. + - params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring. + - params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. Note: If it decodes to nothing, then return None. + """ + if HLG is not None: + device = HLG.device + else: + device = H.device + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + encoder_out, encoder_out_lens = model.encoder(feature, feature_lens) + nnet_output = model.ctc_output(encoder_out) + # nnet_output is (N, T, C) + + supervision_segments = torch.stack( + ( + supervisions["sequence_idx"], + supervisions["start_frame"] // params.subsampling_factor, + supervisions["num_frames"] // params.subsampling_factor, + ), + 1, + ).to(torch.int32) + + if H is None: + assert HLG is not None + decoding_graph = HLG + else: + assert HLG is None + assert bpe_model is not None + decoding_graph = H + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=decoding_graph, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.decoding_method == "ctc-decoding": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + # Note: `best_path.aux_labels` contains token IDs, not word IDs + # since we are using H, not HLG here. + # + # token_ids is a lit-of-list of IDs + token_ids = get_texts(best_path) + + # hyps is a list of str, e.g., ['xxx yyy zzz', ...] + hyps = bpe_model.decode(token_ids) + + # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] + hyps = [s.split() for s in hyps] + key = "ctc-decoding" + return {key: hyps} + + if params.decoding_method == "nbest-oracle": + # Note: You can also pass rescored lattices to it. + # We choose the HLG decoded lattice for speed reasons + # as HLG decoding is faster and the oracle WER + # is only slightly worse than that of rescored lattices. + best_path = nbest_oracle( + lattice=lattice, + num_paths=params.num_paths, + ref_texts=supervisions["text"], + word_table=word_table, + nbest_scale=params.nbest_scale, + oov="", + ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa + return {key: hyps} + + if params.decoding_method in ["1best", "nbest"]: + if params.decoding_method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa + + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + return {key: hyps} + + assert params.decoding_method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ] + + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.decoding_method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + elif params.decoding_method == "whole-lattice-rescoring": + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + else: + assert False, f"Unsupported decoding method: {params.decoding_method}" + + ans = dict() + if best_path_dict is not None: + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + else: + ans = None + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + word_table: + It is the word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + batch=batch, + word_table=word_table, + G=G, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + args.lang_dir = Path(args.lang_dir) + args.lm_dir = Path(args.lm_dir) + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + assert params.decoding_method in ( + "ctc-decoding", + "1best", + "nbest", + "nbest-rescoring", + "whole-lattice-rescoring", + "nbest-oracle", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + num_classes = max_token_id + 1 # +1 for the blank + + params.vocab_size = num_classes + # and are defined in local/train_bpe_model.py + params.blank_id = 0 + + if params.decoding_method == "ctc-decoding": + HLG = None + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(str(params.lang_dir / "bpe.model")) + else: + H = None + bpe_model = None + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location=device) + ) + assert HLG.requires_grad is False + + HLG.scores *= params.hlg_scale + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.decoding_method in ( + "nbest-rescoring", + "whole-lattice-rescoring", + ): + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + # See https://github.com/k2-fsa/k2/issues/874 + # for why we need to set G.properties to None + G.__dict__["_properties"] = None + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + # Save a dummy value so that it can be loaded in C++. + # See https://github.com/pytorch/pytorch/issues/67902 + # for why we need to do this. + G.dummy = 1 + + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device) + G = k2.Fsa.from_dict(d) + + if params.decoding_method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + word_table=lexicon.word_table, + G=G, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decode.py new file mode 100755 index 000000000..32a9b6bb2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decode.py @@ -0,0 +1,841 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7_ctc/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decoder.py new file mode 120000 index 000000000..33944d0d2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/decoder.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/export.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/export.py new file mode 100755 index 000000000..c1607699f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/export.py @@ -0,0 +1,320 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7_ctc/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless7_ctc/decode.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01 + # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.script()") + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained.py new file mode 100755 index 000000000..280b95984 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained.py @@ -0,0 +1,271 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +./pruned_transducer_stateless7_ctc/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless7_ctc/exp/cpu_jit.pt \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--nn-model-filename", + type=str, + required=True, + help="Path to the torchscript model cpu_jit.pt", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + model: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + Returns: + Return the decoded results for each utterance. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = encoder_out.device + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + context_size = model.decoder.context_size + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ).squeeze(1) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = packed_encoder_out.data[start:end] + current_encoder_out = current_encoder_out + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, + decoder_out, + ) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ) + decoder_out = decoder_out.squeeze(1) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.nn_model_filename) + + model.eval() + + model.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + + hyps = greedy_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py new file mode 100755 index 000000000..d50d231d5 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py @@ -0,0 +1,426 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +(1) ctc-decoding +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc/exp/cpu_jit.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) 1best +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(3) nbest-rescoring +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(4) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from ctc_decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import get_params + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--model-filename", + type=str, + required=True, + help="Path to the torchscript model.", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.model_filename) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + nnet_output = model.ctc_output(encoder_out) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [ + [i, 0, feature_lengths[i] // params.subsampling_factor] + for i in range(batch_size) + ], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/joiner.py new file mode 120000 index 000000000..ecfb6dd8a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/joiner.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/model.py new file mode 100644 index 000000000..a6e919e2f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/model.py @@ -0,0 +1,198 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Tuple + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + + self.simple_am_proj = nn.Linear( + encoder_dim, + vocab_size, + ) + self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size) + + self.ctc_output = nn.Sequential( + nn.Dropout(p=0.1), + nn.Linear(encoder_dim, vocab_size), + nn.LogSoftmax(dim=-1), + ) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return a tuple containing simple loss, pruned loss, and ctc-output. + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, x_lens = self.encoder(x, x_lens) + assert torch.all(x_lens > 0) + + # compute ctc log-probs + ctc_output = self.ctc_output(encoder_out) + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens + + lm = self.simple_lm_proj(decoder_out) + am = self.simple_am_proj(encoder_out) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss, ctc_output) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/optim.py new file mode 120000 index 000000000..81ac4a89a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/optim.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained.py new file mode 100755 index 000000000..2f1b1a49f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained.py @@ -0,0 +1,353 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless7_ctc/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless7_ctc/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless7_ctc/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless7_ctc/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless7_ctc/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless7_ctc/exp/pretrained.pt is generated by +./pruned_transducer_stateless7_ctc/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained_ctc.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained_ctc.py new file mode 100755 index 000000000..5d460edb5 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/pretrained_ctc.py @@ -0,0 +1,444 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) ctc-decoding +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) 1best +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) nbest-rescoring +./bruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(4) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from ctc_decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + params.vocab_size = params.num_classes + params.blank_id = 0 + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + nnet_output = model.ctc_output(encoder_out) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [ + [i, 0, feature_lengths[i] // params.subsampling_factor] + for i in range(batch_size) + ], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling.py new file mode 120000 index 000000000..2428b74b9 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling_converter.py new file mode 120000 index 000000000..b8b8ba432 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/test_model.py new file mode 100755 index 000000000..e482d2040 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/test_model.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./pruned_transducer_stateless7_ctc/test_model.py +""" + +from train import get_params, get_transducer_model + + +def test_model_1(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + # params.feedforward_dims = "1024,1024,1536,1536,1024" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + +def main(): + test_model_1() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/train.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/train.py new file mode 100755 index 000000000..718381baa --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/train.py @@ -0,0 +1,1287 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7_ctc/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7_ctc/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./pruned_transducer_stateless7_ctc/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_ctc/exp \ + --full-libri 1 \ + --max-duration 550 + +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + encode_supervisions, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--ctc-loss-scale", + type=float, + default=0.2, + help="Scale for CTC loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + # parameters for ctc loss + "beam_size": 10, + "use_double_scores": True, + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + token_ids = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(token_ids).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss, ctc_output = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + # Compute ctc loss + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + supervision_segments, token_ids = encode_supervisions( + supervisions, + subsampling_factor=params.subsampling_factor, + token_ids=token_ids, + ) + + # Works with a BPE model + decoding_graph = k2.ctc_graph(token_ids, modified=False, device=device) + dense_fsa_vec = k2.DenseFsaVec( + ctc_output, + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + + ctc_loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction="sum", + use_double_scores=params.use_double_scores, + ) + assert ctc_loss.requires_grad == is_training + loss += params.ctc_loss_scale * ctc_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + info["ctc_loss"] = ctc_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/zipformer.py new file mode 120000 index 000000000..79b076556 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/zipformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/zipformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/__init__.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/__init__.py new file mode 100755 index 000000000..e69de29bb diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/beam_search.py new file mode 120000 index 000000000..8554e44cc --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py new file mode 100755 index 000000000..f137485b2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py @@ -0,0 +1,809 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Liyong Guo, +# Quandong Wang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) ctc-decoding +./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method ctc-decoding +(2) 1best +./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --decoding-method 1best +(3) nbest +./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --decoding-method nbest +(4) nbest-rescoring +./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --lm-dir data/lm \ + --decoding-method nbest-rescoring +(5) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --hlg-scale 0.8 \ + --lm-dir data/lm \ + --decoding-method whole-lattice-rescoring +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.decode import ( + get_lattice, + nbest_decoding, + nbest_oracle, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc_bs/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="ctc-decoding", + help="""Decoding method. + Supported values are: + - (1) ctc-decoding. Use CTC decoding. It uses a sentence piece + model, i.e., lang_dir/bpe.model, to convert word pieces to words. + It needs neither a lexicon nor an n-gram LM. + - (2) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (3) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (4) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (5) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + you have trained an RNN LM using ./rnn_lm/train.py + - (6) nbest-oracle. Its WER is the lower bound of any n-best + rescoring method can achieve. Useful for debugging n-best + rescoring method. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--hlg-scale", + type=float, + default=0.8, + help="""The scale to be applied to `hlg.scores`. + """, + ) + + parser.add_argument( + "--lm-dir", + type=str, + default="data/lm", + help="""The n-gram LM dir. + It should contain either G_4_gram.pt or G_4_gram.fst.txt + """, + ) + + add_model_arguments(parser) + + return parser + + +def get_decoding_params() -> AttributeDict: + """Parameters for decoding.""" + params = AttributeDict( + { + "frame_shift_ms": 10, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + batch: dict, + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + - params.decoding_method is "1best", it uses 1best decoding without LM rescoring. + - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring. + - params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring. + - params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. Note: If it decodes to nothing, then return None. + """ + if HLG is not None: + device = HLG.device + else: + device = H.device + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + encoder_out, encoder_out_lens = model.encoder(feature, feature_lens) + nnet_output = model.ctc_output(encoder_out) + # nnet_output is (N, T, C) + + supervision_segments = torch.stack( + ( + supervisions["sequence_idx"], + supervisions["start_frame"] // params.subsampling_factor, + supervisions["num_frames"] // params.subsampling_factor, + ), + 1, + ).to(torch.int32) + + if H is None: + assert HLG is not None + decoding_graph = HLG + else: + assert HLG is None + assert bpe_model is not None + decoding_graph = H + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=decoding_graph, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.decoding_method == "ctc-decoding": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + # Note: `best_path.aux_labels` contains token IDs, not word IDs + # since we are using H, not HLG here. + # + # token_ids is a lit-of-list of IDs + token_ids = get_texts(best_path) + + # hyps is a list of str, e.g., ['xxx yyy zzz', ...] + hyps = bpe_model.decode(token_ids) + + # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] + hyps = [s.split() for s in hyps] + key = "ctc-decoding" + return {key: hyps} + + if params.decoding_method == "nbest-oracle": + # Note: You can also pass rescored lattices to it. + # We choose the HLG decoded lattice for speed reasons + # as HLG decoding is faster and the oracle WER + # is only slightly worse than that of rescored lattices. + best_path = nbest_oracle( + lattice=lattice, + num_paths=params.num_paths, + ref_texts=supervisions["text"], + word_table=word_table, + nbest_scale=params.nbest_scale, + oov="", + ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa + return {key: hyps} + + if params.decoding_method in ["1best", "nbest"]: + if params.decoding_method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa + + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + return {key: hyps} + + assert params.decoding_method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ] + + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.decoding_method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + elif params.decoding_method == "whole-lattice-rescoring": + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + else: + assert False, f"Unsupported decoding method: {params.decoding_method}" + + ans = dict() + if best_path_dict is not None: + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + else: + ans = None + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + word_table: + It is the word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + batch=batch, + word_table=word_table, + G=G, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + args.lang_dir = Path(args.lang_dir) + args.lm_dir = Path(args.lm_dir) + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + assert params.decoding_method in ( + "ctc-decoding", + "1best", + "nbest", + "nbest-rescoring", + "whole-lattice-rescoring", + "nbest-oracle", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + num_classes = max_token_id + 1 # +1 for the blank + + params.vocab_size = num_classes + # and are defined in local/train_bpe_model.py + params.blank_id = 0 + + if params.decoding_method == "ctc-decoding": + HLG = None + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(str(params.lang_dir / "bpe.model")) + else: + H = None + bpe_model = None + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location=device) + ) + assert HLG.requires_grad is False + + HLG.scores *= params.hlg_scale + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.decoding_method in ( + "nbest-rescoring", + "whole-lattice-rescoring", + ): + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + # See https://github.com/k2-fsa/k2/issues/874 + # for why we need to set G.properties to None + G.__dict__["_properties"] = None + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + # Save a dummy value so that it can be loaded in C++. + # See https://github.com/pytorch/pytorch/issues/67902 + # for why we need to do this. + G.dummy = 1 + + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device) + G = k2.Fsa.from_dict(d) + + if params.decoding_method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + word_table=lexicon.word_table, + G=G, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py new file mode 100755 index 000000000..01ba7b711 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py @@ -0,0 +1,857 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao, +# Yifan Yang,) +# +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7_ctc/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model +from torch.nn.utils.rnn import pad_sequence + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + make_pad_mask, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc_bs/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + # filter out blank frames using ctc outputs + ctc_output = model.ctc_output(encoder_out) + encoder_out = model.lconv( + x=encoder_out, + src_key_padding_mask=make_pad_mask(encoder_out_lens), + ) + encoder_out, encoder_out_lens = model.frame_reducer( + x=encoder_out, + x_lens=encoder_out_lens, + ctc_output=ctc_output, + blank_id=0, + ) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decode.py new file mode 100755 index 000000000..ce45a4beb --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decode.py @@ -0,0 +1,841 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7_ctc_bs/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc_bs/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decoder.py new file mode 120000 index 000000000..33944d0d2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/decoder.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export.py new file mode 100755 index 000000000..05df8cfff --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export.py @@ -0,0 +1,319 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7_ctc_bs/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless7_ctc_bs/decode.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29 + # You will find the pre-trained model in icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.script()") + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export_onnx.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export_onnx.py new file mode 100644 index 000000000..50efa6e60 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/export_onnx.py @@ -0,0 +1,665 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang, +# Yifan Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to ONNX format + +./pruned_transducer_stateless7_ctc_bs/export_onnx.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 + +It will generate the following files in the given `exp_dir`. +Check `onnx_check.py` for how to use them. + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + - lconv.onnx + - frame_reducer.onnx + +Please see ./onnx_pretrained.py for usage of the generated files + +Check +https://github.com/k2-fsa/sherpa-onnx +for how to use the exported models outside of icefall. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29 + # You will find the pre-trained model in icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +import torch.nn as nn +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc_bs/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--onnx", + type=str2bool, + default=True, + help="""If True, --jit is ignored and it exports the model + to onnx format. It will generate the following files: + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + - lconv.onnx + - frame_reducer.onnx + + Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +def export_encoder_model_onnx( + encoder_model: nn.Module, + encoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the given encoder model to ONNX format. + The exported model has two inputs: + + - x, a tensor of shape (N, T, C); dtype is torch.float32 + - x_lens, a tensor of shape (N,); dtype is torch.int64 + + and it has two outputs: + + - encoder_out, a tensor of shape (N, T, C) + - encoder_out_lens, a tensor of shape (N,) + + Note: The warmup argument is fixed to 1. + + Args: + encoder_model: + The input encoder model + encoder_filename: + The filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + x = torch.zeros(15, 2000, 80, dtype=torch.float32) + x_lens = torch.tensor([2000] * 15, dtype=torch.int64) + + # encoder_model = torch.jit.script(encoder_model) + # It throws the following error for the above statement + # + # RuntimeError: Exporting the operator __is_ to ONNX opset version + # 11 is not supported. Please feel free to request support or + # submit a pull request on PyTorch GitHub. + # + # I cannot find which statement causes the above error. + # torch.onnx.export() will use torch.jit.trace() internally, which + # works well for the current reworked model + torch.onnx.export( + encoder_model, + (x, x_lens), + encoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["x", "x_lens"], + output_names=["encoder_out", "encoder_out_lens"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "x_lens": {0: "N"}, + "encoder_out": {0: "N", 1: "T"}, + "encoder_out_lens": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_filename}") + + +def export_decoder_model_onnx( + decoder_model: nn.Module, + decoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the decoder model to ONNX format. + + The exported model has one input: + + - y: a torch.int64 tensor of shape (N, decoder_model.context_size) + + and has one output: + + - decoder_out: a torch.float32 tensor of shape (N, 1, C) + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The decoder model to be exported. + decoder_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + y = torch.zeros(15, decoder_model.context_size, dtype=torch.int64) + need_pad = False # Always False, so we can use torch.jit.trace() here + # Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script() + # in this case + torch.onnx.export( + decoder_model, + (y, need_pad), + decoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["y", "need_pad"], + output_names=["decoder_out"], + dynamic_axes={ + "y": {0: "N"}, + "decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_filename}") + + +def export_joiner_model_onnx( + joiner_model: nn.Module, + joiner_filename: str, + opset_version: int = 11, +) -> None: + """Export the joiner model to ONNX format. + The exported joiner model has two inputs: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + - projected_decoder_out: a tensor of shape (N, joiner_dim) + + and produces one output: + + - logit: a tensor of shape (N, vocab_size) + + The exported encoder_proj model has one input: + + - encoder_out: a tensor of shape (N, encoder_out_dim) + + and produces one output: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + + The exported decoder_proj model has one input: + + - decoder_out: a tensor of shape (N, decoder_out_dim) + + and produces one output: + + - projected_decoder_out: a tensor of shape (N, joiner_dim) + """ + encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx") + decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx") + + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + joiner_dim = joiner_model.decoder_proj.weight.shape[0] + + projected_encoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + projected_decoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + + project_input = False + # Note: It uses torch.jit.trace() internally + torch.onnx.export( + joiner_model, + (projected_encoder_out, projected_decoder_out, project_input), + joiner_filename, + verbose=False, + opset_version=opset_version, + input_names=[ + "encoder_out", + "decoder_out", + "project_input", + ], + output_names=["logit"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "decoder_out": {0: "N"}, + "logit": {0: "N"}, + }, + ) + logging.info(f"Saved to {joiner_filename}") + + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.encoder_proj, + encoder_out, + encoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["encoder_out"], + output_names=["projected_encoder_out"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "projected_encoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_proj_filename}") + + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.decoder_proj, + decoder_out, + decoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["decoder_out"], + output_names=["projected_decoder_out"], + dynamic_axes={ + "decoder_out": {0: "N"}, + "projected_decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_proj_filename}") + + +def export_lconv_onnx( + lconv: nn.Module, + lconv_filename: str, + opset_version: int = 11, +) -> None: + """Export the lconv to ONNX format. + + The exported lconv has two inputs: + + - lconv_input: a tensor of shape (N, T, C) + - src_key_padding_mask: a tensor of shape (N, T) + + and has one output: + + - lconv_out: a tensor of shape (N, T, C) + + Args: + lconv: + The lconv to be exported. + lconv_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + lconv_input = torch.zeros(15, 498, 384, dtype=torch.float32) + src_key_padding_mask = torch.zeros(15, 498, dtype=torch.bool) + + torch.onnx.export( + lconv, + (lconv_input, src_key_padding_mask), + lconv_filename, + verbose=False, + opset_version=opset_version, + input_names=["lconv_input", "src_key_padding_mask"], + output_names=["lconv_out"], + dynamic_axes={ + "lconv_input": {0: "N", 1: "T"}, + "src_key_padding_mask": {0: "N", 1: "T"}, + "lconv_out": {0: "N", 1: "T"}, + }, + ) + logging.info(f"Saved to {lconv_filename}") + + +def export_frame_reducer_onnx( + frame_reducer: nn.Module, + frame_reducer_filename: str, + opset_version: int = 11, +) -> None: + """Export the frame_reducer to ONNX format. + + The exported frame_reducer has four inputs: + + - x: a tensor of shape (N, T, C) + - x_lens: a tensor of shape (N, T) + - ctc_output: a tensor of shape (N, T, vocab_size) + - blank_id: an int, always 0 + + and has two outputs: + + - x_fr: a tensor of shape (N, T, C) + - x_lens_fr: a tensor of shape (N, T) + + Args: + frame_reducer: + The frame_reducer to be exported. + frame_reducer_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + x = torch.zeros(15, 498, 384, dtype=torch.float32) + x_lens = torch.tensor([498] * 15, dtype=torch.int64) + ctc_output = torch.randn(15, 498, 500, dtype=torch.float32) + + torch.onnx.export( + frame_reducer, + (x, x_lens, ctc_output), + frame_reducer_filename, + verbose=False, + opset_version=opset_version, + input_names=["x", "x_lens", "ctc_output"], + output_names=["out", "out_lens"], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "x_lens": {0: "N"}, + "ctc_output": {0: "N", 1: "T"}, + "out": {0: "N", 1: "T"}, + "out_lens": {0: "N"}, + }, + ) + logging.info(f"Saved to {frame_reducer_filename}") + + +def export_ctc_output_onnx( + ctc_output: nn.Module, + ctc_output_filename: str, + opset_version: int = 11, +) -> None: + """Export the frame_reducer to ONNX format. + + The exported frame_reducer has one inputs: + + - encoder_out: a tensor of shape (N, T, C) + + and has one output: + + - ctc_output: a tensor of shape (N, T, vocab_size) + + Args: + ctc_output: + The ctc_output to be exported. + ctc_output_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + encoder_out = torch.zeros(15, 498, 384, dtype=torch.float32) + + torch.onnx.export( + ctc_output, + (encoder_out), + ctc_output_filename, + verbose=False, + opset_version=opset_version, + input_names=["encoder_out"], + output_names=["ctc_output"], + dynamic_axes={ + "encoder_out": {0: "N", 1: "T"}, + "ctc_output": {0: "N", 1: "T"}, + }, + ) + logging.info(f"Saved to {ctc_output_filename}") + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + convert_scaled_to_non_scaled(model, inplace=True) + opset_version = 13 + logging.info("Exporting to onnx format") + encoder_filename = params.exp_dir / "encoder.onnx" + export_encoder_model_onnx( + model.encoder, + encoder_filename, + opset_version=opset_version, + ) + + decoder_filename = params.exp_dir / "decoder.onnx" + export_decoder_model_onnx( + model.decoder, + decoder_filename, + opset_version=opset_version, + ) + + joiner_filename = params.exp_dir / "joiner.onnx" + export_joiner_model_onnx( + model.joiner, + joiner_filename, + opset_version=opset_version, + ) + + lconv_filename = params.exp_dir / "lconv.onnx" + export_lconv_onnx( + model.lconv, + lconv_filename, + opset_version=opset_version, + ) + + frame_reducer_filename = params.exp_dir / "frame_reducer.onnx" + export_frame_reducer_onnx( + model.frame_reducer, + frame_reducer_filename, + opset_version=opset_version, + ) + + ctc_output_filename = params.exp_dir / "ctc_output.onnx" + export_ctc_output_onnx( + model.ctc_output, + ctc_output_filename, + opset_version=opset_version, + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/frame_reducer.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/frame_reducer.py new file mode 100644 index 000000000..4a19edf66 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/frame_reducer.py @@ -0,0 +1,121 @@ +#!/usr/bin/env python3 +# +# Copyright 2022 Xiaomi Corp. (authors: Yifan Yang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from icefall.utils import make_pad_mask + + +class FrameReducer(nn.Module): + """The encoder output is first used to calculate + the CTC posterior probability; then for each output frame, + if its blank posterior is bigger than some thresholds, + it will be simply discarded from the encoder output. + """ + + def __init__( + self, + ): + super().__init__() + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + ctc_output: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + The shared encoder output with shape [N, T, C]. + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + ctc_output: + The CTC output with shape [N, T, vocab_size]. + Returns: + out: + The frame reduced encoder output with shape [N, T', C]. + out_lens: + A tensor of shape (batch_size,) containing the number of frames in + `out` before padding. + """ + + N, T, C = x.size() + + padding_mask = make_pad_mask(x_lens) + non_blank_mask = (ctc_output[:, :, 0] < math.log(0.9)) * (~padding_mask) + + out_lens = non_blank_mask.sum(dim=1) + max_len = out_lens.max() + pad_lens_list = torch.full_like(out_lens, max_len.item()) - out_lens + max_pad_len = pad_lens_list.max() + + out = F.pad(x, (0, 0, 0, max_pad_len)) + + valid_pad_mask = ~make_pad_mask(pad_lens_list) + total_valid_mask = torch.concat([non_blank_mask, valid_pad_mask], dim=1) + + out = out[total_valid_mask].reshape(N, -1, C) + + return out.to(device=x.device), out_lens.to(device=x.device) + + +if __name__ == "__main__": + import time + from torch.nn.utils.rnn import pad_sequence + + test_times = 10000 + frame_reducer = FrameReducer() + + # non zero case + x = torch.ones(15, 498, 384, dtype=torch.float32) + x_lens = torch.tensor([498] * 15, dtype=torch.int64) + ctc_output = torch.log(torch.randn(15, 498, 500, dtype=torch.float32)) + x_fr, x_lens_fr = frame_reducer(x, x_lens, ctc_output) + + avg_time = 0 + for i in range(test_times): + delta_time = time.time() + x_fr, x_lens_fr = frame_reducer(x, x_lens, ctc_output) + delta_time = time.time() - delta_time + avg_time += delta_time + print(x_fr.shape) + print(x_lens_fr) + print(avg_time / test_times) + + # all zero case + x = torch.zeros(15, 498, 384, dtype=torch.float32) + x_lens = torch.tensor([498] * 15, dtype=torch.int64) + ctc_output = torch.zeros(15, 498, 500, dtype=torch.float32) + + avg_time = 0 + for i in range(test_times): + delta_time = time.time() + x_fr, x_lens_fr = frame_reducer(x, x_lens, ctc_output) + delta_time = time.time() - delta_time + avg_time += delta_time + print(x_fr.shape) + print(x_lens_fr) + print(avg_time / test_times) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained.py new file mode 100755 index 000000000..da2c6a39a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained.py @@ -0,0 +1,271 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--nn-model-filename", + type=str, + required=True, + help="Path to the torchscript model cpu_jit.pt", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + model: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + Returns: + Return the decoded results for each utterance. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = encoder_out.device + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + context_size = model.decoder.context_size + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ).squeeze(1) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = packed_encoder_out.data[start:end] + current_encoder_out = current_encoder_out + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, + decoder_out, + ) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ) + decoder_out = decoder_out.squeeze(1) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.nn_model_filename) + + model.eval() + + model.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + + hyps = greedy_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py new file mode 100755 index 000000000..653c25e06 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py @@ -0,0 +1,426 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 \ + --jit 1 + +Usage of this script: + +(1) ctc-decoding +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) 1best +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(3) nbest-rescoring +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(4) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from ctc_decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import get_params + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--model-filename", + type=str, + required=True, + help="Path to the torchscript model.", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.model_filename) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + nnet_output = model.ctc_output(encoder_out) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [ + [i, 0, feature_lengths[i] // params.subsampling_factor] + for i in range(batch_size) + ], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/joiner.py new file mode 120000 index 000000000..ecfb6dd8a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/joiner.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/lconv.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/lconv.py new file mode 100755 index 000000000..a902358ae --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/lconv.py @@ -0,0 +1,114 @@ +# Copyright 2022 Xiaomi Corp. (authors: Yifan Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from scaling import ( + ActivationBalancer, + ScaledConv1d, +) + + +class LConv(nn.Module): + """A convolution module to prevent information loss.""" + + def __init__( + self, + channels: int, + kernel_size: int = 7, + bias: bool = True, + ): + """ + Args: + channels: + Dimension of the input embedding, and of the lconv output. + """ + super().__init__() + self.pointwise_conv1 = nn.Conv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + + self.deriv_balancer1 = ActivationBalancer( + 2 * channels, + channel_dim=1, + max_abs=10.0, + min_positive=0.05, + max_positive=1.0, + ) + + self.depthwise_conv = nn.Conv1d( + 2 * channels, + 2 * channels, + kernel_size=kernel_size, + stride=1, + padding=(kernel_size - 1) // 2, + groups=2 * channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + 2 * channels, + channel_dim=1, + min_positive=0.05, + max_positive=1.0, + max_abs=20.0, + ) + + self.pointwise_conv2 = ScaledConv1d( + 2 * channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.05, + ) + + def forward( + self, + x: torch.Tensor, + src_key_padding_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + """ + Args: + x: A 3-D tensor of shape (N, T, C). + Returns: + Return a tensor of shape (N, T, C). + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(0, 2, 1) # (#batch, channels, time). + + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + + if src_key_padding_mask is not None: + x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + + x = self.pointwise_conv2(x) # (batch, channels, time) + + return x.permute(0, 2, 1) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/model.py new file mode 100755 index 000000000..86acc5a10 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/model.py @@ -0,0 +1,224 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Tuple + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface + +from icefall.utils import add_sos, make_pad_mask + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + lconv: nn.Module, + frame_reducer: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + self.lconv = lconv + self.frame_reducer = frame_reducer + + self.simple_am_proj = nn.Linear( + encoder_dim, + vocab_size, + ) + self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size) + + self.ctc_output = nn.Sequential( + nn.Dropout(p=0.1), + nn.Linear(encoder_dim, vocab_size), + nn.LogSoftmax(dim=-1), + ) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + warmup: float = 1.0, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + warmup: + A floating point value which decides whether to do blank skip. + Returns: + Return a tuple containing simple loss, pruned loss, and ctc-output. + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, x_lens = self.encoder(x, x_lens) + assert torch.all(x_lens > 0) + + # compute ctc log-probs + ctc_output = self.ctc_output(encoder_out) + + # blank skip + blank_id = self.decoder.blank_id + + if warmup >= 2.0: + # lconv + encoder_out = self.lconv( + x=encoder_out, + src_key_padding_mask=make_pad_mask(x_lens), + ) + + # frame reduce + encoder_out_fr, x_lens_fr = self.frame_reducer( + encoder_out, + x_lens, + ctc_output, + blank_id, + ) + else: + encoder_out_fr = encoder_out + x_lens_fr = x_lens + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens_fr + + am = self.simple_am_proj(encoder_out_fr) + lm = self.simple_lm_proj(decoder_out) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out_fr), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss, ctc_output) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/onnx_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/onnx_pretrained.py new file mode 100644 index 000000000..8ff02fbcb --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/onnx_pretrained.py @@ -0,0 +1,461 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Yifan Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads ONNX models and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc_bs/export_onnx.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 + +Usage of this script: + +./pruned_transducer_stateless7_ctc_bs/onnx_pretrained.py \ + --encoder-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/encoder.onnx \ + --decoder-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/decoder.onnx \ + --joiner-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/joiner.onnx \ + --joiner-encoder-proj-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/joiner_encoder_proj.onnx \ + --joiner-decoder-proj-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/joiner_decoder_proj.onnx \ + --lconv-filename ./pruned_transducer_stateless7_ctc_bs/exp/lconv.onnx \ + --frame-reducer-filename ./pruned_transducer_stateless7_ctc_bs/exp/frame_reducer.onnx \ + --ctc-output-filename ./pruned_transducer_stateless7_ctc_bs/exp/ctc_output.onnx \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import numpy as np +import onnxruntime as ort +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence + +from icefall.utils import make_pad_mask + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--encoder-model-filename", + type=str, + required=True, + help="Path to the encoder onnx model. ", + ) + + parser.add_argument( + "--decoder-model-filename", + type=str, + required=True, + help="Path to the decoder onnx model. ", + ) + + parser.add_argument( + "--joiner-model-filename", + type=str, + required=True, + help="Path to the joiner onnx model. ", + ) + + parser.add_argument( + "--joiner-encoder-proj-model-filename", + type=str, + required=True, + help="Path to the joiner encoder_proj onnx model. ", + ) + + parser.add_argument( + "--joiner-decoder-proj-model-filename", + type=str, + required=True, + help="Path to the joiner decoder_proj onnx model. ", + ) + + parser.add_argument( + "--lconv-filename", + type=str, + required=True, + help="Path to the lconv onnx model. ", + ) + + parser.add_argument( + "--frame-reducer-filename", + type=str, + required=True, + help="Path to the frame reducer onnx model. ", + ) + + parser.add_argument( + "--ctc-output-filename", + type=str, + required=True, + help="Path to the ctc_output onnx model. ", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="Context size of the decoder model", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + decoder: ort.InferenceSession, + joiner: ort.InferenceSession, + joiner_encoder_proj: ort.InferenceSession, + joiner_decoder_proj: ort.InferenceSession, + encoder_out: np.ndarray, + encoder_out_lens: np.ndarray, + context_size: int, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + decoder: + The decoder model. + joiner: + The joiner model. + joiner_encoder_proj: + The joiner encoder projection model. + joiner_decoder_proj: + The joiner decoder projection model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + context_size: + The context size of the decoder model. + Returns: + Return the decoded results for each utterance. + """ + encoder_out = torch.from_numpy(encoder_out) + encoder_out_lens = torch.from_numpy(encoder_out_lens) + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + projected_encoder_out = joiner_encoder_proj.run( + [joiner_encoder_proj.get_outputs()[0].name], + {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()}, + )[0] + + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input_nodes = decoder.get_inputs() + decoder_output_nodes = decoder.get_outputs() + + joiner_input_nodes = joiner.get_inputs() + joiner_output_nodes = joiner.get_outputs() + + decoder_input = torch.tensor( + hyps, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = decoder.run( + [decoder_output_nodes[0].name], + { + decoder_input_nodes[0].name: decoder_input.numpy(), + }, + )[0].squeeze(1) + projected_decoder_out = joiner_decoder_proj.run( + [joiner_decoder_proj.get_outputs()[0].name], + {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, + )[0] + + projected_decoder_out = torch.from_numpy(projected_decoder_out) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = projected_encoder_out[start:end] + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + projected_decoder_out = projected_decoder_out[:batch_size] + + logits = joiner.run( + [joiner_output_nodes[0].name], + { + joiner_input_nodes[0].name: np.expand_dims( + np.expand_dims(current_encoder_out, axis=1), axis=1 + ), + joiner_input_nodes[1] + .name: projected_decoder_out.unsqueeze(1) + .unsqueeze(1) + .numpy(), + }, + )[0] + logits = torch.from_numpy(logits).squeeze(1).squeeze(1) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + dtype=torch.int64, + ) + decoder_out = decoder.run( + [decoder_output_nodes[0].name], + { + decoder_input_nodes[0].name: decoder_input.numpy(), + }, + )[0].squeeze(1) + projected_decoder_out = joiner_decoder_proj.run( + [joiner_decoder_proj.get_outputs()[0].name], + {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, + )[0] + projected_decoder_out = torch.from_numpy(projected_decoder_out) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + session_opts = ort.SessionOptions() + session_opts.inter_op_num_threads = 1 + session_opts.intra_op_num_threads = 1 + + encoder = ort.InferenceSession( + args.encoder_model_filename, + sess_options=session_opts, + ) + + decoder = ort.InferenceSession( + args.decoder_model_filename, + sess_options=session_opts, + ) + + joiner = ort.InferenceSession( + args.joiner_model_filename, + sess_options=session_opts, + ) + + joiner_encoder_proj = ort.InferenceSession( + args.joiner_encoder_proj_model_filename, + sess_options=session_opts, + ) + + joiner_decoder_proj = ort.InferenceSession( + args.joiner_decoder_proj_model_filename, + sess_options=session_opts, + ) + + lconv = ort.InferenceSession( + args.lconv_filename, + sess_options=session_opts, + ) + + frame_reducer = ort.InferenceSession( + args.frame_reducer_filename, + sess_options=session_opts, + ) + + ctc_output = ort.InferenceSession( + args.ctc_output_filename, + sess_options=session_opts, + ) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = args.sample_rate + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + expected_sample_rate=args.sample_rate, + ) + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) + + encoder_input_nodes = encoder.get_inputs() + encoder_out_nodes = encoder.get_outputs() + encoder_out, encoder_out_lens = encoder.run( + [encoder_out_nodes[0].name, encoder_out_nodes[1].name], + { + encoder_input_nodes[0].name: features.numpy(), + encoder_input_nodes[1].name: feature_lengths.numpy(), + }, + ) + + ctc_output_input_nodes = ctc_output.get_inputs() + ctc_output_out_nodes = ctc_output.get_outputs() + ctc_out = ctc_output.run( + [ctc_output_out_nodes[0].name], + { + ctc_output_input_nodes[0].name: encoder_out, + }, + )[0] + + lconv_input_nodes = lconv.get_inputs() + lconv_out_nodes = lconv.get_outputs() + encoder_out = lconv.run( + [lconv_out_nodes[0].name], + { + lconv_input_nodes[0].name: encoder_out, + lconv_input_nodes[1] + .name: make_pad_mask(torch.from_numpy(encoder_out_lens)) + .numpy(), + }, + )[0] + + frame_reducer_input_nodes = frame_reducer.get_inputs() + frame_reducer_out_nodes = frame_reducer.get_outputs() + encoder_out_fr, encoder_out_lens_fr = frame_reducer.run( + [frame_reducer_out_nodes[0].name, frame_reducer_out_nodes[1].name], + { + frame_reducer_input_nodes[0].name: encoder_out, + frame_reducer_input_nodes[1].name: encoder_out_lens, + frame_reducer_input_nodes[2].name: ctc_out, + }, + ) + + hyps = greedy_search( + decoder=decoder, + joiner=joiner, + joiner_encoder_proj=joiner_encoder_proj, + joiner_decoder_proj=joiner_decoder_proj, + encoder_out=encoder_out_fr, + encoder_out_lens=encoder_out_lens_fr, + context_size=args.context_size, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/optim.py new file mode 120000 index 000000000..81ac4a89a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/optim.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained.py new file mode 100755 index 000000000..ea0fe9164 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained.py @@ -0,0 +1,352 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 13 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless7_ctc_bs/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless7_ctc_bs/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt is generated by +./pruned_transducer_stateless7_ctc_bs/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py new file mode 100755 index 000000000..412631ba1 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/pretrained_ctc.py @@ -0,0 +1,440 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_ctc_bs/export.py \ + --exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) ctc-decoding +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --bpe-model data/lang_bpe_500/bpe.model \ + --method ctc-decoding \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) 1best +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --method 1best \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) nbest-rescoring +./bruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method nbest-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav + + +(4) whole-lattice-rescoring +./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \ + --checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \ + --HLG data/lang_bpe_500/HLG.pt \ + --words-file data/lang_bpe_500/words.txt \ + --G data/lm/G_4_gram.pt \ + --method whole-lattice-rescoring \ + --sample-rate 16000 \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from ctc_decode import get_decoding_params +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.utils import get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + + parser.add_argument( + "--words-file", + type=str, + help="""Path to words.txt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--HLG", + type=str, + help="""Path to HLG.pt. + Used only when method is not ctc-decoding. + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (0) ctc-decoding - Use CTC decoding. It uses a sentence + piece model, i.e., lang_dir/bpe.model, to convert + word pieces to words. It needs neither a lexicon + nor an n-gram LM. + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an LM, the path with + the highest score is the decoding result. + We call it HLG decoding + n-gram LM rescoring. + (3) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring or nbest-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help=""" + Used only when method is attention-decoder. + It specifies the size of n-best list.""", + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=1.3, + help=""" + Used only when method is whole-lattice-rescoring and nbest-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help=""" + Used only when method is nbest-rescoring. + It specifies the scale for lattice.scores when + extracting n-best lists. A smaller value results in + more unique number of paths with the risk of missing + the best path. + """, + ) + + parser.add_argument( + "--num-classes", + type=int, + default=500, + help=""" + Vocab size in the BPE model. + """, + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + params.vocab_size = params.num_classes + params.blank_id = 0 + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + nnet_output = model.ctc_output(encoder_out) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + if params.method == "ctc-decoding": + logging.info("Use CTC decoding") + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(params.bpe_model) + max_token_id = params.num_classes - 1 + + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=H, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + token_ids = get_texts(best_path) + hyps = bpe_model.decode(token_ids) + hyps = [s.split() for s in hyps] + elif params.method in [ + "1best", + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ]: + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + G = G.to(device) + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + if params.method == "nbest-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=[params.ngram_lm_scale], + nbest_scale=params.nbest_scale, + ) + best_path = next(iter(best_path_dict.values())) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + else: + raise ValueError(f"Unsupported decoding method: {params.method}") + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling.py new file mode 120000 index 000000000..2428b74b9 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling_converter.py new file mode 120000 index 000000000..b8b8ba432 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/test_model.py new file mode 100755 index 000000000..7f0893985 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/test_model.py @@ -0,0 +1,55 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./pruned_transducer_stateless7_ctc_bs/test_model.py +""" + +from train import get_params, get_transducer_model + + +def test_model_1(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + +def main(): + test_model_1() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/train.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/train.py new file mode 100755 index 000000000..b282ab9db --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/train.py @@ -0,0 +1,1277 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +export CUDA_VISIBLE_DEVICES="0,1,2,3" +./pruned_transducer_stateless7_ctc_bs/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --full-libri 1 \ + --max-duration 300 +# For mix precision training: +./pruned_transducer_stateless7_ctc_bs/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_ctc_bs/exp \ + --full-libri 1 \ + --max-duration 550 +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from frame_reducer import FrameReducer +from joiner import Joiner +from lconv import LConv +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + encode_supervisions, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_ctc_bs/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram, 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--ctc-loss-scale", + type=float, + default=0.5, + help="Scale for CTC loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + Explanation of options saved in `params`: + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + - best_train_epoch: It is the epoch that has the best training loss. + - best_valid_epoch: It is the epoch that has the best validation loss. + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + - log_interval: Print training loss if batch_idx % log_interval` is 0 + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + - valid_interval: Run validation if batch_idx % valid_interval is 0 + - feature_dim: The model input dim. It has to match the one used + in computing features. + - subsampling_factor: The subsampling factor for the model. + - encoder_dim: Hidden dim for multi-head attention model. + - num_decoder_layers: Number of decoder layer of transformer decoder. + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + # parameters for ctc loss + "beam_size": 10, + "use_double_scores": True, + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_lconv(params: AttributeDict) -> nn.Module: + lconv = LConv( + channels=int(params.encoder_dims.split(",")[-1]), + ) + return lconv + + +def get_frame_reducer(params: AttributeDict) -> nn.Module: + frame_reducer = FrameReducer() + return frame_reducer + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + lconv = get_lconv(params) + frame_reducer = get_frame_reducer(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + lconv=lconv, + frame_reducer=frame_reducer, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + warmup = batch_idx_train / warm_step + + texts = batch["supervisions"]["text"] + token_ids = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(token_ids).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss, ctc_output = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + warmup=warmup, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + # Compute ctc loss + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + supervision_segments, token_ids = encode_supervisions( + supervisions, + subsampling_factor=params.subsampling_factor, + token_ids=token_ids, + ) + + # Works with a BPE model + decoding_graph = k2.ctc_graph(token_ids, modified=False, device=device) + dense_fsa_vec = k2.DenseFsaVec( + ctc_output, + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + + ctc_loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction="sum", + use_double_scores=params.use_double_scores, + ) + assert ctc_loss.requires_grad == is_training + loss += params.ctc_loss_scale * ctc_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + info["ctc_loss"] = ctc_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/zipformer.py new file mode 120000 index 000000000..79b076556 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/zipformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/zipformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/README.md b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/README.md new file mode 100644 index 000000000..6e461e196 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/README.md @@ -0,0 +1,3 @@ +This recipe implements Streaming Zipformer-Transducer model. + +See https://k2-fsa.github.io/icefall/recipes/Streaming-ASR/librispeech/zipformer_transducer.html for detailed tutorials. diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py new file mode 120000 index 000000000..a074d6085 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py new file mode 120000 index 000000000..8554e44cc --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode.py new file mode 100755 index 000000000..aebe2b94b --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode.py @@ -0,0 +1,813 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + feature_lens += 30 + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, 30), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, ( + model.encoder.decode_chunk_size, + params.decode_chunk_len, + ) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py new file mode 100644 index 000000000..0d7e86fcf --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py @@ -0,0 +1,151 @@ +# Copyright 2022 Xiaomi Corp. (authors: Wei Kang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Optional, Tuple + +import k2 +import torch +from beam_search import Hypothesis, HypothesisList + +from icefall.utils import AttributeDict + + +class DecodeStream(object): + def __init__( + self, + params: AttributeDict, + cut_id: str, + initial_states: List[torch.Tensor], + decoding_graph: Optional[k2.Fsa] = None, + device: torch.device = torch.device("cpu"), + ) -> None: + """ + Args: + initial_states: + Initial decode states of the model, e.g. the return value of + `get_init_state` in conformer.py + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a HLG. + Used only when decoding_method is fast_beam_search. + device: + The device to run this stream. + """ + if params.decoding_method == "fast_beam_search": + assert decoding_graph is not None + assert device == decoding_graph.device + + self.params = params + self.cut_id = cut_id + self.LOG_EPS = math.log(1e-10) + + self.states = initial_states + + # It contains a 2-D tensors representing the feature frames. + self.features: torch.Tensor = None + + self.num_frames: int = 0 + # how many frames have been processed. (before subsampling). + # we only modify this value in `func:get_feature_frames`. + self.num_processed_frames: int = 0 + + self._done: bool = False + + # The transcript of current utterance. + self.ground_truth: str = "" + + # The decoding result (partial or final) of current utterance. + self.hyp: List = [] + + # how many frames have been processed, after subsampling (i.e. a + # cumulative sum of the second return value of + # encoder.streaming_forward + self.done_frames: int = 0 + + # It has two steps of feature subsampling in zipformer: out_lens=((x_lens-7)//2+1)//2 + # 1) feature embedding: out_lens=(x_lens-7)//2 + # 2) output subsampling: out_lens=(out_lens+1)//2 + self.pad_length = 7 + + if params.decoding_method == "greedy_search": + self.hyp = [params.blank_id] * params.context_size + elif params.decoding_method == "modified_beam_search": + self.hyps = HypothesisList() + self.hyps.add( + Hypothesis( + ys=[params.blank_id] * params.context_size, + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + ) + ) + elif params.decoding_method == "fast_beam_search": + # The rnnt_decoding_stream for fast_beam_search. + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + @property + def done(self) -> bool: + """Return True if all the features are processed.""" + return self._done + + @property + def id(self) -> str: + return self.cut_id + + def set_features( + self, + features: torch.Tensor, + tail_pad_len: int = 0, + ) -> None: + """Set features tensor of current utterance.""" + assert features.dim() == 2, features.dim() + self.features = torch.nn.functional.pad( + features, + (0, 0, 0, self.pad_length + tail_pad_len), + mode="constant", + value=self.LOG_EPS, + ) + self.num_frames = self.features.size(0) + + def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]: + """Consume chunk_size frames of features""" + chunk_length = chunk_size + self.pad_length + + ret_length = min(self.num_frames - self.num_processed_frames, chunk_length) + + ret_features = self.features[ + self.num_processed_frames : self.num_processed_frames + ret_length # noqa + ] + + self.num_processed_frames += chunk_size + if self.num_processed_frames >= self.num_frames: + self._done = True + + return ret_features, ret_length + + def decoding_result(self) -> List[int]: + """Obtain current decoding result.""" + if self.params.decoding_method == "greedy_search": + return self.hyp[self.params.context_size :] # noqa + elif self.params.decoding_method == "modified_beam_search": + best_hyp = self.hyps.get_most_probable(length_norm=True) + return best_hyp.ys[self.params.context_size :] # noqa + else: + assert self.params.decoding_method == "fast_beam_search" + return self.hyp diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decoder.py new file mode 120000 index 000000000..33944d0d2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/decoder.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/export.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/export.py new file mode 100755 index 000000000..5c06cc052 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/export.py @@ -0,0 +1,320 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7_streaming/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless7_streaming/decode.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 + # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +import torch.nn as nn +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_pretrained.py new file mode 100755 index 000000000..4fd5e1820 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_pretrained.py @@ -0,0 +1,278 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +./pruned_transducer_stateless7_streaming/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless7_streaming/exp/cpu_jit.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--nn-model-filename", + type=str, + required=True, + help="Path to the torchscript model cpu_jit.pt", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--decode-chunk-len", + type=int, + default=32, + help="The chunk size for decoding (in frames before subsampling)", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + model: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + Returns: + Return the decoded results for each utterance. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = encoder_out.device + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + context_size = model.decoder.context_size + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ).squeeze(1) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = packed_encoder_out.data[start:end] + current_encoder_out = current_encoder_out + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, + decoder_out, + ) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ) + decoder_out = decoder_out.squeeze(1) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + model = torch.jit.load(args.nn_model_filename) + model.encoder.decode_chunk_size = args.decode_chunk_len // 2 + + model.eval() + + model.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + + hyps = greedy_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_export.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_export.py new file mode 100755 index 000000000..a164f3f69 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_export.py @@ -0,0 +1,313 @@ +#!/usr/bin/env python3 + +""" +Usage: +./pruned_transducer_stateless7_streaming/jit_trace_export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 10 \ + --use-averaged-model=True \ + --decode-chunk-len 32 +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import AttributeDict, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for averaging. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + add_model_arguments(parser) + + return parser + + +def export_encoder_model_jit_trace( + encoder_model: torch.nn.Module, + encoder_filename: str, + params: AttributeDict, +) -> None: + """Export the given encoder model with torch.jit.trace() + + Note: The warmup argument is fixed to 1. + + Args: + encoder_model: + The input encoder model + encoder_filename: + The filename to save the exported model. + """ + decode_chunk_len = params.decode_chunk_len # before subsampling + pad_length = 7 + s = f"decode_chunk_len: {decode_chunk_len}" + logging.info(s) + assert encoder_model.decode_chunk_size == decode_chunk_len // 2, ( + encoder_model.decode_chunk_size, + decode_chunk_len, + ) + + T = decode_chunk_len + pad_length + + x = torch.zeros(1, T, 80, dtype=torch.float32) + x_lens = torch.full((1,), T, dtype=torch.int32) + states = encoder_model.get_init_state(device=x.device) + + encoder_model.__class__.forward = encoder_model.__class__.streaming_forward + traced_model = torch.jit.trace(encoder_model, (x, x_lens, states)) + traced_model.save(encoder_filename) + logging.info(f"Saved to {encoder_filename}") + + +def export_decoder_model_jit_trace( + decoder_model: torch.nn.Module, + decoder_filename: str, +) -> None: + """Export the given decoder model with torch.jit.trace() + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The input decoder model + decoder_filename: + The filename to save the exported model. + """ + y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) + need_pad = torch.tensor([False]) + + traced_model = torch.jit.trace(decoder_model, (y, need_pad)) + traced_model.save(decoder_filename) + logging.info(f"Saved to {decoder_filename}") + + +def export_joiner_model_jit_trace( + joiner_model: torch.nn.Module, + joiner_filename: str, +) -> None: + """Export the given joiner model with torch.jit.trace() + + Note: The argument project_input is fixed to True. A user should not + project the encoder_out/decoder_out by himself/herself. The exported joiner + will do that for the user. + + Args: + joiner_model: + The input joiner model + joiner_filename: + The filename to save the exported model. + + """ + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + + traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out)) + traced_model.save(joiner_filename) + logging.info(f"Saved to {joiner_filename}") + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.trace()") + + logging.info("Exporting encoder") + encoder_filename = params.exp_dir / "encoder_jit_trace.pt" + export_encoder_model_jit_trace(model.encoder, encoder_filename, params) + + logging.info("Exporting decoder") + decoder_filename = params.exp_dir / "decoder_jit_trace.pt" + export_decoder_model_jit_trace(model.decoder, decoder_filename) + + logging.info("Exporting joiner") + joiner_filename = params.exp_dir / "joiner_jit_trace.pt" + export_joiner_model_jit_trace(model.joiner, joiner_filename) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_pretrained.py new file mode 100755 index 000000000..f2ac1914d --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_pretrained.py @@ -0,0 +1,295 @@ +#!/usr/bin/env python3 +# flake8: noqa +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models exported by `torch.jit.trace()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless7_streaming/jit_trace_export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 10 \ + --use-averaged-model=True \ + --decode-chunk-len 32 + +Usage of this script: + +./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \ + --encoder-model-filename ./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt \ + --decoder-model-filename ./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt \ + --joiner-model-filename ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --decode-chunk-len 32 \ + /path/to/foo.wav \ +""" + +import argparse +import logging +import math +from typing import List, Optional + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--encoder-model-filename", + type=str, + required=True, + help="Path to the encoder torchscript model. ", + ) + + parser.add_argument( + "--decoder-model-filename", + type=str, + required=True, + help="Path to the decoder torchscript model. ", + ) + + parser.add_argument( + "--joiner-model-filename", + type=str, + required=True, + help="Path to the joiner torchscript model. ", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--decode-chunk-len", + type=int, + default=32, + help="The chunk size for decoding (in frames before subsampling)", + ) + + parser.add_argument( + "sound_file", + type=str, + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + decoder: torch.jit.ScriptModule, + joiner: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + decoder_out: Optional[torch.Tensor] = None, + hyp: Optional[List[int]] = None, +): + assert encoder_out.ndim == 2 + context_size = 2 + blank_id = 0 + + if decoder_out is None: + assert hyp is None, hyp + hyp = [blank_id] * context_size + decoder_input = torch.tensor(hyp, dtype=torch.int32).unsqueeze(0) + # decoder_input.shape (1,, 1 context_size) + decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) + else: + assert decoder_out.ndim == 2 + assert hyp is not None, hyp + + T = encoder_out.size(0) + for i in range(T): + cur_encoder_out = encoder_out[i : i + 1] + joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0) + y = joiner_out.argmax(dim=0).item() + + if y != blank_id: + hyp.append(y) + decoder_input = hyp[-context_size:] + + decoder_input = torch.tensor(decoder_input, dtype=torch.int32).unsqueeze(0) + decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) + + return hyp, decoder_out + + +def create_streaming_feature_extractor(sample_rate) -> OnlineFeature: + """Create a CPU streaming feature extractor. + + At present, we assume it returns a fbank feature extractor with + fixed options. In the future, we will support passing in the options + from outside. + + Returns: + Return a CPU streaming feature extractor. + """ + opts = FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = sample_rate + opts.mel_opts.num_bins = 80 + return OnlineFbank(opts) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + encoder = torch.jit.load(args.encoder_model_filename) + decoder = torch.jit.load(args.decoder_model_filename) + joiner = torch.jit.load(args.joiner_model_filename) + + encoder.eval() + decoder.eval() + joiner.eval() + + encoder.to(device) + decoder.to(device) + joiner.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + online_fbank = create_streaming_feature_extractor(args.sample_rate) + + logging.info(f"Reading sound files: {args.sound_file}") + wave_samples = read_sound_files( + filenames=[args.sound_file], + expected_sample_rate=args.sample_rate, + )[0] + logging.info(wave_samples.shape) + + logging.info("Decoding started") + chunk_length = args.decode_chunk_len + assert encoder.decode_chunk_size == chunk_length // 2, ( + encoder.decode_chunk_size, + chunk_length, + ) + + # we subsample features with ((x_len - 7) // 2 + 1) // 2 + pad_length = 7 + T = chunk_length + pad_length + + logging.info(f"chunk_length: {chunk_length}") + + states = encoder.get_init_state(device) + + tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32) + + wave_samples = torch.cat([wave_samples, tail_padding]) + + chunk = int(0.25 * args.sample_rate) # 0.2 second + num_processed_frames = 0 + + hyp = None + decoder_out = None + + start = 0 + while start < wave_samples.numel(): + logging.info(f"{start}/{wave_samples.numel()}") + end = min(start + chunk, wave_samples.numel()) + samples = wave_samples[start:end] + start += chunk + online_fbank.accept_waveform( + sampling_rate=args.sample_rate, + waveform=samples, + ) + while online_fbank.num_frames_ready - num_processed_frames >= T: + frames = [] + for i in range(T): + frames.append(online_fbank.get_frame(num_processed_frames + i)) + frames = torch.cat(frames, dim=0).unsqueeze(0) + x_lens = torch.tensor([T], dtype=torch.int32) + encoder_out, out_lens, states = encoder( + x=frames, + x_lens=x_lens, + states=states, + ) + num_processed_frames += chunk_length + + hyp, decoder_out = greedy_search( + decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp + ) + + context_size = 2 + logging.info(args.sound_file) + logging.info(sp.decode(hyp[context_size:])) + + logging.info("Decoding Done") + + +torch.set_num_threads(4) +torch.set_num_interop_threads(1) +torch._C._jit_set_profiling_executor(False) +torch._C._jit_set_profiling_mode(False) +torch._C._set_graph_executor_optimize(False) +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/joiner.py new file mode 120000 index 000000000..ecfb6dd8a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/joiner.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/model.py new file mode 120000 index 000000000..e17d4f734 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/model.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/model.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/optim.py new file mode 120000 index 000000000..81ac4a89a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/optim.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py new file mode 100755 index 000000000..fb77fdd42 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py @@ -0,0 +1,355 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless7_streaming/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless7_streaming/exp/pretrained.pt is generated by +./pruned_transducer_stateless7_streaming/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling.py new file mode 120000 index 000000000..2428b74b9 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py new file mode 120000 index 000000000..b8b8ba432 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py new file mode 120000 index 000000000..3a5f89833 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/streaming_beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py new file mode 100755 index 000000000..7a349ecb2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py @@ -0,0 +1,615 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +Usage: +./pruned_transducer_stateless7_streaming/streaming_decode.py \ + --epoch 28 \ + --avg 15 \ + --decode-chunk-len 32 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --decoding_method greedy_search \ + --num-decode-streams 2000 +""" + +import argparse +import logging +import math +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import numpy as np +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decode_stream import DecodeStream +from kaldifeat import Fbank, FbankOptions +from lhotse import CutSet +from streaming_beam_search import ( + fast_beam_search_one_best, + greedy_search, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model +from zipformer import stack_states, unstack_states + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Supported decoding methods are: + greedy_search + modified_beam_search + fast_beam_search + """, + ) + + parser.add_argument( + "--num_active_paths", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=32, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--num-decode-streams", + type=int, + default=2000, + help="The number of streams that can be decoded parallel.", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_chunk( + params: AttributeDict, + model: nn.Module, + decode_streams: List[DecodeStream], +) -> List[int]: + """Decode one chunk frames of features for each decode_streams and + return the indexes of finished streams in a List. + + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + decode_streams: + A List of DecodeStream, each belonging to a utterance. + Returns: + Return a List containing which DecodeStreams are finished. + """ + device = model.device + + features = [] + feature_lens = [] + states = [] + processed_lens = [] + + for stream in decode_streams: + feat, feat_len = stream.get_feature_frames(params.decode_chunk_len) + features.append(feat) + feature_lens.append(feat_len) + states.append(stream.states) + processed_lens.append(stream.done_frames) + + feature_lens = torch.tensor(feature_lens, device=device) + features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS) + + # We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling + # factor in encoders is 8. + # After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8. + tail_length = 23 + if features.size(1) < tail_length: + pad_length = tail_length - features.size(1) + feature_lens += pad_length + features = torch.nn.functional.pad( + features, + (0, 0, 0, pad_length), + mode="constant", + value=LOG_EPS, + ) + + states = stack_states(states) + processed_lens = torch.tensor(processed_lens, device=device) + + encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward( + x=features, + x_lens=feature_lens, + states=states, + ) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + if params.decoding_method == "greedy_search": + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) + elif params.decoding_method == "fast_beam_search": + processed_lens = processed_lens + encoder_out_lens + fast_beam_search_one_best( + model=model, + encoder_out=encoder_out, + processed_lens=processed_lens, + streams=decode_streams, + beam=params.beam, + max_states=params.max_states, + max_contexts=params.max_contexts, + ) + elif params.decoding_method == "modified_beam_search": + modified_beam_search( + model=model, + streams=decode_streams, + encoder_out=encoder_out, + num_active_paths=params.num_active_paths, + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + states = unstack_states(new_states) + + finished_streams = [] + for i in range(len(decode_streams)): + decode_streams[i].states = states[i] + decode_streams[i].done_frames += encoder_out_lens[i] + if decode_streams[i].done: + finished_streams.append(i) + + return finished_streams + + +def decode_dataset( + cuts: CutSet, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + cuts: + Lhotse Cutset containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + device = model.device + + opts = FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + log_interval = 50 + + decode_results = [] + # Contain decode streams currently running. + decode_streams = [] + for num, cut in enumerate(cuts): + # each utterance has a DecodeStream. + initial_states = model.encoder.get_init_state(device=device) + decode_stream = DecodeStream( + params=params, + cut_id=cut.id, + initial_states=initial_states, + decoding_graph=decoding_graph, + device=device, + ) + + audio: np.ndarray = cut.load_audio() + # audio.shape: (1, num_samples) + assert len(audio.shape) == 2 + assert audio.shape[0] == 1, "Should be single channel" + assert audio.dtype == np.float32, audio.dtype + + # The trained model is using normalized samples + assert audio.max() <= 1, "Should be normalized to [-1, 1])" + + samples = torch.from_numpy(audio).squeeze(0) + + fbank = Fbank(opts) + feature = fbank(samples.to(device)) + decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len) + decode_stream.ground_truth = cut.supervisions[0].text + + decode_streams.append(decode_stream) + + while len(decode_streams) >= params.num_decode_streams: + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if num % log_interval == 0: + logging.info(f"Cuts processed until now is {num}.") + + # decode final chunks of last sequences + while len(decode_streams): + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if params.decoding_method == "greedy_search": + key = "greedy_search" + elif params.decoding_method == "fast_beam_search": + key = ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ) + elif params.decoding_method == "modified_beam_search": + key = f"num_active_paths_{params.num_active_paths}" + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + return {key: decode_results} + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + params.res_dir = params.exp_dir / "streaming" / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + # for streaming + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}" + + # for fast_beam_search + if params.decoding_method == "fast_beam_search": + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + model.device = device + + decoding_graph = None + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_sets = ["test-clean", "test-other"] + test_cuts = [test_clean_cuts, test_other_cuts] + + for test_set, test_cut in zip(test_sets, test_cuts): + results_dict = decode_dataset( + cuts=test_cut, + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/test_model.py new file mode 100755 index 000000000..5400df804 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/test_model.py @@ -0,0 +1,150 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./pruned_transducer_stateless7_streaming/test_model.py +""" + +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import get_params, get_transducer_model + + +def test_model(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + params.num_left_chunks = 4 + params.short_chunk_size = 50 + params.decode_chunk_len = 32 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + # Test jit script + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + print("Using torch.jit.script") + model = torch.jit.script(model) + + +def test_model_jit_trace(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + params.num_left_chunks = 4 + params.short_chunk_size = 50 + params.decode_chunk_len = 32 + model = get_transducer_model(params) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + convert_scaled_to_non_scaled(model, inplace=True) + + # Test encoder + def _test_encoder(): + encoder = model.encoder + assert encoder.decode_chunk_size == params.decode_chunk_len // 2, ( + encoder.decode_chunk_size, + params.decode_chunk_len, + ) + T = params.decode_chunk_len + 7 + + x = torch.zeros(1, T, 80, dtype=torch.float32) + x_lens = torch.full((1,), T, dtype=torch.int32) + states = encoder.get_init_state(device=x.device) + encoder.__class__.forward = encoder.__class__.streaming_forward + traced_encoder = torch.jit.trace(encoder, (x, x_lens, states)) + + states1 = encoder.get_init_state(device=x.device) + states2 = traced_encoder.get_init_state(device=x.device) + for i in range(5): + x = torch.randn(1, T, 80, dtype=torch.float32) + x_lens = torch.full((1,), T, dtype=torch.int32) + y1, _, states1 = encoder.streaming_forward(x, x_lens, states1) + y2, _, states2 = traced_encoder(x, x_lens, states2) + assert torch.allclose(y1, y2, atol=1e-6), (i, (y1 - y2).abs().mean()) + + # Test decoder + def _test_decoder(): + decoder = model.decoder + y = torch.zeros(10, decoder.context_size, dtype=torch.int64) + need_pad = torch.tensor([False]) + + traced_decoder = torch.jit.trace(decoder, (y, need_pad)) + d1 = decoder(y, need_pad) + d2 = traced_decoder(y, need_pad) + assert torch.equal(d1, d2), (d1 - d2).abs().mean() + + # Test joiner + def _test_joiner(): + joiner = model.joiner + encoder_out_dim = joiner.encoder_proj.weight.shape[1] + decoder_out_dim = joiner.decoder_proj.weight.shape[1] + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + + traced_joiner = torch.jit.trace(joiner, (encoder_out, decoder_out)) + j1 = joiner(encoder_out, decoder_out) + j2 = traced_joiner(encoder_out, decoder_out) + assert torch.equal(j1, j2), (j1 - j2).abs().mean() + + _test_encoder() + _test_decoder() + _test_joiner() + + +def main(): + test_model() + test_model_jit_trace() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/train.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/train.py new file mode 100755 index 000000000..c7a2a136d --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/train.py @@ -0,0 +1,1264 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --full-libri 1 \ + --max-duration 550 +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + parser.add_argument( + "--short-chunk-size", + type=int, + default=50, + help="""Chunk length of dynamic training, the chunk size would be either + max sequence length of current batch or uniformly sampled from (1, short_chunk_size). + """, + ) + + parser.add_argument( + "--num-left-chunks", + type=int, + default=4, + help="How many left context can be seen in chunks when calculating attention.", + ) + + parser.add_argument( + "--decode-chunk-len", + type=int, + default=32, + help="The chunk size for decoding (in frames before subsampling)", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + num_left_chunks=params.num_left_chunks, + short_chunk_size=params.short_chunk_size, + decode_chunk_size=params.decode_chunk_len // 2, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py new file mode 100644 index 000000000..e13629384 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py @@ -0,0 +1,2881 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import itertools +import logging +import math +import random +import warnings +from typing import List, Optional, Tuple, Union + +import torch +from encoder_interface import EncoderInterface +from scaling import ( + ScaledLinear, # not as in other dirs.. just scales down initial parameter values. +) +from scaling import ( + ActivationBalancer, + BasicNorm, + DoubleSwish, + Identity, + MaxEig, + ScaledConv1d, + Whiten, + _diag, + penalize_abs_values_gt, + random_clamp, + softmax, +) +from torch import Tensor, nn + +from icefall.dist import get_rank +from icefall.utils import make_pad_mask, subsequent_chunk_mask + + +def stack_states(state_list: List[List[Tensor]]) -> List[Tensor]: + """Stack list of zipformer states that correspond to separate utterances + into a single emformer state, so that it can be used as an input for + zipformer when those utterances are formed into a batch. + + Note: + It is the inverse of :func:`unstack_states`. + + Args: + state_list: + Each element in state_list corresponding to the internal state + of the zipformer model for a single utterance. + ``states[i]`` is a list of 7 * num_encoders elements of i-th utterance. + ``states[i][0:num_encoders]`` is the cached numbers of past frames. + ``states[i][num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[i][2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[i][3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[i][4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[i][5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[i][6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + A new state corresponding to a batch of utterances. + See the input argument of :func:`unstack_states` for the meaning + of the returned tensor. + """ + batch_size = len(state_list) + assert len(state_list[0]) % 7 == 0, len(state_list[0]) + num_encoders = len(state_list[0]) // 7 + + cached_len = [] + cached_avg = [] + cached_key = [] + cached_val = [] + cached_val2 = [] + cached_conv1 = [] + cached_conv2 = [] + + # For cached_len + len_list = [state_list[n][0:num_encoders] for n in range(batch_size)] + for i in range(num_encoders): + # len_avg: (num_layers, batch_size) + len_avg = torch.cat([len_list[n][i] for n in range(batch_size)], dim=1) + cached_len.append(len_avg) + + # For cached_avg + avg_list = [ + state_list[n][num_encoders : 2 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # avg: (num_layers, batch_size, D) + avg = torch.cat([avg_list[n][i] for n in range(batch_size)], dim=1) + cached_avg.append(avg) + + # For cached_key + key_list = [ + state_list[n][2 * num_encoders : 3 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # key: (num_layers, left_context_size, batch_size, D) + key = torch.cat([key_list[n][i] for n in range(batch_size)], dim=2) + cached_key.append(key) + + # For cached_val + val_list = [ + state_list[n][3 * num_encoders : 4 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # val: (num_layers, left_context_size, batch_size, D) + val = torch.cat([val_list[n][i] for n in range(batch_size)], dim=2) + cached_val.append(val) + + # For cached_val2 + val2_list = [ + state_list[n][4 * num_encoders : 5 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # val2: (num_layers, left_context_size, batch_size, D) + val2 = torch.cat([val2_list[n][i] for n in range(batch_size)], dim=2) + cached_val2.append(val2) + + # For cached_conv1 + conv1_list = [ + state_list[n][5 * num_encoders : 6 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # conv1: (num_layers, batch_size, D, kernel-1) + conv1 = torch.cat([conv1_list[n][i] for n in range(batch_size)], dim=1) + cached_conv1.append(conv1) + + # For cached_conv2 + conv2_list = [ + state_list[n][6 * num_encoders : 7 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # conv2: (num_layers, batch_size, D, kernel-1) + conv2 = torch.cat([conv2_list[n][i] for n in range(batch_size)], dim=1) + cached_conv2.append(conv2) + + states = ( + cached_len + + cached_avg + + cached_key + + cached_val + + cached_val2 + + cached_conv1 + + cached_conv2 + ) + return states + + +def unstack_states(states: List[Tensor]) -> List[List[Tensor]]: + """Unstack the zipformer state corresponding to a batch of utterances + into a list of states, where the i-th entry is the state from the i-th + utterance in the batch. + + Note: + It is the inverse of :func:`stack_states`. + + Args: + states: + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + A list of states. + ``states[i]`` is a list of 7 * num_encoders elements of i-th utterance. + """ + assert len(states) % 7 == 0, len(states) + num_encoders = len(states) // 7 + ( + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) = (states[i * num_encoders : (i + 1) * num_encoders] for i in range(7)) + + batch_size = cached_len[0].shape[1] + + len_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_len[i]: (num_layers, batch_size) + len_avg = cached_len[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + len_list[n].append(len_avg[n]) + + avg_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_avg[i]: (num_layers, batch_size, D) + avg = cached_avg[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + avg_list[n].append(avg[n]) + + key_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_key[i]: (num_layers, left_context, batch_size, D) + key = cached_key[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + key_list[n].append(key[n]) + + val_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_val[i]: (num_layers, left_context, batch_size, D) + val = cached_val[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + val_list[n].append(val[n]) + + val2_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_val2[i]: (num_layers, left_context, batch_size, D) + val2 = cached_val2[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + val2_list[n].append(val2[n]) + + conv1_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_conv1[i]: (num_layers, batch_size, D, kernel-1) + conv1 = cached_conv1[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + conv1_list[n].append(conv1[n]) + + conv2_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_conv2[i]: (num_layers, batch_size, D, kernel-1) + conv2 = cached_conv2[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + conv2_list[n].append(conv2[n]) + + state_list = [ + ( + len_list[i] + + avg_list[i] + + key_list[i] + + val_list[i] + + val2_list[i] + + conv1_list[i] + + conv2_list[i] + ) + for i in range(batch_size) + ] + return state_list + + +class Zipformer(EncoderInterface): + """ + Args: + num_features (int): Number of input features + d_model: (int,int): embedding dimension of 2 encoder stacks + attention_dim: (int,int): attention dimension of 2 encoder stacks + nhead (int, int): number of heads + dim_feedforward (int, int): feedforward dimension in 2 encoder stacks + num_encoder_layers (int): number of encoder layers + dropout (float): dropout rate + cnn_module_kernel (int): Kernel size of convolution module + vgg_frontend (bool): whether to use vgg frontend. + warmup_batches (float): number of batches to warm up over + """ + + def __init__( + self, + num_features: int, + output_downsampling_factor: int = 2, + encoder_dims: Tuple[int] = (384, 384), + attention_dim: Tuple[int] = (256, 256), + encoder_unmasked_dims: Tuple[int] = (256, 256), + zipformer_downsampling_factors: Tuple[int] = (2, 4), + nhead: Tuple[int] = (8, 8), + feedforward_dim: Tuple[int] = (1536, 2048), + num_encoder_layers: Tuple[int] = (12, 12), + dropout: float = 0.1, + cnn_module_kernels: Tuple[int] = (31, 31), + pos_dim: int = 4, + num_left_chunks: int = 4, + short_chunk_threshold: float = 0.75, + short_chunk_size: int = 50, + decode_chunk_size: int = 16, + warmup_batches: float = 4000.0, + ) -> None: + super(Zipformer, self).__init__() + + self.num_features = num_features + assert 0 < encoder_dims[0] <= encoder_dims[1] + self.encoder_dims = encoder_dims + self.encoder_unmasked_dims = encoder_unmasked_dims + self.zipformer_downsampling_factors = zipformer_downsampling_factors + self.output_downsampling_factor = output_downsampling_factor + + self.num_left_chunks = num_left_chunks + self.short_chunk_threshold = short_chunk_threshold + self.short_chunk_size = short_chunk_size + + # Used in decoding + self.decode_chunk_size = decode_chunk_size + + # will be written to, see set_batch_count() + self.batch_count = 0 + self.warmup_end = warmup_batches + + for u, d in zip(encoder_unmasked_dims, encoder_dims): + assert u <= d, (u, d) + + # self.encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, (T - 7)//2, encoder_dims). + # That is, it does two things simultaneously: + # (1) subsampling: T -> (T - 7)//2 + # (2) embedding: num_features -> encoder_dims + self.encoder_embed = Conv2dSubsampling( + num_features, encoder_dims[0], dropout=dropout + ) + + # each one will be ZipformerEncoder or DownsampledZipformerEncoder + encoders = [] + + self.num_encoders = len(encoder_dims) + for i in range(self.num_encoders): + encoder_layer = ZipformerEncoderLayer( + encoder_dims[i], + attention_dim[i], + nhead[i], + feedforward_dim[i], + dropout, + cnn_module_kernels[i], + pos_dim, + ) + + # For the segment of the warmup period, we let the Conv2dSubsampling + # layer learn something. Then we start to warm up the other encoders. + encoder = ZipformerEncoder( + encoder_layer, + num_encoder_layers[i], + dropout, + warmup_begin=warmup_batches * (i + 1) / (self.num_encoders + 1), + warmup_end=warmup_batches * (i + 2) / (self.num_encoders + 1), + ) + + if zipformer_downsampling_factors[i] != 1: + encoder = DownsampledZipformerEncoder( + encoder, + input_dim=encoder_dims[i - 1] if i > 0 else encoder_dims[0], + output_dim=encoder_dims[i], + downsample=zipformer_downsampling_factors[i], + ) + encoders.append(encoder) + self.encoders = nn.ModuleList(encoders) + + # initializes self.skip_layers and self.skip_modules + self._init_skip_modules() + + self.downsample_output = AttentionDownsample( + encoder_dims[-1], encoder_dims[-1], downsample=output_downsampling_factor + ) + + def _get_layer_skip_dropout_prob(self): + if not self.training: + return 0.0 + batch_count = self.batch_count + min_dropout_prob = 0.025 + + if batch_count > self.warmup_end: + return min_dropout_prob + else: + return 0.5 - (batch_count / self.warmup_end) * (0.5 - min_dropout_prob) + + def _init_skip_modules(self): + """ + If self.zipformer_downampling_factors = (1, 2, 4, 8, 4, 2), then at the input of layer + indexed 4 (in zero indexing), with has subsapling_factor=4, we combine the output of + layers 2 and 3; and at the input of layer indexed 5, which which has subsampling_factor=2, + we combine the outputs of layers 1 and 5. + """ + skip_layers = [] + skip_modules = [] + z = self.zipformer_downsampling_factors + for i in range(len(z)): + if i <= 1 or z[i - 1] <= z[i]: + skip_layers.append(None) + skip_modules.append(SimpleCombinerIdentity()) + else: + # TEMP + for j in range(i - 2, -1, -1): + if z[j] <= z[i] or j == 0: + # TEMP logging statement. + logging.info( + f"At encoder stack {i}, which has downsampling_factor={z[i]}, we will " + f"combine the outputs of layers {j} and {i-1}, with downsampling_factors={z[j]} and {z[i-1]}." + ) + skip_layers.append(j) + skip_modules.append( + SimpleCombiner( + self.encoder_dims[j], + self.encoder_dims[i - 1], + min_weight=(0.0, 0.25), + ) + ) + break + self.skip_layers = skip_layers + self.skip_modules = nn.ModuleList(skip_modules) + + def get_feature_masks(self, x: torch.Tensor) -> List[float]: + # Note: The actual return type is Union[List[float], List[Tensor]], + # but to make torch.jit.script() work, we use List[float] + """ + In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of + randomized feature masks, one per encoder. + On e.g. 15% of frames, these masks will zero out all encoder dims larger than + some supplied number, e.g. >256, so in effect on those frames we are using + a smaller encoder dim. + + We generate the random masks at this level because we want the 2 masks to 'agree' + all the way up the encoder stack. This will mean that the 1st mask will have + mask values repeated self.zipformer_downsampling_factors times. + + Args: + x: the embeddings (needed for the shape and dtype and device), of shape + (num_frames, batch_size, encoder_dims0) + """ + num_encoders = len(self.encoder_dims) + if torch.jit.is_scripting() or not self.training: + return [1.0] * num_encoders + + (num_frames0, batch_size, _encoder_dims0) = x.shape + + assert self.encoder_dims[0] == _encoder_dims0, ( + self.encoder_dims, + _encoder_dims0, + ) + + max_downsampling_factor = max(self.zipformer_downsampling_factors) + + num_frames_max = num_frames0 + max_downsampling_factor - 1 + + feature_mask_dropout_prob = 0.15 + + # frame_mask_max shape: (num_frames_max, batch_size, 1) + frame_mask_max = ( + torch.rand(num_frames_max, batch_size, 1, device=x.device) + > feature_mask_dropout_prob + ).to(x.dtype) + + feature_masks = [] + for i in range(num_encoders): + ds = self.zipformer_downsampling_factors[i] + upsample_factor = max_downsampling_factor // ds + + frame_mask = ( + frame_mask_max.unsqueeze(1) + .expand(num_frames_max, upsample_factor, batch_size, 1) + .reshape(num_frames_max * upsample_factor, batch_size, 1) + ) + num_frames = (num_frames0 + ds - 1) // ds + frame_mask = frame_mask[:num_frames] + feature_mask = torch.ones( + num_frames, + batch_size, + self.encoder_dims[i], + dtype=x.dtype, + device=x.device, + ) + u = self.encoder_unmasked_dims[i] + feature_mask[:, :, u:] *= frame_mask + feature_masks.append(feature_mask) + + return feature_masks + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + chunk_size: + The chunk size used in evaluation mode. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (batch_size, output_seq_len, encoder_dims[-1]) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + """ + x = self.encoder_embed(x) + + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + lengths = (x_lens - 7) >> 1 + assert x.size(0) == lengths.max().item(), (x.shape, lengths, lengths.max()) + mask = make_pad_mask(lengths) + + outputs = [] + feature_masks = self.get_feature_masks(x) + + if self.training: + # Training mode + max_ds = max(self.zipformer_downsampling_factors) + # Generate dynamic chunk-wise attention mask during training + max_len = x.size(0) // max_ds + short_chunk_size = self.short_chunk_size // max_ds + chunk_size = torch.randint(1, max_len, (1,)).item() + if chunk_size > (max_len * self.short_chunk_threshold): + # Full attention + chunk_size = x.size(0) + else: + # Chunk-wise attention + chunk_size = chunk_size % short_chunk_size + 1 + chunk_size *= max_ds + else: + chunk_size = self.decode_chunk_size + # Evaluation mode + for ds in self.zipformer_downsampling_factors: + assert chunk_size % ds == 0, (chunk_size, ds) + + attn_mask = ~subsequent_chunk_mask( + size=x.size(0), + chunk_size=chunk_size, + num_left_chunks=self.num_left_chunks, + device=x.device, + ) + + for i, (module, skip_module) in enumerate( + zip(self.encoders, self.skip_modules) + ): + ds = self.zipformer_downsampling_factors[i] + k = self.skip_layers[i] + if isinstance(k, int): + layer_skip_dropout_prob = self._get_layer_skip_dropout_prob() + if torch.jit.is_scripting(): + x = skip_module(outputs[k], x) + elif (not self.training) or random.random() > layer_skip_dropout_prob: + x = skip_module(outputs[k], x) + x = module( + x, + feature_mask=feature_masks[i], + src_key_padding_mask=None if mask is None else mask[..., ::ds], + attn_mask=attn_mask[::ds, ::ds], + ) + outputs.append(x) + + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + lengths = (lengths + 1) >> 1 + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + return x, lengths + + def streaming_forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + states: List[Tensor], + ) -> Tuple[Tensor, Tensor, List[Tensor]]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + seq_len is the input chunk length. + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + states: + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + Return a tuple containing 3 tensors: + - embeddings: its shape is (batch_size, output_seq_len, encoder_dims[-1]) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + - updated states. + """ + assert len(states) == 7 * self.num_encoders, (len(states), self.num_encoders) + + cached_len = states[: self.num_encoders] + cached_avg = states[self.num_encoders : 2 * self.num_encoders] + cached_key = states[2 * self.num_encoders : 3 * self.num_encoders] + cached_val = states[3 * self.num_encoders : 4 * self.num_encoders] + cached_val2 = states[4 * self.num_encoders : 5 * self.num_encoders] + cached_conv1 = states[5 * self.num_encoders : 6 * self.num_encoders] + cached_conv2 = states[6 * self.num_encoders : 7 * self.num_encoders] + + x = self.encoder_embed(x) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + lengths = (x_lens - 7) >> 1 + assert x.size(0) == lengths.max().item(), (x.shape, lengths, lengths.max()) + + outputs = [] + new_cached_len = [] + new_cached_avg = [] + new_cached_key = [] + new_cached_val = [] + new_cached_val2 = [] + new_cached_conv1 = [] + new_cached_conv2 = [] + + for i, (module, skip_module) in enumerate( + zip(self.encoders, self.skip_modules) + ): + k = self.skip_layers[i] + if isinstance(k, int): + x = skip_module(outputs[k], x) + x, len_avg, avg, key, val, val2, conv1, conv2 = module.streaming_forward( + x, + cached_len=cached_len[i], + cached_avg=cached_avg[i], + cached_key=cached_key[i], + cached_val=cached_val[i], + cached_val2=cached_val2[i], + cached_conv1=cached_conv1[i], + cached_conv2=cached_conv2[i], + ) + outputs.append(x) + # Update caches + new_cached_len.append(len_avg) + new_cached_avg.append(avg) + new_cached_key.append(key) + new_cached_val.append(val) + new_cached_val2.append(val2) + new_cached_conv1.append(conv1) + new_cached_conv2.append(conv2) + + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + lengths = (lengths + 1) >> 1 + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + new_states = ( + new_cached_len + + new_cached_avg + + new_cached_key + + new_cached_val + + new_cached_val2 + + new_cached_conv1 + + new_cached_conv2 + ) + return x, lengths, new_states + + @torch.jit.export + def get_init_state( + self, + device: torch.device = torch.device("cpu"), + ) -> List[Tensor]: + """Get initial states. + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + """ + cached_len = [] + cached_avg = [] + cached_key = [] + cached_val = [] + cached_val2 = [] + cached_conv1 = [] + cached_conv2 = [] + + left_context_len = self.decode_chunk_size * self.num_left_chunks + + for i, encoder in enumerate(self.encoders): + num_layers = encoder.num_layers + ds = self.zipformer_downsampling_factors[i] + + len_avg = torch.zeros(num_layers, 1, dtype=torch.int32, device=device) + cached_len.append(len_avg) + + avg = torch.zeros(num_layers, 1, encoder.d_model, device=device) + cached_avg.append(avg) + + key = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim, + device=device, + ) + cached_key.append(key) + + val = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim // 2, + device=device, + ) + cached_val.append(val) + + val2 = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim // 2, + device=device, + ) + cached_val2.append(val2) + + conv1 = torch.zeros( + num_layers, + 1, + encoder.d_model, + encoder.cnn_module_kernel - 1, + device=device, + ) + cached_conv1.append(conv1) + + conv2 = torch.zeros( + num_layers, + 1, + encoder.d_model, + encoder.cnn_module_kernel - 1, + device=device, + ) + cached_conv2.append(conv2) + + states = ( + cached_len + + cached_avg + + cached_key + + cached_val + + cached_val2 + + cached_conv1 + + cached_conv2 + ) + return states + + +class ZipformerEncoderLayer(nn.Module): + """ + ZipformerEncoderLayer is made up of self-attn, feedforward and convolution networks. + + Args: + d_model: the number of expected features in the input (required). + nhead: the number of heads in the multiheadattention models (required). + feedforward_dim: the dimension of the feedforward network model (default=2048). + dropout: the dropout value (default=0.1). + cnn_module_kernel (int): Kernel size of convolution module. + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = encoder_layer(src, pos_emb) + """ + + def __init__( + self, + d_model: int, + attention_dim: int, + nhead: int, + feedforward_dim: int = 2048, + dropout: float = 0.1, + cnn_module_kernel: int = 31, + pos_dim: int = 4, + ) -> None: + super(ZipformerEncoderLayer, self).__init__() + + self.d_model = d_model + self.attention_dim = attention_dim + self.cnn_module_kernel = cnn_module_kernel + + # will be written to, see set_batch_count() + self.batch_count = 0 + + self.self_attn = RelPositionMultiheadAttention( + d_model, + attention_dim, + nhead, + pos_dim, + dropout=0.0, + ) + + self.pooling = PoolingModule(d_model) + + self.feed_forward1 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward2 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward3 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.conv_module1 = ConvolutionModule(d_model, cnn_module_kernel) + + self.conv_module2 = ConvolutionModule(d_model, cnn_module_kernel) + + self.norm_final = BasicNorm(d_model) + + self.bypass_scale = nn.Parameter(torch.tensor(0.5)) + + # try to ensure the output is close to zero-mean (or at least, zero-median). + self.balancer = ActivationBalancer( + d_model, + channel_dim=-1, + min_positive=0.45, + max_positive=0.55, + max_abs=6.0, + ) + self.whiten = Whiten( + num_groups=1, whitening_limit=5.0, prob=(0.025, 0.25), grad_scale=0.01 + ) + + def get_bypass_scale(self): + if torch.jit.is_scripting() or not self.training: + return self.bypass_scale + if random.random() < 0.1: + # ensure we get grads if self.bypass_scale becomes out of range + return self.bypass_scale + # hardcode warmup period for bypass scale + warmup_period = 20000.0 + initial_clamp_min = 0.75 + final_clamp_min = 0.25 + if self.batch_count > warmup_period: + clamp_min = final_clamp_min + else: + clamp_min = initial_clamp_min - (self.batch_count / warmup_period) * ( + initial_clamp_min - final_clamp_min + ) + return self.bypass_scale.clamp(min=clamp_min, max=1.0) + + def get_dynamic_dropout_rate(self): + # return dropout rate for the dynamic modules (self_attn, pooling, convolution); this + # starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable + # at the beginning, by making the network focus on the feedforward modules. + if torch.jit.is_scripting() or not self.training: + return 0.0 + warmup_period = 2000.0 + initial_dropout_rate = 0.2 + final_dropout_rate = 0.0 + if self.batch_count > warmup_period: + return final_dropout_rate + else: + return initial_dropout_rate - ( + initial_dropout_rate * final_dropout_rate + ) * (self.batch_count / warmup_period) + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + src_mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + batch_split: if not None, this layer will only be applied to + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + src_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, N is the batch size, E is the feature number + """ + src_orig = src + + # macaron style feed forward module + src = src + self.feed_forward1(src) + + # dropout rate for submodules that interact with time. + dynamic_dropout = self.get_dynamic_dropout_rate() + + # pooling module + if torch.jit.is_scripting(): + src = src + self.pooling(src, src_key_padding_mask=src_key_padding_mask) + elif random.random() >= dynamic_dropout: + src = src + self.pooling(src, src_key_padding_mask=src_key_padding_mask) + + if torch.jit.is_scripting(): + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=attn_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + + src = src + self.self_attn.forward2(src, attn_weights) + + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + else: + use_self_attn = random.random() >= dynamic_dropout + if use_self_attn: + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=attn_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + if random.random() >= dynamic_dropout: + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + + if use_self_attn: + src = src + self.self_attn.forward2(src, attn_weights) + + if random.random() >= dynamic_dropout: + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward3(src) + + src = self.norm_final(self.balancer(src)) + + delta = src - src_orig + + src = src_orig + delta * self.get_bypass_scale() + + return self.whiten(src) + + def streaming_forward( + self, + src: Tensor, + pos_emb: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + cached_len: processed number of past frames. + cached_avg: cached average of past frames. + cached_key: cached key tensor of left context for the first attention module. + cached_val: cached value tensor of left context for the first attention module. + cached_val2: cached value tensor of left context for the second attention module. + cached_conv1: cached left context for the first convolution module. + cached_conv2: cached left context for the second convolution module. + + Shape: + src: (S, N, E). + pos_emb: (N, left_context_len+2*S-1, E) + cached_len: (N,) + N is the batch size. + cached_avg: (N, C). + N is the batch size, C is the feature dimension. + cached_key: (left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + """ + src_orig = src + + # macaron style feed forward module + src = src + self.feed_forward1(src) + + src_pool, cached_len, cached_avg = self.pooling.streaming_forward( + src, + cached_len=cached_len, + cached_avg=cached_avg, + ) + src = src + src_pool + + ( + src_attn, + attn_weights, + cached_key, + cached_val, + ) = self.self_attn.streaming_forward( + src, + pos_emb=pos_emb, + cached_key=cached_key, + cached_val=cached_val, + ) + src = src + src_attn + + src_conv, cached_conv1 = self.conv_module1.streaming_forward( + src, + cache=cached_conv1, + ) + src = src + src_conv + + src = src + self.feed_forward2(src) + + src_attn, cached_val2 = self.self_attn.streaming_forward2( + src, + attn_weights, + cached_val=cached_val2, + ) + src = src + src_attn + + src_conv, cached_conv2 = self.conv_module2.streaming_forward( + src, + cache=cached_conv2, + ) + src = src + src_conv + + src = src + self.feed_forward3(src) + + src = self.norm_final(self.balancer(src)) + + delta = src - src_orig + + src = src_orig + delta * self.bypass_scale + + return ( + src, + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) + + +class ZipformerEncoder(nn.Module): + r"""ZipformerEncoder is a stack of N encoder layers + + Args: + encoder_layer: an instance of the ZipformerEncoderLayer() class (required). + num_layers: the number of sub-encoder-layers in the encoder (required). + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> zipformer_encoder = ZipformerEncoder(encoder_layer, num_layers=6) + >>> src = torch.rand(10, 32, 512) + >>> out = zipformer_encoder(src) + """ + + def __init__( + self, + encoder_layer: nn.Module, + num_layers: int, + dropout: float, + warmup_begin: float, + warmup_end: float, + ) -> None: + super().__init__() + # will be written to, see set_batch_count() Note: in inference time this + # may be zero but should be treated as large, we can check if + # self.training is true. + self.batch_count = 0 + self.warmup_begin = warmup_begin + self.warmup_end = warmup_end + # module_seed is for when we need a random number that is unique to the module but + # shared across jobs. It's used to randomly select how many layers to drop, + # so that we can keep this consistent across worker tasks (for efficiency). + self.module_seed = torch.randint(0, 1000, ()).item() + + self.encoder_pos = RelPositionalEncoding(encoder_layer.d_model, dropout) + + self.layers = nn.ModuleList( + [copy.deepcopy(encoder_layer) for i in range(num_layers)] + ) + self.num_layers = num_layers + + self.d_model = encoder_layer.d_model + self.attention_dim = encoder_layer.attention_dim + self.cnn_module_kernel = encoder_layer.cnn_module_kernel + + assert 0 <= warmup_begin <= warmup_end, (warmup_begin, warmup_end) + + delta = (1.0 / num_layers) * (warmup_end - warmup_begin) + cur_begin = warmup_begin + for i in range(num_layers): + self.layers[i].warmup_begin = cur_begin + cur_begin += delta + self.layers[i].warmup_end = cur_begin + + def get_layers_to_drop(self, rnd_seed: int): + ans = set() + if not self.training: + return ans + + batch_count = self.batch_count + num_layers = len(self.layers) + + def get_layerdrop_prob(layer: int) -> float: + layer_warmup_begin = self.layers[layer].warmup_begin + layer_warmup_end = self.layers[layer].warmup_end + + initial_layerdrop_prob = 0.5 + final_layerdrop_prob = 0.05 + + if batch_count == 0: + # As a special case, if batch_count == 0, return 0 (drop no + # layers). This is rather ugly, I'm afraid; it is intended to + # enable our scan_pessimistic_batches_for_oom() code to work correctly + # so if we are going to get OOM it will happen early. + # also search for 'batch_count' with quotes in this file to see + # how we initialize the warmup count to a random number between + # 0 and 10. + return 0.0 + elif batch_count < layer_warmup_begin: + return initial_layerdrop_prob + elif batch_count > layer_warmup_end: + return final_layerdrop_prob + else: + # linearly interpolate + t = (batch_count - layer_warmup_begin) / layer_warmup_end + assert 0.0 <= t < 1.001, t + return initial_layerdrop_prob + t * ( + final_layerdrop_prob - initial_layerdrop_prob + ) + + shared_rng = random.Random(batch_count + self.module_seed) + independent_rng = random.Random(rnd_seed) + + layerdrop_probs = [get_layerdrop_prob(i) for i in range(num_layers)] + tot = sum(layerdrop_probs) + # Instead of drawing the samples independently, we first randomly decide + # how many layers to drop out, using the same random number generator between + # jobs so that all jobs drop out the same number (this is for speed). + # Then we use an approximate approach to drop out the individual layers + # with their specified probs while reaching this exact target. + num_to_drop = int(tot) + int(shared_rng.random() < (tot - int(tot))) + + layers = list(range(num_layers)) + independent_rng.shuffle(layers) + + # go through the shuffled layers until we get the required number of samples. + if num_to_drop > 0: + for layer in itertools.cycle(layers): + if independent_rng.random() < layerdrop_probs[layer]: + ans.add(layer) + if len(ans) == num_to_drop: + break + if shared_rng.random() < 0.005 or __name__ == "__main__": + logging.info( + f"warmup_begin={self.warmup_begin:.1f}, warmup_end={self.warmup_end:.1f}, " + f"batch_count={batch_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}" + ) + return ans + + def forward( + self, + src: Tensor, + # Note: The type of feature_mask should be Union[float, Tensor], + # but to make torch.jit.script() work, we use `float` here + feature_mask: float = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. + mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: (x, x_no_combine), both of shape (S, N, E) + """ + pos_emb = self.encoder_pos(src) + output = src + + if torch.jit.is_scripting(): + layers_to_drop = [] + else: + rnd_seed = src.numel() + random.randint(0, 1000) + layers_to_drop = self.get_layers_to_drop(rnd_seed) + + output = output * feature_mask + + for i, mod in enumerate(self.layers): + if not torch.jit.is_scripting(): + if i in layers_to_drop: + continue + output = mod( + output, + pos_emb, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + + output = output * feature_mask + + return output + + @torch.jit.export + def streaming_forward( + self, + src: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + cached_len: number of past frames. + cached_avg: cached average of past frames. + cached_key: cached key tensor for first attention module. + cached_val: cached value tensor for first attention module. + cached_val2: cached value tensor for second attention module. + cached_conv1: cached left contexts for the first convolution module. + cached_conv2: cached left contexts for the second convolution module. + + Shape: + src: (S, N, E). + cached_len: (N,) + N is the batch size. + cached_avg: (num_layers, N, C). + N is the batch size, C is the feature dimension. + cached_key: (num_layers, left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + + Returns: A tuple of 8 tensors: + - output tensor + - updated cached number of past frmaes. + - updated cached average of past frmaes. + - updated cached key tensor of of the first attention module. + - updated cached value tensor of of the first attention module. + - updated cached value tensor of of the second attention module. + - updated cached left contexts of the first convolution module. + - updated cached left contexts of the second convolution module. + """ + assert cached_len.size(0) == self.num_layers, ( + cached_len.size(0), + self.num_layers, + ) + assert cached_avg.size(0) == self.num_layers, ( + cached_avg.size(0), + self.num_layers, + ) + assert cached_key.size(0) == self.num_layers, ( + cached_key.size(0), + self.num_layers, + ) + assert cached_val.size(0) == self.num_layers, ( + cached_val.size(0), + self.num_layers, + ) + assert cached_val2.size(0) == self.num_layers, ( + cached_val2.size(0), + self.num_layers, + ) + assert cached_conv1.size(0) == self.num_layers, ( + cached_conv1.size(0), + self.num_layers, + ) + assert cached_conv2.size(0) == self.num_layers, ( + cached_conv2.size(0), + self.num_layers, + ) + + left_context_len = cached_key.shape[1] + pos_emb = self.encoder_pos(src, left_context_len) + output = src + + new_cached_len = [] + new_cached_avg = [] + new_cached_key = [] + new_cached_val = [] + new_cached_val2 = [] + new_cached_conv1 = [] + new_cached_conv2 = [] + for i, mod in enumerate(self.layers): + output, len_avg, avg, key, val, val2, conv1, conv2 = mod.streaming_forward( + output, + pos_emb, + cached_len=cached_len[i], + cached_avg=cached_avg[i], + cached_key=cached_key[i], + cached_val=cached_val[i], + cached_val2=cached_val2[i], + cached_conv1=cached_conv1[i], + cached_conv2=cached_conv2[i], + ) + # Update caches + new_cached_len.append(len_avg) + new_cached_avg.append(avg) + new_cached_key.append(key) + new_cached_val.append(val) + new_cached_val2.append(val2) + new_cached_conv1.append(conv1) + new_cached_conv2.append(conv2) + + return ( + output, + torch.stack(new_cached_len, dim=0), + torch.stack(new_cached_avg, dim=0), + torch.stack(new_cached_key, dim=0), + torch.stack(new_cached_val, dim=0), + torch.stack(new_cached_val2, dim=0), + torch.stack(new_cached_conv1, dim=0), + torch.stack(new_cached_conv2, dim=0), + ) + + +class DownsampledZipformerEncoder(nn.Module): + r""" + DownsampledZipformerEncoder is a zipformer encoder evaluated at a reduced frame rate, + after convolutional downsampling, and then upsampled again at the output, and combined + with the origin input, so that the output has the same shape as the input. + """ + + def __init__( + self, encoder: nn.Module, input_dim: int, output_dim: int, downsample: int + ): + super(DownsampledZipformerEncoder, self).__init__() + self.downsample_factor = downsample + self.downsample = AttentionDownsample(input_dim, output_dim, downsample) + self.encoder = encoder + self.num_layers = encoder.num_layers + self.d_model = encoder.d_model + self.attention_dim = encoder.attention_dim + self.cnn_module_kernel = encoder.cnn_module_kernel + self.upsample = SimpleUpsample(output_dim, downsample) + self.out_combiner = SimpleCombiner( + input_dim, output_dim, min_weight=(0.0, 0.25) + ) + + def forward( + self, + src: Tensor, + # Note: the type of feature_mask should be Unino[float, Tensor], + # but to make torch.jit.script() happ, we use float here + feature_mask: float = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. feature_mask is expected to be already downsampled by + self.downsample_factor. + attn_mask: attention mask (optional). Should be downsampled already. + src_key_padding_mask: the mask for the src keys per batch (optional). Should be downsampled already. + + Shape: + src: (S, N, E). + attn_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: output of shape (S, N, F) where F is the number of output features + (output_dim to constructor) + """ + src_orig = src + src = self.downsample(src) + + src = self.encoder( + src, + feature_mask=feature_mask, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return self.out_combiner(src_orig, src) + + def streaming_forward( + self, + src: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required). + cached_avg: cached average value of past frames. + cached_len: length of past frames. + cached_key: cached key tensor for the first attention module. + cached_val: cached value tensor for the first attention module. + cached_val2: cached value tensor for the second attention module. + cached_conv1: cached left context for the first convolution module. + cached_conv2: cached left context for the second convolution module. + + Shape: + src: (S, N, E). + cached_len: (N,) + N is the batch size. + cached_avg: (num_layers, N, C). + N is the batch size, C is the feature dimension. + cached_key: (num_layers, left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + Returns: output of shape (S, N, F) where F is the number of output features + (output_dim to constructor) + """ + src_orig = src + src = self.downsample(src) + + ( + src, + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) = self.encoder.streaming_forward( + src, + cached_len=cached_len, + cached_avg=cached_avg, + cached_key=cached_key, + cached_val=cached_val, + cached_val2=cached_val2, + cached_conv1=cached_conv1, + cached_conv2=cached_conv2, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return ( + self.out_combiner(src_orig, src), + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) + + +class AttentionDownsample(torch.nn.Module): + """ + Does downsampling with attention, by weighted sum, and a projection.. + """ + + def __init__(self, in_channels: int, out_channels: int, downsample: int): + """ + Require out_channels > in_channels. + """ + super(AttentionDownsample, self).__init__() + self.query = nn.Parameter(torch.randn(in_channels) * (in_channels**-0.5)) + + # fill in the extra dimensions with a projection of the input + if out_channels > in_channels: + self.extra_proj = nn.Linear( + in_channels * downsample, out_channels - in_channels, bias=False + ) + else: + self.extra_proj = None + self.downsample = downsample + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, 1, in_channels) + Returns a tensor of shape + ( (seq_len+downsample-1)//downsample, batch_size, out_channels) + """ + (seq_len, batch_size, in_channels) = src.shape + ds = self.downsample + d_seq_len = (seq_len + ds - 1) // ds + + # Pad to an exact multiple of self.downsample + if seq_len != d_seq_len * ds: + # right-pad src, repeating the last element. + pad = d_seq_len * ds - seq_len + src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2]) + src = torch.cat((src, src_extra), dim=0) + assert src.shape[0] == d_seq_len * ds, (src.shape[0], d_seq_len, ds) + + src = src.reshape(d_seq_len, ds, batch_size, in_channels) + scores = (src * self.query).sum(dim=-1, keepdim=True) + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + scores = penalize_abs_values_gt(scores, limit=10.0, penalty=1.0e-04) + + weights = scores.softmax(dim=1) + + # ans1 is the first `in_channels` channels of the output + ans = (src * weights).sum(dim=1) + src = src.permute(0, 2, 1, 3).reshape(d_seq_len, batch_size, ds * in_channels) + + if self.extra_proj is not None: + ans2 = self.extra_proj(src) + ans = torch.cat((ans, ans2), dim=2) + return ans + + +class SimpleUpsample(torch.nn.Module): + """ + A very simple form of upsampling that mostly just repeats the input, but + also adds a position-specific bias. + """ + + def __init__(self, num_channels: int, upsample: int): + super(SimpleUpsample, self).__init__() + self.bias = nn.Parameter(torch.randn(upsample, num_channels) * 0.01) + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, num_channels) + Returns a tensor of shape + ( (seq_len*upsample), batch_size, num_channels) + """ + upsample = self.bias.shape[0] + (seq_len, batch_size, num_channels) = src.shape + src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels) + src = src + self.bias.unsqueeze(1) + src = src.reshape(seq_len * upsample, batch_size, num_channels) + return src + + +class SimpleCombinerIdentity(nn.Module): + def __init__(self, *args, **kwargs): + super().__init__() + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + return src1 + + +class SimpleCombiner(torch.nn.Module): + """ + A very simple way of combining 2 vectors of 2 different dims, via a + learned weighted combination in the shared part of the dim. + Args: + dim1: the dimension of the first input, e.g. 256 + dim2: the dimension of the second input, e.g. 384. + The output will have the same dimension as dim2. + """ + + def __init__(self, dim1: int, dim2: int, min_weight: Tuple[float] = (0.0, 0.0)): + super(SimpleCombiner, self).__init__() + assert dim2 >= dim1, (dim2, dim1) + self.weight1 = nn.Parameter(torch.zeros(())) + self.min_weight = min_weight + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + """ + src1: (*, dim1) + src2: (*, dim2) + + Returns: a tensor of shape (*, dim2) + """ + assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape) + + weight1 = self.weight1 + if not torch.jit.is_scripting(): + if ( + self.training + and random.random() < 0.25 + and self.min_weight != (0.0, 0.0) + ): + weight1 = weight1.clamp( + min=self.min_weight[0], max=1.0 - self.min_weight[1] + ) + + src1 = src1 * weight1 + src2 = src2 * (1.0 - weight1) + + src1_dim = src1.shape[-1] + src2_dim = src2.shape[-1] + if src1_dim != src2_dim: + if src1_dim < src2_dim: + src1 = torch.nn.functional.pad(src1, (0, src2_dim - src1_dim)) + else: + src1 = src1[:src2_dim] + + return src1 + src2 + + +class RelPositionalEncoding(torch.nn.Module): + """Relative positional encoding module. + + See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py + + Args: + d_model: Embedding dimension. + dropout_rate: Dropout rate. + max_len: Maximum input length. + + """ + + def __init__( + self, + d_model: int, + dropout_rate: float, + max_len: int = 5000, + ) -> None: + """Construct a PositionalEncoding object.""" + super(RelPositionalEncoding, self).__init__() + self.d_model = d_model + self.dropout = torch.nn.Dropout(dropout_rate) + self.pe = None + self.extend_pe(torch.tensor(0.0).expand(max_len)) + + def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None: + """Reset the positional encodings.""" + x_size_left = x.size(0) + left_context_len + if self.pe is not None: + # self.pe contains both positive and negative parts + # the length of self.pe is 2 * input_len - 1 + if self.pe.size(1) >= x_size_left * 2 - 1: + # Note: TorchScript doesn't implement operator== for torch.Device + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): + self.pe = self.pe.to(dtype=x.dtype, device=x.device) + return + # Suppose `i` means to the position of query vector and `j` means the + # position of key vector. We use positive relative positions when keys + # are to the left (i>j) and negative relative positions otherwise (i Tensor: + """Add positional encoding. + + Args: + x (torch.Tensor): Input tensor (time, batch, `*`). + left_context_len: (int): Length of cached left context. + + Returns: + torch.Tensor: Encoded tensor (batch, left_context_len + 2*time-1, `*`). + + """ + self.extend_pe(x, left_context_len) + x_size_left = x.size(0) + left_context_len + pos_emb = self.pe[ + :, + self.pe.size(1) // 2 + - x_size_left + + 1 : self.pe.size(1) // 2 # noqa E203 + + x.size(0), + ] + return self.dropout(pos_emb) + + +class RelPositionMultiheadAttention(nn.Module): + r"""Multi-Head Attention layer with relative position encoding + + This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", + we have to write up the differences. + + + Args: + embed_dim: total dimension of the model. + attention_dim: dimension in the attention module, may be less or more than embed_dim + but must be a multiple of num_heads. + num_heads: parallel attention heads. + dropout: a Dropout layer on attn_output_weights. Default: 0.0. + + Examples:: + + >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) + >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) + """ + + def __init__( + self, + embed_dim: int, + attention_dim: int, + num_heads: int, + pos_dim: int, + dropout: float = 0.0, + ) -> None: + super(RelPositionMultiheadAttention, self).__init__() + self.embed_dim = embed_dim + self.attention_dim = attention_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = attention_dim // num_heads + self.pos_dim = pos_dim + assert self.head_dim % 2 == 0, self.head_dim + assert self.head_dim * num_heads == attention_dim, ( + self.head_dim, + num_heads, + attention_dim, + ) + + # the initial_scale is supposed to take over the "scaling" factor of + # head_dim ** -0.5, dividing it between the query and key. + in_proj_dim = ( + 2 * attention_dim # query, key + + attention_dim // 2 # value + + pos_dim * num_heads # positional encoding query + ) + + self.in_proj = ScaledLinear( + embed_dim, in_proj_dim, bias=True, initial_scale=self.head_dim**-0.25 + ) + + # self.whiten_values is applied on the values in forward(); + # it just copies the keys but prevents low-rank distribution by modifying grads. + self.whiten_values = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + self.whiten_keys = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + # linear transformation for positional encoding. + self.linear_pos = ScaledLinear( + embed_dim, num_heads * pos_dim, bias=False, initial_scale=0.05 + ) + + # the following are for diagnosics only, see --print-diagnostics option. + # they only copy their inputs. + self.copy_pos_query = Identity() + self.copy_query = Identity() + + self.out_proj = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + + self.in_proj2 = nn.Linear(embed_dim, attention_dim // 2, bias=False) + self.out_proj2 = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + # self.whiten_values2 is applied on the values in forward2() + self.whiten_values2 = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + def forward( + self, + x: Tensor, + pos_emb: Tensor, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x: input to be projected to query, key, value + pos_emb: Positional embedding tensor + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. When given a binary mask and a value is True, + the corresponding value on the attention layer will be ignored. When given + a byte mask and a value is non-zero, the corresponding value on the attention + layer will be ignored + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + - Inputs: + - x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the position + with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + - Returns: (attn_output, attn_weights) + + - attn_output: :math:`(S, N, E)` where S is the sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * N, S, S)` where N is the batch size, H is the num-heads + and S is the sequence length. + """ + x, weights = self.multi_head_attention_forward( + self.in_proj(x), + self.linear_pos(pos_emb), + self.attention_dim, + self.num_heads, + self.dropout, + self.out_proj.weight, + self.out_proj.bias, + training=self.training, + key_padding_mask=key_padding_mask, + attn_mask=attn_mask, + ) + return x, weights + + def streaming_forward( + self, + x: Tensor, + pos_emb: Tensor, + cached_key: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + r""" + Args: + x: input to be projected to query, key, value + pos_emb: Positional embedding tensor + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + - Inputs: + - x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + - cached_key: :math:`(left_context_len, N, K)`, where N is the batch size, K is the key dimension. + - cached_val: :math:`(left_context_len, N, V)`, where N is the batch size, V is the value dimension. + + - Returns: (attn_output, attn_weights, cached_key, cached_val) + + - attn_output: :math:`(S, N, E)` where S is the sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * N, S, S)` where N is the batch size, H is the num-heads + and S is the sequence length. + - cached_key: :math:`(left_context_len, N, K)`, updated cached attention key tensor of + left context + - cached_val: :math:`(left_context_len, N, K)`, updated cached attention value tensor of + """ + ( + x, + weights, + cached_key, + cached_val, + ) = self.streaming_multi_head_attention_forward( + self.in_proj(x), + self.linear_pos(pos_emb), + self.attention_dim, + self.num_heads, + self.out_proj.weight, + self.out_proj.bias, + cached_key=cached_key, + cached_val=cached_val, + ) + return x, weights, cached_key, cached_val + + def multi_head_attention_forward( + self, + x_proj: Tensor, + pos: Tensor, + attention_dim: int, + num_heads: int, + dropout_p: float, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + training: bool = True, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x_proj: the projected input, to be split into query, key, value. + pos: head-specific biases arising from the positional embeddings. + attention_dim: dimension inside attention mechanism + num_heads: parallel attention heads. + dropout_p: probability of an element to be zeroed. + out_proj_weight, out_proj_bias: the output projection weight and bias. + training: apply dropout if is ``True``. + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. This is an binary mask. When the value is True, + the corresponding value on the attention layer will be filled with -inf. + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + Inputs: + - x: :math:`(L, N, 7 * A // 2)` where L is the target sequence length, N is the batch size, A is + the attention dimension. Will be split into (query, key, value, pos). + - pos: :math:`(N, 2*L-1, A//2)` or :math:`(1, 2*L-1, A//2)` where L is the sequence + length, N is the batch size, and A is the attention dim. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * H, S, S)` where N is the batch size, + H is the num-heads, S is the sequence length. + """ + + seq_len, bsz, _ = x_proj.size() + + head_dim = attention_dim // num_heads + pos_dim = self.pos_dim # positional-encoding dim per head + assert ( + head_dim * num_heads == attention_dim + ), f"attention_dim must be divisible by num_heads: {head_dim}, {num_heads}, {attention_dim}" + + # self-attention + q = x_proj[..., 0:attention_dim] + k = x_proj[..., attention_dim : 2 * attention_dim] + value_dim = attention_dim // 2 + v = x_proj[..., 2 * attention_dim : 2 * attention_dim + value_dim] + # p is the position-encoding query, its dimension is num_heads*pos_dim.. + p = x_proj[..., 2 * attention_dim + value_dim :] + + k = self.whiten_keys(k) # does nothing in the forward pass. + v = self.whiten_values(v) # does nothing in the forward pass. + q = self.copy_query(q) # for diagnostics only, does nothing. + p = self.copy_pos_query(p) # for diagnostics only, does nothing. + + if attn_mask is not None: + assert ( + attn_mask.dtype == torch.float32 + or attn_mask.dtype == torch.float64 + or attn_mask.dtype == torch.float16 + or attn_mask.dtype == torch.uint8 + or attn_mask.dtype == torch.bool + ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( + attn_mask.dtype + ) + if attn_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for attn_mask is deprecated. Use bool tensor instead." + ) + attn_mask = attn_mask.to(torch.bool) + + if attn_mask.dim() == 2: + attn_mask = attn_mask.unsqueeze(0) + if list(attn_mask.size()) != [1, seq_len, seq_len]: + raise RuntimeError("The size of the 2D attn_mask is not correct.") + elif attn_mask.dim() == 3: + if list(attn_mask.size()) != [ + bsz * num_heads, + seq_len, + seq_len, + ]: + raise RuntimeError("The size of the 3D attn_mask is not correct.") + else: + raise RuntimeError( + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) + ) + # attn_mask's dim is 3 now. + + # convert ByteTensor key_padding_mask to bool + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." + ) + key_padding_mask = key_padding_mask.to(torch.bool) + + q = q.reshape(seq_len, bsz, num_heads, head_dim) + p = p.reshape(seq_len, bsz, num_heads, pos_dim) + k = k.reshape(seq_len, bsz, num_heads, head_dim) + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + if key_padding_mask is not None: + assert key_padding_mask.size(0) == bsz, "{} == {}".format( + key_padding_mask.size(0), bsz + ) + assert key_padding_mask.size(1) == seq_len, "{} == {}".format( + key_padding_mask.size(1), seq_len + ) + + q = q.permute(1, 2, 0, 3) # (batch, head, time1, head_dim) + p = p.permute(1, 2, 0, 3) # (batch, head, time1, pos_dim) + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + + seq_len2 = 2 * seq_len - 1 + pos = pos.reshape(1, seq_len2, num_heads, pos_dim).permute(0, 2, 3, 1) + # pos shape now: (batch, head, pos_dim, seq_len2) + + # (batch, head, time1, pos_dim) x (1, head, pos_dim, seq_len2) -> (batch, head, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_weights = torch.matmul(p, pos) + # the following .as_strided() expression converts the last axis of pos_weights from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + pos_weights = pos_weights.as_strided( + (bsz, num_heads, seq_len, seq_len), + ( + pos_weights.stride(0), + pos_weights.stride(1), + pos_weights.stride(2) - pos_weights.stride(3), + pos_weights.stride(3), + ), + storage_offset=pos_weights.stride(3) * (seq_len - 1), + ) + + # caution: they are really scores at this point. + attn_output_weights = torch.matmul(q, k) + pos_weights + + if not torch.jit.is_scripting(): + if training and random.random() < 0.1: + # This is a harder way of limiting the attention scores to not be too large. + # It incurs a penalty if any of them has an absolute value greater than 50.0. + # this should be outside the normal range of the attention scores. We use + # this mechanism instead of, say, a limit on entropy, because once the entropy + # gets very small gradients through the softmax can become very small, and + # some mechanisms like that become ineffective. + attn_output_weights = penalize_abs_values_gt( + attn_output_weights, limit=25.0, penalty=1.0e-04 + ) + + # attn_output_weights: (batch, head, time1, time2) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + attn_output_weights = attn_output_weights.masked_fill( + attn_mask, float("-inf") + ) + else: + attn_output_weights = attn_output_weights + attn_mask + + if key_padding_mask is not None: + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2), + float("-inf"), + ) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + # Using this version of softmax, defined in scaling.py, + # should save a little of the memory used in backprop by, if + # we are in automatic mixed precision mode (amp) == autocast, + # only storing the half-precision output for backprop purposes. + attn_output_weights = softmax(attn_output_weights, dim=-1) + + # If we are using chunk-wise attention mask and setting a limited + # num_left_chunks, the attention may only see the padding values which + # will also be masked out by `key_padding_mask`. At this circumstances, + # the whole column of `attn_output_weights` will be `-inf` + # (i.e. be `nan` after softmax). So we fill `0.0` at the masking + # positions to avoid invalid loss value below. + if ( + attn_mask is not None + and attn_mask.dtype == torch.bool + and key_padding_mask is not None + ): + if attn_mask.size(0) != 1: + attn_mask = attn_mask.view(bsz, num_heads, seq_len, seq_len) + combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2) + else: + # attn_mask.shape == (1, tgt_len, src_len) + combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze( + 1 + ).unsqueeze(2) + + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + attn_output_weights = nn.functional.dropout( + attn_output_weights, p=dropout_p, training=training + ) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2] + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, attention_dim // 2) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + return attn_output, attn_output_weights + + def streaming_multi_head_attention_forward( + self, + x_proj: Tensor, + pos: Tensor, + attention_dim: int, + num_heads: int, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + cached_key: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + r""" + Args: + x_proj: the projected input, to be split into query, key, value. + pos: head-specific biases arising from the positional embeddings. + attention_dim: dimension inside attention mechanism + num_heads: parallel attention heads. + out_proj_weight, out_proj_bias: the output projection weight and bias. + cached_key: cached attention key tensor of left context. + cached_val: cached attention value tensor of left context. + + Shape: + Inputs: + - x: :math:`(L, N, 7 * A // 2)` where L is the target sequence length, N is the batch size, A is + the attention dimension. Will be split into (query, key, value, pos). + - pos: :math:`(N, 2*L-1, A//2)` or :math:`(1, 2*L-1, A//2)` where L is the sequence + length, N is the batch size, and A is the attention dim. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * H, S, S)` where N is the batch size, + H is the num-heads, S is the sequence length. + - cached_key: :math:`(left_context_len, N, K)`, updated cached attention key tensor of left context. + - cached_val: :math:`(left_context_len, N, K)`, updated cached attention value tensor of left context. + """ + + seq_len, bsz, _ = x_proj.size() + + head_dim = attention_dim // num_heads + pos_dim = self.pos_dim # positional-encoding dim per head + assert ( + head_dim * num_heads == attention_dim + ), f"attention_dim must be divisible by num_heads: {head_dim}, {num_heads}, {attention_dim}" + + # self-attention + q = x_proj[..., 0:attention_dim] + k = x_proj[..., attention_dim : 2 * attention_dim] + value_dim = attention_dim // 2 + v = x_proj[..., 2 * attention_dim : 2 * attention_dim + value_dim] + # p is the position-encoding query, its dimension is num_heads*pos_dim.. + p = x_proj[..., 2 * attention_dim + value_dim :] + + left_context_len = cached_key.shape[0] + assert left_context_len > 0, left_context_len + assert cached_key.shape[0] == cached_val.shape[0], ( + cached_key.shape, + cached_val.shape, + ) + # Pad cached left contexts + k = torch.cat([cached_key, k], dim=0) + v = torch.cat([cached_val, v], dim=0) + # Update cached left contexts + cached_key = k[-left_context_len:, ...] + cached_val = v[-left_context_len:, ...] + + # The length of key and value + kv_len = k.shape[0] + + q = q.reshape(seq_len, bsz, num_heads, head_dim) + p = p.reshape(seq_len, bsz, num_heads, pos_dim) + k = k.reshape(kv_len, bsz, num_heads, head_dim) + v = v.reshape(kv_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + q = q.permute(1, 2, 0, 3) # (batch, head, time1, head_dim) + p = p.permute(1, 2, 0, 3) # (batch, head, time1, pos_dim) + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + + seq_len2 = 2 * seq_len - 1 + left_context_len + pos = pos.reshape(1, seq_len2, num_heads, pos_dim).permute(0, 2, 3, 1) + # pos shape now: (batch, head, pos_dim, seq_len2) + + # (batch, head, time1, pos_dim) x (1, head, pos_dim, seq_len2) -> (batch, head, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_weights = torch.matmul(p, pos) + # the following .as_strided() expression converts the last axis of pos_weights from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + pos_weights = pos_weights.as_strided( + (bsz, num_heads, seq_len, kv_len), + ( + pos_weights.stride(0), + pos_weights.stride(1), + pos_weights.stride(2) - pos_weights.stride(3), + pos_weights.stride(3), + ), + storage_offset=pos_weights.stride(3) * (seq_len - 1), + ) + + # caution: they are really scores at this point. + attn_output_weights = torch.matmul(q, k) + pos_weights + + # attn_output_weights: (batch, head, time1, time2) + attn_output_weights = attn_output_weights.view(bsz * num_heads, seq_len, kv_len) + + # Using this version of softmax, defined in scaling.py, + # should save a little of the memory used in backprop by, if + # we are in automatic mixed precision mode (amp) == autocast, + # only storing the half-precision output for backprop purposes. + attn_output_weights = softmax(attn_output_weights, dim=-1) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2] + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, attention_dim // 2) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + return attn_output, attn_output_weights, cached_key, cached_val + + def forward2( + self, + x: Tensor, + attn_weights: Tensor, + ) -> Tensor: + """ + Second forward function, where we re-use the attn_weights returned by the first forward function + but with different input. + Args: + x: input, of shape (seq_len, batch_size, embed_dim) + attn_weights: attention weights returned by forward(), of shape (batch_size * num_heads, seq_len, seq_len) + Returns: + output of the same shape as x, i.e. (seq_len, batch_size, embed_dim) + """ + num_heads = self.num_heads + (seq_len, bsz, embed_dim) = x.shape + head_dim = self.attention_dim // num_heads + # v: (tgt_len, bsz, embed_dim // 2) + v = self.in_proj2(x) + v = self.whiten_values2(v) # does nothing in the forward pass. + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + # now v: (bsz * num_heads, seq_len, head_dim // 2) + attn_output = torch.bmm(attn_weights, v) + + if not torch.jit.is_scripting(): + if random.random() < 0.001 or __name__ == "__main__": + self._print_attn_stats(attn_weights, attn_output) + + # attn_output: (bsz * num_heads, seq_len, head_dim) + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, self.attention_dim // 2) + ) + # returned value is of shape (seq_len, bsz, embed_dim), like x. + return self.out_proj2(attn_output) + + def streaming_forward2( + self, + x: Tensor, + attn_weights: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Second forward function, where we re-use the attn_weights returned by the first forward function + but with different input. + Args: + x: input, of shape (seq_len, batch_size, embed_dim) + attn_weights: attention weights returned by forward(), of shape (batch_size * num_heads, seq_len, seq_len) + cached_val: cached attention value tensor of left context. + Returns: + - output of the same shape as x, i.e. (seq_len, batch_size, embed_dim) + - updated cached attention value tensor of left context. + """ + num_heads = self.num_heads + (seq_len, bsz, embed_dim) = x.shape + head_dim = self.attention_dim // num_heads + # v: (tgt_len, bsz, embed_dim // 2) + v = self.in_proj2(x) + + left_context_len = cached_val.shape[0] + assert left_context_len > 0, left_context_len + v = torch.cat([cached_val, v], dim=0) + cached_val = v[-left_context_len:] + + seq_len2 = left_context_len + seq_len + v = v.reshape(seq_len2, bsz * num_heads, head_dim // 2).transpose(0, 1) + + # now v: (bsz * num_heads, seq_len, head_dim // 2) + attn_output = torch.bmm(attn_weights, v) + + # attn_output: (bsz * num_heads, seq_len, head_dim) + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, self.attention_dim // 2) + ) + # returned value is of shape (seq_len, bsz, embed_dim), like x. + return self.out_proj2(attn_output), cached_val + + def _print_attn_stats(self, attn_weights: Tensor, attn_output: Tensor): + # attn_weights: (batch_size * num_heads, seq_len, seq_len) + # attn_output: (bsz * num_heads, seq_len, head_dim) + (n, seq_len, head_dim) = attn_output.shape + num_heads = self.num_heads + bsz = n // num_heads + + with torch.no_grad(): + with torch.cuda.amp.autocast(enabled=False): + attn_weights = attn_weights.to(torch.float32) + attn_output = attn_output.to(torch.float32) + attn_weights_entropy = ( + -((attn_weights + 1.0e-20).log() * attn_weights) + .sum(dim=-1) + .reshape(bsz, num_heads, seq_len) + .mean(dim=(0, 2)) + ) + attn_output = attn_output.reshape(bsz, num_heads, seq_len, head_dim) + attn_output = attn_output.permute(1, 0, 2, 3).reshape( + num_heads, bsz * seq_len, head_dim + ) + attn_output_mean = attn_output.mean(dim=1, keepdim=True) + attn_output = attn_output - attn_output_mean + attn_covar = torch.matmul(attn_output.transpose(1, 2), attn_output) / ( + bsz * seq_len + ) + # attn_covar: (num_heads, head_dim, head_dim) + # eigs, _ = torch.symeig(attn_covar) + # logging.info(f"attn_weights_entropy = {attn_weights_entropy}, output_eigs = {eigs}") + + attn_covar = _diag(attn_covar).mean(dim=1) # (num_heads,) + embed_dim = self.in_proj2.weight.shape[1] + in_proj_covar = ( + self.in_proj2.weight.reshape(num_heads, head_dim, embed_dim) ** 2 + ).mean(dim=(1, 2)) + out_proj_covar = ( + self.out_proj2.weight.reshape(embed_dim, num_heads, head_dim) ** 2 + ).mean(dim=(0, 2)) + logging.info( + f"attn_weights_entropy = {attn_weights_entropy}, covar={attn_covar}, in_proj_covar={in_proj_covar}, out_proj_covar={out_proj_covar}" + ) + + +class PoolingModule(nn.Module): + """ + Averages the input over the time dimension and project with a square matrix. + """ + + def __init__(self, d_model: int): + super().__init__() + self.proj = ScaledLinear(d_model, d_model, initial_scale=0.1, bias=False) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Args: + x: a Tensor of shape (T, N, C) + src_key_padding_mask: a Tensor of bool, of shape (N, T), with True in masked + positions. + + Returns: + - output, a Tensor of shape (T, N, C). + """ + if src_key_padding_mask is not None: + # False in padding positions + padding_mask = src_key_padding_mask.logical_not().to(x.dtype) # (N, T) + # Cumulated numbers of frames from start + cum_mask = padding_mask.cumsum(dim=1) # (N, T) + x = x.cumsum(dim=0) # (T, N, C) + pooling_mask = padding_mask / cum_mask + pooling_mask = pooling_mask.transpose(0, 1).contiguous().unsqueeze(-1) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask # (T, N, C) + else: + num_frames = x.shape[0] + cum_mask = torch.arange(1, num_frames + 1).unsqueeze(1) # (T, 1) + x = x.cumsum(dim=0) # (T, N, C) + pooling_mask = (1.0 / cum_mask).unsqueeze(2) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask + + x = self.proj(x) + return x + + def streaming_forward( + self, + x: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor]: + """ + Args: + x: a Tensor of shape (T, N, C) + cached_len: a Tensor of int, of shape (N,), containing the number of + past frames in batch. + cached_avg: a Tensor of shape (N, C), the average over all past frames + in batch. + + Returns: + A tuple of 2 tensors: + - output, a Tensor of shape (T, N, C). + - updated cached_avg, a Tensor of shape (N, C). + """ + x = x.cumsum(dim=0) # (T, N, C) + x = x + (cached_avg * cached_len.unsqueeze(1)).unsqueeze(0) + # Cumulated numbers of frames from start + cum_mask = torch.arange(1, x.size(0) + 1, device=x.device) + cum_mask = cum_mask.unsqueeze(1) + cached_len.unsqueeze(0) # (T, N) + pooling_mask = (1.0 / cum_mask).unsqueeze(2) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask # (T, N, C) + + cached_len = cached_len + x.size(0) + cached_avg = x[-1] + + x = self.proj(x) + return x, cached_len, cached_avg + + +class FeedforwardModule(nn.Module): + """Feedforward module in Zipformer model.""" + + def __init__(self, d_model: int, feedforward_dim: int, dropout: float): + super(FeedforwardModule, self).__init__() + self.in_proj = nn.Linear(d_model, feedforward_dim) + self.balancer = ActivationBalancer( + feedforward_dim, channel_dim=-1, max_abs=10.0, min_prob=0.25 + ) + self.activation = DoubleSwish() + self.dropout = nn.Dropout(dropout) + self.out_proj = ScaledLinear(feedforward_dim, d_model, initial_scale=0.01) + + def forward(self, x: Tensor): + x = self.in_proj(x) + x = self.balancer(x) + x = self.activation(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +class ConvolutionModule(nn.Module): + """ConvolutionModule in Zipformer model. + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py + + Args: + channels (int): The number of channels of conv layers. + kernel_size (int): Kernerl size of conv layers. + bias (bool): Whether to use bias in conv layers (default=True). + + """ + + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: + """Construct an ConvolutionModule object.""" + super(ConvolutionModule, self).__init__() + # kernerl_size should be a odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0, kernel_size + + self.pointwise_conv1 = nn.Conv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + + # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, + # but sometimes, for some reason, for layer 0 the rms ends up being very large, + # between 50 and 100 for different channels. This will cause very peaky and + # sparse derivatives for the sigmoid gating function, which will tend to make + # the loss function not learn effectively. (for most layers the average absolute values + # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different + # layers, which likely breaks down as 0.5 for the "linear" half and + # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we + # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, + # it will be in a better position to start learning something, i.e. to latch onto + # the correct range. + self.deriv_balancer1 = ActivationBalancer( + 2 * channels, + channel_dim=1, + max_abs=10.0, + min_positive=0.05, + max_positive=1.0, + ) + + # Will pad cached left context + self.lorder = kernel_size - 1 + self.depthwise_conv = nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + padding=0, + groups=channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + channels, + channel_dim=1, + min_positive=0.05, + max_positive=1.0, + max_abs=20.0, + ) + + self.activation = DoubleSwish() + + self.pointwise_conv2 = ScaledConv1d( + channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.05, + ) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch (optional): + (batch, #time), contains bool in masked positions. + + Returns: + - Output tensor (#time, batch, channels). + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + if src_key_padding_mask is not None: + x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + # 1D Depthwise Conv + # Make depthwise_conv causal by + # manualy padding self.lorder zeros to the left + x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1) + + def streaming_forward( + self, + x: Tensor, + cache: Tensor, + ) -> Tuple[Tensor, Tensor]: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch: + (batch, #time), contains bool in masked positions. + cache: Cached left context for depthwise_conv, with shape of + (batch, channels, #kernel_size-1). Only used in real streaming decoding. + + Returns: + A tuple of 2 tensors: + - Output tensor (#time, batch, channels). + - New cached left context, with shape of (batch, channels, #kernel_size-1). + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + # 1D Depthwise Conv + assert cache.shape == (x.size(0), x.size(1), self.lorder), ( + cache.shape, + (x.size(0), x.size(1), self.lorder), + ) + x = torch.cat([cache, x], dim=2) + # Update cache + cache = x[:, :, -self.lorder :] + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1), cache + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/4 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = (T-3)//2 - 2 == (T-7)//2 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + dropout: float = 0.1, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, (T-7)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer2_channels: + Number of channels in layer2 + layer3_channels: + Number of channels in layer3 + """ + assert in_channels >= 7, in_channels + super().__init__() + + self.conv = nn.Sequential( + nn.Conv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=(0, 1), # (time, freq) + ), + ActivationBalancer(layer1_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + padding=0, + ), + ActivationBalancer(layer2_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=(1, 2), # (time, freq) + ), + ActivationBalancer(layer3_channels, channel_dim=1), + DoubleSwish(), + ) + out_height = (((in_channels - 1) // 2) - 1) // 2 + self.out = ScaledLinear(out_height * layer3_channels, out_channels) + self.dropout = nn.Dropout(dropout) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + + Returns: + Return a tensor of shape (N, (T-7)//2, odim) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + x = self.conv(x) + # Now x is of shape (N, odim, (T-7)//2, ((idim-1)//2 - 1)//2) + b, c, t, f = x.size() + x = self.out(x.transpose(1, 2).reshape(b, t, c * f)) + # Now x is of shape (N, (T-7)//2, odim) + x = self.dropout(x) + return x + + +def _test_zipformer_main(): + feature_dim = 50 + batch_size = 5 + seq_len = 47 + feature_dim = 50 + # Just make sure the forward pass runs. + + c = Zipformer( + num_features=feature_dim, + encoder_dims=(64, 96), + encoder_unmasked_dims=(48, 64), + nhead=(4, 4), + decode_chunk_size=4, + ) + # Just make sure the forward pass runs. + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + assert ((seq_len - 7) // 2 + 1) // 2 == f[0].shape[1], (seq_len, f.shape[1]) + f[0].sum().backward() + c.eval() + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + f # to remove flake8 warnings + + +def _test_conv2d_subsampling(): + num_features = 80 + encoder_dims = 384 + dropout = 0.1 + encoder_embed = Conv2dSubsampling(num_features, encoder_dims, dropout=dropout) + for i in range(20, 40): + x = torch.rand(2, i, num_features) + y = encoder_embed(x) + assert (x.shape[1] - 7) // 2 == y.shape[1], (x.shape[1], y.shape[1]) + + +def _test_pooling_module(): + N, S, C = 2, 12, 32 + chunk_len = 4 + m = PoolingModule(d_model=C) + + # test chunk-wise forward with padding_mask + x = torch.randn(S, N, C) + y = m(x) + cached_len = torch.zeros(N, dtype=torch.int32) + cached_avg = torch.zeros(N, C) + for i in range(S // chunk_len): + start = i * chunk_len + end = start + chunk_len + x_chunk = x[start:end] + y_chunk, cached_len, cached_avg = m.streaming_forward( + x_chunk, + cached_len=cached_len, + cached_avg=cached_avg, + ) + assert torch.allclose(y_chunk, y[start:end]), (y_chunk, y[start:end]) + + +def _test_state_stack_unstack(): + m = Zipformer( + num_features=80, + encoder_dims=(64, 96), + encoder_unmasked_dims=(48, 64), + nhead=(4, 4), + zipformer_downsampling_factors=(4, 8), + num_left_chunks=2, + decode_chunk_size=8, + ) + s1 = m.get_init_state() + s2 = m.get_init_state() + states = stack_states([s1, s2]) + new_s1, new_s2 = unstack_states(states) + for i in range(m.num_encoders * 7): + for x, y in zip(s1[i], new_s1[i]): + assert torch.equal(x, y) + for x, y in zip(s2[i], new_s2[i]): + assert torch.equal(x, y) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_zipformer_main() + _test_conv2d_subsampling() + _test_pooling_module() + _test_state_stack_unstack() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/__init__.py b/egs/librispeech/ASR/pruned_transducer_stateless8/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless8/asr_datamodule.py new file mode 120000 index 000000000..3ba9ada4f --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/asr_datamodule.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless8/beam_search.py new file mode 120000 index 000000000..8554e44cc --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/beam_search.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless8/decode.py new file mode 100755 index 000000000..e61367134 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/decode.py @@ -0,0 +1,850 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless8/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import AsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from librispeech import LibriSpeech +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless8/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--simulate-streaming", + type=str2bool, + default=False, + help="""Whether to simulate streaming in decoding, this is a good way to + test a streaming model. + """, + ) + + parser.add_argument( + "--decode-chunk-size", + type=int, + default=16, + help="The chunk size for decoding (in frames after subsampling)", + ) + + parser.add_argument( + "--left-context", + type=int, + default=64, + help="left context can be seen during decoding (in frames after subsampling)", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.simulate_streaming: + feature_lens += params.left_context + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.left_context), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward( + x=feature, + x_lens=feature_lens, + chunk_size=params.decode_chunk_size, + left_context=params.left_context, + simulate_streaming=True, + ) + else: + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + AsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.simulate_streaming: + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" + params.suffix += f"-left-context-{params.left_context}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if params.simulate_streaming: + assert ( + params.causal_convolution + ), "Decoding in streaming requires causal convolution" + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params, enable_giga=False) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict( + average_checkpoints(filenames, device=device), + strict=False, + ) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict( + average_checkpoints(filenames, device=device), strict=False + ) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ), + strict=False, + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ), + strict=False, + ) + + model.to(device) + model.eval() + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + asr_datamodule = AsrDataModule(args) + librispeech = LibriSpeech(manifest_dir=args.manifest_dir) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts) + test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless8/decoder.py new file mode 120000 index 000000000..33944d0d2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/decoder.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/decoder.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless8/encoder_interface.py new file mode 120000 index 000000000..b9aa0ae08 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/encoder_interface.py @@ -0,0 +1 @@ +../pruned_transducer_stateless2/encoder_interface.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/export.py b/egs/librispeech/ASR/pruned_transducer_stateless8/export.py new file mode 100755 index 000000000..d4a228b47 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/export.py @@ -0,0 +1,331 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless8/export.py \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless8/export.py \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless8/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./pruned_transducer_stateless8/decode.py \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +Note: If you don't want to train a model from scratch, we have +provided one for you. You can get it at + +https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14 + +with the following commands: + + sudo apt-get install git-lfs + git lfs install + git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14 + # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14/exp +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +import torch.nn as nn +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless8/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params, enable_giga=False) + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict( + average_checkpoints(filenames, device=device), + strict=False, + ) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict( + average_checkpoints(filenames, device=device), + strict=False, + ) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ), + strict=False, + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ), + strict=False, + ) + + model.to("cpu") + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + logging.info("Using torch.jit.script()") + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/gigaspeech.py b/egs/librispeech/ASR/pruned_transducer_stateless8/gigaspeech.py new file mode 120000 index 000000000..5242c652a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/gigaspeech.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/gigaspeech.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/jit_pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless8/jit_pretrained.py new file mode 100755 index 000000000..129497d5a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/jit_pretrained.py @@ -0,0 +1,272 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads torchscript models, exported by `torch.jit.script()` +and uses them to decode waves. +You can use the following command to get the exported models: + +./pruned_transducer_stateless8/export.py \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 \ + --jit 1 + +Usage of this script: + +./pruned_transducer_stateless8/jit_pretrained.py \ + --nn-model-filename ./pruned_transducer_stateless8/exp/cpu_jit.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + /path/to/foo.wav \ + /path/to/bar.wav +""" + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from torch.nn.utils.rnn import pad_sequence + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--nn-model-filename", + type=str, + required=True, + help="Path to the torchscript model cpu_jit.pt", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float = 16000 +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +def greedy_search( + model: torch.jit.ScriptModule, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, +) -> List[List[int]]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (N, T, C) + encoder_out_lens: + A 1-D tensor of shape (N,). + Returns: + Return the decoded results for each utterance. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = encoder_out.device + blank_id = 0 # hard-code to 0 + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + context_size = model.decoder.context_size + hyps = [[blank_id] * context_size for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ).squeeze(1) + + offset = 0 + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = packed_encoder_out.data[start:end] + current_encoder_out = current_encoder_out + # current_encoder_out's shape: (batch_size, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, + decoder_out, + ) + # logits'shape (batch_size, vocab_size) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + hyps[i].append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=torch.tensor([False]), + ) + decoder_out = decoder_out.squeeze(1) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + model = torch.jit.load(args.nn_model_filename) + + model.eval() + + model.to(device) + + sp = spm.SentencePieceProcessor() + sp.load(args.bpe_model) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {args.sound_files}") + waves = read_sound_files( + filenames=args.sound_files, + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, + batch_first=True, + padding_value=math.log(1e-10), + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder( + x=features, + x_lens=feature_lengths, + ) + + hyps = greedy_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + s = "\n" + for filename, hyp in zip(args.sound_files, hyps): + words = sp.decode(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless8/joiner.py new file mode 120000 index 000000000..ecfb6dd8a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/joiner.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/joiner.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/librispeech.py b/egs/librispeech/ASR/pruned_transducer_stateless8/librispeech.py new file mode 120000 index 000000000..b76723bf5 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/librispeech.py @@ -0,0 +1 @@ +../pruned_transducer_stateless3/librispeech.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/model.py b/egs/librispeech/ASR/pruned_transducer_stateless8/model.py new file mode 100644 index 000000000..39a360796 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/model.py @@ -0,0 +1,220 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import random +from typing import Optional, Tuple + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import penalize_abs_values_gt + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + decoder_giga: Optional[nn.Module] = None, + joiner_giga: Optional[nn.Module] = None, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + + self.decoder_giga = decoder_giga + self.joiner_giga = joiner_giga + + self.simple_am_proj = nn.Linear( + encoder_dim, + vocab_size, + ) + self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size) + + if decoder_giga is not None: + self.simple_am_proj_giga = nn.Linear(encoder_dim, vocab_size) + self.simple_lm_proj_giga = nn.Linear(decoder_dim, vocab_size) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + libri: bool = True, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + libri: + True to use the decoder and joiner for the LibriSpeech dataset. + False to use the decoder and joiner for the GigaSpeech dataset. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return the transducer loss. + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + encoder_out, x_lens = self.encoder(x, x_lens) + assert torch.all(x_lens > 0) + + if libri: + decoder = self.decoder + simple_lm_proj = self.simple_lm_proj + simple_am_proj = self.simple_am_proj + joiner = self.joiner + else: + decoder = self.decoder_giga + simple_lm_proj = self.simple_lm_proj_giga + simple_am_proj = self.simple_am_proj_giga + joiner = self.joiner_giga + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens + + lm = simple_lm_proj(decoder_out) + am = simple_am_proj(encoder_out) + + # if self.training and random.random() < 0.25: + # lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04) + # if self.training and random.random() < 0.25: + # am = penalize_abs_values_gt(am, 30.0, 1.0e-04) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=joiner.encoder_proj(encoder_out), + lm=joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless8/optim.py new file mode 120000 index 000000000..81ac4a89a --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/optim.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless8/pretrained.py new file mode 100755 index 000000000..486d9d74e --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/pretrained.py @@ -0,0 +1,355 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless8/export.py \ + --exp-dir ./pruned_transducer_stateless8/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless8/pretrained.py \ + --checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless8/pretrained.py \ + --checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless8/pretrained.py \ + --checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless8/pretrained.py \ + --checkpoint ./pruned_transducer_stateless8/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless8/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless8/exp/pretrained.pt is generated by +./pruned_transducer_stateless8/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params, enable_giga=False) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/scaling.py b/egs/librispeech/ASR/pruned_transducer_stateless8/scaling.py new file mode 120000 index 000000000..2428b74b9 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/scaling.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/scaling_converter.py b/egs/librispeech/ASR/pruned_transducer_stateless8/scaling_converter.py new file mode 120000 index 000000000..b8b8ba432 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/scaling_converter.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/scaling_converter.py \ No newline at end of file diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/train.py b/egs/librispeech/ASR/pruned_transducer_stateless8/train.py new file mode 100755 index 000000000..b0abad5ae --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/train.py @@ -0,0 +1,1362 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +cd egs/librispeech/ASR/ +./prepare.sh +./prepare_giga_speech.sh + +./pruned_transducer_stateless8/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless8/exp \ + --full-libri 1 \ + --max-duration 300 + +# For mix precision training: + +./pruned_transducer_stateless8/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless8/exp \ + --full-libri 1 \ + --max-duration 550 + +""" + + +import argparse +import copy +import logging +import random +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import AsrDataModule +from decoder import Decoder +from gigaspeech import GigaSpeech +from joiner import Joiner +from lhotse import CutSet, load_manifest +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from librispeech import LibriSpeech +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--full-libri", + type=str2bool, + default=True, + help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless8/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + parser.add_argument( + "--giga-prob", + type=float, + default=0.5, + help="The probability to select a batch from the GigaSpeech dataset", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model( + params: AttributeDict, + enable_giga: bool = True, +) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + if enable_giga: + logging.info("Use giga") + decoder_giga = get_decoder_model(params) + joiner_giga = get_joiner_model(params) + else: + logging.info("Disable giga") + decoder_giga = None + joiner_giga = None + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + decoder_giga=decoder_giga, + joiner_giga=joiner_giga, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def is_libri(c: Cut) -> bool: + """Return True if this cut is from the LibriSpeech dataset. + + Note: + During data preparation, we set the custom field in + the supervision segment of GigaSpeech to dict(origin='giga') + See ../local/preprocess_gigaspeech.py. + """ + return c.supervisions[0].custom is None + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + libri = is_libri(supervisions["cut"][0]) + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + libri=libri, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + giga_train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + rng: random.Random, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + giga_train_dl: + Dataloader for the GigaSpeech training dataset. + valid_dl: + Dataloader for the validation dataset. + rng: + For selecting which dataset to use. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + libri_tot_loss = MetricsTracker() + giga_tot_loss = MetricsTracker() + tot_loss = MetricsTracker() + + # index 0: for LibriSpeech + # index 1: for GigaSpeech + # This sets the probabilities for choosing which datasets + dl_weights = [1 - params.giga_prob, params.giga_prob] + + iter_libri = iter(train_dl) + iter_giga = iter(giga_train_dl) + + batch_idx = 0 + + while True: + idx = rng.choices((0, 1), weights=dl_weights, k=1)[0] + dl = iter_libri if idx == 0 else iter_giga + + try: + batch = next(dl) + except StopIteration: + name = "libri" if idx == 0 else "giga" + logging.info(f"{name} reaches end of dataloader") + break + + batch_idx += 1 + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + libri = is_libri(batch["supervisions"]["cut"][0]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + if libri: + libri_tot_loss = ( + libri_tot_loss * (1 - 1 / params.reset_interval) + ) + loss_info + prefix = "libri" # for logging only + else: + giga_tot_loss = ( + giga_tot_loss * (1 - 1 / params.reset_interval) + ) + loss_info + prefix = "giga" + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, {prefix}_loss[{loss_info}], " + f"tot_loss[{tot_loss}], " + f"libri_tot_loss[{libri_tot_loss}], " + f"giga_tot_loss[{giga_tot_loss}], " + f"batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, + f"train/current_{prefix}_", + params.batch_idx_train, + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + libri_tot_loss.write_summary( + tb_writer, "train/libri_tot_", params.batch_idx_train + ) + giga_tot_loss.write_summary( + tb_writer, "train/giga_tot_", params.batch_idx_train + ) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def filter_short_and_long_utterances( + cuts: CutSet, sp: spm.SentencePieceProcessor +) -> CutSet: + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + cuts = cuts.filter(remove_short_and_long_utt) + + return cuts + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + rng = random.Random(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params, enable_giga=True) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + optimizer = ScaledAdam(model.parameters(), lr=params.base_lr, clipping_scale=2.0) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeech(manifest_dir=args.manifest_dir) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + train_cuts = filter_short_and_long_utterances(train_cuts, sp) + + gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir) + # XL 10k hours + # L 2.5k hours + # M 1k hours + # S 250 hours + # XS 10 hours + # DEV 12 hours + # Test 40 hours + if params.full_libri: + logging.info("Using the XL subset of GigaSpeech (10k hours)") + train_giga_cuts = gigaspeech.train_XL_cuts() + else: + logging.info("Using the S subset of GigaSpeech (250 hours)") + train_giga_cuts = gigaspeech.train_S_cuts() + + train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts, sp) + train_giga_cuts = train_giga_cuts.repeat(times=None) + + if args.enable_musan: + cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz") + else: + cuts_musan = None + + asr_datamodule = AsrDataModule(args) + + train_dl = asr_datamodule.train_dataloaders( + train_cuts, + on_the_fly_feats=False, + cuts_musan=cuts_musan, + ) + + giga_train_dl = asr_datamodule.train_dataloaders( + train_giga_cuts, + on_the_fly_feats=False, + cuts_musan=cuts_musan, + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = asr_datamodule.valid_dataloaders(valid_cuts) + + if False and not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + giga_train_dl=giga_train_dl, + valid_dl=valid_dl, + rng=rng, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + AsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + assert 0 <= args.giga_prob < 1, args.giga_prob + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless8/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless8/zipformer.py new file mode 120000 index 000000000..79b076556 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless8/zipformer.py @@ -0,0 +1 @@ +../pruned_transducer_stateless7/zipformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/README.md b/egs/librispeech/ASR/streaming_conformer_ctc/README.md index 01be7090b..53f383c99 100644 --- a/egs/librispeech/ASR/streaming_conformer_ctc/README.md +++ b/egs/librispeech/ASR/streaming_conformer_ctc/README.md @@ -1,20 +1,20 @@ ## Train and Decode -Commands of data preparation/train/decode steps are almost the same with +Commands of data preparation/train/decode steps are almost the same with ../conformer_ctc experiment except some options. Please read the code and understand following new added options before running this experiment: For data preparation: - + Nothing new. For streaming_conformer_ctc/train.py: - + --dynamic-chunk-training --short-chunk-proportion For streaming_conformer_ctc/streaming_decode.py: - + --chunk-size --tailing-num-frames --simulate-streaming @@ -57,10 +57,10 @@ And check md5sum values again. Finally, following files will be downloaded:

-streaming_models/  
-|-- lang_bpe  
-|   |-- L.pt  
-|   |-- Linv.pt  
+streaming_models/
+|-- lang_bpe
+|   |-- L.pt
+|   |-- Linv.pt
 |   |-- bpe.model
 |   |-- tokens.txt
 |   `-- words.txt
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py b/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
index ff4c91446..5fe92172e 100644
--- a/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
@@ -309,36 +309,26 @@ class Conformer(Transformer):
 
                 # start chunk_by_chunk decoding
                 offset = 0
-                for cur in range(
-                    0, num_frames - embed_left_context + 1, stride
-                ):
+                for cur in range(0, num_frames - embed_left_context + 1, stride):
                     end = min(cur + decoding_window, num_frames)
                     cur_feature = feature[:, cur:end, :]
                     cur_feature = self.encoder_embed(cur_feature)
-                    cur_embed, cur_pos_emb = self.encoder_pos(
-                        cur_feature, offset
-                    )
-                    cur_embed = cur_embed.permute(
-                        1, 0, 2
-                    )  # (B, T, F) -> (T, B, F)
+                    cur_embed, cur_pos_emb = self.encoder_pos(cur_feature, offset)
+                    cur_embed = cur_embed.permute(1, 0, 2)  # (B, T, F) -> (T, B, F)
 
                     cur_T = cur_feature.size(1)
                     if cur == 0:
                         # for first chunk extract the central pos embedding
-                        pos_emb_central = cur_pos_emb[
-                            0, (chunk_size - 1), :
-                        ].view(1, 1, -1)
+                        pos_emb_central = cur_pos_emb[0, (chunk_size - 1), :].view(
+                            1, 1, -1
+                        )
                         cur_T -= 1
                     pos_emb_positive.append(cur_pos_emb[0, :cur_T].flip(0))
                     pos_emb_negative.append(cur_pos_emb[0, -cur_T:])
                     assert pos_emb_positive[-1].size(0) == cur_T
 
-                    pos_emb_pos = torch.cat(pos_emb_positive, dim=0).unsqueeze(
-                        0
-                    )
-                    pos_emb_neg = torch.cat(pos_emb_negative, dim=0).unsqueeze(
-                        0
-                    )
+                    pos_emb_pos = torch.cat(pos_emb_positive, dim=0).unsqueeze(0)
+                    pos_emb_neg = torch.cat(pos_emb_negative, dim=0).unsqueeze(0)
                     cur_pos_emb = torch.cat(
                         [pos_emb_pos.flip(1), pos_emb_central, pos_emb_neg],
                         dim=1,
@@ -413,9 +403,7 @@ class ConformerEncoderLayer(nn.Module):
         causal: bool = False,
     ) -> None:
         super(ConformerEncoderLayer, self).__init__()
-        self.self_attn = RelPositionMultiheadAttention(
-            d_model, nhead, dropout=0.0
-        )
+        self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
 
         self.feed_forward = nn.Sequential(
             nn.Linear(d_model, dim_feedforward),
@@ -431,22 +419,16 @@ class ConformerEncoderLayer(nn.Module):
             nn.Linear(dim_feedforward, d_model),
         )
 
-        self.conv_module = ConvolutionModule(
-            d_model, cnn_module_kernel, causal=causal
-        )
+        self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal)
 
-        self.norm_ff_macaron = nn.LayerNorm(
-            d_model
-        )  # for the macaron style FNN module
+        self.norm_ff_macaron = nn.LayerNorm(d_model)  # for the macaron style FNN module
         self.norm_ff = nn.LayerNorm(d_model)  # for the FNN module
         self.norm_mha = nn.LayerNorm(d_model)  # for the MHA module
 
         self.ff_scale = 0.5
 
         self.norm_conv = nn.LayerNorm(d_model)  # for the CNN module
-        self.norm_final = nn.LayerNorm(
-            d_model
-        )  # for the final output of the block
+        self.norm_final = nn.LayerNorm(d_model)  # for the final output of the block
 
         self.dropout = nn.Dropout(dropout)
 
@@ -480,9 +462,7 @@ class ConformerEncoderLayer(nn.Module):
         residual = src
         if self.normalize_before:
             src = self.norm_ff_macaron(src)
-        src = residual + self.ff_scale * self.dropout(
-            self.feed_forward_macaron(src)
-        )
+        src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
         if not self.normalize_before:
             src = self.norm_ff_macaron(src)
 
@@ -554,9 +534,7 @@ class ConformerEncoderLayer(nn.Module):
         residual = src
         if self.normalize_before:
             src = self.norm_ff_macaron(src)
-        src = residual + self.ff_scale * self.dropout(
-            self.feed_forward_macaron(src)
-        )
+        src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
         if not self.normalize_before:
             src = self.norm_ff_macaron(src)
 
@@ -736,9 +714,7 @@ class RelPositionalEncoding(torch.nn.Module):
 
     """
 
-    def __init__(
-        self, d_model: int, dropout_rate: float, max_len: int = 5000
-    ) -> None:
+    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
         """Construct an PositionalEncoding object."""
         super(RelPositionalEncoding, self).__init__()
         self.d_model = d_model
@@ -755,9 +731,7 @@ class RelPositionalEncoding(torch.nn.Module):
             # the length of self.pe is 2 * input_len - 1
             if self.pe.size(1) >= x_size_1 * 2 - 1:
                 # Note: TorchScript doesn't implement operator== for torch.Device
-                if self.pe.dtype != x.dtype or str(self.pe.device) != str(
-                    x.device
-                ):
+                if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
                     self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                 return
         # Suppose `i` means to the position of query vector and `j` means the
@@ -783,9 +757,7 @@ class RelPositionalEncoding(torch.nn.Module):
         pe = torch.cat([pe_positive, pe_negative], dim=1)
         self.pe = pe.to(device=x.device, dtype=x.dtype)
 
-    def forward(
-        self, x: torch.Tensor, offset: int = 0
-    ) -> Tuple[Tensor, Tensor]:
+    def forward(self, x: torch.Tensor, offset: int = 0) -> Tuple[Tensor, Tensor]:
         """Add positional encoding.
 
         Args:
@@ -813,9 +785,7 @@ class RelPositionalEncoding(torch.nn.Module):
             pos_emb = torch.cat(
                 [
                     pos_emb[:, : (x_T - 1)],
-                    self.pe[0, self.pe.size(1) // 2].view(
-                        1, 1, self.pe.size(-1)
-                    ),
+                    self.pe[0, self.pe.size(1) // 2].view(1, 1, self.pe.size(-1)),
                     pos_emb[:, -(x_T - 1) :],  # noqa: E203
                 ],
                 dim=1,
@@ -1050,9 +1020,9 @@ class RelPositionMultiheadAttention(nn.Module):
 
         if torch.equal(query, key) and torch.equal(key, value):
             # self-attention
-            q, k, v = nn.functional.linear(
-                query, in_proj_weight, in_proj_bias
-            ).chunk(3, dim=-1)
+            q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
+                3, dim=-1
+            )
 
         elif torch.equal(key, value):
             # encoder-decoder attention
@@ -1120,31 +1090,22 @@ class RelPositionMultiheadAttention(nn.Module):
             if attn_mask.dim() == 2:
                 attn_mask = attn_mask.unsqueeze(0)
                 if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
-                    raise RuntimeError(
-                        "The size of the 2D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
             elif attn_mask.dim() == 3:
                 if list(attn_mask.size()) != [
                     bsz * num_heads,
                     query.size(0),
                     key.size(0),
                 ]:
-                    raise RuntimeError(
-                        "The size of the 3D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
             else:
                 raise RuntimeError(
-                    "attn_mask's dimension {} is not supported".format(
-                        attn_mask.dim()
-                    )
+                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
                 )
             # attn_mask's dim is 3 now.
 
         # convert ByteTensor key_padding_mask to bool
-        if (
-            key_padding_mask is not None
-            and key_padding_mask.dtype == torch.uint8
-        ):
+        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
             warnings.warn(
                 "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
             )
@@ -1185,24 +1146,16 @@ class RelPositionMultiheadAttention(nn.Module):
         # first compute matrix a and matrix c
         # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
         k = k.permute(1, 2, 3, 0)  # (batch, head, d_k, time2)
-        matrix_ac = torch.matmul(
-            q_with_bias_u, k
-        )  # (batch, head, time1, time2)
+        matrix_ac = torch.matmul(q_with_bias_u, k)  # (batch, head, time1, time2)
 
         # compute matrix b and matrix d
-        matrix_bd = torch.matmul(
-            q_with_bias_v, p
-        )  # (batch, head, time1, 2*time1-1)
-        matrix_bd = self.rel_shift(
-            matrix_bd, offset=offset
-        )  # [B, head, time1, time2]
+        matrix_bd = torch.matmul(q_with_bias_v, p)  # (batch, head, time1, 2*time1-1)
+        matrix_bd = self.rel_shift(matrix_bd, offset=offset)  # [B, head, time1, time2]
         attn_output_weights = (
             matrix_ac + matrix_bd
         ) * scaling  # (batch, head, time1, time2)
 
-        attn_output_weights = attn_output_weights.view(
-            bsz * num_heads, tgt_len, -1
-        )
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
 
         assert list(attn_output_weights.size()) == [
             bsz * num_heads,
@@ -1236,13 +1189,9 @@ class RelPositionMultiheadAttention(nn.Module):
         attn_output = torch.bmm(attn_output_weights, v)
         assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
         attn_output = (
-            attn_output.transpose(0, 1)
-            .contiguous()
-            .view(tgt_len, bsz, embed_dim)
-        )
-        attn_output = nn.functional.linear(
-            attn_output, out_proj_weight, out_proj_bias
+            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
         )
+        attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
 
         if need_weights:
             # average attention weights over heads
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py b/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
index a74c51836..a26d0b789 100755
--- a/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
@@ -28,6 +28,7 @@ import torch
 import torch.nn as nn
 from asr_datamodule import LibriSpeechAsrDataModule
 from conformer import Conformer
+
 from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
 from icefall.checkpoint import average_checkpoints, load_checkpoint
 from icefall.lexicon import Lexicon
@@ -86,8 +87,7 @@ def get_parser():
         "--tailing-num-frames",
         type=int,
         default=20,
-        help="tailing dummy frames padded to the right,"
-        "only used during decoding",
+        help="tailing dummy frames padded to the right, only used during decoding",
     )
 
     parser.add_argument(
@@ -248,13 +248,9 @@ def decode_one_batch(
     maxlen = nnet_output.size(1)
     topk_prob, topk_index = nnet_output.topk(1, dim=2)  # (B, maxlen, 1)
     topk_index = topk_index.view(batch_size, maxlen)  # (B, maxlen)
-    topk_index = topk_index.masked_fill_(
-        memory_key_padding_mask, 0
-    )  # (B, maxlen)
+    topk_index = topk_index.masked_fill_(memory_key_padding_mask, 0)  # (B, maxlen)
     token_ids = [token_id.tolist() for token_id in topk_index]
-    token_ids = [
-        remove_duplicates_and_blank(token_id) for token_id in token_ids
-    ]
+    token_ids = [remove_duplicates_and_blank(token_id) for token_id in token_ids]
     hyps = bpe_model.decode(token_ids)
     hyps = [s.split() for s in hyps]
     return {key: hyps}
@@ -337,9 +333,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
 
     return results
 
@@ -364,8 +358,7 @@ def save_results(
         -{params.chunk_size}-tailing-num-frames-{params.tailing_num_frames}-"
     for key, results in results_dict.items():
         recog_path = (
-            params.exp_dir
-            / f"{result_file_prefix}recogs-{test_set_name}-{key}.txt"
+            params.exp_dir / f"{result_file_prefix}recogs-{test_set_name}-{key}.txt"
         )
         store_transcripts(filename=recog_path, texts=results)
         if enable_log:
@@ -374,8 +367,7 @@ def save_results(
         # The following prints out WERs, per-word error statistics and aligned
         # ref/hyp pairs.
         errs_filename = (
-            params.exp_dir
-            / f"{result_file_prefix}-errs-{test_set_name}-{key}.txt"
+            params.exp_dir / f"{result_file_prefix}-errs-{test_set_name}-{key}.txt"
         )
         with open(errs_filename, "w") as f:
             wer = write_error_stats(
@@ -384,9 +376,7 @@ def save_results(
             test_set_wers[key] = wer
 
         if enable_log:
-            logging.info(
-                "Wrote detailed error stats to {}".format(errs_filename)
-            )
+            logging.info("Wrote detailed error stats to {}".format(errs_filename))
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
@@ -474,9 +464,7 @@ def main():
 
     if params.export:
         logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
-        torch.save(
-            {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
-        )
+        torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
         return
 
     model.to(device)
@@ -507,9 +495,7 @@ def main():
             simulate_streaming=params.simulate_streaming,
         )
 
-        save_results(
-            params=params, test_set_name=test_set, results_dict=results_dict
-        )
+        save_results(params=params, test_set_name=test_set, results_dict=results_dict)
 
     logging.info("Done!")
 
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/train.py b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
index e41b7ea78..bb55ed6bb 100755
--- a/egs/librispeech/ASR/streaming_conformer_ctc/train.py
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
@@ -30,6 +30,7 @@ import torch.multiprocessing as mp
 import torch.nn as nn
 from asr_datamodule import LibriSpeechAsrDataModule
 from conformer import Conformer
+from lhotse.cut import Cut
 from lhotse.utils import fix_random_seed
 from torch import Tensor
 from torch.nn.parallel import DistributedDataParallel as DDP
@@ -405,9 +406,7 @@ def compute_loss(
             #
             # See https://github.com/k2-fsa/icefall/issues/97
             # for more details
-            unsorted_token_ids = graph_compiler.texts_to_ids(
-                supervisions["text"]
-            )
+            unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
             att_loss = mmodel.decoder_forward(
                 encoder_memory,
                 memory_mask,
@@ -436,9 +435,7 @@ def compute_loss(
     info["utt_duration"] = supervisions["num_frames"].sum().item()
     # averaged padding proportion over utterances
     info["utt_pad_proportion"] = (
-        ((feature.size(1) - supervisions["num_frames"]) / feature.size(1))
-        .sum()
-        .item()
+        ((feature.size(1) - supervisions["num_frames"]) / feature.size(1)).sum().item()
     )
 
     return loss, info
@@ -551,9 +548,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -651,8 +646,23 @@ def run(rank, world_size, args):
         optimizer.load_state_dict(checkpoints["optimizer"])
 
     librispeech = LibriSpeechAsrDataModule(args)
-    train_dl = librispeech.train_dataloaders()
-    valid_dl = librispeech.valid_dataloaders()
+
+    if params.full_libri:
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 20 seconds
+        return 1.0 <= c.duration <= 20.0
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+    train_dl = librispeech.train_dataloaders(train_cuts)
+
+    valid_cuts = librispeech.dev_clean_cuts()
+    valid_cuts += librispeech.dev_other_cuts()
+    valid_dl = librispeech.valid_dataloaders(valid_cuts)
 
     scan_pessimistic_batches_for_oom(
         model=model,
@@ -668,9 +678,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py b/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
index bc78e4a41..0c87fdf1b 100644
--- a/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
@@ -149,9 +149,7 @@ class Transformer(nn.Module):
                 norm=decoder_norm,
             )
 
-            self.decoder_output_layer = torch.nn.Linear(
-                d_model, self.decoder_num_class
-            )
+            self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
 
             self.decoder_criterion = LabelSmoothingLoss()
         else:
@@ -286,23 +284,17 @@ class Transformer(nn.Module):
         """
         ys_in = add_sos(token_ids, sos_id=sos_id)
         ys_in = [torch.tensor(y) for y in ys_in]
-        ys_in_pad = pad_sequence(
-            ys_in, batch_first=True, padding_value=float(eos_id)
-        )
+        ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
 
         ys_out = add_eos(token_ids, eos_id=eos_id)
         ys_out = [torch.tensor(y) for y in ys_out]
-        ys_out_pad = pad_sequence(
-            ys_out, batch_first=True, padding_value=float(-1)
-        )
+        ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
 
         device = memory.device
         ys_in_pad = ys_in_pad.to(device)
         ys_out_pad = ys_out_pad.to(device)
 
-        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
-            device
-        )
+        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
 
         tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
         # TODO: Use length information to create the decoder padding mask
@@ -363,23 +355,17 @@ class Transformer(nn.Module):
 
         ys_in = add_sos(token_ids, sos_id=sos_id)
         ys_in = [torch.tensor(y) for y in ys_in]
-        ys_in_pad = pad_sequence(
-            ys_in, batch_first=True, padding_value=float(eos_id)
-        )
+        ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
 
         ys_out = add_eos(token_ids, eos_id=eos_id)
         ys_out = [torch.tensor(y) for y in ys_out]
-        ys_out_pad = pad_sequence(
-            ys_out, batch_first=True, padding_value=float(-1)
-        )
+        ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
 
         device = memory.device
         ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
         ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
 
-        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
-            device
-        )
+        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
 
         tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
         # TODO: Use length information to create the decoder padding mask
@@ -652,9 +638,7 @@ def _get_activation_fn(activation: str):
     elif activation == "gelu":
         return nn.functional.gelu
 
-    raise RuntimeError(
-        "activation should be relu/gelu, not {}".format(activation)
-    )
+    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
 
 
 class PositionalEncoding(nn.Module):
@@ -856,9 +840,7 @@ def encoder_padding_mask(
         1,
     ).to(torch.int32)
 
-    lengths = [
-        0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
-    ]
+    lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
     for idx in range(supervision_segments.size(0)):
         # Note: TorchScript doesn't allow to unpack tensors as tuples
         sequence_idx = supervision_segments[idx, 0].item()
@@ -879,9 +861,7 @@ def encoder_padding_mask(
     return mask
 
 
-def decoder_padding_mask(
-    ys_pad: torch.Tensor, ignore_id: int = -1
-) -> torch.Tensor:
+def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
     """Generate a length mask for input.
 
     The masked position are filled with True,
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
index 355ccc99a..c5787835d 100644
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
@@ -86,8 +86,7 @@ class LibriSpeechAsrDataModule:
             "--full-libri",
             type=str2bool,
             default=True,
-            help="When enabled, use 960h LibriSpeech. "
-            "Otherwise, use 100h subset.",
+            help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
         )
         group.add_argument(
             "--manifest-dir",
@@ -224,13 +223,9 @@ class LibriSpeechAsrDataModule:
         if self.args.enable_musan:
             logging.info("Enable MUSAN")
             logging.info("About to get Musan cuts")
-            cuts_musan = load_manifest(
-                self.args.manifest_dir / "musan_cuts.jsonl.gz"
-            )
+            cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
             transforms.append(
-                CutMix(
-                    cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
-                )
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
             )
         else:
             logging.info("Disable MUSAN")
@@ -252,9 +247,7 @@ class LibriSpeechAsrDataModule:
         input_transforms = []
         if self.args.enable_spec_aug:
             logging.info("Enable SpecAugment")
-            logging.info(
-                f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
-            )
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
             # Set the value of num_frame_masks according to Lhotse's version.
             # In different Lhotse's versions, the default of num_frame_masks is
             # different.
@@ -298,9 +291,7 @@ class LibriSpeechAsrDataModule:
             # Drop feats to be on the safe side.
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 input_transforms=input_transforms,
                 return_cuts=self.args.return_cuts,
             )
@@ -356,9 +347,7 @@ class LibriSpeechAsrDataModule:
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 return_cuts=self.args.return_cuts,
             )
         else:
@@ -425,6 +414,16 @@ class LibriSpeechAsrDataModule:
             self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
         )
 
+    @lru_cache()
+    def train_all_shuf_cuts(self) -> CutSet:
+        logging.info(
+            "About to get the shuffled train-clean-100, \
+            train-clean-360 and train-other-500 cuts"
+        )
+        return load_manifest_lazy(
+            self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
+        )
+
     @lru_cache()
     def dev_clean_cuts(self) -> CutSet:
         logging.info("About to get dev-clean cuts")
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
index 7d0cd0bf3..92529e06c 100755
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
@@ -336,9 +336,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -400,9 +398,7 @@ def main():
 
     logging.info(f"device: {device}")
 
-    HLG = k2.Fsa.from_dict(
-        torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
-    )
+    HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu"))
     HLG = HLG.to(device)
     assert HLG.requires_grad is False
 
@@ -467,9 +463,7 @@ def main():
 
     if params.export:
         logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
-        torch.save(
-            {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
-        )
+        torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
         return
 
     model.to(device)
@@ -498,9 +492,7 @@ def main():
             G=G,
         )
 
-        save_results(
-            params=params, test_set_name=test_set, results_dict=results_dict
-        )
+        save_results(params=params, test_set_name=test_set, results_dict=results_dict)
 
     logging.info("Done!")
 
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/model.py b/egs/librispeech/ASR/tdnn_lstm_ctc/model.py
index 5e04c11b4..1731e1ebe 100644
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/model.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/model.py
@@ -66,10 +66,7 @@ class TdnnLstm(nn.Module):
             nn.BatchNorm1d(num_features=500, affine=False),
         )
         self.lstms = nn.ModuleList(
-            [
-                nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
-                for _ in range(5)
-            ]
+            [nn.LSTM(input_size=500, hidden_size=500, num_layers=1) for _ in range(5)]
         )
         self.lstm_bnorms = nn.ModuleList(
             [nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py b/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
index 2baeb6bba..fde724866 100755
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
@@ -29,11 +29,7 @@ import torchaudio
 from model import TdnnLstm
 from torch.nn.utils.rnn import pad_sequence
 
-from icefall.decode import (
-    get_lattice,
-    one_best_decoding,
-    rescore_with_whole_lattice,
-)
+from icefall.decode import get_lattice, one_best_decoding, rescore_with_whole_lattice
 from icefall.utils import AttributeDict, get_texts
 
 
@@ -58,9 +54,7 @@ def get_parser():
         help="Path to words.txt",
     )
 
-    parser.add_argument(
-        "--HLG", type=str, required=True, help="Path to HLG.pt."
-    )
+    parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
 
     parser.add_argument(
         "--method",
@@ -144,10 +138,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -215,9 +208,7 @@ def main():
     logging.info("Decoding started")
     features = fbank(waves)
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
     features = features.permute(0, 2, 1)  # now features is (N, C, T)
 
     with torch.no_grad():
@@ -269,9 +260,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
index 6b37d5c23..0aa1587ba 100755
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
@@ -173,7 +173,7 @@ def get_params() -> AttributeDict:
         {
             "exp_dir": Path("tdnn_lstm_ctc/exp"),
             "lang_dir": Path("data/lang_phone"),
-            "lr": 1e-3,
+            "lr": 1e-4,
             "feature_dim": 80,
             "weight_decay": 5e-4,
             "subsampling_factor": 3,
@@ -355,9 +355,7 @@ def compute_loss(
     info["utt_duration"] = supervisions["num_frames"].sum().item()
     # averaged padding proportion over utterances
     info["utt_pad_proportion"] = (
-        ((feature.size(2) - supervisions["num_frames"]) / feature.size(2))
-        .sum()
-        .item()
+        ((feature.size(2) - supervisions["num_frames"]) / feature.size(2)).sum().item()
     )
 
     return loss, info
@@ -470,9 +468,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             valid_info = compute_validation_loss(
@@ -561,10 +557,10 @@ def run(rank, world_size, args):
 
     librispeech = LibriSpeechAsrDataModule(args)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     def remove_short_and_long_utt(c: Cut):
         # Keep only utterances with duration between 1 second and 20 seconds
diff --git a/egs/librispeech/ASR/transducer/beam_search.py b/egs/librispeech/ASR/transducer/beam_search.py
index 11032f31a..b45b6a9d8 100644
--- a/egs/librispeech/ASR/transducer/beam_search.py
+++ b/egs/librispeech/ASR/transducer/beam_search.py
@@ -38,9 +38,7 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
     blank_id = model.decoder.blank_id
     device = model.device
 
-    sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(
-        1, 1
-    )
+    sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(1, 1)
     decoder_out, (h, c) = model.decoder(sos)
     T = encoder_out.size(1)
     t = 0
@@ -123,9 +121,7 @@ def beam_search(
     max_u = 20000  # terminate after this number of steps
     u = 0
 
-    cache: Dict[
-        str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
-    ] = {}
+    cache: Dict[str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = {}
 
     while t < T and u < max_u:
         # fmt: off
@@ -157,9 +153,9 @@ def beam_search(
             cached_key = "_".join(map(str, y_star.ys))
 
             if cached_key not in cache:
-                decoder_input = torch.tensor(
-                    [y_star.ys[-1]], device=device
-                ).reshape(1, 1)
+                decoder_input = torch.tensor([y_star.ys[-1]], device=device).reshape(
+                    1, 1
+                )
 
                 decoder_out, decoder_state = model.decoder(
                     decoder_input,
diff --git a/egs/librispeech/ASR/transducer/decode.py b/egs/librispeech/ASR/transducer/decode.py
index 5f233df87..804713a20 100755
--- a/egs/librispeech/ASR/transducer/decode.py
+++ b/egs/librispeech/ASR/transducer/decode.py
@@ -228,9 +228,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
     batch_size = encoder_out.size(0)
 
@@ -245,9 +243,7 @@ def decode_one_batch(
                 model=model, encoder_out=encoder_out_i, beam=params.beam_size
             )
         else:
-            raise ValueError(
-                f"Unsupported decoding method: {params.decoding_method}"
-            )
+            raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
         hyps.append(sp.decode(hyp).split())
 
     if params.decoding_method == "greedy_search":
@@ -318,9 +314,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -353,8 +347,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
diff --git a/egs/librispeech/ASR/transducer/export.py b/egs/librispeech/ASR/transducer/export.py
index 5a5db30c4..6db0272f0 100755
--- a/egs/librispeech/ASR/transducer/export.py
+++ b/egs/librispeech/ASR/transducer/export.py
@@ -238,9 +238,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer/pretrained.py b/egs/librispeech/ASR/transducer/pretrained.py
index 1db2df648..511610245 100755
--- a/egs/librispeech/ASR/transducer/pretrained.py
+++ b/egs/librispeech/ASR/transducer/pretrained.py
@@ -188,10 +188,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -249,9 +248,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -287,9 +284,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer/rnn.py b/egs/librispeech/ASR/transducer/rnn.py
index 2a165b0c1..fe8732301 100644
--- a/egs/librispeech/ASR/transducer/rnn.py
+++ b/egs/librispeech/ASR/transducer/rnn.py
@@ -117,12 +117,8 @@ class LayerNormLSTMCell(nn.Module):
         )
 
         if bias:
-            self.bias_ih = nn.Parameter(
-                torch.empty(4 * hidden_size, **factory_kwargs)
-            )
-            self.bias_hh = nn.Parameter(
-                torch.empty(4 * hidden_size, **factory_kwargs)
-            )
+            self.bias_ih = nn.Parameter(torch.empty(4 * hidden_size, **factory_kwargs))
+            self.bias_hh = nn.Parameter(torch.empty(4 * hidden_size, **factory_kwargs))
         else:
             self.register_parameter("bias_ih", None)
             self.register_parameter("bias_hh", None)
@@ -348,9 +344,7 @@ class LayerNormLSTM(nn.Module):
             device=device,
             dtype=dtype,
         )
-        first_layer = LayerNormLSTMLayer(
-            input_size=input_size, **factory_kwargs
-        )
+        first_layer = LayerNormLSTMLayer(input_size=input_size, **factory_kwargs)
         layers = [first_layer]
         for i in range(1, num_layers):
             layers.append(
@@ -385,9 +379,7 @@ class LayerNormLSTM(nn.Module):
             - List[(next_h, next_c)] containing the hidden states for all layers
 
         """
-        output_states = torch.jit.annotate(
-            List[Tuple[torch.Tensor, torch.Tensor]], []
-        )
+        output_states = torch.jit.annotate(List[Tuple[torch.Tensor, torch.Tensor]], [])
         output = input
         for i, rnn_layer in enumerate(self.layers):
             state = states[i]
@@ -456,12 +448,8 @@ class LayerNormGRUCell(nn.Module):
         )
 
         if bias:
-            self.bias_ih = nn.Parameter(
-                torch.empty(3 * hidden_size, **factory_kwargs)
-            )
-            self.bias_hh = nn.Parameter(
-                torch.empty(3 * hidden_size, **factory_kwargs)
-            )
+            self.bias_ih = nn.Parameter(torch.empty(3 * hidden_size, **factory_kwargs))
+            self.bias_hh = nn.Parameter(torch.empty(3 * hidden_size, **factory_kwargs))
         else:
             self.register_parameter("bias_ih", None)
             self.register_parameter("bias_hh", None)
diff --git a/egs/librispeech/ASR/transducer/test_rnn.py b/egs/librispeech/ASR/transducer/test_rnn.py
index 8591e2d8a..74c94cc70 100755
--- a/egs/librispeech/ASR/transducer/test_rnn.py
+++ b/egs/librispeech/ASR/transducer/test_rnn.py
@@ -254,9 +254,7 @@ def test_layernorm_lstm_layer_with_projection_forward(device="cpu"):
         for name, self_param in self_layer.cell.named_parameters():
             getattr(torch_layer, f"{name}_l0").copy_(self_param)
 
-    torch_y, (torch_h, torch_c) = torch_layer(
-        x_clone, (h.unsqueeze(0), c.unsqueeze(0))
-    )
+    torch_y, (torch_h, torch_c) = torch_layer(x_clone, (h.unsqueeze(0), c.unsqueeze(0)))
     assert_allclose(self_y, torch_y)
     assert_allclose(self_h, torch_h)
     assert_allclose(self_c, torch_c)
@@ -303,9 +301,7 @@ def test_layernorm_lstm_layer_forward(device="cpu"):
         for name, self_param in self_layer.cell.named_parameters():
             getattr(torch_layer, f"{name}_l0").copy_(self_param)
 
-    torch_y, (torch_h, torch_c) = torch_layer(
-        x_clone, (h.unsqueeze(0), c.unsqueeze(0))
-    )
+    torch_y, (torch_h, torch_c) = torch_layer(x_clone, (h.unsqueeze(0), c.unsqueeze(0)))
     assert_allclose(self_y, torch_y)
     assert_allclose(self_h, torch_h)
     assert_allclose(self_c, torch_c)
@@ -594,9 +590,7 @@ def test_layernorm_gru_cell_forward(device="cpu"):
 
     assert_allclose(self_h, torch_h, atol=1e-5)
 
-    (
-        self_h.reshape(-1) * torch.arange(self_h.numel(), device=device)
-    ).sum().backward()
+    (self_h.reshape(-1) * torch.arange(self_h.numel(), device=device)).sum().backward()
     (
         torch_h.reshape(-1) * torch.arange(torch_h.numel(), device=device)
     ).sum().backward()
@@ -718,9 +712,7 @@ def test_layernorm_gru_forward(device="cpu"):
     T = torch.randint(low=2, high=100, size=(1,))
 
     x = torch.rand(N, T, input_size, device=device).requires_grad_()
-    states = [
-        torch.rand(N, hidden_size, device=device) for _ in range(num_layers)
-    ]
+    states = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)]
 
     x_clone = x.detach().clone().requires_grad_()
 
diff --git a/egs/librispeech/ASR/transducer/train.py b/egs/librispeech/ASR/transducer/train.py
index 1dd65eddb..29625754e 100755
--- a/egs/librispeech/ASR/transducer/train.py
+++ b/egs/librispeech/ASR/transducer/train.py
@@ -396,9 +396,7 @@ def compute_loss(
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -520,9 +518,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -618,10 +614,10 @@ def run(rank, world_size, args):
 
     librispeech = LibriSpeechAsrDataModule(args)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     def remove_short_and_long_utt(c: Cut):
         # Keep only utterances with duration between 1 second and 20 seconds
@@ -659,9 +655,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/transducer_lstm/beam_search.py b/egs/librispeech/ASR/transducer_lstm/beam_search.py
index 3531a9633..5342c3e8c 100644
--- a/egs/librispeech/ASR/transducer_lstm/beam_search.py
+++ b/egs/librispeech/ASR/transducer_lstm/beam_search.py
@@ -38,9 +38,7 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
     blank_id = model.decoder.blank_id
     device = model.device
 
-    sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(
-        1, 1
-    )
+    sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(1, 1)
     decoder_out, (h, c) = model.decoder(sos)
     T = encoder_out.size(1)
     t = 0
@@ -124,9 +122,7 @@ def beam_search(
     max_u = 20000  # terminate after this number of steps
     u = 0
 
-    cache: Dict[
-        str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
-    ] = {}
+    cache: Dict[str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = {}
 
     while t < T and u < max_u:
         # fmt: off
@@ -158,9 +154,9 @@ def beam_search(
             cached_key = "_".join(map(str, y_star.ys))
 
             if cached_key not in cache:
-                decoder_input = torch.tensor(
-                    [y_star.ys[-1]], device=device
-                ).reshape(1, 1)
+                decoder_input = torch.tensor([y_star.ys[-1]], device=device).reshape(
+                    1, 1
+                )
 
                 decoder_out, decoder_state = model.decoder(
                     decoder_input,
diff --git a/egs/librispeech/ASR/transducer_lstm/decode.py b/egs/librispeech/ASR/transducer_lstm/decode.py
index 604235e2a..9511ca6d7 100755
--- a/egs/librispeech/ASR/transducer_lstm/decode.py
+++ b/egs/librispeech/ASR/transducer_lstm/decode.py
@@ -225,9 +225,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
     batch_size = encoder_out.size(0)
 
@@ -242,9 +240,7 @@ def decode_one_batch(
                 model=model, encoder_out=encoder_out_i, beam=params.beam_size
             )
         else:
-            raise ValueError(
-                f"Unsupported decoding method: {params.decoding_method}"
-            )
+            raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
         hyps.append(sp.decode(hyp).split())
 
     if params.decoding_method == "greedy_search":
@@ -315,9 +311,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -350,8 +344,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
diff --git a/egs/librispeech/ASR/transducer_lstm/encoder.py b/egs/librispeech/ASR/transducer_lstm/encoder.py
index 3dc992dd2..038d80077 100644
--- a/egs/librispeech/ASR/transducer_lstm/encoder.py
+++ b/egs/librispeech/ASR/transducer_lstm/encoder.py
@@ -48,9 +48,7 @@ class LstmEncoder(EncoderInterface):
         if vgg_frontend:
             self.encoder_embed = VggSubsampling(num_features, real_hidden_size)
         else:
-            self.encoder_embed = Conv2dSubsampling(
-                num_features, real_hidden_size
-            )
+            self.encoder_embed = Conv2dSubsampling(num_features, real_hidden_size)
 
         self.rnn = nn.LSTM(
             input_size=hidden_size,
diff --git a/egs/librispeech/ASR/transducer_lstm/train.py b/egs/librispeech/ASR/transducer_lstm/train.py
index cdb801e79..a6f2bd08c 100755
--- a/egs/librispeech/ASR/transducer_lstm/train.py
+++ b/egs/librispeech/ASR/transducer_lstm/train.py
@@ -400,9 +400,7 @@ def compute_loss(
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -524,9 +522,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -624,27 +620,17 @@ def run(rank, world_size, args):
 
     librispeech = LibriSpeechAsrDataModule(args)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     def remove_short_and_long_utt(c: Cut):
         # Keep only utterances with duration between 1 second and 20 seconds
         return 1.0 <= c.duration <= 20.0
 
-    num_in_total = len(train_cuts)
-
     train_cuts = train_cuts.filter(remove_short_and_long_utt)
 
-    num_left = len(train_cuts)
-    num_removed = num_in_total - num_left
-    removed_percent = num_removed / num_in_total * 100
-
-    logging.info(f"Before removing short and long utterances: {num_in_total}")
-    logging.info(f"After removing short and long utterances: {num_left}")
-    logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
-
     train_dl = librispeech.train_dataloaders(train_cuts)
 
     valid_cuts = librispeech.dev_clean_cuts()
@@ -665,9 +651,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/transducer_stateless/alignment.py b/egs/librispeech/ASR/transducer_stateless/alignment.py
index f143611ea..65f2c58d8 100644
--- a/egs/librispeech/ASR/transducer_stateless/alignment.py
+++ b/egs/librispeech/ASR/transducer_stateless/alignment.py
@@ -193,9 +193,7 @@ def force_alignment(
         decoder_out = model.decoder(decoder_input, need_pad=False)
         # decoder_output is of shape (num_active_items, 1, decoder_output_dim)
 
-        current_encoder_out = current_encoder_out.expand(
-            decoder_out.size(0), 1, -1
-        )
+        current_encoder_out = current_encoder_out.expand(decoder_out.size(0), 1, -1)
 
         logits = model.joiner(
             current_encoder_out,
diff --git a/egs/librispeech/ASR/transducer_stateless/beam_search.py b/egs/librispeech/ASR/transducer_stateless/beam_search.py
index ea985f30d..1d79eef9d 100644
--- a/egs/librispeech/ASR/transducer_stateless/beam_search.py
+++ b/egs/librispeech/ASR/transducer_stateless/beam_search.py
@@ -316,9 +316,9 @@ def greedy_search(
         y = logits.argmax().item()
         if y != blank_id:
             hyp.append(y)
-            decoder_input = torch.tensor(
-                [hyp[-context_size:]], device=device
-            ).reshape(1, context_size)
+            decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
+                1, context_size
+            )
 
             decoder_out = model.decoder(decoder_input, need_pad=False)
 
@@ -478,9 +478,7 @@ class HypothesisList(object):
         key = hyp.key
         if key in self:
             old_hyp = self._data[key]  # shallow copy
-            torch.logaddexp(
-                old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
-            )
+            torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
         else:
             self._data[key] = hyp
 
@@ -496,9 +494,7 @@ class HypothesisList(object):
           Return the hypothesis that has the largest `log_prob`.
         """
         if length_norm:
-            return max(
-                self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
-            )
+            return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
         else:
             return max(self._data.values(), key=lambda hyp: hyp.log_prob)
 
@@ -786,9 +782,7 @@ def modified_beam_search(
         log_probs_shape = k2.ragged.create_ragged_shape2(
             row_splits=row_splits, cached_tot_size=log_probs.numel()
         )
-        ragged_log_probs = k2.RaggedTensor(
-            shape=log_probs_shape, value=log_probs
-        )
+        ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
 
         for i in range(batch_size):
             topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
@@ -887,9 +881,7 @@ def _deprecated_modified_beam_search(
         decoder_out = model.decoder(decoder_input, need_pad=False)
         # decoder_output is of shape (num_hyps, 1, decoder_output_dim)
 
-        current_encoder_out = current_encoder_out.expand(
-            decoder_out.size(0), 1, -1
-        )
+        current_encoder_out = current_encoder_out.expand(decoder_out.size(0), 1, -1)
 
         logits = model.joiner(
             current_encoder_out,
@@ -959,9 +951,9 @@ def beam_search(
 
     device = model.device
 
-    decoder_input = torch.tensor(
-        [blank_id] * context_size, device=device
-    ).reshape(1, context_size)
+    decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
+        1, context_size
+    )
 
     decoder_out = model.decoder(decoder_input, need_pad=False)
 
diff --git a/egs/librispeech/ASR/transducer_stateless/compute_ali.py b/egs/librispeech/ASR/transducer_stateless/compute_ali.py
index 48769e9d1..f479389df 100755
--- a/egs/librispeech/ASR/transducer_stateless/compute_ali.py
+++ b/egs/librispeech/ASR/transducer_stateless/compute_ali.py
@@ -124,8 +124,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -162,9 +161,7 @@ def compute_alignments(
 
         feature_lens = supervisions["num_frames"].to(device)
 
-        encoder_out, encoder_out_lens = model.encoder(
-            x=feature, x_lens=feature_lens
-        )
+        encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
         batch_size = encoder_out.size(0)
 
@@ -204,9 +201,7 @@ def compute_alignments(
         if batch_idx % 2 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
 
     return CutSet.from_cuts(cuts)
 
diff --git a/egs/librispeech/ASR/transducer_stateless/conformer.py b/egs/librispeech/ASR/transducer_stateless/conformer.py
index cde52c9fc..01e8c5b21 100644
--- a/egs/librispeech/ASR/transducer_stateless/conformer.py
+++ b/egs/librispeech/ASR/transducer_stateless/conformer.py
@@ -209,10 +209,7 @@ class Conformer(Transformer):
 
           NOTE: the returned tensors are on the given device.
         """
-        if (
-            len(self._init_state) == 2
-            and self._init_state[0].size(1) == left_context
-        ):
+        if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context:
             # Note: It is OK to share the init state as it is
             # not going to be modified by the model
             return self._init_state
@@ -421,9 +418,7 @@ class ConformerEncoderLayer(nn.Module):
         causal: bool = False,
     ) -> None:
         super(ConformerEncoderLayer, self).__init__()
-        self.self_attn = RelPositionMultiheadAttention(
-            d_model, nhead, dropout=0.0
-        )
+        self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
 
         self.feed_forward = nn.Sequential(
             nn.Linear(d_model, dim_feedforward),
@@ -439,22 +434,16 @@ class ConformerEncoderLayer(nn.Module):
             nn.Linear(dim_feedforward, d_model),
         )
 
-        self.conv_module = ConvolutionModule(
-            d_model, cnn_module_kernel, causal=causal
-        )
+        self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal)
 
-        self.norm_ff_macaron = nn.LayerNorm(
-            d_model
-        )  # for the macaron style FNN module
+        self.norm_ff_macaron = nn.LayerNorm(d_model)  # for the macaron style FNN module
         self.norm_ff = nn.LayerNorm(d_model)  # for the FNN module
         self.norm_mha = nn.LayerNorm(d_model)  # for the MHA module
 
         self.ff_scale = 0.5
 
         self.norm_conv = nn.LayerNorm(d_model)  # for the CNN module
-        self.norm_final = nn.LayerNorm(
-            d_model
-        )  # for the final output of the block
+        self.norm_final = nn.LayerNorm(d_model)  # for the final output of the block
 
         self.dropout = nn.Dropout(dropout)
 
@@ -486,9 +475,7 @@ class ConformerEncoderLayer(nn.Module):
         residual = src
         if self.normalize_before:
             src = self.norm_ff_macaron(src)
-        src = residual + self.ff_scale * self.dropout(
-            self.feed_forward_macaron(src)
-        )
+        src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
         if not self.normalize_before:
             src = self.norm_ff_macaron(src)
 
@@ -514,9 +501,7 @@ class ConformerEncoderLayer(nn.Module):
         if self.normalize_before:
             src = self.norm_conv(src)
 
-        src, _ = self.conv_module(
-            src, src_key_padding_mask=src_key_padding_mask
-        )
+        src, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
         src = residual + self.dropout(src)
 
         if not self.normalize_before:
@@ -581,9 +566,7 @@ class ConformerEncoderLayer(nn.Module):
         residual = src
         if self.normalize_before:
             src = self.norm_ff_macaron(src)
-        src = residual + self.ff_scale * self.dropout(
-            self.feed_forward_macaron(src)
-        )
+        src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
         if not self.normalize_before:
             src = self.norm_ff_macaron(src)
 
@@ -625,9 +608,7 @@ class ConformerEncoderLayer(nn.Module):
         if self.normalize_before:
             src = self.norm_conv(src)
 
-        src, conv_cache = self.conv_module(
-            src, states[1], right_context=right_context
-        )
+        src, conv_cache = self.conv_module(src, states[1], right_context=right_context)
         states[1] = conv_cache
         src = residual + self.dropout(src)
 
@@ -779,9 +760,7 @@ class RelPositionalEncoding(torch.nn.Module):
 
     """
 
-    def __init__(
-        self, d_model: int, dropout_rate: float, max_len: int = 5000
-    ) -> None:
+    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
         """Construct an PositionalEncoding object."""
         super(RelPositionalEncoding, self).__init__()
         self.d_model = d_model
@@ -798,9 +777,7 @@ class RelPositionalEncoding(torch.nn.Module):
             # the length of self.pe is 2 * input_len - 1
             if self.pe.size(1) >= x_size_1 * 2 - 1:
                 # Note: TorchScript doesn't implement operator== for torch.Device
-                if self.pe.dtype != x.dtype or str(self.pe.device) != str(
-                    x.device
-                ):
+                if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
                     self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                 return
         # Suppose `i` means to the position of query vector and `j` means the
@@ -826,9 +803,7 @@ class RelPositionalEncoding(torch.nn.Module):
         pe = torch.cat([pe_positive, pe_negative], dim=1)
         self.pe = pe.to(device=x.device, dtype=x.dtype)
 
-    def forward(
-        self, x: torch.Tensor, left_context: int = 0
-    ) -> Tuple[Tensor, Tensor]:
+    def forward(self, x: torch.Tensor, left_context: int = 0) -> Tuple[Tensor, Tensor]:
         """Add positional encoding.
 
         Args:
@@ -1092,9 +1067,9 @@ class RelPositionMultiheadAttention(nn.Module):
 
         if torch.equal(query, key) and torch.equal(key, value):
             # self-attention
-            q, k, v = nn.functional.linear(
-                query, in_proj_weight, in_proj_bias
-            ).chunk(3, dim=-1)
+            q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
+                3, dim=-1
+            )
 
         elif torch.equal(key, value):
             # encoder-decoder attention
@@ -1163,31 +1138,22 @@ class RelPositionMultiheadAttention(nn.Module):
             if attn_mask.dim() == 2:
                 attn_mask = attn_mask.unsqueeze(0)
                 if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
-                    raise RuntimeError(
-                        "The size of the 2D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
             elif attn_mask.dim() == 3:
                 if list(attn_mask.size()) != [
                     bsz * num_heads,
                     query.size(0),
                     key.size(0),
                 ]:
-                    raise RuntimeError(
-                        "The size of the 3D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
             else:
                 raise RuntimeError(
-                    "attn_mask's dimension {} is not supported".format(
-                        attn_mask.dim()
-                    )
+                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
                 )
             # attn_mask's dim is 3 now.
 
         # convert ByteTensor key_padding_mask to bool
-        if (
-            key_padding_mask is not None
-            and key_padding_mask.dtype == torch.uint8
-        ):
+        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
             warnings.warn(
                 "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
             )
@@ -1228,14 +1194,10 @@ class RelPositionMultiheadAttention(nn.Module):
         # first compute matrix a and matrix c
         # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
         k = k.permute(1, 2, 3, 0)  # (batch, head, d_k, time2)
-        matrix_ac = torch.matmul(
-            q_with_bias_u, k
-        )  # (batch, head, time1, time2)
+        matrix_ac = torch.matmul(q_with_bias_u, k)  # (batch, head, time1, time2)
 
         # compute matrix b and matrix d
-        matrix_bd = torch.matmul(
-            q_with_bias_v, p
-        )  # (batch, head, time1, 2*time1-1)
+        matrix_bd = torch.matmul(q_with_bias_v, p)  # (batch, head, time1, 2*time1-1)
 
         matrix_bd = self.rel_shift(matrix_bd, left_context=left_context)
 
@@ -1243,9 +1205,7 @@ class RelPositionMultiheadAttention(nn.Module):
             matrix_ac + matrix_bd
         ) * scaling  # (batch, head, time1, time2)
 
-        attn_output_weights = attn_output_weights.view(
-            bsz * num_heads, tgt_len, -1
-        )
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
 
         assert list(attn_output_weights.size()) == [
             bsz * num_heads,
@@ -1290,9 +1250,7 @@ class RelPositionMultiheadAttention(nn.Module):
             attn_output_weights = attn_output_weights.view(
                 bsz, num_heads, tgt_len, src_len
             )
-            attn_output_weights = attn_output_weights.masked_fill(
-                combined_mask, 0.0
-            )
+            attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
             attn_output_weights = attn_output_weights.view(
                 bsz * num_heads, tgt_len, src_len
             )
@@ -1304,13 +1262,9 @@ class RelPositionMultiheadAttention(nn.Module):
         attn_output = torch.bmm(attn_output_weights, v)
         assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
         attn_output = (
-            attn_output.transpose(0, 1)
-            .contiguous()
-            .view(tgt_len, bsz, embed_dim)
-        )
-        attn_output = nn.functional.linear(
-            attn_output, out_proj_weight, out_proj_bias
+            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
         )
+        attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
 
         if need_weights:
             # average attention weights over heads
@@ -1418,16 +1372,12 @@ class ConvolutionModule(nn.Module):
                 # manualy padding self.lorder zeros to the left
                 x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
             else:
-                assert (
-                    not self.training
-                ), "Cache should be None in training time"
+                assert not self.training, "Cache should be None in training time"
                 assert cache.size(0) == self.lorder
                 x = torch.cat([cache.permute(1, 2, 0), x], dim=2)
                 if right_context > 0:
                     cache = x.permute(2, 0, 1)[
-                        -(self.lorder + right_context) : (  # noqa
-                            -right_context
-                        ),
+                        -(self.lorder + right_context) : (-right_context),  # noqa
                         ...,
                     ]
                 else:
diff --git a/egs/librispeech/ASR/transducer_stateless/decode.py b/egs/librispeech/ASR/transducer_stateless/decode.py
index 74bba9cad..643238f1b 100755
--- a/egs/librispeech/ASR/transducer_stateless/decode.py
+++ b/egs/librispeech/ASR/transducer_stateless/decode.py
@@ -171,8 +171,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -230,9 +229,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
     hyps = []
 
@@ -248,10 +245,7 @@ def decode_one_batch(
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -374,9 +368,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -409,8 +401,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -450,9 +441,7 @@ def main():
         params.suffix += f"-max-contexts-{params.max_contexts}"
         params.suffix += f"-max-states-{params.max_states}"
     elif "beam_search" in params.decoding_method:
-        params.suffix += (
-            f"-{params.decoding_method}-beam-size-{params.beam_size}"
-        )
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
     else:
         params.suffix += f"-context-{params.context_size}"
         params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
diff --git a/egs/librispeech/ASR/transducer_stateless/decoder.py b/egs/librispeech/ASR/transducer_stateless/decoder.py
index fbc2373a9..a182d91e2 100644
--- a/egs/librispeech/ASR/transducer_stateless/decoder.py
+++ b/egs/librispeech/ASR/transducer_stateless/decoder.py
@@ -87,9 +87,7 @@ class Decoder(nn.Module):
         if self.context_size > 1:
             embedding_out = embedding_out.permute(0, 2, 1)
             if need_pad is True:
-                embedding_out = F.pad(
-                    embedding_out, pad=(self.context_size - 1, 0)
-                )
+                embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
             else:
                 # During inference time, there is no need to do extra padding
                 # as we only need one output
diff --git a/egs/librispeech/ASR/transducer_stateless/export.py b/egs/librispeech/ASR/transducer_stateless/export.py
index 8bd0bdea1..89359f1a4 100755
--- a/egs/librispeech/ASR/transducer_stateless/export.py
+++ b/egs/librispeech/ASR/transducer_stateless/export.py
@@ -109,8 +109,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -244,9 +243,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless/joiner.py b/egs/librispeech/ASR/transducer_stateless/joiner.py
index 93cccbd8c..e1625992d 100644
--- a/egs/librispeech/ASR/transducer_stateless/joiner.py
+++ b/egs/librispeech/ASR/transducer_stateless/joiner.py
@@ -60,13 +60,9 @@ class Joiner(nn.Module):
         encoder_out_len: List[int] = encoder_out_len.tolist()
         decoder_out_len: List[int] = decoder_out_len.tolist()
 
-        encoder_out_list = [
-            encoder_out[i, : encoder_out_len[i], :] for i in range(N)
-        ]
+        encoder_out_list = [encoder_out[i, : encoder_out_len[i], :] for i in range(N)]
 
-        decoder_out_list = [
-            decoder_out[i, : decoder_out_len[i], :] for i in range(N)
-        ]
+        decoder_out_list = [decoder_out[i, : decoder_out_len[i], :] for i in range(N)]
 
         x = [
             e.unsqueeze(1) + d.unsqueeze(0)
diff --git a/egs/librispeech/ASR/transducer_stateless/pretrained.py b/egs/librispeech/ASR/transducer_stateless/pretrained.py
index b64521801..915a6069d 100755
--- a/egs/librispeech/ASR/transducer_stateless/pretrained.py
+++ b/egs/librispeech/ASR/transducer_stateless/pretrained.py
@@ -167,8 +167,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -197,10 +196,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -259,9 +257,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -334,9 +330,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py b/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
index b00fc34f1..9af46846a 100755
--- a/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
+++ b/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
@@ -140,16 +140,13 @@ def main():
                 token_alignment[i, : token_alignment_length[i]].tolist(), sp=sp
             )
             word_starting_time = [
-                "{:.2f}".format(i * frame_shift_in_second)
-                for i in word_starting_frames
+                "{:.2f}".format(i * frame_shift_in_second) for i in word_starting_frames
             ]
 
             words = supervisions["text"][i].split()
 
             assert len(word_starting_frames) == len(words)
-            word_starting_time_dict[cuts[i].id] = list(
-                zip(words, word_starting_time)
-            )
+            word_starting_time_dict[cuts[i].id] = list(zip(words, word_starting_time))
 
         # This is a demo script and we exit here after processing
         # one batch.
@@ -160,9 +157,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless/test_conformer.py b/egs/librispeech/ASR/transducer_stateless/test_conformer.py
index d1350c8ab..65b08d425 100755
--- a/egs/librispeech/ASR/transducer_stateless/test_conformer.py
+++ b/egs/librispeech/ASR/transducer_stateless/test_conformer.py
@@ -29,9 +29,7 @@ from conformer import Conformer
 
 def test_conformer():
     feature_dim = 50
-    c = Conformer(
-        num_features=feature_dim, output_dim=256, d_model=128, nhead=4
-    )
+    c = Conformer(num_features=feature_dim, output_dim=256, d_model=128, nhead=4)
     batch_size = 5
     seq_len = 20
     # Just make sure the forward pass runs.
diff --git a/egs/librispeech/ASR/transducer_stateless/train.py b/egs/librispeech/ASR/transducer_stateless/train.py
index ae93f3348..8db9b59e7 100755
--- a/egs/librispeech/ASR/transducer_stateless/train.py
+++ b/egs/librispeech/ASR/transducer_stateless/train.py
@@ -136,8 +136,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -422,9 +421,7 @@ def compute_loss(
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -545,9 +542,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -646,10 +641,10 @@ def run(rank, world_size, args):
     if params.print_diagnostics:
         diagnostic = diagnostics.attach_diagnostics(model)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     def remove_short_and_long_utt(c: Cut):
         # Keep only utterances with duration between 1 second and 20 seconds
@@ -664,13 +659,9 @@ def run(rank, world_size, args):
         num_removed = num_in_total - num_left
         removed_percent = num_removed / num_in_total * 100
 
-        logging.info(
-            f"Before removing short and long utterances: {num_in_total}"
-        )
+        logging.info(f"Before removing short and long utterances: {num_in_total}")
         logging.info(f"After removing short and long utterances: {num_left}")
-        logging.info(
-            f"Removed {num_removed} utterances ({removed_percent:.5f}%)"
-        )
+        logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
     except TypeError as e:
         # You can ignore this error as previous versions of Lhotse work fine
         # for the above code. In recent versions of Lhotse, it uses
@@ -698,9 +689,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/transducer_stateless/transformer.py b/egs/librispeech/ASR/transducer_stateless/transformer.py
index e851dcc32..b3ff153c1 100644
--- a/egs/librispeech/ASR/transducer_stateless/transformer.py
+++ b/egs/librispeech/ASR/transducer_stateless/transformer.py
@@ -250,9 +250,7 @@ def _get_activation_fn(activation: str):
     elif activation == "gelu":
         return nn.functional.gelu
 
-    raise RuntimeError(
-        "activation should be relu/gelu, not {}".format(activation)
-    )
+    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
 
 
 class PositionalEncoding(nn.Module):
diff --git a/egs/librispeech/ASR/transducer_stateless2/decode.py b/egs/librispeech/ASR/transducer_stateless2/decode.py
index ac2807241..9a6363629 100755
--- a/egs/librispeech/ASR/transducer_stateless2/decode.py
+++ b/egs/librispeech/ASR/transducer_stateless2/decode.py
@@ -171,8 +171,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -230,9 +229,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
     hyps = []
 
@@ -248,10 +245,7 @@ def decode_one_batch(
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -374,9 +368,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -409,8 +401,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -450,9 +441,7 @@ def main():
         params.suffix += f"-max-contexts-{params.max_contexts}"
         params.suffix += f"-max-states-{params.max_states}"
     elif "beam_search" in params.decoding_method:
-        params.suffix += (
-            f"-{params.decoding_method}-beam-size-{params.beam_size}"
-        )
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
     else:
         params.suffix += f"-context-{params.context_size}"
         params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
diff --git a/egs/librispeech/ASR/transducer_stateless2/export.py b/egs/librispeech/ASR/transducer_stateless2/export.py
index 57c1a6094..d33d02642 100755
--- a/egs/librispeech/ASR/transducer_stateless2/export.py
+++ b/egs/librispeech/ASR/transducer_stateless2/export.py
@@ -104,8 +104,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -176,9 +175,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless2/pretrained.py b/egs/librispeech/ASR/transducer_stateless2/pretrained.py
index 292f77f03..0738f30c0 100755
--- a/egs/librispeech/ASR/transducer_stateless2/pretrained.py
+++ b/egs/librispeech/ASR/transducer_stateless2/pretrained.py
@@ -167,8 +167,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -197,10 +196,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -259,9 +257,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -334,9 +330,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless2/train.py b/egs/librispeech/ASR/transducer_stateless2/train.py
index ea15c9040..1c3a33870 100755
--- a/egs/librispeech/ASR/transducer_stateless2/train.py
+++ b/egs/librispeech/ASR/transducer_stateless2/train.py
@@ -136,8 +136,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -410,9 +409,7 @@ def compute_loss(
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -533,9 +530,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -634,10 +629,10 @@ def run(rank, world_size, args):
     if params.print_diagnostics:
         diagnostic = diagnostics.attach_diagnostics(model)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     def remove_short_and_long_utt(c: Cut):
         # Keep only utterances with duration between 1 second and 20 seconds
@@ -652,13 +647,9 @@ def run(rank, world_size, args):
         num_removed = num_in_total - num_left
         removed_percent = num_removed / num_in_total * 100
 
-        logging.info(
-            f"Before removing short and long utterances: {num_in_total}"
-        )
+        logging.info(f"Before removing short and long utterances: {num_in_total}")
         logging.info(f"After removing short and long utterances: {num_left}")
-        logging.info(
-            f"Removed {num_removed} utterances ({removed_percent:.5f}%)"
-        )
+        logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
     except TypeError as e:
         # You can ignore this error as previous versions of Lhotse work fine
         # for the above code. In recent versions of Lhotse, it uses
@@ -686,9 +677,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
index d596e05cb..56ad558c6 100755
--- a/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
@@ -172,8 +172,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -231,9 +230,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
     hyps = []
 
@@ -249,10 +246,7 @@ def decode_one_batch(
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -375,9 +369,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -410,8 +402,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -451,9 +442,7 @@ def main():
         params.suffix += f"-max-contexts-{params.max_contexts}"
         params.suffix += f"-max-states-{params.max_states}"
     elif "beam_search" in params.decoding_method:
-        params.suffix += (
-            f"-{params.decoding_method}-beam-size-{params.beam_size}"
-        )
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
     else:
         params.suffix += f"-context-{params.context_size}"
         params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
index b6b69d932..3735ef452 100755
--- a/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
@@ -110,8 +110,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -247,9 +246,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
index f297fa2b2..8c7726367 100755
--- a/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
@@ -167,8 +167,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -197,10 +196,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -259,9 +257,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -334,9 +330,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
index ef51a7811..1e1188ca6 100755
--- a/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
@@ -41,9 +41,7 @@ def test_dataset():
     print(args)
 
     if args.enable_musan:
-        cuts_musan = load_manifest(
-            Path(args.manifest_dir) / "musan_cuts.jsonl.gz"
-        )
+        cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz")
     else:
         cuts_musan = None
 
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
index 27912738c..dafccd088 100755
--- a/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
@@ -114,8 +114,7 @@ def get_parser():
         "--full-libri",
         type=str2bool,
         default=True,
-        help="When enabled, use 960h LibriSpeech. "
-        "Otherwise, use 100h subset.",
+        help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
     )
 
     parser.add_argument(
@@ -170,8 +169,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -469,9 +467,7 @@ def compute_loss(
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -635,9 +631,7 @@ def train_one_epoch(
                     f"train/current_{prefix}_",
                     params.batch_idx_train,
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
                 libri_tot_loss.write_summary(
                     tb_writer, "train/libri_tot_", params.batch_idx_train
                 )
@@ -758,10 +752,10 @@ def run(rank, world_size, args):
 
     librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
 
-    train_cuts = librispeech.train_clean_100_cuts()
     if params.full_libri:
-        train_cuts += librispeech.train_clean_360_cuts()
-        train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
 
     train_cuts = filter_short_and_long_utterances(train_cuts)
 
@@ -784,9 +778,7 @@ def run(rank, world_size, args):
     train_giga_cuts = train_giga_cuts.repeat(times=None)
 
     if args.enable_musan:
-        cuts_musan = load_manifest(
-            Path(args.manifest_dir) / "musan_cuts.jsonl.gz"
-        )
+        cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz")
     else:
         cuts_musan = None
 
@@ -825,9 +817,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/librispeech/ASR/zipformer_mmi/README.md b/egs/librispeech/ASR/zipformer_mmi/README.md
new file mode 100644
index 000000000..e9a37a52a
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/README.md
@@ -0,0 +1,26 @@
+This recipe implements Zipformer-MMI model.
+
+See https://k2-fsa.github.io/icefall/recipes/Non-streaming-ASR/librispeech/zipformer_mmi.html for detailed tutorials.
+
+It uses **CTC loss for warm-up** and then switches to MMI loss during training.
+
+For decoding, it uses HP (H is ctc_topo, P is token-level bi-gram) as decoding graph. Supported decoding methods are:
+- **1best**. Extract the best path from the decoding lattice as the decoding result.
+- **nbest**. Extract n paths from the decoding lattice; the path with the highest score is the decoding result.
+- **nbest-rescoring-LG**. Extract n paths from the decoding lattice, rescore them with an word-level 3-gram LM, the path with the highest score is the decoding result.
+- **nbest-rescoring-3-gram**. Extract n paths from the decoding lattice, rescore them with an token-level 3-gram LM, the path with the highest score is the decoding result.
+- **nbest-rescoring-4-gram**. Extract n paths from the decoding lattice, rescore them with an token-level 4-gram LM, the path with the highest score is the decoding result.
+
+Experimental results training on train-clean-100 (epoch-30-avg-10):
+- 1best. 6.43 & 17.44
+- nbest, nbest-scale=1.2, 6.43 & 17.45
+- nbest-rescoring-LG, nbest-scale=1.2, 5.87 & 16.35
+- nbest-rescoring-3-gram,  nbest-scale=1.2, 6.19 & 16.57
+- nbest-rescoring-4-gram,  nbest-scale=1.2, 5.87 & 16.07
+
+Experimental results training on full librispeech (epoch-30-avg-10):
+- 1best. 2.54 & 5.65
+- nbest, nbest-scale=1.2, 2.54 & 5.66
+- nbest-rescoring-LG, nbest-scale=1.2, 2.49 & 5.42
+- nbest-rescoring-3-gram,  nbest-scale=1.2, 2.52 & 5.62
+- nbest-rescoring-4-gram,  nbest-scale=1.2, 2.5 & 5.51
diff --git a/egs/librispeech/ASR/zipformer_mmi/__init__.py b/egs/librispeech/ASR/zipformer_mmi/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/librispeech/ASR/zipformer_mmi/asr_datamodule.py b/egs/librispeech/ASR/zipformer_mmi/asr_datamodule.py
new file mode 120000
index 000000000..a074d6085
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/asr_datamodule.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless2/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/zipformer_mmi/decode.py b/egs/librispeech/ASR/zipformer_mmi/decode.py
new file mode 100755
index 000000000..7d0ea78bb
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/decode.py
@@ -0,0 +1,736 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
+#                                                 Liyong Guo,
+#                                                 Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) 1best
+./zipformer_mmi/mmi_decode.py \
+    --epoch 30 \
+    --avg 15 \
+    --exp-dir ./zipformer_mmi/exp \
+    --max-duration 100 \
+    --decoding-method 1best
+(2) nbest
+./zipformer_mmi/mmi_decode.py \
+    --epoch 30 \
+    --avg 15 \
+    --exp-dir ./zipformer_mmi/exp \
+    --max-duration 100 \
+    --nbest-scale 1.0 \
+    --decoding-method nbest
+(3) nbest-rescoring-LG
+./zipformer_mmi/mmi_decode.py \
+    --epoch 30 \
+    --avg 15 \
+    --exp-dir ./zipformer_mmi/exp \
+    --max-duration 100 \
+    --nbest-scale 1.0 \
+    --decoding-method nbest-rescoring-LG
+(4) nbest-rescoring-3-gram
+./zipformer_mmi/mmi_decode.py \
+    --epoch 30 \
+    --avg 15 \
+    --exp-dir ./zipformer_mmi/exp \
+    --max-duration 100 \
+    --nbest-scale 1.0 \
+    --decoding-method nbest-rescoring-3-gram
+(5) nbest-rescoring-4-gram
+./zipformer_mmi/mmi_decode.py \
+    --epoch 30 \
+    --avg 15 \
+    --exp-dir ./zipformer_mmi/exp \
+    --max-duration 100 \
+    --nbest-scale 1.0 \
+    --decoding-method nbest-rescoring-4-gram
+"""
+
+
+import argparse
+import logging
+import math
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from train import add_model_arguments, get_ctc_model, get_params
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.decode import (
+    get_lattice,
+    nbest_decoding,
+    nbest_rescore_with_LM,
+    one_best_decoding,
+)
+from icefall.lexicon import Lexicon
+from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
+from icefall.utils import (
+    AttributeDict,
+    get_texts,
+    setup_logger,
+    store_transcripts,
+    str2bool,
+    write_error_stats,
+)
+
+LOG_EPS = math.log(1e-10)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="zipformer_mmi/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=Path,
+        default="data/lang_bpe_500",
+        help="The lang dir containing word table and LG graph",
+    )
+
+    parser.add_argument(
+        "--decoding-method",
+        type=str,
+        default="1best",
+        help="""Decoding method. Use HP as decoding graph, where H is
+        ctc_topo and P is token-level bi-gram lm.
+        Supported values are:
+        - (1) 1best. Extract the best path from the decoding lattice as the
+          decoding result.
+        - (2) nbest. Extract n paths from the decoding lattice; the path
+          with the highest score is the decoding result.
+        - (4) nbest-rescoring-LG. Extract n paths from the decoding lattice,
+          rescore them with an word-level 3-gram LM, the path with the
+          highest score is the decoding result.
+        - (5) nbest-rescoring-3-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 3-gram LM, the path with
+          the highest score is the decoding result.
+        - (6) nbest-rescoring-4-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 4-gram LM, the path with
+          the highest score is the decoding result.
+        """,
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=100,
+        help="""Number of paths for n-best based decoding method.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=1.0,
+        help="""The scale to be applied to `lattice.scores`.
+        It's needed if you use any kinds of n-best based rescoring.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        A smaller value results in more unique paths.
+        """,
+    )
+
+    parser.add_argument(
+        "--hp-scale",
+        type=float,
+        default=1.0,
+        help="""The scale to be applied to `ctc_topo_P.scores`.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_decoding_params() -> AttributeDict:
+    """Parameters for decoding."""
+    params = AttributeDict(
+        {
+            "frame_shift_ms": 10,
+            "search_beam": 20,
+            "output_beam": 8,
+            "min_active_states": 30,
+            "max_active_states": 10000,
+            "use_double_scores": True,
+        }
+    )
+    return params
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    HP: Optional[k2.Fsa],
+    bpe_model: Optional[spm.SentencePieceProcessor],
+    batch: dict,
+    G: Optional[k2.Fsa] = None,
+    LG: Optional[k2.Fsa] = None,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+    - key: It indicates the setting used for decoding. For example,
+           if no rescoring is used, the key is the string `no_rescore`.
+           If LM rescoring is used, the key is the string `lm_scale_xxx`,
+           where `xxx` is the value of `lm_scale`. An example key is
+           `lm_scale_0.7`
+    - value: It contains the decoding result. `len(value)` equals to
+             batch size. `value[i]` is the decoding result for the i-th
+             utterance in the given batch.
+
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+
+        - params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
+        - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
+        - params.decoding_method is "nbest-rescoring-LG", it uses nbest rescoring with word-level 3-gram LM.
+        - params.decoding_method is "nbest-rescoring-3-gram", it uses nbest rescoring with token-level 3-gram LM.
+        - params.decoding_method is "nbest-rescoring-4-gram", it uses nbest rescoring with token-level 4-gram LM.
+
+      model:
+        The neural model.
+      HP:
+        The decoding graph. H is ctc_topo, P is token-level bi-gram LM.
+      bpe_model:
+        The BPE model.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      LG:
+        An LM. L is the lexicon, G is a word-level 3-gram LM.
+        It is used when params.decoding_method is "nbest-rescoring-LG".
+      G:
+        An LM. L is the lexicon, G is a token-level 3-gram or 4-gram LM.
+        It is used when params.decoding_method is "nbest-rescoring-3-gram"
+        or "nbest-rescoring-4-gram".
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict. Note: If it decodes to nothing, then return None.
+    """
+    device = HP.device
+    feature = batch["inputs"]
+    assert feature.ndim == 3, feature.shape
+    feature = feature.to(device)
+
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    nnet_output, encoder_out_lens = model(x=feature, x_lens=feature_lens)
+    # nnet_output is (N, T, C)
+
+    supervision_segments = torch.stack(
+        (
+            supervisions["sequence_idx"],
+            supervisions["start_frame"] // params.subsampling_factor,
+            supervisions["num_frames"] // params.subsampling_factor,
+        ),
+        1,
+    ).to(torch.int32)
+
+    lattice = get_lattice(
+        nnet_output=nnet_output,
+        decoding_graph=HP,
+        supervision_segments=supervision_segments,
+        search_beam=params.search_beam,
+        output_beam=params.output_beam,
+        min_active_states=params.min_active_states,
+        max_active_states=params.max_active_states,
+        subsampling_factor=params.subsampling_factor,
+    )
+
+    method = params.decoding_method
+
+    if method in ["1best", "nbest"]:
+        if method == "1best":
+            best_path = one_best_decoding(
+                lattice=lattice, use_double_scores=params.use_double_scores
+            )
+            key = "no_rescore"
+        else:
+            best_path = nbest_decoding(
+                lattice=lattice,
+                num_paths=params.num_paths,
+                use_double_scores=params.use_double_scores,
+                nbest_scale=params.nbest_scale,
+            )
+            key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}"  # noqa
+
+        # Note: `best_path.aux_labels` contains token IDs, not word IDs
+        # since we are using HP, not HLG here.
+        #
+        # token_ids is a lit-of-list of IDs
+        token_ids = get_texts(best_path)
+        # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+        hyps = bpe_model.decode(token_ids)
+        # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+        hyps = [s.split() for s in hyps]
+        return {key: hyps}
+
+    assert method in [
+        "nbest-rescoring-LG",  # word-level 3-gram lm
+        "nbest-rescoring-3-gram",  # token-level 3-gram lm
+        "nbest-rescoring-4-gram",  # token-level 4-gram lm
+    ]
+
+    lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
+    lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
+    lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
+
+    if method == "nbest-rescoring-LG":
+        assert LG is not None
+        LM = LG
+    else:
+        assert G is not None
+        LM = G
+    best_path_dict = nbest_rescore_with_LM(
+        lattice=lattice,
+        LM=LM,
+        num_paths=params.num_paths,
+        lm_scale_list=lm_scale_list,
+        nbest_scale=params.nbest_scale,
+    )
+
+    ans = dict()
+    suffix = f"-nbest-scale-{params.nbest_scale}-{params.num_paths}"
+    for lm_scale_str, best_path in best_path_dict.items():
+        token_ids = get_texts(best_path)
+        # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+        hyps = bpe_model.decode(token_ids)
+        # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+        hyps = [s.split() for s in hyps]
+        ans[lm_scale_str + suffix] = hyps
+    return ans
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    HP: k2.Fsa,
+    bpe_model: spm.SentencePieceProcessor,
+    G: Optional[k2.Fsa] = None,
+    LG: Optional[k2.Fsa] = None,
+) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      HP:
+        The decoding graph. H is ctc_topo, P is token-level bi-gram LM.
+      bpe_model:
+        The BPE model.
+      LG:
+        An LM. L is the lexicon, G is a word-level 3-gram LM.
+        It is used when params.decoding_method is "nbest-rescoring-LG".
+      G:
+        An LM. L is the lexicon, G is a token-level 3-gram or 4-gram LM.
+        It is used when params.decoding_method is "nbest-rescoring-3-gram"
+        or "nbest-rescoring-4-gram".
+
+    Returns:
+      Return a dict, whose key may be "no-rescore" if no LM rescoring
+      is used, or it may be "lm_scale_0.7" if LM rescoring is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        texts = batch["supervisions"]["text"]
+        cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            HP=HP,
+            bpe_model=bpe_model,
+            batch=batch,
+            G=G,
+            LG=LG,
+        )
+
+        for name, hyps in hyps_dict.items():
+            this_batch = []
+            assert len(hyps) == len(texts)
+            for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
+                ref_words = ref_text.split()
+                this_batch.append((cut_id, ref_words, hyp_words))
+
+            results[name].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % 100 == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
+):
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = (
+            params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        results = sorted(results)
+        store_transcripts(filename=recog_path, texts=results)
+        logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = (
+            params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(f, f"{test_set_name}-{key}", results)
+            test_set_wers[key] = wer
+
+        logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = (
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+    )
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    LibriSpeechAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lang_dir = Path(args.lang_dir)
+
+    params = get_params()
+    # add decoding params
+    params.update(get_decoding_params())
+    params.update(vars(args))
+
+    assert params.decoding_method in (
+        "1best",
+        "nbest",
+        "nbest-rescoring-LG",  # word-level 3-gram lm
+        "nbest-rescoring-3-gram",  # token-level 3-gram lm
+        "nbest-rescoring-4-gram",  # token-level 4-gram lm
+    ), params.decoding_method
+    params.res_dir = params.exp_dir / params.decoding_method
+
+    if params.iter > 0:
+        params.suffix = f"iter-{params.iter}-avg-{params.avg}"
+    else:
+        params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+
+    if params.use_averaged_model:
+        params.suffix += "-use-averaged-model"
+
+    setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+    logging.info("decoding started")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+    logging.info(params)
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    params.vocab_size = num_classes
+    #  and  are defined in local/train_bpe_model.py
+    params.blank_id = 0
+
+    bpe_model = spm.SentencePieceProcessor()
+    bpe_model.load(str(params.lang_dir / "bpe.model"))
+    mmi_graph_compiler = MmiTrainingGraphCompiler(
+        params.lang_dir,
+        uniq_filename="lexicon.txt",
+        device=device,
+        oov="",
+        sos_id=1,
+        eos_id=1,
+    )
+    HP = mmi_graph_compiler.ctc_topo_P
+    HP.scores *= params.hp_scale
+    if not hasattr(HP, "lm_scores"):
+        HP.lm_scores = HP.scores.clone()
+
+    LG = None
+    G = None
+
+    if params.decoding_method == "nbest-rescoring-LG":
+        lg_filename = params.lang_dir / "LG.pt"
+        logging.info(f"Loading {lg_filename}")
+        LG = k2.Fsa.from_dict(torch.load(lg_filename, map_location=device))
+        LG = k2.Fsa.from_fsas([LG]).to(device)
+        LG.lm_scores = LG.scores.clone()
+
+    elif params.decoding_method in ["nbest-rescoring-3-gram", "nbest-rescoring-4-gram"]:
+        order = params.decoding_method[-6]
+        assert order in ("3", "4"), (params.decoding_method, order)
+        order = int(order)
+        if not (params.lang_dir / f"{order}gram.pt").is_file():
+            logging.info(f"Loading {order}gram.fst.txt")
+            logging.warning("It may take a few minutes.")
+            with open(params.lang_dir / f"{order}gram.fst.txt") as f:
+                first_token_disambig_id = lexicon.token_table["#0"]
+
+                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
+                # G.aux_labels is not needed in later computations, so
+                # remove it here.
+                del G.aux_labels
+                # CAUTION: The following line is crucial.
+                # Arcs entering the back-off state have label equal to #0.
+                # We have to change it to 0 here.
+                G.labels[G.labels >= first_token_disambig_id] = 0
+                G = k2.Fsa.from_fsas([G]).to(device)
+                # G = k2.remove_epsilon(G)
+                G = k2.arc_sort(G)
+                # Save a dummy value so that it can be loaded in C++.
+                # See https://github.com/pytorch/pytorch/issues/67902
+                # for why we need to do this.
+                G.dummy = 1
+
+                torch.save(G.as_dict(), params.lang_dir / f"{order}gram.pt")
+        else:
+            logging.info(f"Loading pre-compiled {order}gram.pt")
+            d = torch.load(params.lang_dir / f"{order}gram.pt", map_location=device)
+            G = k2.Fsa.from_dict(d)
+
+        G.lm_scores = G.scores.clone()
+
+    logging.info("About to create model")
+    model = get_ctc_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to(device)
+    model.eval()
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    # we need cut ids to display recognition results.
+    args.return_cuts = True
+    librispeech = LibriSpeechAsrDataModule(args)
+
+    test_clean_cuts = librispeech.test_clean_cuts()
+    test_other_cuts = librispeech.test_other_cuts()
+
+    test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
+    test_other_dl = librispeech.test_dataloaders(test_other_cuts)
+
+    test_sets = ["test-clean", "test-other"]
+    test_dl = [test_clean_dl, test_other_dl]
+
+    for test_set, test_dl in zip(test_sets, test_dl):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            HP=HP,
+            bpe_model=bpe_model,
+            G=G,
+            LG=LG,
+        )
+
+        save_results(
+            params=params,
+            test_set_name=test_set,
+            results_dict=results_dict,
+        )
+
+    logging.info("Done!")
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/encoder_interface.py b/egs/librispeech/ASR/zipformer_mmi/encoder_interface.py
new file mode 120000
index 000000000..b9aa0ae08
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/encoder_interface.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless2/encoder_interface.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/zipformer_mmi/export.py b/egs/librispeech/ASR/zipformer_mmi/export.py
new file mode 100755
index 000000000..0af7bd367
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/export.py
@@ -0,0 +1,307 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+
+Usage:
+
+(1) Export to torchscript model using torch.jit.script()
+
+./zipformer_mmi/export.py \
+  --exp-dir ./zipformer_mmi/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 30 \
+  --avg 9 \
+  --jit 1
+
+It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
+load it by `torch.jit.load("cpu_jit.pt")`.
+
+Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
+are on CPU. You can use `to("cuda")` to move them to a CUDA device.
+
+Check
+https://github.com/k2-fsa/sherpa
+for how to use the exported models outside of icefall.
+
+(2) Export `model.state_dict()`
+
+./zipformer_mmi/export.py \
+  --exp-dir ./zipformer_mmi/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10
+
+It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
+load it by `icefall.checkpoint.load_checkpoint()`.
+
+To use the generated file with `zipformer_mmi/decode.py`,
+you can do:
+
+    cd /path/to/exp_dir
+    ln -s pretrained.pt epoch-9999.pt
+
+    cd /path/to/egs/librispeech/ASR
+    ./zipformer_mmi/decode.py \
+        --exp-dir ./zipformer_mmi/exp \
+        --epoch 9999 \
+        --avg 1 \
+        --max-duration 600 \
+        --decoding-method greedy_search \
+        --bpe-model data/lang_bpe_500/bpe.model
+
+Check ./pretrained.py for its usage.
+
+Note: If you don't want to train a model from scratch, we have
+provided one for you. You can get it at
+
+https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08
+
+with the following commands:
+
+    sudo apt-get install git-lfs
+    git lfs install
+    git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08
+    # You will find the pre-trained model in icefall-asr-librispeech-zipformer-mmi-2022-12-08/exp
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+from scaling_converter import convert_scaled_to_non_scaled
+from train import add_model_arguments, get_ctc_model, get_params
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.utils import str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=9,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="zipformer_mmi/exp",
+        help="""It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--jit",
+        type=str2bool,
+        default=False,
+        help="""True to save a model after applying torch.jit.script.
+        It will generate a file named cpu_jit.pt
+
+        Check ./jit_pretrained.py for how to use it.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+@torch.no_grad()
+def main():
+    args = get_parser().parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_ctc_model(params)
+
+    model.to(device)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to("cpu")
+    model.eval()
+
+    if params.jit is True:
+        convert_scaled_to_non_scaled(model, inplace=True)
+        logging.info("Using torch.jit.script()")
+        model = torch.jit.script(model)
+        filename = params.exp_dir / "cpu_jit.pt"
+        model.save(str(filename))
+        logging.info(f"Saved to {filename}")
+    else:
+        logging.info("Not using torchscript. Export model.state_dict()")
+        # Save it using a format so that it can be loaded
+        # by :func:`load_checkpoint`
+        filename = params.exp_dir / "pretrained.pt"
+        torch.save({"model": model.state_dict()}, str(filename))
+        logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/jit_pretrained.py b/egs/librispeech/ASR/zipformer_mmi/jit_pretrained.py
new file mode 100755
index 000000000..c9ef16ffa
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/jit_pretrained.py
@@ -0,0 +1,391 @@
+#!/usr/bin/env python3
+# Copyright      2021-2022  Xiaomi Corp.   (authors: Fangjun Kuang,
+#                                                    Zengwei)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+This script loads torchscript models, exported by `torch.jit.script()`
+and uses them to decode waves.
+You can use the following command to get the exported models:
+
+./zipformer_mmi/export.py \
+  --exp-dir ./zipformer_mmi/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10 \
+  --jit 1
+
+Usage of this script:
+
+(1) 1best
+./zipformer_mmi/jit_pretrained.py \
+    --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method 1best \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(2) nbest
+./zipformer_mmi/jit_pretrained.py \
+    --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(3) nbest-rescoring-LG
+./zipformer_mmi/jit_pretrained.py \
+    --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-LG \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(4) nbest-rescoring-3-gram
+./zipformer_mmi/jit_pretrained.py \
+    --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-3-gram \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(5) nbest-rescoring-4-gram
+./zipformer_mmi/jit_pretrained.py \
+    --nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-4-gram \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+"""
+
+import argparse
+import logging
+import math
+from pathlib import Path
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from decode import get_decoding_params
+from torch.nn.utils.rnn import pad_sequence
+from train import get_params
+
+from icefall.decode import (
+    get_lattice,
+    nbest_decoding,
+    nbest_rescore_with_LM,
+    one_best_decoding,
+)
+from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
+from icefall.utils import get_texts
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--nn-model-filename",
+        type=str,
+        required=True,
+        help="Path to the torchscript model cpu_jit.pt",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.""",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="1best",
+        help="""Decoding method. Use HP as decoding graph, where H is
+        ctc_topo and P is token-level bi-gram lm.
+        Supported values are:
+        - (1) 1best. Extract the best path from the decoding lattice as the
+          decoding result.
+        - (2) nbest. Extract n paths from the decoding lattice; the path
+          with the highest score is the decoding result.
+        - (4) nbest-rescoring-LG. Extract n paths from the decoding lattice,
+          rescore them with an word-level 3-gram LM, the path with the
+          highest score is the decoding result.
+        - (5) nbest-rescoring-3-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 3-gram LM, the path with
+          the highest score is the decoding result.
+        - (6) nbest-rescoring-4-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 4-gram LM, the path with
+          the highest score is the decoding result.
+        """,
+    )
+
+    parser.add_argument(
+        "--sample-rate",
+        type=int,
+        default=16000,
+        help="The sample rate of the input sound file",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=Path,
+        default="data/lang_bpe_500",
+        help="The lang dir containing word table and LG graph",
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=100,
+        help="""Number of paths for n-best based decoding method.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=1.2,
+        help="""The scale to be applied to `lattice.scores`.
+        It's needed if you use any kinds of n-best based rescoring.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        A smaller value results in more unique paths.
+        """,
+    )
+
+    parser.add_argument(
+        "--ngram-lm-scale",
+        type=float,
+        default=0.1,
+        help="""
+        Used when method is nbest-rescoring-LG, nbest-rescoring-3-gram,
+        and nbest-rescoring-4-gram.
+        It specifies the scale for n-gram LM scores.
+        (Note: You need to tune it on a dataset.)
+        """,
+    )
+
+    parser.add_argument(
+        "--hp-scale",
+        type=float,
+        default=1.0,
+        help="""The scale to be applied to `ctc_topo_P.scores`.
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    return parser
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float = 16000
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+    logging.info(vars(args))
+
+    params = get_params()
+    # add decoding params
+    params.update(get_decoding_params())
+    params.update(vars(args))
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    model = torch.jit.load(params.nn_model_filename)
+    model.eval()
+    model.to(device)
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(args.bpe_model)
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = 16000
+    opts.mel_opts.num_bins = 80
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {args.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+    feature_lengths = [f.size(0) for f in features]
+
+    features = pad_sequence(
+        features,
+        batch_first=True,
+        padding_value=math.log(1e-10),
+    )
+    feature_lengths = torch.tensor(feature_lengths, device=device)
+
+    bpe_model = spm.SentencePieceProcessor()
+    bpe_model.load(str(params.lang_dir / "bpe.model"))
+    mmi_graph_compiler = MmiTrainingGraphCompiler(
+        params.lang_dir,
+        uniq_filename="lexicon.txt",
+        device=device,
+        oov="",
+        sos_id=1,
+        eos_id=1,
+    )
+    HP = mmi_graph_compiler.ctc_topo_P
+    HP.scores *= params.hp_scale
+    if not hasattr(HP, "lm_scores"):
+        HP.lm_scores = HP.scores.clone()
+
+    method = params.method
+    assert method in (
+        "1best",
+        "nbest",
+        "nbest-rescoring-LG",  # word-level 3-gram lm
+        "nbest-rescoring-3-gram",  # token-level 3-gram lm
+        "nbest-rescoring-4-gram",  # token-level 4-gram lm
+    )
+    # loading language model for rescoring
+    LM = None
+    if method == "nbest-rescoring-LG":
+        lg_filename = params.lang_dir / "LG.pt"
+        logging.info(f"Loading {lg_filename}")
+        LG = k2.Fsa.from_dict(torch.load(lg_filename, map_location=device))
+        LG = k2.Fsa.from_fsas([LG]).to(device)
+        LG.lm_scores = LG.scores.clone()
+        LM = LG
+    elif method in ["nbest-rescoring-3-gram", "nbest-rescoring-4-gram"]:
+        order = method[-6]
+        assert order in ("3", "4")
+        order = int(order)
+        logging.info(f"Loading pre-compiled {order}gram.pt")
+        d = torch.load(params.lang_dir / f"{order}gram.pt", map_location=device)
+        G = k2.Fsa.from_dict(d)
+        G.lm_scores = G.scores.clone()
+        LM = G
+
+    # Encoder forward
+    nnet_output, encoder_out_lens = model(x=features, x_lens=feature_lengths)
+
+    batch_size = nnet_output.shape[0]
+    supervision_segments = torch.tensor(
+        [
+            [i, 0, feature_lengths[i] // params.subsampling_factor]
+            for i in range(batch_size)
+        ],
+        dtype=torch.int32,
+    )
+
+    lattice = get_lattice(
+        nnet_output=nnet_output,
+        decoding_graph=HP,
+        supervision_segments=supervision_segments,
+        search_beam=params.search_beam,
+        output_beam=params.output_beam,
+        min_active_states=params.min_active_states,
+        max_active_states=params.max_active_states,
+        subsampling_factor=params.subsampling_factor,
+    )
+
+    if method in ["1best", "nbest"]:
+        if method == "1best":
+            best_path = one_best_decoding(
+                lattice=lattice, use_double_scores=params.use_double_scores
+            )
+        else:
+            best_path = nbest_decoding(
+                lattice=lattice,
+                num_paths=params.num_paths,
+                use_double_scores=params.use_double_scores,
+                nbest_scale=params.nbest_scale,
+            )
+    else:
+        best_path_dict = nbest_rescore_with_LM(
+            lattice=lattice,
+            LM=LM,
+            num_paths=params.num_paths,
+            lm_scale_list=[params.ngram_lm_scale],
+            nbest_scale=params.nbest_scale,
+        )
+        best_path = next(iter(best_path_dict.values()))
+
+    # Note: `best_path.aux_labels` contains token IDs, not word IDs
+    # since we are using HP, not HLG here.
+    #
+    # token_ids is a lit-of-list of IDs
+    token_ids = get_texts(best_path)
+    # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+    hyps = bpe_model.decode(token_ids)
+    # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+    hyps = [s.split() for s in hyps]
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/model.py b/egs/librispeech/ASR/zipformer_mmi/model.py
new file mode 100644
index 000000000..4045c8b64
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/model.py
@@ -0,0 +1,75 @@
+# Copyright    2022  Xiaomi Corp.        (authors: Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from typing import Tuple
+
+import torch
+import torch.nn as nn
+from encoder_interface import EncoderInterface
+
+
+class CTCModel(nn.Module):
+    def __init__(
+        self,
+        encoder: EncoderInterface,
+        encoder_dim: int,
+        vocab_size: int,
+    ):
+        """
+        Args:
+          encoder:
+            It is the transcription network in the paper. Its accepts
+            two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
+            It returns two tensors: `logits` of shape (N, T, encoder_dm) and
+            `logit_lens` of shape (N,).
+        """
+        super().__init__()
+        assert isinstance(encoder, EncoderInterface), type(encoder)
+
+        self.encoder = encoder
+
+        self.ctc_output = nn.Sequential(
+            nn.Dropout(p=0.1),
+            nn.Linear(encoder_dim, vocab_size),
+            nn.LogSoftmax(dim=-1),
+        )
+
+    def forward(
+        self,
+        x: torch.Tensor,
+        x_lens: torch.Tensor,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Args:
+          x:
+            A 3-D tensor of shape (N, T, C).
+          x_lens:
+            A 1-D tensor of shape (N,). It contains the number of frames in `x`
+            before padding.
+        Returns:
+          Return the ctc outputs and encoder output lengths.
+        """
+        assert x.ndim == 3, x.shape
+        assert x_lens.ndim == 1, x_lens.shape
+
+        encoder_out, x_lens = self.encoder(x, x_lens)
+        assert torch.all(x_lens > 0)
+
+        # compute ctc log-probs
+        ctc_output = self.ctc_output(encoder_out)
+
+        return ctc_output, x_lens
diff --git a/egs/librispeech/ASR/zipformer_mmi/optim.py b/egs/librispeech/ASR/zipformer_mmi/optim.py
new file mode 120000
index 000000000..81ac4a89a
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/optim.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless7/optim.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/zipformer_mmi/pretrained.py b/egs/librispeech/ASR/zipformer_mmi/pretrained.py
new file mode 100755
index 000000000..0e7fd0daf
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/pretrained.py
@@ -0,0 +1,410 @@
+#!/usr/bin/env python3
+# Copyright      2021-2022  Xiaomi Corp.   (authors: Fangjun Kuang,
+#                                                    Zengwei)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+This script loads a checkpoint and uses it to decode waves.
+You can generate the checkpoint with the following command:
+
+./zipformer_mmi/export.py \
+  --exp-dir ./zipformer_mmi/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10
+
+Usage of this script:
+
+(1) 1best
+./zipformer_mmi/pretrained.py \
+    --checkpoint ./zipformer_mmi/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method 1best \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(2) nbest
+./zipformer_mmi/pretrained.py \
+    --checkpoint ./zipformer_mmi/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(3) nbest-rescoring-LG
+./zipformer_mmi/pretrained.py \
+    --checkpoint ./zipformer_mmi/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-LG \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(4) nbest-rescoring-3-gram
+./zipformer_mmi/pretrained.py \
+    --checkpoint ./zipformer_mmi/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-3-gram \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+(5) nbest-rescoring-4-gram
+./zipformer_mmi/pretrained.py \
+    --checkpoint ./zipformer_mmi/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --nbest-scale 1.2 \
+    --method nbest-rescoring-4-gram \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+
+You can also use `./zipformer_mmi/exp/epoch-xx.pt`.
+
+Note: ./zipformer_mmi/exp/pretrained.pt is generated by
+./zipformer_mmi/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from pathlib import Path
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from decode import get_decoding_params
+from torch.nn.utils.rnn import pad_sequence
+from train import add_model_arguments, get_ctc_model, get_params
+
+from icefall.decode import (
+    get_lattice,
+    nbest_decoding,
+    nbest_rescore_with_LM,
+    one_best_decoding,
+)
+from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
+from icefall.utils import get_texts
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--checkpoint",
+        type=str,
+        required=True,
+        help="Path to the checkpoint. "
+        "The checkpoint is assumed to be saved by "
+        "icefall.checkpoint.save_checkpoint().",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.""",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="1best",
+        help="""Decoding method. Use HP as decoding graph, where H is
+        ctc_topo and P is token-level bi-gram lm.
+        Supported values are:
+        - (1) 1best. Extract the best path from the decoding lattice as the
+          decoding result.
+        - (2) nbest. Extract n paths from the decoding lattice; the path
+          with the highest score is the decoding result.
+        - (4) nbest-rescoring-LG. Extract n paths from the decoding lattice,
+          rescore them with an word-level 3-gram LM, the path with the
+          highest score is the decoding result.
+        - (5) nbest-rescoring-3-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 3-gram LM, the path with
+          the highest score is the decoding result.
+        - (6) nbest-rescoring-4-gram. Extract n paths from the decoding
+          lattice, rescore them with an token-level 4-gram LM, the path with
+          the highest score is the decoding result.
+        """,
+    )
+
+    parser.add_argument(
+        "--sample-rate",
+        type=int,
+        default=16000,
+        help="The sample rate of the input sound file",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=Path,
+        default="data/lang_bpe_500",
+        help="The lang dir containing word table and LG graph",
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=100,
+        help="""Number of paths for n-best based decoding method.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=1.2,
+        help="""The scale to be applied to `lattice.scores`.
+        It's needed if you use any kinds of n-best based rescoring.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, and nbest-oracle
+        A smaller value results in more unique paths.
+        """,
+    )
+
+    parser.add_argument(
+        "--ngram-lm-scale",
+        type=float,
+        default=0.1,
+        help="""
+        Used when method is nbest-rescoring-LG, nbest-rescoring-3-gram,
+        and nbest-rescoring-4-gram.
+        It specifies the scale for n-gram LM scores.
+        (Note: You need to tune it on a dataset.)
+        """,
+    )
+
+    parser.add_argument(
+        "--hp-scale",
+        type=float,
+        default=1.0,
+        help="""The scale to be applied to `ctc_topo_P.scores`.
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+
+    params = get_params()
+    # add decoding params
+    params.update(get_decoding_params())
+    params.update(vars(args))
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(f"{params}")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("Creating model")
+    model = get_ctc_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    checkpoint = torch.load(args.checkpoint, map_location="cpu")
+    model.load_state_dict(checkpoint["model"], strict=False)
+    model.to(device)
+    model.eval()
+    model.device = device
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = params.sample_rate
+    opts.mel_opts.num_bins = params.feature_dim
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {params.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+    feature_lengths = [f.size(0) for f in features]
+
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
+    feature_lengths = torch.tensor(feature_lengths, device=device)
+
+    bpe_model = spm.SentencePieceProcessor()
+    bpe_model.load(str(params.lang_dir / "bpe.model"))
+    mmi_graph_compiler = MmiTrainingGraphCompiler(
+        params.lang_dir,
+        uniq_filename="lexicon.txt",
+        device=device,
+        oov="",
+        sos_id=1,
+        eos_id=1,
+    )
+    HP = mmi_graph_compiler.ctc_topo_P
+    HP.scores *= params.hp_scale
+    if not hasattr(HP, "lm_scores"):
+        HP.lm_scores = HP.scores.clone()
+
+    method = params.method
+    assert method in (
+        "1best",
+        "nbest",
+        "nbest-rescoring-LG",  # word-level 3-gram lm
+        "nbest-rescoring-3-gram",  # token-level 3-gram lm
+        "nbest-rescoring-4-gram",  # token-level 4-gram lm
+    )
+    # loading language model for rescoring
+    LM = None
+    if method == "nbest-rescoring-LG":
+        lg_filename = params.lang_dir / "LG.pt"
+        logging.info(f"Loading {lg_filename}")
+        LG = k2.Fsa.from_dict(torch.load(lg_filename, map_location=device))
+        LG = k2.Fsa.from_fsas([LG]).to(device)
+        LG.lm_scores = LG.scores.clone()
+        LM = LG
+    elif method in ["nbest-rescoring-3-gram", "nbest-rescoring-4-gram"]:
+        order = method[-6]
+        assert order in ("3", "4")
+        order = int(order)
+        logging.info(f"Loading pre-compiled {order}gram.pt")
+        d = torch.load(params.lang_dir / f"{order}gram.pt", map_location=device)
+        G = k2.Fsa.from_dict(d)
+        G.lm_scores = G.scores.clone()
+        LM = G
+
+    # Encoder forward
+    nnet_output, encoder_out_lens = model(x=features, x_lens=feature_lengths)
+
+    batch_size = nnet_output.shape[0]
+    supervision_segments = torch.tensor(
+        [
+            [i, 0, feature_lengths[i] // params.subsampling_factor]
+            for i in range(batch_size)
+        ],
+        dtype=torch.int32,
+    )
+
+    lattice = get_lattice(
+        nnet_output=nnet_output,
+        decoding_graph=HP,
+        supervision_segments=supervision_segments,
+        search_beam=params.search_beam,
+        output_beam=params.output_beam,
+        min_active_states=params.min_active_states,
+        max_active_states=params.max_active_states,
+        subsampling_factor=params.subsampling_factor,
+    )
+
+    if method in ["1best", "nbest"]:
+        if method == "1best":
+            best_path = one_best_decoding(
+                lattice=lattice, use_double_scores=params.use_double_scores
+            )
+        else:
+            best_path = nbest_decoding(
+                lattice=lattice,
+                num_paths=params.num_paths,
+                use_double_scores=params.use_double_scores,
+                nbest_scale=params.nbest_scale,
+            )
+    else:
+        best_path_dict = nbest_rescore_with_LM(
+            lattice=lattice,
+            LM=LM,
+            num_paths=params.num_paths,
+            lm_scale_list=[params.ngram_lm_scale],
+            nbest_scale=params.nbest_scale,
+        )
+        best_path = next(iter(best_path_dict.values()))
+
+    # Note: `best_path.aux_labels` contains token IDs, not word IDs
+    # since we are using HP, not HLG here.
+    #
+    # token_ids is a lit-of-list of IDs
+    token_ids = get_texts(best_path)
+    # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+    hyps = bpe_model.decode(token_ids)
+    # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+    hyps = [s.split() for s in hyps]
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/scaling.py b/egs/librispeech/ASR/zipformer_mmi/scaling.py
new file mode 120000
index 000000000..2428b74b9
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/scaling.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless7/scaling.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/zipformer_mmi/scaling_converter.py b/egs/librispeech/ASR/zipformer_mmi/scaling_converter.py
new file mode 120000
index 000000000..b8b8ba432
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/scaling_converter.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless7/scaling_converter.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/zipformer_mmi/test_model.py b/egs/librispeech/ASR/zipformer_mmi/test_model.py
new file mode 100755
index 000000000..7782845f4
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/test_model.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# Copyright    2022  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+To run this file, do:
+
+    cd icefall/egs/librispeech/ASR
+    python ./zipformer_mmi/test_model.py
+"""
+
+import torch
+from train import get_ctc_model, get_params
+
+
+def test_model():
+    params = get_params()
+    params.vocab_size = 500
+    params.num_encoder_layers = "2,4,3,2,4"
+    #  params.feedforward_dims = "1024,1024,1536,1536,1024"
+    params.feedforward_dims = "1024,1024,2048,2048,1024"
+    params.nhead = "8,8,8,8,8"
+    params.encoder_dims = "384,384,384,384,384"
+    params.attention_dims = "192,192,192,192,192"
+    params.encoder_unmasked_dims = "256,256,256,256,256"
+    params.zipformer_downsampling_factors = "1,2,4,8,2"
+    params.cnn_module_kernels = "31,31,31,31,31"
+    model = get_ctc_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    print(f"Number of model parameters: {num_param}")
+
+    features = torch.randn(2, 100, 80)
+    feature_lengths = torch.full((2,), 100)
+    model(x=features, x_lens=feature_lengths)
+
+
+def main():
+    test_model()
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/train.py b/egs/librispeech/ASR/zipformer_mmi/train.py
new file mode 100755
index 000000000..b2784e47c
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/train.py
@@ -0,0 +1,1198 @@
+#!/usr/bin/env python3
+# Copyright    2021-2022  Xiaomi Corp.        (authors: Fangjun Kuang,
+#                                                       Wei Kang,
+#                                                       Mingshuang Luo,)
+#                                                       Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./zipformer_mmi/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir zipformer_mmi/exp \
+  --full-libri 1 \
+  --max-duration 300
+
+# For mix precision training:
+
+./zipformer_mmi/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --use-fp16 1 \
+  --exp-dir zipformer_mmi/exp \
+  --full-libri 1 \
+  --max-duration 500
+
+"""
+
+
+import argparse
+import copy
+import logging
+import warnings
+from pathlib import Path
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple, Union
+
+import k2
+import optim
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from lhotse.cut import Cut
+from lhotse.dataset.sampling.base import CutSampler
+from lhotse.utils import fix_random_seed
+from model import CTCModel
+from optim import Eden, ScaledAdam
+from torch import Tensor
+from torch.cuda.amp import GradScaler
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+from zipformer import Zipformer
+
+from icefall import diagnostics
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint, remove_checkpoints
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.checkpoint import (
+    save_checkpoint_with_global_batch_idx,
+    update_averaged_model,
+)
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.hooks import register_inf_check_hooks
+from icefall.lexicon import Lexicon, UniqLexicon
+from icefall.mmi import LFMMILoss
+from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
+from icefall.utils import (
+    AttributeDict,
+    MetricsTracker,
+    encode_supervisions,
+    setup_logger,
+    str2bool,
+)
+
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
+
+
+def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
+    if isinstance(model, DDP):
+        # get underlying nn.Module
+        model = model.module
+    for module in model.modules():
+        if hasattr(module, "batch_count"):
+            module.batch_count = batch_count
+
+
+def add_model_arguments(parser: argparse.ArgumentParser):
+    parser.add_argument(
+        "--num-encoder-layers",
+        type=str,
+        default="2,4,3,2,4",
+        help="Number of zipformer encoder layers, comma separated.",
+    )
+
+    parser.add_argument(
+        "--feedforward-dims",
+        type=str,
+        default="1024,1024,2048,2048,1024",
+        help="Feedforward dimension of the zipformer encoder layers, comma separated.",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=str,
+        default="8,8,8,8,8",
+        help="Number of attention heads in the zipformer encoder layers.",
+    )
+
+    parser.add_argument(
+        "--encoder-dims",
+        type=str,
+        default="384,384,384,384,384",
+        help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated",
+    )
+
+    parser.add_argument(
+        "--attention-dims",
+        type=str,
+        default="192,192,192,192,192",
+        help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated;
+        not the same as embedding dimension.""",
+    )
+
+    parser.add_argument(
+        "--encoder-unmasked-dims",
+        type=str,
+        default="256,256,256,256,256",
+        help="Unmasked dimensions in the encoders, relates to augmentation during training.  "
+        "Must be <= each of encoder_dims.  Empirically, less than 256 seems to make performance "
+        " worse.",
+    )
+
+    parser.add_argument(
+        "--zipformer-downsampling-factors",
+        type=str,
+        default="1,2,4,8,2",
+        help="Downsampling factor for each stack of encoder layers.",
+    )
+
+    parser.add_argument(
+        "--cnn-module-kernels",
+        type=str,
+        default="31,31,31,31,31",
+        help="Sizes of kernels in convolution modules",
+    )
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=1,
+        help="""Resume training from this epoch. It should be positive.
+        If larger than 1, it will load checkpoint from
+        exp-dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--start-batch",
+        type=int,
+        default=0,
+        help="""If positive, --start-epoch is ignored and
+        it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="zipformer_mmi/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="""The lang dir
+        It contains language related input files such as
+        "lexicon.txt"
+        """,
+    )
+
+    parser.add_argument(
+        "--base-lr", type=float, default=0.05, help="The base learning rate."
+    )
+
+    parser.add_argument(
+        "--lr-batches",
+        type=float,
+        default=5000,
+        help="""Number of steps that affects how rapidly the learning rate
+        decreases. We suggest not to change this.""",
+    )
+
+    parser.add_argument(
+        "--lr-epochs",
+        type=float,
+        default=3.5,
+        help="""Number of epochs that affects how rapidly the learning rate decreases.
+        """,
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    parser.add_argument(
+        "--use-pruned-intersect",
+        type=str2bool,
+        default=False,
+        help="""Whether to use `intersect_dense_pruned` to get denominator
+        lattice.""",
+    )
+
+    parser.add_argument(
+        "--print-diagnostics",
+        type=str2bool,
+        default=False,
+        help="Accumulate stats on activations, print them and exit.",
+    )
+
+    parser.add_argument(
+        "--inf-check",
+        type=str2bool,
+        default=False,
+        help="Add hooks to check for infinite module outputs and gradients.",
+    )
+
+    parser.add_argument(
+        "--save-every-n",
+        type=int,
+        default=2000,
+        help="""Save checkpoint after processing this number of batches"
+        periodically. We save checkpoint to exp-dir/ whenever
+        params.batch_idx_train % save_every_n == 0. The checkpoint filename
+        has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
+        Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
+        end of each epoch where `xxx` is the epoch number counting from 0.
+        """,
+    )
+
+    parser.add_argument(
+        "--keep-last-k",
+        type=int,
+        default=30,
+        help="""Only keep this number of checkpoints on disk.
+        For instance, if it is 3, there are only 3 checkpoints
+        in the exp-dir with filenames `checkpoint-xxx.pt`.
+        It does not affect checkpoints with name `epoch-xxx.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--average-period",
+        type=int,
+        default=200,
+        help="""Update the averaged model, namely `model_avg`, after processing
+        this number of batches. `model_avg` is a separate version of model,
+        in which each floating-point parameter is the average of all the
+        parameters from the start of training. Each time we take the average,
+        we do: `model_avg = model * (average_period / batch_idx_train) +
+            model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=False,
+        help="Whether to use half precision training.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - encoder_dim: Hidden dim for multi-head attention model.
+
+        - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+        - warm_step: The warmup period that dictates the decay of the
+              scale on "simple" (un-pruned) loss.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 50,
+            "reset_interval": 200,
+            "valid_interval": 3000,  # For the 100h subset, use 800
+            # parameters for zipformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,  # not passed in, this is fixed.
+            # parameters for mmi loss
+            "mmi_beam_size": 6,
+            "den_scale": 1.0,
+            # parameters for mmi loss
+            "ctc_beam_size": 10,
+            "reduction": "sum",
+            "use_double_scores": True,
+            "warm_step": 2000,
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+    # TODO: We can add an option to switch between Zipformer and Transformer
+    def to_int_tuple(s: str):
+        return tuple(map(int, s.split(",")))
+
+    encoder = Zipformer(
+        num_features=params.feature_dim,
+        output_downsampling_factor=2,
+        zipformer_downsampling_factors=to_int_tuple(
+            params.zipformer_downsampling_factors
+        ),
+        encoder_dims=to_int_tuple(params.encoder_dims),
+        attention_dim=to_int_tuple(params.attention_dims),
+        encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims),
+        nhead=to_int_tuple(params.nhead),
+        feedforward_dim=to_int_tuple(params.feedforward_dims),
+        cnn_module_kernels=to_int_tuple(params.cnn_module_kernels),
+        num_encoder_layers=to_int_tuple(params.num_encoder_layers),
+    )
+    return encoder
+
+
+def get_ctc_model(params: AttributeDict) -> nn.Module:
+    encoder = get_encoder_model(params)
+
+    model = CTCModel(
+        encoder=encoder,
+        encoder_dim=int(params.encoder_dims.split(",")[-1]),
+        vocab_size=params.vocab_size,
+    )
+    return model
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    model_avg: nn.Module = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+) -> Optional[Dict[str, Any]]:
+    """Load checkpoint from file.
+
+    If params.start_batch is positive, it will load the checkpoint from
+    `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
+    params.start_epoch is larger than 1, it will load the checkpoint from
+    `params.start_epoch - 1`.
+
+    Apart from loading state dict for `model` and `optimizer` it also updates
+    `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The scheduler that we are using.
+    Returns:
+      Return a dict containing previously saved training info.
+    """
+    if params.start_batch > 0:
+        filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
+    elif params.start_epoch > 1:
+        filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    else:
+        return None
+
+    assert filename.is_file(), f"{filename} does not exist!"
+
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        model_avg=model_avg,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    if params.start_batch > 0:
+        if "cur_epoch" in saved_params:
+            params["start_epoch"] = saved_params["cur_epoch"]
+
+        if "cur_batch_idx" in saved_params:
+            params["cur_batch_idx"] = saved_params["cur_batch_idx"]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    model_avg: Optional[nn.Module] = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+    sampler: Optional[CutSampler] = None,
+    scaler: Optional[GradScaler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer used in the training.
+      sampler:
+       The sampler for the training dataset.
+      scaler:
+        The scaler used for mix precision training.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        model_avg=model_avg,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        sampler=sampler,
+        scaler=scaler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    ctc_graph_compiler: BpeCtcTrainingGraphCompiler,
+    mmi_graph_compiler: MmiTrainingGraphCompiler,
+    batch: dict,
+    is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute ctc loss given the model and its inputs.
+
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Zipformer in our case.
+      graph_compiler:
+        It is used to build a decoding graph from a ctc topo and training
+        transcript. The training transcript is contained in the given `batch`,
+        while the ctc topo is built when this compiler is instantiated.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+    """
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    batch_idx_train = params.batch_idx_train
+    warm_step = params.warm_step
+
+    with torch.set_grad_enabled(is_training):
+        nnet_output, encoder_out_lens = model(x=feature, x_lens=feature_lens)
+
+    # NOTE: We need `encode_supervisions` to sort sequences with
+    # different duration in decreasing order, required by
+    # `k2.intersect_dense` called in `LFMMILoss.forward()`
+    with warnings.catch_warnings():
+        warnings.simplefilter("ignore")
+        supervision_segments, texts = encode_supervisions(
+            supervisions, subsampling_factor=params.subsampling_factor
+        )
+
+    dense_fsa_vec = k2.DenseFsaVec(
+        nnet_output,
+        supervision_segments,
+        allow_truncate=params.subsampling_factor - 1,
+    )
+
+    info = MetricsTracker()
+    if batch_idx_train < warm_step:
+        # Training with ctc loss
+        # Works with a BPE model
+        token_ids = ctc_graph_compiler.texts_to_ids(texts)
+        decoding_graph = ctc_graph_compiler.compile(token_ids)
+        loss = k2.ctc_loss(
+            decoding_graph=decoding_graph,
+            dense_fsa_vec=dense_fsa_vec,
+            output_beam=params.ctc_beam_size,
+            reduction=params.reduction,
+            use_double_scores=params.use_double_scores,
+        )
+        info["ctc_loss"] = loss.detach().cpu().item()
+        info["mmi_loss"] = 0
+    else:
+        # Training with mmi loss
+        loss_fn = LFMMILoss(
+            graph_compiler=mmi_graph_compiler,
+            use_pruned_intersect=params.use_pruned_intersect,
+            den_scale=params.den_scale,
+            beam_size=params.mmi_beam_size,
+        )
+        loss = loss_fn(dense_fsa_vec=dense_fsa_vec, texts=texts)
+        info["ctc_loss"] = 0
+        info["mmi_loss"] = loss.detach().cpu().item()
+
+    assert loss.requires_grad == is_training
+
+    info["frames"] = encoder_out_lens.sum().cpu().item()
+    # Note: We use reduction=sum while computing the loss.
+    info["loss"] = loss.detach().cpu().item()
+
+    return loss, info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    ctc_graph_compiler: BpeCtcTrainingGraphCompiler,
+    mmi_graph_compiler: MmiTrainingGraphCompiler,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(valid_dl):
+        loss, loss_info = compute_loss(
+            params=params,
+            model=model,
+            ctc_graph_compiler=ctc_graph_compiler,
+            mmi_graph_compiler=mmi_graph_compiler,
+            batch=batch,
+            is_training=False,
+        )
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    optimizer: torch.optim.Optimizer,
+    scheduler: LRSchedulerType,
+    ctc_graph_compiler: BpeCtcTrainingGraphCompiler,
+    mmi_graph_compiler: MmiTrainingGraphCompiler,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    scaler: GradScaler,
+    model_avg: Optional[nn.Module] = None,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+    rank: int = 0,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      scheduler:
+        The learning rate scheduler, we call step() every step.
+      graph_compiler:
+        It is used to convert transcripts to FSAs.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      scaler:
+        The scaler used for mix precision training.
+      model_avg:
+        The stored model averaged from the start of training.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+      rank:
+        The rank of the node in DDP training. If no DDP is used, it should
+        be set to 0.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    cur_batch_idx = params.get("cur_batch_idx", 0)
+
+    for batch_idx, batch in enumerate(train_dl):
+        if batch_idx < cur_batch_idx:
+            continue
+        cur_batch_idx = batch_idx
+
+        params.batch_idx_train += 1
+        batch_size = len(batch["supervisions"]["text"])
+
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, loss_info = compute_loss(
+                    params=params,
+                    model=model,
+                    ctc_graph_compiler=ctc_graph_compiler,
+                    mmi_graph_compiler=mmi_graph_compiler,
+                    batch=batch,
+                    is_training=True,
+                )
+            # summary stats
+            tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+            # NOTE: We use reduction==sum and loss is computed over utterances
+            # in the batch and there is no normalization to it so far.
+            scaler.scale(loss).backward()
+            set_batch_count(model, params.batch_idx_train)
+            scheduler.step_batch(params.batch_idx_train)
+
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+        except:  # noqa
+            display_and_save_batch(
+                batch, params=params, graph_compiler=mmi_graph_compiler
+            )
+            raise
+
+        if params.print_diagnostics and batch_idx == 5:
+            return
+
+        if (
+            rank == 0
+            and params.batch_idx_train > 0
+            and params.batch_idx_train % params.average_period == 0
+        ):
+            update_averaged_model(
+                params=params,
+                model_cur=model,
+                model_avg=model_avg,
+            )
+
+        if (
+            params.batch_idx_train > 0
+            and params.batch_idx_train % params.save_every_n == 0
+        ):
+            params.cur_batch_idx = batch_idx
+            save_checkpoint_with_global_batch_idx(
+                out_dir=params.exp_dir,
+                global_batch_idx=params.batch_idx_train,
+                model=model,
+                model_avg=model_avg,
+                params=params,
+                optimizer=optimizer,
+                scheduler=scheduler,
+                sampler=train_dl.sampler,
+                scaler=scaler,
+                rank=rank,
+            )
+            del params.cur_batch_idx
+            remove_checkpoints(
+                out_dir=params.exp_dir,
+                topk=params.keep_last_k,
+                rank=rank,
+            )
+
+        if batch_idx % 100 == 0 and params.use_fp16:
+            # If the grad scale was less than 1, try increasing it.    The _growth_interval
+            # of the grad scaler is configurable, but we can't configure it to have different
+            # behavior depending on the current grad scale.
+            cur_grad_scale = scaler._scale.item()
+            if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
+                scaler.update(cur_grad_scale * 2.0)
+            if cur_grad_scale < 0.01:
+                logging.warning(f"Grad scale is small: {cur_grad_scale}")
+            if cur_grad_scale < 1.0e-05:
+                raise RuntimeError(
+                    f"grad_scale is too small, exiting: {cur_grad_scale}"
+                )
+
+        if batch_idx % params.log_interval == 0:
+            cur_lr = scheduler.get_last_lr()[0]
+            cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
+
+            logging.info(
+                f"Epoch {params.cur_epoch}, "
+                f"batch {batch_idx}, loss[{loss_info}], "
+                f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+                f"lr: {cur_lr:.2e}, "
+                + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
+            )
+
+            if tb_writer is not None:
+                tb_writer.add_scalar(
+                    "train/learning_rate", cur_lr, params.batch_idx_train
+                )
+
+                loss_info.write_summary(
+                    tb_writer, "train/current_", params.batch_idx_train
+                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
+                if params.use_fp16:
+                    tb_writer.add_scalar(
+                        "train/grad_scale",
+                        cur_grad_scale,
+                        params.batch_idx_train,
+                    )
+
+        if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
+            logging.info("Computing validation loss")
+            valid_info = compute_validation_loss(
+                params=params,
+                model=model,
+                ctc_graph_compiler=ctc_graph_compiler,
+                mmi_graph_compiler=mmi_graph_compiler,
+                valid_dl=valid_dl,
+                world_size=world_size,
+            )
+            model.train()
+            logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+            logging.info(
+                f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
+            )
+            if tb_writer is not None:
+                valid_info.write_summary(
+                    tb_writer, "train/valid_", params.batch_idx_train
+                )
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+    if params.full_libri is False:
+        params.valid_interval = 1600
+
+    fix_random_seed(params.seed)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+    params.vocab_size = num_classes
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+    logging.info(f"Device: {device}")
+
+    assert "lang_bpe" in str(params.lang_dir)
+    ctc_graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+    mmi_graph_compiler = MmiTrainingGraphCompiler(
+        params.lang_dir,
+        uniq_filename="lexicon.txt",
+        device=device,
+        oov="",
+        sos_id=1,
+        eos_id=1,
+    )
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_ctc_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    assert params.save_every_n >= params.average_period
+    model_avg: Optional[nn.Module] = None
+    if rank == 0:
+        # model_avg is only used with rank 0
+        model_avg = copy.deepcopy(model).to(torch.float64)
+
+    assert params.start_epoch > 0, params.start_epoch
+    checkpoints = load_checkpoint_if_available(
+        params=params, model=model, model_avg=model_avg
+    )
+
+    model.to(device)
+    if world_size > 1:
+        logging.info("Using DDP")
+        model = DDP(model, device_ids=[rank], find_unused_parameters=True)
+
+    parameters_names = []
+    parameters_names.append(
+        [name_param_pair[0] for name_param_pair in model.named_parameters()]
+    )
+    optimizer = ScaledAdam(
+        model.parameters(),
+        lr=params.base_lr,
+        clipping_scale=2.0,
+        parameters_names=parameters_names,
+    )
+
+    scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
+
+    if checkpoints and "optimizer" in checkpoints:
+        logging.info("Loading optimizer state dict")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    if (
+        checkpoints
+        and "scheduler" in checkpoints
+        and checkpoints["scheduler"] is not None
+    ):
+        logging.info("Loading scheduler state dict")
+        scheduler.load_state_dict(checkpoints["scheduler"])
+
+    if params.print_diagnostics:
+        opts = diagnostics.TensorDiagnosticOptions(
+            2**22
+        )  # allow 4 megabytes per sub-module
+        diagnostic = diagnostics.attach_diagnostics(model, opts)
+
+    if params.inf_check:
+        register_inf_check_hooks(model)
+
+    librispeech = LibriSpeechAsrDataModule(args)
+
+    # train_cuts = librispeech.train_clean_100_cuts()
+    if params.full_libri:
+        # train_cuts += librispeech.train_clean_360_cuts()
+        # train_cuts += librispeech.train_other_500_cuts()
+        train_cuts = librispeech.train_all_shuf_cuts()
+    else:
+        train_cuts = librispeech.train_clean_100_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 20 seconds
+        #
+        # Caution: There is a reason to select 20.0 here. Please see
+        # ../local/display_manifest_statistics.py
+        #
+        # You should use ../local/display_manifest_statistics.py to get
+        # an utterance duration distribution for your dataset to select
+        # the threshold
+        return 1.0 <= c.duration <= 20.0
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+    if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
+        # We only load the sampler's state dict when it loads a checkpoint
+        # saved in the middle of an epoch
+        sampler_state_dict = checkpoints["sampler"]
+    else:
+        sampler_state_dict = None
+
+    train_dl = librispeech.train_dataloaders(
+        train_cuts, sampler_state_dict=sampler_state_dict
+    )
+
+    valid_cuts = librispeech.dev_clean_cuts()
+    valid_cuts += librispeech.dev_other_cuts()
+    valid_dl = librispeech.valid_dataloaders(valid_cuts)
+
+    if not params.print_diagnostics:
+        scan_pessimistic_batches_for_oom(
+            model=model,
+            train_dl=train_dl,
+            optimizer=optimizer,
+            ctc_graph_compiler=ctc_graph_compiler,
+            mmi_graph_compiler=mmi_graph_compiler,
+            params=params,
+        )
+
+    scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
+    if checkpoints and "grad_scaler" in checkpoints:
+        logging.info("Loading grad scaler state dict")
+        scaler.load_state_dict(checkpoints["grad_scaler"])
+
+    for epoch in range(params.start_epoch, params.num_epochs + 1):
+        scheduler.step_epoch(epoch - 1)
+        fix_random_seed(params.seed + epoch - 1)
+        train_dl.sampler.set_epoch(epoch - 1)
+
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            ctc_graph_compiler=ctc_graph_compiler,
+            mmi_graph_compiler=mmi_graph_compiler,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            scaler=scaler,
+            tb_writer=tb_writer,
+            world_size=world_size,
+            rank=rank,
+        )
+
+        if params.print_diagnostics:
+            diagnostic.print_diagnostics()
+            break
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sampler=train_dl.sampler,
+            scaler=scaler,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def display_and_save_batch(
+    batch: dict,
+    params: AttributeDict,
+    graph_compiler: MmiTrainingGraphCompiler,
+) -> None:
+    """Display the batch statistics and save the batch into disk.
+
+    Args:
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      params:
+        Parameters for training. See :func:`get_params`.
+      sp:
+        The BPE model.
+    """
+    from lhotse.utils import uuid4
+
+    filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
+    logging.info(f"Saving batch to {filename}")
+    torch.save(batch, filename)
+
+    supervisions = batch["supervisions"]
+    features = batch["inputs"]
+
+    logging.info(f"features shape: {features.shape}")
+    y = graph_compiler.texts_to_ids(supervisions["text"])
+    num_tokens = sum(len(i) for i in y)
+    logging.info(f"num tokens: {num_tokens}")
+
+
+def scan_pessimistic_batches_for_oom(
+    model: Union[nn.Module, DDP],
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    ctc_graph_compiler: BpeCtcTrainingGraphCompiler,
+    mmi_graph_compiler: MmiTrainingGraphCompiler,
+    params: AttributeDict,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 1 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, _ = compute_loss(
+                    params=params,
+                    model=model,
+                    ctc_graph_compiler=ctc_graph_compiler,
+                    mmi_graph_compiler=mmi_graph_compiler,
+                    batch=batch,
+                    is_training=True,
+                )
+            loss.backward()
+            optimizer.zero_grad()
+        except Exception as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            display_and_save_batch(
+                batch, params=params, graph_compiler=mmi_graph_compiler
+            )
+            raise
+        logging.info(
+            f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
+        )
+
+
+def main():
+    parser = get_parser()
+    LibriSpeechAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/librispeech/ASR/zipformer_mmi/zipformer.py b/egs/librispeech/ASR/zipformer_mmi/zipformer.py
new file mode 120000
index 000000000..79b076556
--- /dev/null
+++ b/egs/librispeech/ASR/zipformer_mmi/zipformer.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless7/zipformer.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/README.md b/egs/mgb2/ASR/README.md
new file mode 100644
index 000000000..2bc4b000b
--- /dev/null
+++ b/egs/mgb2/ASR/README.md
@@ -0,0 +1,43 @@
+# MGB2
+
+The Multi-Dialect Broadcast News Arabic Speech Recognition (MGB-2):
+The second edition of the Multi-Genre Broadcast (MGB-2) Challenge is
+an evaluation of speech recognition and lightly supervised alignment
+using TV recordings in Arabic. The speech data is broad and multi-genre,
+spanning the whole range of TV output, and represents a challenging task for
+speech technology. In 2016, the challenge featured two new Arabic tracks based
+on TV data from Aljazeera. It was an official challenge at the 2016 IEEE
+Workshop on Spoken Language Technology. The 1,200 hours MGB-2: from Aljazeera
+TV programs have been manually captioned with no timing information.
+QCRI Arabic ASR system has been used to recognize all programs. The ASR output
+was used to align the manual captioning and produce speech segments for
+training speech recognition. More than 20 hours from 2015 programs have been
+transcribed verbatim and manually segmented. This data is split into a
+development set of 10 hours, and a similar evaluation set of 10 hours.
+Both the development and evaluation data have been released in the 2016 MGB
+challenge
+
+Official reference:
+
+Ali, Ahmed, et al. "The MGB-2 challenge: Arabic multi-dialect broadcast media recognition." 
+2016 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2016.
+
+IEEE link: https://ieeexplore.ieee.org/abstract/document/7846277
+
+## Stateless Pruned Transducer Performance Record (after 30 epochs)
+
+|                                    |     dev    |    test    | comment                                  |
+|------------------------------------|------------|------------|------------------------------------------|
+|          greedy search             | 15.52      | 15.28      | --epoch 18, --avg 5, --max-duration 200  |
+| modified beam search               | 13.88      | 13.7       | --epoch 18, --avg 5, --max-duration 200  |
+| fast beam search                   | 14.62      | 14.36      | --epoch 18, --avg 5, --max-duration 200  |
+
+## Conformer-CTC Performance Record (after 40 epochs)
+
+| Decoding method           | dev WER    | test WER |
+|---------------------------|------------|---------|
+| attention-decoder         | 15.62      |  15.01  |
+| whole-lattice-rescoring   | 15.89      |  15.08  |
+
+
+See [RESULTS](/egs/mgb2/ASR/RESULTS.md) for details.
diff --git a/egs/mgb2/ASR/RESULTS.md b/egs/mgb2/ASR/RESULTS.md
new file mode 100644
index 000000000..2a7ea7664
--- /dev/null
+++ b/egs/mgb2/ASR/RESULTS.md
@@ -0,0 +1,236 @@
+# Results
+
+
+### MGB2 all data BPE training results (Stateless Pruned Transducer)
+
+#### 2022-09-07
+
+The WERs are
+
+|                                    |     dev    |    test    | comment                                  |
+|------------------------------------|------------|------------|------------------------------------------|
+|          greedy search             | 15.52      | 15.28      | --epoch 18, --avg 5, --max-duration 200 |
+| modified beam search               | 13.88      | 13.7       | --epoch 18, --avg 5, --max-duration 200 |
+| fast beam search                   | 14.62      | 14.36      | --epoch 18, --avg 5, --max-duration 200|
+
+The training command for reproducing is given below:
+
+```
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+
+  
+./pruned_transducer_stateless5/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir pruned_transducer_stateless5/exp \
+  --max-duration 300 \
+  --num-buckets 50
+```
+
+The tensorboard training log can be found at
+https://tensorboard.dev/experiment/YyNv45pfQ0GqWzZ898WOlw/#scalars
+
+The decoding command is:
+```
+epoch=18
+avg=5
+for method in greedy_search modified_beam_search fast_beam_search; do
+  ./pruned_transducer_stateless5/decode.py \
+    --epoch $epoch \
+	--beam-size 10 \
+    --avg $avg \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 200 \
+    --decoding-method $method \
+    --max-sym-per-frame 1 \
+    --num-encoder-layers 12 \
+    --dim-feedforward 2048 \
+    --nhead 8 \
+    --encoder-dim 512 \
+    --decoder-dim 512 \
+    --joiner-dim 512 \
+    --use-averaged-model True
+done
+```
+
+### MGB2 all data BPE training results (Conformer-CTC) (after 40 epochs)
+
+#### 2022-06-04
+
+You can find a pretrained model, training logs, decoding logs, and decoding results at:
+https://huggingface.co/AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06
+
+The best WER, as of 2022-06-04, for the MGB2 test dataset is below
+
+Using whole lattice HLG decoding + n-gram LM rescoring 
+
+|     | dev        | test       |
+|-----|------------|------------|
+| WER | 15.62      |  15.01     |
+
+Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
+| ngram_lm_scale | attention_scale |
+|----------------|-----------------|
+| 0.1            | -            |
+
+
+Using n-best (n=0.5) attention decoder rescoring
+
+|     | dev        | test       |
+|-----|------------|------------|
+| WER |    15.89   |  15.08     |
+
+Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
+| ngram_lm_scale | attention_scale |
+|----------------|-----------------|
+| 0.01           | 0.5             |
+
+
+To reproduce the above result, use the following commands for training:
+
+# Note: the model was trained on V-100 32GB GPU
+
+```
+cd egs/mgb2/ASR
+. ./path.sh
+./prepare.sh
+export CUDA_VISIBLE_DEVICES="0,1"
+./conformer_ctc/train.py \
+  --lang-dir data/lang_bpe_5000 \
+  --att-rate 0.8 \
+  --lr-factor 10 \
+  --max-duration  \
+  --concatenate-cuts 0 \
+  --world-size 2 \
+  --bucketing-sampler 1 \
+  --max-duration 100 \ 
+  --start-epoch 0 \
+  --num-epochs 40
+  
+```
+
+and the following command for nbest decoding
+
+```
+./conformer_ctc/decode.py \
+  --lang-dir data/lang_bpe_5000 \
+  --max-duration 30 \
+  --concatenate-cuts 0 \
+  --bucketing-sampler 1 \
+  --num-paths 1000 \
+  --epoch 40 \
+  --avg 5 \
+  --method attention-decoder \
+  --nbest-scale 0.5
+```
+
+and the following command for whole-lattice decoding
+
+```
+./conformer_ctc/decode.py \
+  --epoch 40 \
+  --avg 5 \
+  --exp-dir conformer_ctc/exp_5000_att0.8 \
+  --lang-dir data/lang_bpe_5000 \
+  --max-duration 30 \
+  --concatenate-cuts 0 \
+  --bucketing-sampler 1 \
+  --num-paths 1000 \
+  --method  whole-lattice-rescoring
+```
+
+
+The tensorboard log for training is available at
+https://tensorboard.dev/experiment/QYNzOi52RwOX8yvtpl3hMw/#scalars
+
+
+### MGB2 100h BPE training results (Conformer-CTC) (after 33 epochs)
+
+#### 2022-06-04
+
+The best WER, as of 2022-06-04, for the MGB2 test dataset is below
+
+Using whole lattice HLG decoding + n-gram LM rescoring 
+
+|     | dev        | test       |
+|-----|------------|------------|
+| WER | 25.32      |  23.53     |
+
+Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
+| ngram_lm_scale | attention_scale |
+|----------------|-----------------|
+| 0.1            | -            |
+
+
+Using n-best (n=0.5) HLG decoding + n-gram LM rescoring + attention decoder rescoring:
+
+|     | dev        | test       |
+|-----|------------|------------|
+| WER |    27.87   |  26.12     |
+
+Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
+| ngram_lm_scale | attention_scale |
+|----------------|-----------------|
+| 0.01           | 0.3             |
+
+
+To reproduce the above result, use the following commands for training:
+
+# Note: the model was trained on V-100 32GB GPU
+
+```
+cd egs/mgb2/ASR
+. ./path.sh
+./prepare.sh
+export CUDA_VISIBLE_DEVICES="0,1"
+./conformer_ctc/train.py \
+  --lang-dir data/lang_bpe_5000 \
+  --att-rate 0.8 \
+  --lr-factor 10 \
+  --max-duration  \
+  --concatenate-cuts 0 \
+  --world-size 2 \
+  --bucketing-sampler 1 \
+  --max-duration 100 \ 
+  --start-epoch 0 \
+  --num-epochs 40
+  
+```
+
+and the following command for nbest decoding
+
+```
+./conformer_ctc/decode.py \
+  --lang-dir data/lang_bpe_5000 \
+  --max-duration 30 \
+  --concatenate-cuts 0 \
+  --bucketing-sampler 1 \
+  --num-paths 1000 \
+  --epoch 40 \
+  --avg 5 \
+  --method attention-decoder \
+  --nbest-scale 0.5
+```
+
+and the following command for whole-lattice decoding
+
+```
+./conformer_ctc/decode.py \
+  --lang-dir data/lang_bpe_5000 \
+  --max-duration 30 \
+  --concatenate-cuts 0 \
+  --bucketing-sampler 1 \
+  --num-paths 1000 \
+  --epoch 40 \
+  --avg 5 \
+  --method  whole-lattice-rescoring
+```
+
+The tensorboard log for training is available at
+
+
+
+
+
diff --git a/egs/mgb2/ASR/conformer_ctc/__init__.py b/egs/mgb2/ASR/conformer_ctc/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/mgb2/ASR/conformer_ctc/ali.py b/egs/mgb2/ASR/conformer_ctc/ali.py
new file mode 100755
index 000000000..aea962dcd
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/ali.py
@@ -0,0 +1,395 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+    ./conformer_ctc/ali.py \
+            --exp-dir ./conformer_ctc/exp \
+            --lang-dir ./data/lang_bpe_500 \
+            --epoch 20 \
+            --avg 10 \
+            --max-duration 300 \
+            --dataset train-clean-100 \
+            --out-dir data/ali
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import k2
+import numpy as np
+import torch
+from asr_datamodule import LibriSpeechAsrDataModule
+from conformer import Conformer
+from lhotse import CutSet
+from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
+
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.decode import one_best_decoding
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    encode_supervisions,
+    get_alignments,
+    setup_logger,
+)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=34,
+        help="It specifies the checkpoint to use for decoding."
+        "Note: Epoch counts from 0.",
+    )
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=20,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch'. ",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="The lang dir",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--out-dir",
+        type=str,
+        required=True,
+        help="""Output directory.
+        It contains 3 generated files:
+
+        - labels_xxx.h5
+        - aux_labels_xxx.h5
+        - cuts_xxx.json.gz
+
+        where xxx is the value of `--dataset`. For instance, if
+        `--dataset` is `train-clean-100`, it will contain 3 files:
+
+        - `labels_train-clean-100.h5`
+        - `aux_labels_train-clean-100.h5`
+        - `cuts_train-clean-100.json.gz`
+
+        Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
+        alignment. The difference is that labels_xxx.h5 contains repeats.
+        """,
+    )
+
+    parser.add_argument(
+        "--dataset",
+        type=str,
+        required=True,
+        help="""The name of the dataset to compute alignments for.
+        Possible values are:
+            - test-clean.
+            - test-other
+            - train-clean-100
+            - train-clean-360
+            - train-other-500
+            - dev-clean
+            - dev-other
+        """,
+    )
+    return parser
+
+
+def get_params() -> AttributeDict:
+    params = AttributeDict(
+        {
+            "lm_dir": Path("data/lm"),
+            "feature_dim": 80,
+            "nhead": 8,
+            "attention_dim": 512,
+            "subsampling_factor": 4,
+            # Set it to 0 since attention decoder
+            # is not used for computing alignments
+            "num_decoder_layers": 0,
+            "vgg_frontend": False,
+            "use_feat_batchnorm": True,
+            "output_beam": 10,
+            "use_double_scores": True,
+            "env_info": get_env_info(),
+        }
+    )
+    return params
+
+
+def compute_alignments(
+    model: torch.nn.Module,
+    dl: torch.utils.data.DataLoader,
+    labels_writer: FeaturesWriter,
+    aux_labels_writer: FeaturesWriter,
+    params: AttributeDict,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+) -> CutSet:
+    """Compute the framewise alignments of a dataset.
+
+    Args:
+      model:
+        The neural network model.
+      dl:
+        Dataloader containing the dataset.
+      params:
+        Parameters for computing alignments.
+      graph_compiler:
+        It converts token IDs to decoding graphs.
+    Returns:
+      Return a CutSet. Each cut has two custom fields: labels_alignment
+      and aux_labels_alignment, containing framewise alignments information.
+      Both are of type `lhotse.array.TemporalArray`. The difference between
+      the two alignments is that `labels_alignment` contain repeats.
+    """
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+    num_cuts = 0
+
+    device = graph_compiler.device
+    cuts = []
+    for batch_idx, batch in enumerate(dl):
+        feature = batch["inputs"]
+
+        # at entry, feature is [N, T, C]
+        assert feature.ndim == 3
+        feature = feature.to(device)
+
+        supervisions = batch["supervisions"]
+        cut_list = supervisions["cut"]
+
+        for cut in cut_list:
+            assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
+
+        nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
+        # nnet_output is [N, T, C]
+        supervision_segments, texts = encode_supervisions(
+            supervisions, subsampling_factor=params.subsampling_factor
+        )
+        # we need also to sort cut_ids as encode_supervisions()
+        # reorders "texts".
+        # In general, new2old is an identity map since lhotse sorts the returned
+        # cuts by duration in descending order
+        new2old = supervision_segments[:, 0].tolist()
+
+        cut_list = [cut_list[i] for i in new2old]
+
+        token_ids = graph_compiler.texts_to_ids(texts)
+        decoding_graph = graph_compiler.compile(token_ids)
+
+        dense_fsa_vec = k2.DenseFsaVec(
+            nnet_output,
+            supervision_segments,
+            allow_truncate=params.subsampling_factor - 1,
+        )
+
+        lattice = k2.intersect_dense(
+            decoding_graph,
+            dense_fsa_vec,
+            params.output_beam,
+        )
+
+        best_path = one_best_decoding(
+            lattice=lattice,
+            use_double_scores=params.use_double_scores,
+        )
+
+        labels_ali = get_alignments(best_path, kind="labels")
+        aux_labels_ali = get_alignments(best_path, kind="aux_labels")
+        assert len(labels_ali) == len(aux_labels_ali) == len(cut_list)
+        for cut, labels, aux_labels in zip(cut_list, labels_ali, aux_labels_ali):
+            cut.labels_alignment = labels_writer.store_array(
+                key=cut.id,
+                value=np.asarray(labels, dtype=np.int32),
+                # frame shift is 0.01s, subsampling_factor is 4
+                frame_shift=0.04,
+                temporal_dim=0,
+                start=0,
+            )
+            cut.aux_labels_alignment = aux_labels_writer.store_array(
+                key=cut.id,
+                value=np.asarray(aux_labels, dtype=np.int32),
+                # frame shift is 0.01s, subsampling_factor is 4
+                frame_shift=0.04,
+                temporal_dim=0,
+                start=0,
+            )
+
+        cuts += cut_list
+
+        num_cuts += len(cut_list)
+
+        if batch_idx % 100 == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+
+    return CutSet.from_cuts(cuts)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    LibriSpeechAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+
+    args.enable_spec_aug = False
+    args.enable_musan = False
+    args.return_cuts = True
+    args.concatenate_cuts = False
+
+    params = get_params()
+    params.update(vars(args))
+
+    setup_logger(f"{params.exp_dir}/log-ali")
+
+    logging.info(f"Computing alignments for {params.dataset} - started")
+    logging.info(params)
+
+    out_dir = Path(params.out_dir)
+    out_dir.mkdir(exist_ok=True)
+
+    out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5"
+    out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5"
+    out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
+
+    for f in (
+        out_labels_ali_filename,
+        out_aux_labels_ali_filename,
+        out_manifest_filename,
+    ):
+        if f.exists():
+            logging.info(f"{f} exists - skipping")
+            return
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+    logging.info(f"device: {device}")
+
+    graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+
+    logging.info("About to create model")
+    model = Conformer(
+        num_features=params.feature_dim,
+        nhead=params.nhead,
+        d_model=params.attention_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        num_decoder_layers=params.num_decoder_layers,
+        vgg_frontend=params.vgg_frontend,
+        use_feat_batchnorm=params.use_feat_batchnorm,
+    )
+    model.to(device)
+
+    if params.avg == 1:
+        load_checkpoint(
+            f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=False
+        )
+    else:
+        start = params.epoch - params.avg + 1
+        filenames = []
+        for i in range(start, params.epoch + 1):
+            if start >= 0:
+                filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+        logging.info(f"averaging {filenames}")
+        model.load_state_dict(
+            average_checkpoints(filenames, device=device), strict=False
+        )
+
+    model.eval()
+
+    librispeech = LibriSpeechAsrDataModule(args)
+    if params.dataset == "test-clean":
+        test_clean_cuts = librispeech.test_clean_cuts()
+        dl = librispeech.test_dataloaders(test_clean_cuts)
+    elif params.dataset == "test-other":
+        test_other_cuts = librispeech.test_other_cuts()
+        dl = librispeech.test_dataloaders(test_other_cuts)
+    elif params.dataset == "train-clean-100":
+        train_clean_100_cuts = librispeech.train_clean_100_cuts()
+        dl = librispeech.train_dataloaders(train_clean_100_cuts)
+    elif params.dataset == "train-clean-360":
+        train_clean_360_cuts = librispeech.train_clean_360_cuts()
+        dl = librispeech.train_dataloaders(train_clean_360_cuts)
+    elif params.dataset == "train-other-500":
+        train_other_500_cuts = librispeech.train_other_500_cuts()
+        dl = librispeech.train_dataloaders(train_other_500_cuts)
+    elif params.dataset == "dev-clean":
+        dev_clean_cuts = librispeech.dev_clean_cuts()
+        dl = librispeech.valid_dataloaders(dev_clean_cuts)
+    else:
+        assert params.dataset == "dev-other", f"{params.dataset}"
+        dev_other_cuts = librispeech.dev_other_cuts()
+        dl = librispeech.valid_dataloaders(dev_other_cuts)
+
+    logging.info(f"Processing {params.dataset}")
+    with NumpyHdf5Writer(out_labels_ali_filename) as labels_writer:
+        with NumpyHdf5Writer(out_aux_labels_ali_filename) as aux_labels_writer:
+            cut_set = compute_alignments(
+                model=model,
+                dl=dl,
+                labels_writer=labels_writer,
+                aux_labels_writer=aux_labels_writer,
+                params=params,
+                graph_compiler=graph_compiler,
+            )
+
+    cut_set.to_file(out_manifest_filename)
+
+    logging.info(
+        f"For dataset {params.dataset}, its alignments with repeats are "
+        f"saved to {out_labels_ali_filename}, the alignments without repeats "
+        f"are saved to {out_aux_labels_ali_filename}, and the cut manifest "
+        f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
+    )
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/conformer_ctc/asr_datamodule.py b/egs/mgb2/ASR/conformer_ctc/asr_datamodule.py
new file mode 100644
index 000000000..8242e986d
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/asr_datamodule.py
@@ -0,0 +1,372 @@
+# Copyright 2022 Johns Hopkins University  (Amir Hussein)
+# Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
+
+
+import argparse
+import inspect
+import logging
+from functools import lru_cache
+from pathlib import Path
+from typing import Any, Dict, Optional
+
+import torch
+from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
+from lhotse.dataset import (
+    CutConcatenate,
+    CutMix,
+    DynamicBucketingSampler,
+    K2SpeechRecognitionDataset,
+    PrecomputedFeatures,
+    SingleCutSampler,
+    SpecAugment,
+)
+from lhotse.dataset.input_strategies import OnTheFlyFeatures
+from lhotse.utils import fix_random_seed
+from torch.utils.data import DataLoader
+
+from icefall.utils import str2bool
+
+
+class _SeedWorkers:
+    def __init__(self, seed: int):
+        self.seed = seed
+
+    def __call__(self, worker_id: int):
+        fix_random_seed(self.seed + worker_id)
+
+
+class MGB2AsrDataModule:
+
+    """
+    DataModule for k2 ASR experiments.
+    It assumes there is always one train and valid dataloader,
+    but there can be multiple test dataloaders
+
+    It contains all the common data pipeline modules used in ASR
+    experiments, e.g.:
+    - dynamic batch size,
+    - bucketing samplers,
+    - cut concatenation,
+    - augmentation,
+    - on-the-fly feature extraction
+
+    This class should be derived for specific corpora used in ASR tasks.
+    """
+
+    def __init__(self, args: argparse.Namespace):
+        self.args = args
+
+    @classmethod
+    def add_arguments(cls, parser: argparse.ArgumentParser):
+        group = parser.add_argument_group(
+            title="ASR data related options",
+            description="These options are used for the preparation of "
+            "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
+            "effective batch sizes, sampling strategies, applied data "
+            "augmentations, etc.",
+        )
+        group.add_argument(
+            "--manifest-dir",
+            type=Path,
+            default=Path("data/fbank"),
+            help="Path to directory with train/valid/test cuts.",
+        )
+        group.add_argument(
+            "--max-duration",
+            type=int,
+            default=200.0,
+            help="Maximum pooled recordings duration (seconds) in a "
+            "single batch. You can reduce it if it causes CUDA OOM.",
+        )
+        group.add_argument(
+            "--bucketing-sampler",
+            type=str2bool,
+            default=True,
+            help="When enabled, the batches will come from buckets of "
+            "similar duration (saves padding frames).",
+        )
+        group.add_argument(
+            "--num-buckets",
+            type=int,
+            default=30,
+            help="The number of buckets for the DynamicBucketingSampler"
+            "(you might want to increase it for larger datasets).",
+        )
+        group.add_argument(
+            "--concatenate-cuts",
+            type=str2bool,
+            default=False,
+            help="When enabled, utterances (cuts) will be concatenated "
+            "to minimize the amount of padding.",
+        )
+        group.add_argument(
+            "--duration-factor",
+            type=float,
+            default=1.0,
+            help="Determines the maximum duration of a concatenated cut "
+            "relative to the duration of the longest cut in a batch.",
+        )
+        group.add_argument(
+            "--gap",
+            type=float,
+            default=1.0,
+            help="The amount of padding (in seconds) inserted between "
+            "concatenated cuts. This padding is filled with noise when "
+            "noise augmentation is used.",
+        )
+        group.add_argument(
+            "--on-the-fly-feats",
+            type=str2bool,
+            default=False,
+            help="When enabled, use on-the-fly cut mixing and feature "
+            "extraction. Will drop existing precomputed feature manifests "
+            "if available.",
+        )
+        group.add_argument(
+            "--shuffle",
+            type=str2bool,
+            default=True,
+            help="When enabled (=default), the examples will be "
+            "shuffled for each epoch.",
+        )
+        group.add_argument(
+            "--drop-last",
+            type=str2bool,
+            default=True,
+            help="Whether to drop last batch. Used by sampler.",
+        )
+        group.add_argument(
+            "--return-cuts",
+            type=str2bool,
+            default=True,
+            help="When enabled, each batch will have the "
+            "field: batch['supervisions']['cut'] with the cuts that "
+            "were used to construct it.",
+        )
+
+        group.add_argument(
+            "--num-workers",
+            type=int,
+            default=1,
+            help="The number of training dataloader workers that "
+            "collect the batches.",
+        )
+
+        group.add_argument(
+            "--enable-spec-aug",
+            type=str2bool,
+            default=True,
+            help="When enabled, use SpecAugment for training dataset.",
+        )
+
+        group.add_argument(
+            "--spec-aug-time-warp-factor",
+            type=int,
+            default=80,
+            help="Used only when --enable-spec-aug is True. "
+            "It specifies the factor for time warping in SpecAugment. "
+            "Larger values mean more warping. "
+            "A value less than 1 means to disable time warp.",
+        )
+
+        group.add_argument(
+            "--enable-musan",
+            type=str2bool,
+            default=True,
+            help="When enabled, select noise from MUSAN and mix it"
+            "with training dataset. ",
+        )
+
+    def train_dataloaders(
+        self,
+        cuts_train: CutSet,
+        sampler_state_dict: Optional[Dict[str, Any]] = None,
+    ) -> DataLoader:
+
+        transforms = []
+        if self.args.enable_musan:
+            logging.info("Enable MUSAN")
+            logging.info("About to get Musan cuts")
+            cuts_musan = load_manifest(self.args.manifest_dir / "cuts_musan.jsonl.gz")
+
+            transforms.append(
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
+            )
+        else:
+            logging.info("Disable MUSAN")
+
+        if self.args.concatenate_cuts:
+            logging.info(
+                f"Using cut concatenation with duration factor "
+                f"{self.args.duration_factor} and gap {self.args.gap}."
+            )
+            # Cut concatenation should be the first transform in the list,
+            # so that if we e.g. mix noise in, it will fill the gaps between
+            # different utterances.
+            transforms = [
+                CutConcatenate(
+                    duration_factor=self.args.duration_factor, gap=self.args.gap
+                )
+            ] + transforms
+
+        input_transforms = []
+        if self.args.enable_spec_aug:
+            logging.info("Enable SpecAugment")
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
+            # Set the value of num_frame_masks according to Lhotse's version.
+            # In different Lhotse's versions, the default of num_frame_masks is
+            # different.
+            num_frame_masks = 10
+            num_frame_masks_parameter = inspect.signature(
+                SpecAugment.__init__
+            ).parameters["num_frame_masks"]
+            if num_frame_masks_parameter.default == 1:
+                num_frame_masks = 2
+            logging.info(f"Num frame mask: {num_frame_masks}")
+            input_transforms.append(
+                SpecAugment(
+                    time_warp_factor=self.args.spec_aug_time_warp_factor,
+                    num_frame_masks=num_frame_masks,
+                    features_mask_size=27,
+                    num_feature_masks=2,
+                    frames_mask_size=100,
+                )
+            )
+        else:
+            logging.info("Disable SpecAugment")
+
+        logging.info("About to create train dataset")
+        train = K2SpeechRecognitionDataset(
+            cut_transforms=transforms,
+            input_transforms=input_transforms,
+            return_cuts=self.args.return_cuts,
+        )
+
+        if self.args.on_the_fly_feats:
+            # NOTE: the PerturbSpeed transform should be added only if we
+            # remove it from data prep stage.
+            # Add on-the-fly speed perturbation; since originally it would
+            # have increased epoch size by 3, we will apply prob 2/3 and use
+            # 3x more epochs.
+            # Speed perturbation probably should come first before
+            # concatenation, but in principle the transforms order doesn't have
+            # to be strict (e.g. could be randomized)
+            # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms   # noqa
+            # Drop feats to be on the safe side.
+            train = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                input_transforms=input_transforms,
+                return_cuts=self.args.return_cuts,
+            )
+
+        if self.args.bucketing_sampler:
+            logging.info("Using DynamicBucketingSampler.")
+            train_sampler = DynamicBucketingSampler(
+                cuts_train,
+                max_duration=self.args.max_duration,
+                shuffle=self.args.shuffle,
+                num_buckets=self.args.num_buckets,
+                drop_last=self.args.drop_last,
+            )
+        else:
+            logging.info("Using SingleCutSampler.")
+            train_sampler = SingleCutSampler(
+                cuts_train,
+                max_duration=self.args.max_duration,
+                shuffle=self.args.shuffle,
+            )
+        logging.info("About to create train dataloader")
+
+        if sampler_state_dict is not None:
+            logging.info("Loading sampler state dict")
+            train_sampler.load_state_dict(sampler_state_dict)
+        # 'seed' is derived from the current random state, which will have
+        # previously been set in the main process.
+        seed = torch.randint(0, 100000, ()).item()
+        worker_init_fn = _SeedWorkers(seed)
+
+        train_dl = DataLoader(
+            train,
+            sampler=train_sampler,
+            batch_size=None,
+            num_workers=self.args.num_workers,
+            persistent_workers=False,
+            worker_init_fn=worker_init_fn,
+        )
+
+        return train_dl
+
+    def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
+        transforms = []
+        if self.args.concatenate_cuts:
+            transforms = [
+                CutConcatenate(
+                    duration_factor=self.args.duration_factor, gap=self.args.gap
+                )
+            ] + transforms
+
+        logging.info("About to create dev dataset")
+        if self.args.on_the_fly_feats:
+            validate = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                return_cuts=self.args.return_cuts,
+            )
+        else:
+            validate = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                return_cuts=self.args.return_cuts,
+            )
+        valid_sampler = DynamicBucketingSampler(
+            cuts_valid,
+            max_duration=self.args.max_duration,
+            shuffle=False,
+        )
+        logging.info("About to create dev dataloader")
+        valid_dl = DataLoader(
+            validate,
+            sampler=valid_sampler,
+            batch_size=None,
+            num_workers=2,
+            persistent_workers=False,
+        )
+
+        return valid_dl
+
+    def test_dataloaders(self, cuts: CutSet) -> DataLoader:
+        logging.debug("About to create test dataset")
+        test = K2SpeechRecognitionDataset(
+            input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+            if self.args.on_the_fly_feats
+            else PrecomputedFeatures(),
+            return_cuts=self.args.return_cuts,
+        )
+        sampler = DynamicBucketingSampler(
+            cuts, max_duration=self.args.max_duration, shuffle=False
+        )
+        logging.debug("About to create test dataloader")
+        test_dl = DataLoader(
+            test,
+            batch_size=None,
+            sampler=sampler,
+            num_workers=self.args.num_workers,
+        )
+        return test_dl
+
+    @lru_cache()
+    def train_cuts(self) -> CutSet:
+        logging.info("About to get train cuts")
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_train_shuf.jsonl.gz")
+
+    @lru_cache()
+    def dev_cuts(self) -> CutSet:
+        logging.info("About to get dev cuts")
+
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_dev.jsonl.gz")
+
+    @lru_cache()
+    def test_cuts(self) -> CutSet:
+        logging.info("About to get test cuts")
+
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_test.jsonl.gz")
diff --git a/egs/mgb2/ASR/conformer_ctc/compile_hlg.py b/egs/mgb2/ASR/conformer_ctc/compile_hlg.py
new file mode 120000
index 000000000..471aa7fb4
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/compile_hlg.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compile_hlg.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/compute_fbank_musan.py b/egs/mgb2/ASR/conformer_ctc/compute_fbank_musan.py
new file mode 120000
index 000000000..5833f2484
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/compute_fbank_musan.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compute_fbank_musan.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/conformer.py b/egs/mgb2/ASR/conformer_ctc/conformer.py
new file mode 120000
index 000000000..d1f4209d7
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/conformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/conformer.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/local/convert_transcript_words_to_tokens.py b/egs/mgb2/ASR/conformer_ctc/convert_transcript_words_to_tokens.py
similarity index 100%
rename from egs/tedlium3/ASR/local/convert_transcript_words_to_tokens.py
rename to egs/mgb2/ASR/conformer_ctc/convert_transcript_words_to_tokens.py
diff --git a/egs/mgb2/ASR/conformer_ctc/decode.py b/egs/mgb2/ASR/conformer_ctc/decode.py
new file mode 100755
index 000000000..f771d7f1e
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/decode.py
@@ -0,0 +1,695 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import logging
+import pdb
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import MGB2AsrDataModule
+from conformer import Conformer
+
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.decode import (
+    get_lattice,
+    nbest_decoding,
+    nbest_oracle,
+    one_best_decoding,
+    rescore_with_attention_decoder,
+    rescore_with_n_best_list,
+    rescore_with_whole_lattice,
+)
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    get_texts,
+    setup_logger,
+    store_transcripts,
+    write_error_stats,
+)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=50,
+        help="It specifies the checkpoint to use for decoding."
+        "Note: Epoch counts from 0.",
+    )
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=5,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch'. ",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="attention-decoder",
+        help="""Decoding method.
+        Supported values are:
+            - (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
+              model, i.e., lang_dir/bpe.model, to convert word pieces to words.
+              It needs neither a lexicon nor an n-gram LM.
+            - (1) 1best. Extract the best path from the decoding lattice as the
+              decoding result.
+            - (2) nbest. Extract n paths from the decoding lattice; the path
+              with the highest score is the decoding result.
+            - (3) nbest-rescoring. Extract n paths from the decoding lattice,
+              rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
+              the highest score is the decoding result.
+            - (4) whole-lattice-rescoring. Rescore the decoding lattice with an
+              n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
+              is the decoding result.
+            - (5) attention-decoder. Extract n paths from the LM rescored
+              lattice, the path with the highest score is the decoding result.
+            - (6) nbest-oracle. Its WER is the lower bound of any n-best
+              rescoring method can achieve. Useful for debugging n-best
+              rescoring method.
+        """,
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=20,
+        help="""Number of paths for n-best based decoding method.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, attention-decoder, and nbest-oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=0.5,
+        help="""The scale to be applied to `lattice.scores`.
+        It's needed if you use any kinds of n-best based rescoring.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, attention-decoder, and nbest-oracle
+        A smaller value results in more unique paths.
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="The lang dir",
+    )
+
+    parser.add_argument(
+        "--lm-dir",
+        type=str,
+        default="data/lm",
+        help="""The LM dir.
+        It should contain either G_4_gram.pt or G_4_gram.fst.txt
+        """,
+    )
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    params = AttributeDict(
+        {
+            # parameters for conformer
+            "subsampling_factor": 4,
+            "vgg_frontend": False,
+            "use_feat_batchnorm": True,
+            "feature_dim": 80,
+            "nhead": 8,
+            "attention_dim": 512,
+            "num_decoder_layers": 6,
+            # parameters for decoding
+            "search_beam": 20,
+            "output_beam": 8,
+            "min_active_states": 30,
+            "max_active_states": 10000,
+            "use_double_scores": True,
+            "env_info": get_env_info(),
+        }
+    )
+    return params
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    HLG: Optional[k2.Fsa],
+    H: Optional[k2.Fsa],
+    bpe_model: Optional[spm.SentencePieceProcessor],
+    batch: dict,
+    word_table: k2.SymbolTable,
+    sos_id: int,
+    eos_id: int,
+    G: Optional[k2.Fsa] = None,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+
+        - key: It indicates the setting used for decoding. For example,
+               if no rescoring is used, the key is the string `no_rescore`.
+               If LM rescoring is used, the key is the string `lm_scale_xxx`,
+               where `xxx` is the value of `lm_scale`. An example key is
+               `lm_scale_0.7`
+        - value: It contains the decoding result. `len(value)` equals to
+                 batch size. `value[i]` is the decoding result for the i-th
+                 utterance in the given batch.
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+
+        - params.method is "1best", it uses 1best decoding without LM rescoring.
+        - params.method is "nbest", it uses nbest decoding without LM rescoring.
+        - params.method is "nbest-rescoring", it uses nbest LM rescoring.
+        - params.method is "whole-lattice-rescoring", it uses whole lattice LM
+          rescoring.
+
+      model:
+        The neural model.
+      HLG:
+        The decoding graph. Used only when params.method is NOT ctc-decoding.
+      H:
+        The ctc topo. Used only when params.method is ctc-decoding.
+      bpe_model:
+        The BPE model. Used only when params.method is ctc-decoding.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      word_table:
+        The word symbol table.
+      sos_id:
+        The token ID of the SOS.
+      eos_id:
+        The token ID of the EOS.
+      G:
+        An LM. It is not None when params.method is "nbest-rescoring"
+        or "whole-lattice-rescoring". In general, the G in HLG
+        is a 3-gram LM, while this G is a 4-gram LM.
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict. Note: If it decodes to nothing, then return None.
+    """
+    if HLG is not None:
+        device = HLG.device
+    else:
+        device = H.device
+    feature = batch["inputs"]
+    assert feature.ndim == 3
+    feature = feature.to(device)
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+
+    nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
+    # nnet_output is (N, T, C)
+
+    supervision_segments = torch.stack(
+        (
+            supervisions["sequence_idx"],
+            supervisions["start_frame"] // params.subsampling_factor,
+            supervisions["num_frames"] // params.subsampling_factor,
+        ),
+        1,
+    ).to(torch.int32)
+
+    if H is None:
+        assert HLG is not None
+        decoding_graph = HLG
+    else:
+        assert HLG is None
+        assert bpe_model is not None
+        decoding_graph = H
+
+    lattice = get_lattice(
+        nnet_output=nnet_output,
+        decoding_graph=decoding_graph,
+        supervision_segments=supervision_segments,
+        search_beam=params.search_beam,
+        output_beam=params.output_beam,
+        min_active_states=params.min_active_states,
+        max_active_states=params.max_active_states,
+        subsampling_factor=params.subsampling_factor,
+    )
+
+    if params.method == "ctc-decoding":
+        best_path = one_best_decoding(
+            lattice=lattice, use_double_scores=params.use_double_scores
+        )
+        # Note: `best_path.aux_labels` contains token IDs, not word IDs
+        # since we are using H, not HLG here.
+        #
+        # token_ids is a lit-of-list of IDs
+        token_ids = get_texts(best_path)
+
+        # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+        hyps = bpe_model.decode(token_ids)
+
+        # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+        hyps = [s.split() for s in hyps]
+        key = "ctc-decoding"
+        return {key: hyps}
+
+    if params.method == "nbest-oracle":
+        # Note: You can also pass rescored lattices to it.
+        # We choose the HLG decoded lattice for speed reasons
+        # as HLG decoding is faster and the oracle WER
+        # is only slightly worse than that of rescored lattices.
+        best_path = nbest_oracle(
+            lattice=lattice,
+            num_paths=params.num_paths,
+            ref_texts=supervisions["text"],
+            word_table=word_table,
+            nbest_scale=params.nbest_scale,
+            oov="",
+        )
+        hyps = get_texts(best_path)
+        hyps = [[word_table[i] for i in ids] for ids in hyps]
+        key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}"  # noqa
+        return {key: hyps}
+
+    if params.method in ["1best", "nbest"]:
+        if params.method == "1best":
+            best_path = one_best_decoding(
+                lattice=lattice, use_double_scores=params.use_double_scores
+            )
+            key = "no_rescore"
+        else:
+            best_path = nbest_decoding(
+                lattice=lattice,
+                num_paths=params.num_paths,
+                use_double_scores=params.use_double_scores,
+                nbest_scale=params.nbest_scale,
+            )
+            key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}"  # noqa
+
+        hyps = get_texts(best_path)
+        hyps = [[word_table[i] for i in ids] for ids in hyps]
+        return {key: hyps}
+
+    assert params.method in [
+        "nbest-rescoring",
+        "whole-lattice-rescoring",
+        "attention-decoder",
+    ]
+
+    lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
+    lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
+    lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
+
+    if params.method == "nbest-rescoring":
+        best_path_dict = rescore_with_n_best_list(
+            lattice=lattice,
+            G=G,
+            num_paths=params.num_paths,
+            lm_scale_list=lm_scale_list,
+            nbest_scale=params.nbest_scale,
+        )
+    elif params.method == "whole-lattice-rescoring":
+        best_path_dict = rescore_with_whole_lattice(
+            lattice=lattice,
+            G_with_epsilon_loops=G,
+            lm_scale_list=lm_scale_list,
+        )
+    elif params.method == "attention-decoder":
+        # lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
+        rescored_lattice = rescore_with_whole_lattice(
+            lattice=lattice,
+            G_with_epsilon_loops=G,
+            lm_scale_list=None,
+        )
+        # TODO: pass `lattice` instead of `rescored_lattice` to
+        # `rescore_with_attention_decoder`
+
+        best_path_dict = rescore_with_attention_decoder(
+            lattice=rescored_lattice,
+            num_paths=params.num_paths,
+            model=model,
+            memory=memory,
+            memory_key_padding_mask=memory_key_padding_mask,
+            sos_id=sos_id,
+            eos_id=eos_id,
+            nbest_scale=params.nbest_scale,
+        )
+    else:
+        assert False, f"Unsupported decoding method: {params.method}"
+
+    ans = dict()
+    if best_path_dict is not None:
+        for lm_scale_str, best_path in best_path_dict.items():
+            hyps = get_texts(best_path)
+            hyps = [[word_table[i] for i in ids] for ids in hyps]
+            ans[lm_scale_str] = hyps
+    else:
+        ans = None
+    return ans
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    HLG: Optional[k2.Fsa],
+    H: Optional[k2.Fsa],
+    bpe_model: Optional[spm.SentencePieceProcessor],
+    word_table: k2.SymbolTable,
+    sos_id: int,
+    eos_id: int,
+    G: Optional[k2.Fsa] = None,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      HLG:
+        The decoding graph. Used only when params.method is NOT ctc-decoding.
+      H:
+        The ctc topo. Used only when params.method is ctc-decoding.
+      bpe_model:
+        The BPE model. Used only when params.method is ctc-decoding.
+      word_table:
+        It is the word symbol table.
+      sos_id:
+        The token ID for SOS.
+      eos_id:
+        The token ID for EOS.
+      G:
+        An LM. It is not None when params.method is "nbest-rescoring"
+        or "whole-lattice-rescoring". In general, the G in HLG
+        is a 3-gram LM, while this G is a 4-gram LM.
+    Returns:
+      Return a dict, whose key may be "no-rescore" if no LM rescoring
+      is used, or it may be "lm_scale_0.7" if LM rescoring is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        # pdb.set_trace()
+        texts = batch["supervisions"]["text"]
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            HLG=HLG,
+            H=H,
+            bpe_model=bpe_model,
+            batch=batch,
+            word_table=word_table,
+            G=G,
+            sos_id=sos_id,
+            eos_id=eos_id,
+        )
+
+        if hyps_dict is not None:
+            for lm_scale, hyps in hyps_dict.items():
+                this_batch = []
+                assert len(hyps) == len(texts)
+                for hyp_words, ref_text in zip(hyps, texts):
+                    ref_words = ref_text.split()
+                    this_batch.append((ref_words, hyp_words))
+
+                results[lm_scale].extend(this_batch)
+        else:
+            assert len(results) > 0, "It should not decode to empty in the first batch!"
+            this_batch = []
+            hyp_words = []
+            for ref_text in texts:
+                ref_words = ref_text.split()
+                this_batch.append((ref_words, hyp_words))
+
+            for lm_scale in results.keys():
+                results[lm_scale].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % 100 == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+    if params.method == "attention-decoder":
+        # Set it to False since there are too many logs.
+        enable_log = False
+    else:
+        enable_log = True
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
+        store_transcripts(filename=recog_path, texts=results)
+        if enable_log:
+            logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(
+                f, f"{test_set_name}-{key}", results, enable_log=enable_log
+            )
+            test_set_wers[key] = wer
+
+        if enable_log:
+            logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    MGB2AsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lang_dir = Path(args.lang_dir)
+    args.lm_dir = Path(args.lm_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
+    logging.info("Decoding started")
+    logging.info(params)
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+    sos_id = graph_compiler.sos_id
+    eos_id = graph_compiler.eos_id
+
+    if params.method == "ctc-decoding":
+        HLG = None
+        H = k2.ctc_topo(
+            max_token=max_token_id,
+            modified=False,
+            device=device,
+        )
+        bpe_model = spm.SentencePieceProcessor()
+        bpe_model.load(str(params.lang_dir / "bpe.model"))
+    else:
+        H = None
+        bpe_model = None
+        HLG = k2.Fsa.from_dict(
+            torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
+        )
+        assert HLG.requires_grad is False
+
+        if not hasattr(HLG, "lm_scores"):
+            HLG.lm_scores = HLG.scores.clone()
+
+    if params.method in (
+        "nbest-rescoring",
+        "whole-lattice-rescoring",
+        "attention-decoder",
+    ):
+        if not (params.lm_dir / "G_4_gram.pt").is_file():
+            logging.info("Loading G_4_gram.fst.txt")
+            logging.warning("It may take 8 minutes.")
+            with open(params.lm_dir / "G_4_gram.fst.txt") as f:
+                first_word_disambig_id = lexicon.word_table["#0"]
+
+                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
+                # G.aux_labels is not needed in later computations, so
+                # remove it here.
+                del G.aux_labels
+                # CAUTION: The following line is crucial.
+                # Arcs entering the back-off state have label equal to #0.
+                # We have to change it to 0 here.
+                G.labels[G.labels >= first_word_disambig_id] = 0
+                # See https://github.com/k2-fsa/k2/issues/874
+                # for why we need to set G.properties to None
+                G.__dict__["_properties"] = None
+                G = k2.Fsa.from_fsas([G]).to(device)
+                G = k2.arc_sort(G)
+                # Save a dummy value so that it can be loaded in C++.
+                # See https://github.com/pytorch/pytorch/issues/67902
+                # for why we need to do this.
+                G.dummy = 1
+
+                torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
+        else:
+            logging.info("Loading pre-compiled G_4_gram.pt")
+            d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
+            G = k2.Fsa.from_dict(d)
+
+        if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
+            # Add epsilon self-loops to G as we will compose
+            # it with the whole lattice later
+            G = k2.add_epsilon_self_loops(G)
+            G = k2.arc_sort(G)
+            G = G.to(device)
+
+        # G.lm_scores is used to replace HLG.lm_scores during
+        # LM rescoring.
+        G.lm_scores = G.scores.clone()
+    else:
+        G = None
+
+    model = Conformer(
+        num_features=params.feature_dim,
+        nhead=params.nhead,
+        d_model=params.attention_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        num_decoder_layers=params.num_decoder_layers,
+        vgg_frontend=params.vgg_frontend,
+        use_feat_batchnorm=params.use_feat_batchnorm,
+    )
+
+    if params.avg == 1:
+        load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+    else:
+        start = params.epoch - params.avg + 1
+        filenames = []
+        for i in range(start, params.epoch + 1):
+            if start >= 0:
+                filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+        logging.info(f"averaging {filenames}")
+        model.to(device)
+        model.load_state_dict(average_checkpoints(filenames, device=device))
+
+    model.to(device)
+    model.eval()
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    MGB2 = MGB2AsrDataModule(args)
+
+    test_cuts = MGB2.test_cuts()
+    dev_cuts = MGB2.dev_cuts()
+
+    test_dl = MGB2.test_dataloaders(test_cuts)
+    dev_dl = MGB2.test_dataloaders(dev_cuts)
+
+    test_sets = ["test", "dev"]
+    test_all_dl = [test_dl, dev_dl]
+
+    for test_set, test_dl in zip(test_sets, test_all_dl):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            HLG=HLG,
+            H=H,
+            bpe_model=bpe_model,
+            word_table=lexicon.word_table,
+            G=G,
+            sos_id=sos_id,
+            eos_id=eos_id,
+        )
+
+        save_results(params=params, test_set_name=test_set, results_dict=results_dict)
+
+    logging.info("Done!")
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/conformer_ctc/download_lm.py b/egs/mgb2/ASR/conformer_ctc/download_lm.py
new file mode 120000
index 000000000..c9668bd2d
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/download_lm.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/download_lm.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/export.py b/egs/mgb2/ASR/conformer_ctc/export.py
new file mode 120000
index 000000000..60e314d9d
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/export.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/export.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/local/generate_unique_lexicon.py b/egs/mgb2/ASR/conformer_ctc/generate_unique_lexicon.py
similarity index 100%
rename from egs/tedlium3/ASR/local/generate_unique_lexicon.py
rename to egs/mgb2/ASR/conformer_ctc/generate_unique_lexicon.py
diff --git a/egs/mgb2/ASR/conformer_ctc/label_smoothing.py b/egs/mgb2/ASR/conformer_ctc/label_smoothing.py
new file mode 120000
index 000000000..e9d239fff
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/label_smoothing.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/label_smoothing.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/pretrained.py b/egs/mgb2/ASR/conformer_ctc/pretrained.py
new file mode 100755
index 000000000..d30ca98d8
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/pretrained.py
@@ -0,0 +1,430 @@
+#!/usr/bin/env python3
+# Copyright      2021  Xiaomi Corp.        (authors: Fangjun Kuang,
+#                                                    Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from conformer import Conformer
+from torch.nn.utils.rnn import pad_sequence
+
+from icefall.decode import (
+    get_lattice,
+    one_best_decoding,
+    rescore_with_attention_decoder,
+    rescore_with_whole_lattice,
+)
+from icefall.utils import AttributeDict, get_texts
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--checkpoint",
+        type=str,
+        required=True,
+        help="Path to the checkpoint. "
+        "The checkpoint is assumed to be saved by "
+        "icefall.checkpoint.save_checkpoint().",
+    )
+
+    parser.add_argument(
+        "--words-file",
+        type=str,
+        help="""Path to words.txt.
+        Used only when method is not ctc-decoding.
+        """,
+    )
+
+    parser.add_argument(
+        "--HLG",
+        type=str,
+        help="""Path to HLG.pt.
+        Used only when method is not ctc-decoding.
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.
+        Used only when method is ctc-decoding.
+        """,
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="1best",
+        help="""Decoding method.
+        Possible values are:
+        (0) ctc-decoding - Use CTC decoding. It uses a sentence
+            piece model, i.e., lang_dir/bpe.model, to convert
+            word pieces to words. It needs neither a lexicon
+            nor an n-gram LM.
+        (1) 1best - Use the best path as decoding output. Only
+            the transformer encoder output is used for decoding.
+            We call it HLG decoding.
+        (2) whole-lattice-rescoring - Use an LM to rescore the
+            decoding lattice and then use 1best to decode the
+            rescored lattice.
+            We call it HLG decoding + n-gram LM rescoring.
+        (3) attention-decoder - Extract n paths from the rescored
+            lattice and use the transformer attention decoder for
+            rescoring.
+            We call it HLG decoding + n-gram LM rescoring + attention
+            decoder rescoring.
+        """,
+    )
+
+    parser.add_argument(
+        "--G",
+        type=str,
+        help="""An LM for rescoring.
+        Used only when method is
+        whole-lattice-rescoring or attention-decoder.
+        It's usually a 4-gram LM.
+        """,
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=100,
+        help="""
+        Used only when method is attention-decoder.
+        It specifies the size of n-best list.""",
+    )
+
+    parser.add_argument(
+        "--ngram-lm-scale",
+        type=float,
+        default=1.3,
+        help="""
+        Used only when method is whole-lattice-rescoring and attention-decoder.
+        It specifies the scale for n-gram LM scores.
+        (Note: You need to tune it on a dataset.)
+        """,
+    )
+
+    parser.add_argument(
+        "--attention-decoder-scale",
+        type=float,
+        default=1.2,
+        help="""
+        Used only when method is attention-decoder.
+        It specifies the scale for attention decoder scores.
+        (Note: You need to tune it on a dataset.)
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=0.5,
+        help="""
+        Used only when method is attention-decoder.
+        It specifies the scale for lattice.scores when
+        extracting n-best lists. A smaller value results in
+        more unique number of paths with the risk of missing
+        the best path.
+        """,
+    )
+
+    parser.add_argument(
+        "--sos-id",
+        type=int,
+        default=1,
+        help="""
+        Used only when method is attention-decoder.
+        It specifies ID for the SOS token.
+        """,
+    )
+
+    parser.add_argument(
+        "--num-classes",
+        type=int,
+        default=500,
+        help="""
+        Vocab size in the BPE model.
+        """,
+    )
+
+    parser.add_argument(
+        "--eos-id",
+        type=int,
+        default=1,
+        help="""
+        Used only when method is attention-decoder.
+        It specifies ID for the EOS token.
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    params = AttributeDict(
+        {
+            "sample_rate": 16000,
+            # parameters for conformer
+            "subsampling_factor": 4,
+            "vgg_frontend": False,
+            "use_feat_batchnorm": True,
+            "feature_dim": 80,
+            "nhead": 8,
+            "attention_dim": 512,
+            "num_decoder_layers": 6,
+            # parameters for decoding
+            "search_beam": 20,
+            "output_beam": 8,
+            "min_active_states": 30,
+            "max_active_states": 10000,
+            "use_double_scores": True,
+        }
+    )
+    return params
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert sample_rate == expected_sample_rate, (
+            f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
+        )
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+
+    params = get_params()
+    if args.method != "attention-decoder":
+        # to save memory as the attention decoder
+        # will not be used
+        params.num_decoder_layers = 0
+
+    params.update(vars(args))
+    logging.info(f"{params}")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("Creating model")
+    model = Conformer(
+        num_features=params.feature_dim,
+        nhead=params.nhead,
+        d_model=params.attention_dim,
+        num_classes=params.num_classes,
+        subsampling_factor=params.subsampling_factor,
+        num_decoder_layers=params.num_decoder_layers,
+        vgg_frontend=params.vgg_frontend,
+        use_feat_batchnorm=params.use_feat_batchnorm,
+    )
+
+    checkpoint = torch.load(args.checkpoint, map_location="cpu")
+    model.load_state_dict(checkpoint["model"], strict=False)
+    model.to(device)
+    model.eval()
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = params.sample_rate
+    opts.mel_opts.num_bins = params.feature_dim
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {params.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
+
+    # Note: We don't use key padding mask for attention during decoding
+    with torch.no_grad():
+        nnet_output, memory, memory_key_padding_mask = model(features)
+
+    batch_size = nnet_output.shape[0]
+    supervision_segments = torch.tensor(
+        [[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
+        dtype=torch.int32,
+    )
+
+    if params.method == "ctc-decoding":
+        logging.info("Use CTC decoding")
+        bpe_model = spm.SentencePieceProcessor()
+        bpe_model.load(params.bpe_model)
+        max_token_id = params.num_classes - 1
+
+        H = k2.ctc_topo(
+            max_token=max_token_id,
+            modified=False,
+            device=device,
+        )
+
+        lattice = get_lattice(
+            nnet_output=nnet_output,
+            decoding_graph=H,
+            supervision_segments=supervision_segments,
+            search_beam=params.search_beam,
+            output_beam=params.output_beam,
+            min_active_states=params.min_active_states,
+            max_active_states=params.max_active_states,
+            subsampling_factor=params.subsampling_factor,
+        )
+
+        best_path = one_best_decoding(
+            lattice=lattice, use_double_scores=params.use_double_scores
+        )
+        token_ids = get_texts(best_path)
+        hyps = bpe_model.decode(token_ids)
+        hyps = [s.split() for s in hyps]
+    elif params.method in [
+        "1best",
+        "whole-lattice-rescoring",
+        "attention-decoder",
+    ]:
+        logging.info(f"Loading HLG from {params.HLG}")
+        HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
+        HLG = HLG.to(device)
+        if not hasattr(HLG, "lm_scores"):
+            # For whole-lattice-rescoring and attention-decoder
+            HLG.lm_scores = HLG.scores.clone()
+
+        if params.method in [
+            "whole-lattice-rescoring",
+            "attention-decoder",
+        ]:
+            logging.info(f"Loading G from {params.G}")
+            G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
+            # Add epsilon self-loops to G as we will compose
+            # it with the whole lattice later
+            G = G.to(device)
+            G = k2.add_epsilon_self_loops(G)
+            G = k2.arc_sort(G)
+            G.lm_scores = G.scores.clone()
+
+        lattice = get_lattice(
+            nnet_output=nnet_output,
+            decoding_graph=HLG,
+            supervision_segments=supervision_segments,
+            search_beam=params.search_beam,
+            output_beam=params.output_beam,
+            min_active_states=params.min_active_states,
+            max_active_states=params.max_active_states,
+            subsampling_factor=params.subsampling_factor,
+        )
+
+        if params.method == "1best":
+            logging.info("Use HLG decoding")
+            best_path = one_best_decoding(
+                lattice=lattice, use_double_scores=params.use_double_scores
+            )
+        elif params.method == "whole-lattice-rescoring":
+            logging.info("Use HLG decoding + LM rescoring")
+            best_path_dict = rescore_with_whole_lattice(
+                lattice=lattice,
+                G_with_epsilon_loops=G,
+                lm_scale_list=[params.ngram_lm_scale],
+            )
+            best_path = next(iter(best_path_dict.values()))
+        elif params.method == "attention-decoder":
+            logging.info("Use HLG + LM rescoring + attention decoder rescoring")
+            rescored_lattice = rescore_with_whole_lattice(
+                lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
+            )
+            best_path_dict = rescore_with_attention_decoder(
+                lattice=rescored_lattice,
+                num_paths=params.num_paths,
+                model=model,
+                memory=memory,
+                memory_key_padding_mask=memory_key_padding_mask,
+                sos_id=params.sos_id,
+                eos_id=params.eos_id,
+                nbest_scale=params.nbest_scale,
+                ngram_lm_scale=params.ngram_lm_scale,
+                attention_scale=params.attention_decoder_scale,
+            )
+            best_path = next(iter(best_path_dict.values()))
+
+        hyps = get_texts(best_path)
+        word_sym_table = k2.SymbolTable.from_file(params.words_file)
+        hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
+    else:
+        raise ValueError(f"Unsupported decoding method: {params.method}")
+
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/mgb2/ASR/conformer_ctc/subsampling.py b/egs/mgb2/ASR/conformer_ctc/subsampling.py
new file mode 120000
index 000000000..16354dc73
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/subsampling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/subsampling.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/test_label_smoothing.py b/egs/mgb2/ASR/conformer_ctc/test_label_smoothing.py
new file mode 120000
index 000000000..04b959ecf
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/test_label_smoothing.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/test_label_smoothing.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/test_subsampling.py b/egs/mgb2/ASR/conformer_ctc/test_subsampling.py
new file mode 120000
index 000000000..98c3be3e6
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/test_subsampling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/test_subsampling.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/test_transformer.py b/egs/mgb2/ASR/conformer_ctc/test_transformer.py
new file mode 120000
index 000000000..8b0990ec6
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/test_transformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/test_transformer.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/conformer_ctc/train.py b/egs/mgb2/ASR/conformer_ctc/train.py
new file mode 100755
index 000000000..08ffee210
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/train.py
@@ -0,0 +1,766 @@
+#!/usr/bin/env python3
+# Copyright 2022 Johns Hopkins University  (Amir Hussein)
+# Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
+
+
+import argparse
+import logging
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import MGB2AsrDataModule
+from conformer import Conformer
+from lhotse.cut import Cut
+from lhotse.utils import fix_random_seed
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    MetricsTracker,
+    encode_supervisions,
+    setup_logger,
+    str2bool,
+)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=50,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=0,
+        help="""Resume training from from this epoch.
+        If it is positive, it will load checkpoint from
+        conformer_ctc/exp/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="""The lang dir
+        It contains language related input files such as
+        "lexicon.txt"
+        """,
+    )
+
+    parser.add_argument(
+        "--att-rate",
+        type=float,
+        default=0.8,
+        help="""The attention rate.
+        The total loss is (1 -  att_rate) * ctc_loss + att_rate * att_loss
+        """,
+    )
+
+    parser.add_argument(
+        "--num-decoder-layers",
+        type=int,
+        default=6,
+        help="""Number of decoder layer of transformer decoder.
+        Setting this to 0 will not create the decoder at all (pure CTC model)
+        """,
+    )
+
+    parser.add_argument(
+        "--lr-factor",
+        type=float,
+        default=5.0,
+        help="The lr_factor for Noam optimizer",
+    )
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - use_feat_batchnorm: Normalization for the input features, can be a
+                              boolean indicating whether to do batch
+                              normalization, or a float which means just scaling
+                              the input features with this float value.
+                              If given a float value, we will remove batchnorm
+                              layer in `ConvolutionModule` as well.
+
+        - attention_dim: Hidden dim for multi-head attention model.
+
+        - head: Number of heads of multi-head attention model.
+
+        - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+        - beam_size: It is used in k2.ctc_loss
+
+        - reduction: It is used in k2.ctc_loss
+
+        - use_double_scores: It is used in k2.ctc_loss
+
+        - weight_decay:  The weight_decay for the optimizer.
+
+        - warm_step: The warm_step for Noam optimizer.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 50,
+            "reset_interval": 200,
+            "valid_interval": 3000,
+            # parameters for conformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,
+            "use_feat_batchnorm": True,
+            "attention_dim": 512,
+            "nhead": 8,
+            "num_decoder_layers": 6,
+            # parameters for loss
+            "beam_size": 10,
+            "reduction": "sum",
+            "use_double_scores": True,
+            # parameters for Noam
+            "weight_decay": 1e-6,
+            "warm_step": 80000,
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+    """Load checkpoint from file.
+
+    If params.start_epoch is positive, it will load the checkpoint from
+    `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+    Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+    it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The learning rate scheduler we are using.
+    Returns:
+      Return None.
+    """
+    if params.start_epoch <= 0:
+        return
+
+    filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: nn.Module,
+    batch: dict,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute CTC loss given the model and its inputs.
+
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Conformer in our case.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      graph_compiler:
+        It is used to build a decoding graph from a ctc topo and training
+        transcript. The training transcript is contained in the given `batch`,
+        while the ctc topo is built when this compiler is instantiated.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+    """
+    device = graph_compiler.device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    with torch.set_grad_enabled(is_training):
+        nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
+        # nnet_output is (N, T, C)
+
+    # NOTE: We need `encode_supervisions` to sort sequences with
+    # different duration in decreasing order, required by
+    # `k2.intersect_dense` called in `k2.ctc_loss`
+    supervision_segments, texts = encode_supervisions(
+        supervisions, subsampling_factor=params.subsampling_factor
+    )
+
+    token_ids = graph_compiler.texts_to_ids(texts)
+
+    decoding_graph = graph_compiler.compile(token_ids)
+
+    dense_fsa_vec = k2.DenseFsaVec(
+        nnet_output,
+        supervision_segments,
+        allow_truncate=params.subsampling_factor - 1,
+    )
+
+    ctc_loss = k2.ctc_loss(
+        decoding_graph=decoding_graph,
+        dense_fsa_vec=dense_fsa_vec,
+        output_beam=params.beam_size,
+        reduction="none",
+        use_double_scores=params.use_double_scores,
+    )
+    # filter inf from ctc_loss
+    ctc_loss = torch.sum(
+        torch.where(
+            ctc_loss != float("inf"),
+            ctc_loss,
+            torch.tensor(0, dtype=torch.float32).to(device),
+        )
+    )
+
+    if params.att_rate != 0.0:
+        with torch.set_grad_enabled(is_training):
+            mmodel = model.module if hasattr(model, "module") else model
+            # Note: We need to generate an unsorted version of token_ids
+            # `encode_supervisions()` called above sorts text, but
+            # encoder_memory and memory_mask are not sorted, so we
+            # use an unsorted version `supervisions["text"]` to regenerate
+            # the token_ids
+            #
+            # See https://github.com/k2-fsa/icefall/issues/97
+            # for more details
+            unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
+
+            att_loss = mmodel.decoder_forward(
+                encoder_memory,
+                memory_mask,
+                token_ids=unsorted_token_ids,
+                sos_id=graph_compiler.sos_id,
+                eos_id=graph_compiler.eos_id,
+            )
+        loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
+    else:
+        loss = ctc_loss
+        att_loss = torch.tensor([0])
+
+    assert loss.requires_grad == is_training
+
+    info = MetricsTracker()
+    info["frames"] = supervision_segments[:, 2].sum().item()
+    info["ctc_loss"] = ctc_loss.detach().cpu().item()
+    if params.att_rate != 0.0:
+        info["att_loss"] = att_loss.detach().cpu().item()
+
+    info["loss"] = loss.detach().cpu().item()
+
+    return loss, info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: nn.Module,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(valid_dl):
+        loss, loss_info = compute_loss(
+            params=params,
+            model=model,
+            batch=batch,
+            graph_compiler=graph_compiler,
+            is_training=False,
+        )
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: torch.optim.Optimizer,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      graph_compiler:
+        It is used to convert transcripts to FSAs.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+    """
+
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(train_dl):
+        if batch["inputs"].shape[0] == len(batch["supervisions"]["text"]):
+            params.batch_idx_train += 1
+            batch_size = len(batch["supervisions"]["text"])
+
+            loss, loss_info = compute_loss(
+                params=params,
+                model=model,
+                batch=batch,
+                graph_compiler=graph_compiler,
+                is_training=True,
+            )
+            # summary stats
+            tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+            # if tot_loss is None:
+            #     logging.warning("Batch mismatch. Skipping ...")
+            #     del batch
+            #     del tot_loss
+            #     continue;
+            # elif tot_loss.isinf() or tot_loss.isnan():
+            #     logging.warning("NaN or Inf loss. Skipping ...")
+            #     del batch
+            #     del tot_loss
+            #     continue;
+            # NOTE: We use reduction==sum and loss is computed over utterances
+            # in the batch and there is no normalization to it so far.
+
+            optimizer.zero_grad()
+            loss.backward()
+            clip_grad_norm_(model.parameters(), 5.0, 2.0)
+            optimizer.step()
+
+            if batch_idx % params.log_interval == 0:
+                logging.info(
+                    f"Epoch {params.cur_epoch}, "
+                    f"batch {batch_idx}, loss[{loss_info}], "
+                    f"tot_loss[{tot_loss}], batch size: {batch_size}"
+                )
+
+            if batch_idx % params.log_interval == 0:
+
+                if tb_writer is not None:
+                    loss_info.write_summary(
+                        tb_writer, "train/current_", params.batch_idx_train
+                    )
+                    tot_loss.write_summary(
+                        tb_writer, "train/tot_", params.batch_idx_train
+                    )
+
+            if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+                logging.info("Computing validation loss")
+                valid_info = compute_validation_loss(
+                    params=params,
+                    model=model,
+                    graph_compiler=graph_compiler,
+                    valid_dl=valid_dl,
+                    world_size=world_size,
+                )
+                model.train()
+                logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+                if tb_writer is not None:
+                    valid_info.write_summary(
+                        tb_writer, "train/valid_", params.batch_idx_train
+                    )
+        else:
+            logging.warning(
+                f"Batch {batch_idx} mismatch in dimentions between the input and the output. Skipping ..."
+            )
+            continue
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+
+    fix_random_seed(42)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+    logging.info(params)
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+
+    graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+
+    logging.info("About to create model")
+    model = Conformer(
+        num_features=params.feature_dim,
+        nhead=params.nhead,
+        d_model=params.attention_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        num_decoder_layers=params.num_decoder_layers,
+        vgg_frontend=False,
+        use_feat_batchnorm=params.use_feat_batchnorm,
+    )
+
+    checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+    model.to(device)
+    if world_size > 1:
+        model = DDP(model, device_ids=[rank])
+
+    optimizer = Noam(
+        model.parameters(),
+        model_size=params.attention_dim,
+        factor=params.lr_factor,
+        warm_step=params.warm_step,
+        weight_decay=params.weight_decay,
+    )
+
+    if checkpoints:
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    MGB2 = MGB2AsrDataModule(args)
+
+    train_cuts = MGB2.train_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 20 seconds
+        #
+        # Caution: There is a reason to select 20.0 here. Please see
+        # ../local/display_manifest_statistics.py
+        #
+        # You should use ../local/display_manifest_statistics.py to get
+        # an utterance duration distribution for your dataset to select
+        # the threshold
+        return 0.5 <= c.duration <= 30.0
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+    train_dl = MGB2.train_dataloaders(train_cuts)
+
+    valid_cuts = MGB2.dev_cuts()
+    valid_dl = MGB2.test_dataloaders(valid_cuts)
+
+    scan_pessimistic_batches_for_oom(
+        model=model,
+        train_dl=train_dl,
+        optimizer=optimizer,
+        graph_compiler=graph_compiler,
+        params=params,
+    )
+
+    for epoch in range(params.start_epoch, params.num_epochs):
+        train_dl.sampler.set_epoch(epoch)
+
+        cur_lr = optimizer._rate
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        if rank == 0:
+            logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            optimizer=optimizer,
+            graph_compiler=graph_compiler,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            tb_writer=tb_writer,
+            world_size=world_size,
+        )
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            optimizer=optimizer,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+    model: nn.Module,
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    params: AttributeDict,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            optimizer.zero_grad()
+            loss, _ = compute_loss(
+                params=params,
+                model=model,
+                batch=batch,
+                graph_compiler=graph_compiler,
+                is_training=True,
+            )
+            loss.backward()
+            clip_grad_norm_(model.parameters(), 5.0, 2.0)
+            optimizer.step()
+        except RuntimeError as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            raise
+
+
+def main():
+    parser = get_parser()
+    MGB2AsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lang_dir = Path(args.lang_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/conformer_ctc/transformer.py b/egs/mgb2/ASR/conformer_ctc/transformer.py
new file mode 120000
index 000000000..1c3f43fcf
--- /dev/null
+++ b/egs/mgb2/ASR/conformer_ctc/transformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/transformer.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/local/__init__.py b/egs/mgb2/ASR/local/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/mgb2/ASR/local/compile_hlg.py b/egs/mgb2/ASR/local/compile_hlg.py
new file mode 120000
index 000000000..471aa7fb4
--- /dev/null
+++ b/egs/mgb2/ASR/local/compile_hlg.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compile_hlg.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/local/compute_fbank_mgb2.py b/egs/mgb2/ASR/local/compute_fbank_mgb2.py
new file mode 100755
index 000000000..6cae69e41
--- /dev/null
+++ b/egs/mgb2/ASR/local/compute_fbank_mgb2.py
@@ -0,0 +1,101 @@
+#!/usr/bin/env python3
+# Copyright 2022 Johns Hopkins University  (Amir Hussein)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+This file computes fbank features of the MGB2 dataset.
+It looks for manifests in the directory data/manifests.
+
+The generated fbank features are saved in data/fbank.
+"""
+
+import logging
+import os
+from pathlib import Path
+
+import torch
+from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
+from lhotse.recipes.utils import read_manifests_if_cached
+
+from icefall.utils import get_executor
+
+# Torch's multithreaded behavior needs to be disabled or
+# it wastes a lot of CPU and slow things down.
+# Do this outside of main() in case it needs to take effect
+# even when we are not invoking the main (e.g. when spawning subprocesses).
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+
+def compute_fbank_mgb2():
+    src_dir = Path("data/manifests")
+    output_dir = Path("data/fbank")
+    num_jobs = min(15, os.cpu_count())
+    num_mel_bins = 80
+
+    dataset_parts = (
+        "train",
+        "test",
+        "dev",
+    )
+    manifests = read_manifests_if_cached(
+        prefix="mgb2", dataset_parts=dataset_parts, output_dir=src_dir
+    )
+    assert manifests is not None
+    assert len(manifests) == len(dataset_parts), (
+        len(manifests),
+        len(dataset_parts),
+        list(manifests.keys()),
+        dataset_parts,
+    )
+    extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
+
+    with get_executor() as ex:  # Initialize the executor only once.
+        for partition, m in manifests.items():
+            if (output_dir / f"cuts_{partition}.json.gz").is_file():
+                logging.info(f"{partition} already exists - skipping.")
+                continue
+            logging.info(f"Processing {partition}")
+            cut_set = CutSet.from_manifests(
+                recordings=m["recordings"],
+                supervisions=m["supervisions"],
+            )
+            if "train" in partition:
+                cut_set = (
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
+                )
+            cut_set = cut_set.compute_and_store_features(
+                extractor=extractor,
+                storage_path=f"{output_dir}/feats_{partition}",
+                # when an executor is specified, make more partitions
+                num_jobs=num_jobs if ex is None else 80,
+                executor=ex,
+                storage_type=LilcomChunkyWriter,
+            )
+            logging.info("About to split cuts into smaller chunks.")
+            cut_set = cut_set.trim_to_supervisions(
+                keep_overlapping=False, min_duration=None
+            )
+            cut_set.to_file(output_dir / f"cuts_{partition}.jsonl.gz")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+
+    compute_fbank_mgb2()
diff --git a/egs/mgb2/ASR/local/compute_fbank_musan.py b/egs/mgb2/ASR/local/compute_fbank_musan.py
new file mode 100755
index 000000000..5d0d69a13
--- /dev/null
+++ b/egs/mgb2/ASR/local/compute_fbank_musan.py
@@ -0,0 +1,108 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+This file computes fbank features of the musan dataset.
+It looks for manifests in the directory data/manifests.
+The generated fbank features are saved in data/fbank.
+"""
+
+import logging
+import os
+from pathlib import Path
+
+import torch
+from lhotse import (
+    ChunkedLilcomHdf5Writer,
+    CutSet,
+    Fbank,
+    FbankConfig,
+    LilcomChunkyWriter,
+    combine,
+)
+from lhotse.recipes.utils import read_manifests_if_cached
+
+from icefall.utils import get_executor
+
+# Torch's multithreaded behavior needs to be disabled or
+# it wastes a lot of CPU and slow things down.
+# Do this outside of main() in case it needs to take effect
+# even when we are not invoking the main (e.g. when spawning subprocesses).
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+
+def compute_fbank_musan():
+    src_dir = Path("data/manifests")
+    output_dir = Path("data/fbank")
+    num_jobs = min(15, os.cpu_count())
+    num_mel_bins = 80
+
+    dataset_parts = (
+        "music",
+        "speech",
+        "noise",
+    )
+    prefix = "musan"
+    suffix = "jsonl.gz"
+    manifests = read_manifests_if_cached(
+        prefix=prefix,
+        dataset_parts=dataset_parts,
+        output_dir=src_dir,
+        suffix=suffix,
+    )
+    assert manifests is not None
+    assert len(manifests) == len(dataset_parts), (
+        len(manifests),
+        len(dataset_parts),
+    )
+
+    musan_cuts_path = output_dir / "cuts_musan.jsonl.gz"
+
+    if musan_cuts_path.is_file():
+        logging.info(f"{musan_cuts_path} already exists - skipping")
+        return
+
+    logging.info("Extracting features for Musan")
+
+    extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
+
+    with get_executor() as ex:  # Initialize the executor only once.
+        # create chunks of Musan with duration 5 - 10 seconds
+        musan_cuts = (
+            CutSet.from_manifests(
+                recordings=combine(part["recordings"] for part in manifests.values())
+            )
+            .cut_into_windows(10.0)
+            .filter(lambda c: c.duration > 5)
+            .compute_and_store_features(
+                extractor=extractor,
+                storage_path=f"{output_dir}/feats_musan",
+                num_jobs=num_jobs if ex is None else 80,
+                executor=ex,
+                storage_type=LilcomChunkyWriter,
+            )
+        )
+        musan_cuts.to_file(musan_cuts_path)
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    compute_fbank_musan()
diff --git a/egs/mgb2/ASR/local/convert_transcript_words_to_tokens.py b/egs/mgb2/ASR/local/convert_transcript_words_to_tokens.py
new file mode 100755
index 000000000..a8d5117c9
--- /dev/null
+++ b/egs/mgb2/ASR/local/convert_transcript_words_to_tokens.py
@@ -0,0 +1,103 @@
+#!/usr/bin/env python3
+
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+"""
+Convert a transcript file containing words to a corpus file containing tokens
+for LM training with the help of a lexicon.
+
+If the lexicon contains phones, the resulting LM will be a phone LM; If the
+lexicon contains word pieces, the resulting LM will be a word piece LM.
+
+If a word has multiple pronunciations, the one that appears first in the lexicon
+is kept; others are removed.
+
+If the input transcript is:
+
+    hello zoo world hello
+    world zoo
+    foo zoo world hellO
+
+and if the lexicon is
+
+     SPN
+    hello h e l l o 2
+    hello h e l l o
+    world w o r l d
+    zoo z o o
+
+Then the output is
+
+    h e l l o 2 z o o w o r l d h e l l o 2
+    w o r l d z o o
+    SPN z o o w o r l d SPN
+"""
+
+import argparse
+from pathlib import Path
+from typing import Dict, List
+
+from generate_unique_lexicon import filter_multiple_pronunications
+
+from icefall.lexicon import read_lexicon
+
+
+def get_args():
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "--transcript",
+        type=str,
+        help="The input transcript file."
+        "We assume that the transcript file consists of "
+        "lines. Each line consists of space separated words.",
+    )
+    parser.add_argument("--lexicon", type=str, help="The input lexicon file.")
+    parser.add_argument("--oov", type=str, default="", help="The OOV word.")
+
+    return parser.parse_args()
+
+
+def process_line(lexicon: Dict[str, List[str]], line: str, oov_token: str) -> None:
+    """
+    Args:
+      lexicon:
+        A dict containing pronunciations. Its keys are words and values
+        are pronunciations (i.e., tokens).
+      line:
+        A line of transcript consisting of space(s) separated words.
+      oov_token:
+        The pronunciation of the oov word if a word in `line` is not present
+        in the lexicon.
+    Returns:
+      Return None.
+    """
+    s = ""
+    words = line.strip().split()
+    for i, w in enumerate(words):
+        tokens = lexicon.get(w, oov_token)
+        s += " ".join(tokens)
+        s += " "
+    print(s.strip())
+
+
+def main():
+    args = get_args()
+    assert Path(args.lexicon).is_file()
+    assert Path(args.transcript).is_file()
+    assert len(args.oov) > 0
+
+    # Only the first pronunciation of a word is kept
+    lexicon = filter_multiple_pronunications(read_lexicon(args.lexicon))
+
+    lexicon = dict(lexicon)
+
+    assert args.oov in lexicon
+
+    oov_token = lexicon[args.oov]
+
+    with open(args.transcript) as f:
+        for line in f:
+            process_line(lexicon=lexicon, line=line, oov_token=oov_token)
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/local/display_manifest_statistics.py b/egs/mgb2/ASR/local/display_manifest_statistics.py
new file mode 100755
index 000000000..d3e224905
--- /dev/null
+++ b/egs/mgb2/ASR/local/display_manifest_statistics.py
@@ -0,0 +1,97 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This file displays duration statistics of utterances in a manifest.
+You can use the displayed value to choose minimum/maximum duration
+to remove short and long utterances during the training.
+
+See the function `remove_short_and_long_utt()` in transducer/train.py
+for usage.
+"""
+
+
+from lhotse import load_manifest
+
+
+def main():
+    # path = "./data/fbank/cuts_train.jsonl.gz"
+    path = "./data/fbank/cuts_dev.jsonl.gz"
+    # path = "./data/fbank/cuts_test.jsonl.gz"
+
+    cuts = load_manifest(path)
+    cuts.describe()
+
+
+if __name__ == "__main__":
+    main()
+
+"""
+# train
+
+Cuts count: 1125309
+Total duration (hours): 3403.9
+Speech duration (hours): 3403.9 (100.0%)
+***
+Duration statistics (seconds):
+mean    10.9
+std     10.1
+min     0.2
+25%     5.2
+50%     7.8
+75%     12.7
+99%     52.0
+99.5%   65.1
+99.9%   99.5
+max     228.9
+
+
+# test
+Cuts count: 5365
+Total duration (hours): 9.6
+Speech duration (hours): 9.6 (100.0%)
+***
+Duration statistics (seconds):
+mean    6.4
+std     1.5
+min     1.6
+25%     5.3
+50%     6.5
+75%     7.6
+99%     9.5
+99.5%   9.7
+99.9%   10.3
+max     12.4
+
+# dev
+Cuts count: 5002
+Total duration (hours): 8.5
+Speech duration (hours): 8.5 (100.0%)
+***
+Duration statistics (seconds):
+mean    6.1
+std     1.7
+min     1.5
+25%     4.8
+50%     6.2
+75%     7.4
+99%     9.5
+99.5%   9.7
+99.9%   10.1
+max     20.3
+
+"""
diff --git a/egs/mgb2/ASR/local/generate_unique_lexicon.py b/egs/mgb2/ASR/local/generate_unique_lexicon.py
new file mode 120000
index 000000000..c0aea1403
--- /dev/null
+++ b/egs/mgb2/ASR/local/generate_unique_lexicon.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/generate_unique_lexicon.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/local/prep_mgb2_lexicon.sh b/egs/mgb2/ASR/local/prep_mgb2_lexicon.sh
new file mode 100755
index 000000000..3b673db6f
--- /dev/null
+++ b/egs/mgb2/ASR/local/prep_mgb2_lexicon.sh
@@ -0,0 +1,30 @@
+#!/usr/bin/env bash
+
+# Copyright 2022 QCRI (author: Amir Hussein)
+# Apache 2.0
+# This script prepares the graphemic lexicon.
+
+dir=data/local/dict
+lexicon_url1="https://arabicspeech.org/arabicspeech-portal-resources/lexicon/ar-ar_grapheme_lexicon_20160209.bz2";
+lexicon_url2="https://arabicspeech.org/arabicspeech-portal-resources/lexicon/ar-ar_phoneme_lexicon_20140317.bz2";
+stage=0
+lang_dir=download/lm
+mkdir -p $lang_dir
+
+if [ $stage -le 0 ]; then
+  echo "$0: Downloading text for lexicon... $(date)."
+  wget --no-check-certificate -P $lang_dir $lexicon_url1
+  wget --no-check-certificate -P $lang_dir $lexicon_url2
+  bzcat $lang_dir/ar-ar_grapheme_lexicon_20160209.bz2 | sed '1,3d' | awk '{print $1}'  >  $lang_dir/grapheme_lexicon
+  bzcat $lang_dir/ar-ar_phoneme_lexicon_20140317.bz2 | sed '1,3d' | awk '{print $1}' >>  $lang_dir/phoneme_lexicon
+  cat download/lm/train/text | cut -d ' ' -f 2- | tr -s " " "\n" | sort -u >> $lang_dir/uniq_words
+fi
+
+
+if [ $stage -le 0 ]; then
+  echo "$0: processing lexicon text and creating lexicon... $(date)."
+  # remove vowels and  rare alef wasla
+  cat $lang_dir/uniq_words |  sed -e 's:[FNKaui\~o\`]::g' -e 's:{:}:g' | sed -r '/^\s*$/d' | sort -u > $lang_dir/grapheme_lexicon.txt
+fi
+
+echo "$0: Lexicon preparation succeeded"
diff --git a/egs/tedlium3/ASR/local/prepare_lang.py b/egs/mgb2/ASR/local/prepare_lang.py
similarity index 100%
rename from egs/tedlium3/ASR/local/prepare_lang.py
rename to egs/mgb2/ASR/local/prepare_lang.py
diff --git a/egs/mgb2/ASR/local/prepare_lang_bpe.py b/egs/mgb2/ASR/local/prepare_lang_bpe.py
new file mode 120000
index 000000000..36b40e7fc
--- /dev/null
+++ b/egs/mgb2/ASR/local/prepare_lang_bpe.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/prepare_lang_bpe.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/local/prepare_mgb2_lexicon.py b/egs/mgb2/ASR/local/prepare_mgb2_lexicon.py
new file mode 100755
index 000000000..99e1fa34d
--- /dev/null
+++ b/egs/mgb2/ASR/local/prepare_mgb2_lexicon.py
@@ -0,0 +1,37 @@
+#!/usr/bin/env python3
+
+# Copyright      2022  Amir Hussein
+# Apache 2.0
+
+# This script prepares givel a column of words lexicon.
+
+import argparse
+
+
+def get_args():
+    parser = argparse.ArgumentParser(
+        description="""Creates the list of characters and words in lexicon"""
+    )
+    parser.add_argument("input", type=str, help="""Input list of words file""")
+    parser.add_argument("output", type=str, help="""output graphemic lexicon""")
+    args = parser.parse_args()
+    return args
+
+
+def main():
+    lex = {}
+    args = get_args()
+    with open(args.input, "r", encoding="utf-8") as f:
+        for line in f:
+            line = line.strip()
+            characters = list(line)
+            characters = " ".join(["V" if char == "*" else char for char in characters])
+            lex[line] = characters
+
+    with open(args.output, "w", encoding="utf-8") as fp:
+        for key in sorted(lex):
+            fp.write(key + "  " + lex[key] + "\n")
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/tedlium3/ASR/local/test_prepare_lang.py b/egs/mgb2/ASR/local/test_prepare_lang.py
similarity index 100%
rename from egs/tedlium3/ASR/local/test_prepare_lang.py
rename to egs/mgb2/ASR/local/test_prepare_lang.py
diff --git a/egs/mgb2/ASR/prepare.sh b/egs/mgb2/ASR/prepare.sh
new file mode 100755
index 000000000..899d15d97
--- /dev/null
+++ b/egs/mgb2/ASR/prepare.sh
@@ -0,0 +1,234 @@
+#!/usr/bin/env bash
+# Copyright 2022 Johns Hopkins University  (Amir Hussein)
+# Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
+
+set -eou pipefail
+nj=30
+stage=7
+stop_stage=1000
+
+# We assume dl_dir (download dir) contains the following
+# directories and files. 
+#
+#  - $dl_dir/mgb2
+#      
+#      You can download the data from 
+#
+#
+#  - $dl_dir/musan
+#      This directory contains the following directories downloaded from
+#       http://www.openslr.org/17/
+#
+#     - music
+#     - noise
+#     - speech
+#
+# Note: MGB2 is not available for direct 
+# download, however you can fill out the form and  
+# download it from https://arabicspeech.org/mgb2 
+
+dl_dir=$PWD/download
+
+. shared/parse_options.sh || exit 1
+
+# vocab size for sentence piece models.
+# It will generate data/lang_bpe_xxx,
+# data/lang_bpe_yyy if the array contains xxx, yyy
+vocab_sizes=(
+  5000
+)
+
+# All files generated by this script are saved in "data".
+# You can safely remove "data" and rerun this script to regenerate it.
+mkdir -p data
+
+log() {
+  # This function is from espnet
+  local fname=${BASH_SOURCE[1]##*/}
+  echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
+}
+
+log "dl_dir: $dl_dir"
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+  log "Stage 0: Download data"
+
+  # If you have pre-downloaded it to /path/to/MGB2,
+  # you can create a symlink
+  #
+  #   ln -sfv /path/to/mgb2 $dl_dir/MGB2
+
+  # If you have pre-downloaded it to /path/to/musan,
+  # you can create a symlink
+  #
+  #   ln -sfv /path/to/musan $dl_dir/
+  #
+  if [ ! -d $dl_dir/musan ]; then
+    lhotse download musan $dl_dir
+  fi
+fi
+
+if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
+  log "Stage 1: Prepare mgb2 manifest"
+  # We assume that you have downloaded the mgb2 corpus
+  # to $dl_dir/mgb2
+  mkdir -p data/manifests
+
+  lhotse prepare mgb2 $dl_dir/mgb2 data/manifests
+  
+fi
+
+if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
+  log "Stage 2: Prepare musan manifest"
+  # We assume that you have downloaded the musan corpus
+  # to data/musan
+  mkdir -p data/manifests
+  lhotse prepare musan $dl_dir/musan data/manifests
+fi
+
+if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
+  log "Stage 3: Compute fbank for mgb2"
+  mkdir -p data/fbank
+  ./local/compute_fbank_mgb2.py
+   # shufling the data
+  gunzip -c data/fbank/cuts_train.jsonl.gz | shuf | gzip -c > data/fbank/cuts_train_shuf.jsonl.gz
+fi
+
+if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
+  log "Stage 4: Compute fbank for musan"
+  mkdir -p data/fbank
+  ./local/compute_fbank_musan.py
+fi
+
+if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
+  log "Stage 5: Prepare phone based lang"
+  if [[ ! -e download/lm/train/text ]]; then 
+  # export train text file to build grapheme lexicon 
+  lhotse kaldi export \
+    data/manifests/mgb2_recordings_train.jsonl.gz \
+    data/manifests/mgb2_supervisions_train.jsonl.gz  \
+    download/lm/train
+  fi
+
+  lang_dir=data/lang_phone
+  mkdir -p $lang_dir
+  ./local/prep_mgb2_lexicon.sh 
+  python local/prepare_mgb2_lexicon.py  $dl_dir/lm/grapheme_lexicon.txt  $dl_dir/lm/lexicon.txt
+  (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) |
+    cat - $dl_dir/lm/lexicon.txt |
+    sort | uniq > $lang_dir/lexicon.txt
+
+  if [ ! -f $lang_dir/L_disambig.pt ]; then
+    ./local/prepare_lang.py --lang-dir $lang_dir
+  fi
+fi
+
+
+if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
+  log "Stage 6: Prepare BPE based lang"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    mkdir -p $lang_dir
+    # We reuse words.txt from phone based lexicon
+    # so that the two can share G.pt later.
+    cp data/lang_phone/words.txt $lang_dir
+
+    if [ ! -f $lang_dir/transcript_words.txt ]; then
+      log "Generate data for BPE training"
+      files=$(
+        find "$dl_dir/lm/train" -name "text"
+      )
+      for f in ${files[@]}; do
+        cat $f | cut -d " " -f 2- | sed -r '/^\s*$/d'
+      done > $lang_dir/transcript_words.txt
+    fi
+
+    ./local/train_bpe_model.py \
+      --lang-dir $lang_dir \
+      --vocab-size $vocab_size \
+      --transcript $lang_dir/transcript_words.txt
+
+    if [ ! -f $lang_dir/L_disambig.pt ]; then
+      ./local/prepare_lang_bpe.py --lang-dir $lang_dir
+    fi
+  done
+fi
+
+if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
+  log "Stage 7: Prepare bigram P"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+
+    if [ ! -f $lang_dir/transcript_tokens.txt ]; then
+      ./local/convert_transcript_words_to_tokens.py \
+        --lexicon $lang_dir/lexicon.txt \
+        --transcript $lang_dir/transcript_words.txt \
+        --oov "" \
+        > $lang_dir/transcript_tokens.txt
+    fi
+
+    if [ ! -f $lang_dir/P.arpa ]; then
+      ./shared/make_kn_lm.py \
+        -ngram-order 2 \
+        -text $lang_dir/transcript_tokens.txt \
+        -lm $lang_dir/P.arpa
+    fi
+
+    if [ ! -f $lang_dir/P.fst.txt ]; then
+      python3 -m kaldilm \
+        --read-symbol-table="$lang_dir/tokens.txt" \
+        --disambig-symbol='#0' \
+        --max-order=2 \
+        $lang_dir/P.arpa > $lang_dir/P.fst.txt
+    fi
+  done
+fi
+
+if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
+  log "Stage 8: Prepare G"
+  # We assume you have install kaldilm, if not, please install
+  # it using: pip install kaldilm
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    mkdir -p data/lm
+    if [ ! -f data/lm/G_3_gram.fst.txt ]; then
+      # It is used in building HLG
+      ./shared/make_kn_lm.py \
+          -ngram-order 3 \
+          -text $lang_dir/transcript_words.txt \
+          -lm $lang_dir/G.arpa
+
+      python3 -m kaldilm \
+        --read-symbol-table="data/lang_phone/words.txt" \
+        --disambig-symbol='#0' \
+        --max-order=3 \
+        $lang_dir/G.arpa > data/lm/G_3_gram.fst.txt
+    fi
+
+    if [ ! -f data/lm/G_4_gram.fst.txt ]; then
+      # It is used for LM rescoring
+      ./shared/make_kn_lm.py \
+          -ngram-order 4 \
+          -text $lang_dir/transcript_words.txt \
+          -lm $lang_dir/4-gram.arpa
+
+      python3 -m kaldilm \
+        --read-symbol-table="data/lang_phone/words.txt" \
+        --disambig-symbol='#0' \
+        --max-order=4 \
+        $lang_dir/4-gram.arpa > data/lm/G_4_gram.fst.txt
+    fi
+  done
+fi
+
+if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
+  log "Stage 9: Compile HLG"
+  ./local/compile_hlg.py --lang-dir data/lang_phone
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    ./local/compile_hlg.py --lang-dir $lang_dir
+  done
+fi
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/__init__.py b/egs/mgb2/ASR/pruned_transducer_stateless5/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/asr_datamodule.py b/egs/mgb2/ASR/pruned_transducer_stateless5/asr_datamodule.py
new file mode 120000
index 000000000..a73848de9
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/asr_datamodule.py
@@ -0,0 +1 @@
+../conformer_ctc/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/beam_search.py b/egs/mgb2/ASR/pruned_transducer_stateless5/beam_search.py
new file mode 120000
index 000000000..02d01b343
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/beam_search.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/conformer.py b/egs/mgb2/ASR/pruned_transducer_stateless5/conformer.py
new file mode 120000
index 000000000..c7c1a4b6e
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/conformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/conformer.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/decode.py b/egs/mgb2/ASR/pruned_transducer_stateless5/decode.py
new file mode 100755
index 000000000..1463f8f67
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/decode.py
@@ -0,0 +1,625 @@
+#!/usr/bin/env python3
+# Copyright    2022  Johns Hopkins        (authors: Amir Hussein)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./pruned_transducer_stateless5/decode.py \
+    --epoch 18 \
+    --avg 5 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 200 \
+    --decoding-method greedy_search
+
+(2) beam search (not recommended)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 18 \
+    --avg 5 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 200 \
+    --decoding-method beam_search \
+    --beam-size 10
+
+(3) modified beam search
+./pruned_transducer_stateless5/decode.py \
+    --epoch 18 \
+    --avg 5 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method modified_beam_search \
+    --beam-size 10
+
+(4) fast beam search
+./pruned_transducer_stateless5/decode.py \
+    --epoch 18 \
+    --avg 5 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 200 \
+    --decoding-method fast_beam_search \
+    --beam-size 10 \
+    --max-contexts 4 \
+    --max-states 8
+"""
+
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import MGB2AsrDataModule
+from beam_search import (
+    beam_search,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+)
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.utils import (
+    AttributeDict,
+    setup_logger,
+    store_transcripts,
+    str2bool,
+    write_error_stats,
+)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=False,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_2000/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--decoding-method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+        """,
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --decoding-method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=4,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --decoding-method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=4,
+        help="""Used only when --decoding-method is
+        fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=8,
+        help="""Used only when --decoding-method is
+        fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
+    )
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame.
+        Used only when --decoding_method is greedy_search""",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    decoding_graph: Optional[k2.Fsa] = None,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+
+        - key: It indicates the setting used for decoding. For example,
+               if greedy_search is used, it would be "greedy_search"
+               If beam search with a beam size of 7 is used, it would be
+               "beam_7"
+        - value: It contains the decoding result. `len(value)` equals to
+                 batch size. `value[i]` is the decoding result for the i-th
+                 utterance in the given batch.
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
+        only when --decoding_method is fast_beam_search.
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict.
+    """
+    device = next(model.parameters()).device
+    feature = batch["inputs"]
+    assert feature.ndim == 3
+
+    feature = feature.to(device)
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
+    hyps = []
+
+    if params.decoding_method == "fast_beam_search":
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
+
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        batch_size = encoder_out.size(0)
+
+        for i in range(batch_size):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.decoding_method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.decoding_method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(
+                    f"Unsupported decoding method: {params.decoding_method}"
+                )
+            hyps.append(sp.decode(hyp).split())
+
+    if params.decoding_method == "greedy_search":
+        return {"greedy_search": hyps}
+    elif params.decoding_method == "fast_beam_search":
+        return {
+            (
+                f"beam_{params.beam}_"
+                f"max_contexts_{params.max_contexts}_"
+                f"max_states_{params.max_states}"
+            ): hyps
+        }
+    else:
+        return {f"beam_size_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    decoding_graph: Optional[k2.Fsa] = None,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
+        only when --decoding_method is fast_beam_search.
+    Returns:
+      Return a dict, whose key may be "greedy_search" if greedy search
+      is used, or it may be "beam_7" if beam size of 7 is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    if params.decoding_method == "greedy_search":
+        log_interval = 50
+    else:
+        log_interval = 20
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        texts = batch["supervisions"]["text"]
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            sp=sp,
+            decoding_graph=decoding_graph,
+            batch=batch,
+        )
+
+        for name, hyps in hyps_dict.items():
+            this_batch = []
+            assert len(hyps) == len(texts)
+            for hyp_words, ref_text in zip(hyps, texts):
+
+                ref_words = ref_text.split()
+                this_batch.append((ref_words, hyp_words))
+
+            results[name].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % log_interval == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = (
+            params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        store_transcripts(filename=recog_path, texts=results)
+        logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = (
+            params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(
+                f, f"{test_set_name}-{key}", results, enable_log=True
+            )
+            test_set_wers[key] = wer
+
+        logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = (
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+    )
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    MGB2AsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    assert params.decoding_method in (
+        "greedy_search",
+        "beam_search",
+        "fast_beam_search",
+        "modified_beam_search",
+    )
+    params.res_dir = params.exp_dir / params.decoding_method
+
+    if params.iter > 0:
+        params.suffix = f"iter-{params.iter}-avg-{params.avg}"
+    else:
+        params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+
+    if "fast_beam_search" in params.decoding_method:
+        params.suffix += f"-beam-{params.beam}"
+        params.suffix += f"-max-contexts-{params.max_contexts}"
+        params.suffix += f"-max-states-{params.max_states}"
+    elif "beam_search" in params.decoding_method:
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
+    else:
+        params.suffix += f"-context-{params.context_size}"
+        params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+    if params.use_averaged_model:
+        params.suffix += "-use-averaged-model"
+
+    setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+    logging.info("Decoding started")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  and  are defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to(device)
+    model.eval()
+
+    if params.decoding_method == "fast_beam_search":
+        decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+    else:
+        decoding_graph = None
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    MGB2 = MGB2AsrDataModule(args)
+
+    test_cuts = MGB2.test_cuts()
+    dev_cuts = MGB2.dev_cuts()
+
+    test_dl = MGB2.test_dataloaders(test_cuts)
+    dev_dl = MGB2.test_dataloaders(dev_cuts)
+
+    test_sets = ["test", "dev"]
+    test_all_dl = [test_dl, dev_dl]
+
+    for test_set, test_dl in zip(test_sets, test_all_dl):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            sp=sp,
+            decoding_graph=decoding_graph,
+        )
+
+        save_results(
+            params=params,
+            test_set_name=test_set,
+            results_dict=results_dict,
+        )
+
+    logging.info("Done!")
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/decoder.py b/egs/mgb2/ASR/pruned_transducer_stateless5/decoder.py
new file mode 120000
index 000000000..6775ee67e
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/decoder.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/decoder.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/encoder_interface.py b/egs/mgb2/ASR/pruned_transducer_stateless5/encoder_interface.py
new file mode 120000
index 000000000..972e44ca4
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/encoder_interface.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/encoder_interface.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/export.py b/egs/mgb2/ASR/pruned_transducer_stateless5/export.py
new file mode 100755
index 000000000..7a5d7f680
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/export.py
@@ -0,0 +1,272 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./pruned_transducer_stateless5/export.py \
+  --exp-dir ./pruned_transducer_stateless5/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `pruned_transducer_stateless5/decode.py`,
+you can do:
+
+    cd /path/to/exp_dir
+    ln -s pretrained.pt epoch-9999.pt
+
+    cd /path/to/egs/librispeech/ASR
+    ./pruned_transducer_stateless5/decode.py \
+        --exp-dir ./pruned_transducer_stateless5/exp \
+        --epoch 9999 \
+        --avg 1 \
+        --max-duration 600 \
+        --decoding-method greedy_search \
+        --bpe-model data/lang_bpe_500/bpe.model
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.utils import str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=28,
+        help="""It specifies the checkpoint to use for averaging.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=False,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="""It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--jit",
+        type=str2bool,
+        default=False,
+        help="""True to save a model after applying torch.jit.script.
+        """,
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def main():
+    args = get_parser().parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    assert args.jit is False, "Support torchscript will be added later"
+
+    params = get_params()
+    params.update(vars(args))
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.eval()
+
+    model.to("cpu")
+    model.eval()
+
+    if params.jit:
+        logging.info("Using torch.jit.script")
+        model = torch.jit.script(model)
+        filename = params.exp_dir / "cpu_jit.pt"
+        model.save(str(filename))
+        logging.info(f"Saved to {filename}")
+    else:
+        logging.info("Not using torch.jit.script")
+        # Save it using a format so that it can be loaded
+        # by :func:`load_checkpoint`
+        filename = params.exp_dir / "pretrained.pt"
+        torch.save({"model": model.state_dict()}, str(filename))
+        logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/joiner.py b/egs/mgb2/ASR/pruned_transducer_stateless5/joiner.py
new file mode 120000
index 000000000..f5279e151
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/joiner.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/joiner.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/model.py b/egs/mgb2/ASR/pruned_transducer_stateless5/model.py
new file mode 120000
index 000000000..7b417fd89
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/model.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/optim.py b/egs/mgb2/ASR/pruned_transducer_stateless5/optim.py
new file mode 120000
index 000000000..210374f22
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/optim.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/optim.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/pretrained.py b/egs/mgb2/ASR/pruned_transducer_stateless5/pretrained.py
new file mode 100755
index 000000000..77ba0873b
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/pretrained.py
@@ -0,0 +1,344 @@
+#!/usr/bin/env python3
+# Copyright      2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+(1) greedy search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method greedy_search \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(2) beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(3) modified beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method modified_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(4) fast beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method fast_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+You can also use `./pruned_transducer_stateless5/exp/epoch-xx.pt`.
+
+Note: ./pruned_transducer_stateless5/exp/pretrained.pt is generated by
+./pruned_transducer_stateless5/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from beam_search import (
+    beam_search,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+)
+from torch.nn.utils.rnn import pad_sequence
+from train import add_model_arguments, get_params, get_transducer_model
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--checkpoint",
+        type=str,
+        required=True,
+        help="Path to the checkpoint. "
+        "The checkpoint is assumed to be saved by "
+        "icefall.checkpoint.save_checkpoint().",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.""",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    parser.add_argument(
+        "--sample-rate",
+        type=int,
+        default=16000,
+        help="The sample rate of the input sound file",
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=4,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=4,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=8,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
+    )
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame. Used only when
+        --method is greedy_search.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert sample_rate == expected_sample_rate, (
+            f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
+        )
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+
+    params = get_params()
+
+    params.update(vars(args))
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(f"{params}")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("Creating model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    checkpoint = torch.load(args.checkpoint, map_location="cpu")
+    model.load_state_dict(checkpoint["model"], strict=False)
+    model.to(device)
+    model.eval()
+    model.device = device
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = params.sample_rate
+    opts.mel_opts.num_bins = params.feature_dim
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {params.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+    feature_lengths = [f.size(0) for f in features]
+
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
+
+    feature_lengths = torch.tensor(feature_lengths, device=device)
+
+    encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
+
+    num_waves = encoder_out.size(0)
+    hyps = []
+    msg = f"Using {params.method}"
+    if params.method == "beam_search":
+        msg += f" with beam size {params.beam_size}"
+    logging.info(msg)
+
+    if params.method == "fast_beam_search":
+        decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        for i in range(num_waves):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(f"Unsupported method: {params.method}")
+
+            hyps.append(sp.decode(hyp).split())
+
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/scaling.py b/egs/mgb2/ASR/pruned_transducer_stateless5/scaling.py
new file mode 120000
index 000000000..ff7bfeda9
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/scaling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/scaling.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/test_model.py b/egs/mgb2/ASR/pruned_transducer_stateless5/test_model.py
new file mode 120000
index 000000000..b71d7bb81
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/test_model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/test_model.py
\ No newline at end of file
diff --git a/egs/mgb2/ASR/pruned_transducer_stateless5/train.py b/egs/mgb2/ASR/pruned_transducer_stateless5/train.py
new file mode 100755
index 000000000..e1b623353
--- /dev/null
+++ b/egs/mgb2/ASR/pruned_transducer_stateless5/train.py
@@ -0,0 +1,1176 @@
+#!/usr/bin/env python3
+# Copyright    2022  Johns Hopkins        (authors: Amir Hussein)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./pruned_transducer_stateless5/train.py \
+  --world-size 2 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir pruned_transducer_stateless5/exp \
+  --max-duration 200 \
+  --num-buckets 50
+
+# For mix precision training:
+
+./pruned_transducer_stateless5/train.py \
+  --world-size 2 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --use-fp16 1 \
+  --exp-dir pruned_transducer_stateless5/exp \
+  --max-duration 200	\
+  --num-buckets 50
+
+"""
+
+# xxx
+import argparse
+import copy
+import logging
+import warnings
+from pathlib import Path
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple, Union
+
+import k2
+import nvidia_smi
+import optim
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import MGB2AsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from lhotse.cut import Cut
+from lhotse.dataset.sampling.base import CutSampler
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from optim import Eden, Eve
+from torch import Tensor
+from torch.cuda.amp import GradScaler
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+
+from icefall import diagnostics
+from icefall.checkpoint import load_checkpoint, remove_checkpoints
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.checkpoint import (
+    save_checkpoint_with_global_batch_idx,
+    update_averaged_model,
+)
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
+
+
+def add_model_arguments(parser: argparse.ArgumentParser):
+    parser.add_argument(
+        "--num-encoder-layers",
+        type=int,
+        default=12,
+        help="Number of conformer encoder layers..",
+    )
+
+    parser.add_argument(
+        "--dim-feedforward",
+        type=int,
+        default=2048,
+        help="Feedforward dimension of the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=int,
+        default=8,
+        help="Number of attention heads in the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--encoder-dim",
+        type=int,
+        default=512,
+        help="Attention dimension in the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--decoder-dim",
+        type=int,
+        default=512,
+        help="Embedding dimension in the decoder model.",
+    )
+
+    parser.add_argument(
+        "--joiner-dim",
+        type=int,
+        default=512,
+        help="""Dimension used in the joiner model.
+        Outputs from the encoder and decoder model are projected
+        to this dimension before adding.
+        """,
+    )
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=1,
+        help="""Resume training from this epoch. It should be positive.
+        If larger than 1, it will load checkpoint from
+        exp-dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--start-batch",
+        type=int,
+        default=0,
+        help="""If positive, --start-epoch is ignored and
+        it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_2000/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--initial-lr",
+        type=float,
+        default=0.003,
+        help="The initial learning rate.  This value should not need " "to be changed.",
+    )
+
+    parser.add_argument(
+        "--lr-batches",
+        type=float,
+        default=5000,
+        help="""Number of steps that affects how rapidly the learning rate
+        decreases. We suggest not to change this.""",
+    )
+
+    parser.add_argument(
+        "--lr-epochs",
+        type=float,
+        default=6,
+        help="""Number of epochs that affects how rapidly the learning rate decreases.
+        """,
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
+    )
+
+    parser.add_argument(
+        "--prune-range",
+        type=int,
+        default=5,
+        help="The prune range for rnnt loss, it means how many symbols(context)"
+        "we are using to compute the loss",
+    )
+
+    parser.add_argument(
+        "--lm-scale",
+        type=float,
+        default=0.25,
+        help="The scale to smooth the loss with lm "
+        "(output of prediction network) part.",
+    )
+
+    parser.add_argument(
+        "--am-scale",
+        type=float,
+        default=0.0,
+        help="The scale to smooth the loss with am (output of encoder network)" "part.",
+    )
+
+    parser.add_argument(
+        "--simple-loss-scale",
+        type=float,
+        default=0.5,
+        help="To get pruning ranges, we will calculate a simple version"
+        "loss(joiner is just addition), this simple loss also uses for"
+        "training (as a regularization item). We will scale the simple loss"
+        "with this parameter before adding to the final loss.",
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    parser.add_argument(
+        "--print-diagnostics",
+        type=str2bool,
+        default=False,
+        help="Accumulate stats on activations, print them and exit.",
+    )
+
+    parser.add_argument(
+        "--save-every-n",
+        type=int,
+        default=8000,
+        help="""Save checkpoint after processing this number of batches"
+        periodically. We save checkpoint to exp-dir/ whenever
+        params.batch_idx_train % save_every_n == 0. The checkpoint filename
+        has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
+        Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
+        end of each epoch where `xxx` is the epoch number counting from 0.
+        """,
+    )
+
+    parser.add_argument(
+        "--keep-last-k",
+        type=int,
+        default=10,
+        help="""Only keep this number of checkpoints on disk.
+        For instance, if it is 3, there are only 3 checkpoints
+        in the exp-dir with filenames `checkpoint-xxx.pt`.
+        It does not affect checkpoints with name `epoch-xxx.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--average-period",
+        type=int,
+        default=100,
+        help="""Update the averaged model, namely `model_avg`, after processing
+        this number of batches. `model_avg` is a separate version of model,
+        in which each floating-point parameter is the average of all the
+        parameters from the start of training. Each time we take the average,
+        we do: `model_avg = model * (average_period / batch_idx_train) +
+            model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=True,
+        help="Whether to use half precision training.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - encoder_dim: Hidden dim for multi-head attention model.
+
+        - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+        - warm_step: The warm_step for Noam optimizer.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 50,
+            "reset_interval": 200,
+            "valid_interval": 3000,  # For the 100h subset, use 800
+            # parameters for conformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,
+            # parameters for Noam
+            "model_warm_step": 80000,  # arg given to model, not for lrate
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+    # TODO: We can add an option to switch between Conformer and Transformer
+    encoder = Conformer(
+        num_features=params.feature_dim,
+        subsampling_factor=params.subsampling_factor,
+        d_model=params.encoder_dim,
+        nhead=params.nhead,
+        dim_feedforward=params.dim_feedforward,
+        num_encoder_layers=params.num_encoder_layers,
+    )
+    return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+    decoder = Decoder(
+        vocab_size=params.vocab_size,
+        decoder_dim=params.decoder_dim,
+        blank_id=params.blank_id,
+        context_size=params.context_size,
+    )
+    return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+    joiner = Joiner(
+        encoder_dim=params.encoder_dim,
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+    encoder = get_encoder_model(params)
+    decoder = get_decoder_model(params)
+    joiner = get_joiner_model(params)
+
+    model = Transducer(
+        encoder=encoder,
+        decoder=decoder,
+        joiner=joiner,
+        encoder_dim=params.encoder_dim,
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return model
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    model_avg: nn.Module = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+) -> Optional[Dict[str, Any]]:
+    """Load checkpoint from file.
+
+    If params.start_batch is positive, it will load the checkpoint from
+    `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
+    params.start_epoch is larger than 1, it will load the checkpoint from
+    `params.start_epoch - 1`.
+
+    Apart from loading state dict for `model` and `optimizer` it also updates
+    `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The scheduler that we are using.
+    Returns:
+      Return a dict containing previously saved training info.
+    """
+    if params.start_batch > 0:
+        filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
+    elif params.start_epoch > 1:
+        filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    else:
+        return None
+
+    assert filename.is_file(), f"{filename} does not exist!"
+
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        model_avg=model_avg,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    if params.start_batch > 0:
+        if "cur_epoch" in saved_params:
+            params["start_epoch"] = saved_params["cur_epoch"]
+
+        if "cur_batch_idx" in saved_params:
+            params["cur_batch_idx"] = saved_params["cur_batch_idx"]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    model_avg: Optional[nn.Module] = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+    sampler: Optional[CutSampler] = None,
+    scaler: Optional[GradScaler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer used in the training.
+      sampler:
+       The sampler for the training dataset.
+      scaler:
+        The scaler used for mix precision training.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        model_avg=model_avg,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        sampler=sampler,
+        scaler=scaler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    is_training: bool,
+    warmup: float = 1.0,
+    reduction="none",
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute CTC loss given the model and its inputs.
+
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Conformer in our case.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+     warmup: a floating point value which increases throughout training;
+        values >= 1.0 are fully warmed up and have all modules present.
+    """
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    texts = batch["supervisions"]["text"]
+    y = sp.encode(texts, out_type=int)
+    y = k2.RaggedTensor(y).to(device)
+
+    with torch.set_grad_enabled(is_training):
+        simple_loss, pruned_loss = model(
+            x=feature,
+            x_lens=feature_lens,
+            y=y,
+            prune_range=params.prune_range,
+            am_scale=params.am_scale,
+            lm_scale=params.lm_scale,
+            warmup=warmup,
+            reduction="none",
+        )
+        simple_loss_is_finite = torch.isfinite(simple_loss)
+        pruned_loss_is_finite = torch.isfinite(pruned_loss)
+        is_finite = simple_loss_is_finite & pruned_loss_is_finite
+        inf_flag = False
+        if not torch.all(is_finite):
+            inf_flag = True
+            logging.info(
+                "Not all losses are finite!\n"
+                f"simple_loss: {simple_loss}\n"
+                f"pruned_loss: {pruned_loss}"
+            )
+            display_and_save_batch(batch, params=params, sp=sp)
+            simple_loss = simple_loss[simple_loss_is_finite]
+            pruned_loss = pruned_loss[pruned_loss_is_finite]
+
+        simple_loss = simple_loss.sum()
+        pruned_loss = pruned_loss.sum()
+
+        # after the main warmup step, we keep pruned_loss_scale small
+        # for the same amount of time (model_warm_step), to avoid
+        # overwhelming the simple_loss and causing it to diverge,
+        # in case it had not fully learned the alignment yet.
+        pruned_loss_scale = (
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
+        )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
+
+    assert loss.requires_grad == is_training
+
+    info = MetricsTracker()
+    with warnings.catch_warnings():
+        warnings.simplefilter("ignore")
+
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+    # # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances`  # noqa
+    # info["utterances"] = feature.size(0)
+    # # averaged input duration in frames over utterances
+    # info["utt_duration"] = feature_lens.sum().item()
+    # # averaged padding proportion over utterances
+    # info["utt_pad_proportion"] = (
+    #     ((feature.size(1) - feature_lens) / feature.size(1)).sum().item()
+    # )
+
+    # Note: We use reduction=sum while computing the loss.
+    info["loss"] = loss.detach().cpu().item()
+    info["simple_loss"] = simple_loss.detach().cpu().item()
+    info["pruned_loss"] = pruned_loss.detach().cpu().item()
+
+    return loss, info, inf_flag
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+    with torch.no_grad():
+        for batch_idx, batch in enumerate(valid_dl):
+            loss, loss_info, inf_flag = compute_loss(
+                params=params,
+                model=model,
+                sp=sp,
+                batch=batch,
+                is_training=False,
+            )
+            assert loss.requires_grad is False
+            tot_loss = tot_loss + loss_info
+
+        if world_size > 1:
+            tot_loss.reduce(loss.device)
+
+        loss_value = tot_loss["loss"] / tot_loss["frames"]
+        if loss_value < params.best_valid_loss:
+            params.best_valid_epoch = params.cur_epoch
+            params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    optimizer: torch.optim.Optimizer,
+    scheduler: LRSchedulerType,
+    sp: spm.SentencePieceProcessor,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    scaler: GradScaler,
+    model_avg: Optional[nn.Module] = None,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+    rank: int = 0,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      scheduler:
+        The learning rate scheduler, we call step() every step.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      scaler:
+        The scaler used for mix precision training.
+      model_avg:
+        The stored model averaged from the start of training.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+      rank:
+        The rank of the node in DDP training. If no DDP is used, it should
+        be set to 0.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    cur_batch_idx = params.get("cur_batch_idx", 0)
+
+    for batch_idx, batch in enumerate(train_dl):
+
+        if batch["inputs"].shape[0] == len(batch["supervisions"]["text"]):
+            if batch_idx < cur_batch_idx:
+                continue
+            cur_batch_idx = batch_idx
+
+            params.batch_idx_train += 1
+            batch_size = len(batch["supervisions"]["text"])
+
+            try:
+                with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                    loss, loss_info, inf_flag = compute_loss(
+                        params=params,
+                        model=model,
+                        sp=sp,
+                        batch=batch,
+                        is_training=True,
+                        warmup=(params.batch_idx_train / params.model_warm_step),
+                    )
+                # summary stats
+                tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+                # NOTE: We use reduction==sum and loss is computed over utterances
+                # in the batch and there is no normalization to it so far.
+                if not inf_flag:
+                    scaler.scale(loss).backward()
+                    scheduler.step_batch(params.batch_idx_train)
+                    scaler.step(optimizer)
+                    scaler.update()
+                    optimizer.zero_grad()
+                else:
+                    continue
+            except:  # noqa
+                display_and_save_batch(batch, params=params, sp=sp)
+                raise
+
+            if params.print_diagnostics and batch_idx == 5:
+                return
+
+            if (
+                rank == 0
+                and params.batch_idx_train > 0
+                and params.batch_idx_train % params.average_period == 0
+            ):
+                update_averaged_model(
+                    params=params,
+                    model_cur=model,
+                    model_avg=model_avg,
+                )
+
+            if (
+                params.batch_idx_train > 0
+                and params.batch_idx_train % params.save_every_n == 0
+            ):
+                params.cur_batch_idx = batch_idx
+                save_checkpoint_with_global_batch_idx(
+                    out_dir=params.exp_dir,
+                    global_batch_idx=params.batch_idx_train,
+                    model=model,
+                    model_avg=model_avg,
+                    params=params,
+                    optimizer=optimizer,
+                    scheduler=scheduler,
+                    sampler=train_dl.sampler,
+                    scaler=scaler,
+                    rank=rank,
+                )
+                del params.cur_batch_idx
+                remove_checkpoints(
+                    out_dir=params.exp_dir,
+                    topk=params.keep_last_k,
+                    rank=rank,
+                )
+
+            if batch_idx % params.log_interval == 0:
+                cur_lr = scheduler.get_last_lr()[0]
+                # https://silpara.medium.com/check-gpu-memory-usage-from-python-ccca503322ea
+                memory_debugging()
+                logging.info(
+                    f"Epoch {params.cur_epoch}, "
+                    f"batch {batch_idx}, loss[{loss_info}], "
+                    f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+                    f"lr: {cur_lr:.2e}"
+                )
+
+                if tb_writer is not None:
+                    tb_writer.add_scalar(
+                        "train/learning_rate", cur_lr, params.batch_idx_train
+                    )
+
+                    loss_info.write_summary(
+                        tb_writer, "train/current_", params.batch_idx_train
+                    )
+                    tot_loss.write_summary(
+                        tb_writer, "train/tot_", params.batch_idx_train
+                    )
+
+            if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+                logging.info("Computing validation loss")
+                valid_info = compute_validation_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    valid_dl=valid_dl,
+                    world_size=world_size,
+                )
+                model.train()
+                logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+                if tb_writer is not None:
+                    valid_info.write_summary(
+                        tb_writer, "train/valid_", params.batch_idx_train
+                    )
+        else:
+            logging.warning(
+                f"Batch {batch_idx} mismatch in dimentions between the input and the output. Skipping ..."
+            )
+            continue
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def memory_debugging():
+    # memory nvidia debugging
+    nvidia_smi.nvmlInit()
+
+    deviceCount = nvidia_smi.nvmlDeviceGetCount()
+    for i in range(deviceCount):
+        handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)
+        info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
+        logging.info(
+            "Device {}: {}, Memory : ({:.2f}% free): {}(total), {} (free), {} (used)".format(
+                i,
+                nvidia_smi.nvmlDeviceGetName(handle),
+                100 * info.free / info.total,
+                info.total,
+                info.free,
+                info.used,
+            )
+        )
+
+    nvidia_smi.nvmlShutdown()
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+
+    fix_random_seed(params.seed)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    assert params.save_every_n >= params.average_period
+    model_avg: Optional[nn.Module] = None
+    if rank == 0:
+        # model_avg is only used with rank 0
+        model_avg = copy.deepcopy(model)
+
+    checkpoints = load_checkpoint_if_available(
+        params=params, model=model, model_avg=model_avg
+    )
+
+    model.to(device)
+    if world_size > 1:
+        logging.info("Using DDP")
+        model = DDP(model, device_ids=[rank])
+
+    optimizer = Eve(model.parameters(), lr=params.initial_lr)
+
+    scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
+
+    if checkpoints and "optimizer" in checkpoints:
+        logging.info("Loading optimizer state dict")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    if (
+        checkpoints
+        and "scheduler" in checkpoints
+        and checkpoints["scheduler"] is not None
+    ):
+        logging.info("Loading scheduler state dict")
+        scheduler.load_state_dict(checkpoints["scheduler"])
+
+    if params.print_diagnostics:
+        opts = diagnostics.TensorDiagnosticOptions(
+            2**22
+        )  # allow 4 megabytes per sub-module
+        diagnostic = diagnostics.attach_diagnostics(model, opts)
+
+    MGB2 = MGB2AsrDataModule(args)
+    train_cuts = MGB2.train_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 30 seconds
+        #
+        # Caution: There is a reason to select 20.0 here. Please see
+        # ../local/display_manifest_statistics.py
+        #
+        # You should use ../local/display_manifest_statistics.py to get
+        # an utterance duration distribution for your dataset to select
+        # the threshold
+        return 0.5 <= c.duration <= 30.0
+
+    def remove_short_and_long_text(c: Cut):
+        # Keep only text with charachters between 20 and 450
+
+        return 20 <= len(c.supervisions[0].text) <= 450
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+    train_cuts = train_cuts.filter(remove_short_and_long_text)
+
+    if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
+        # We only load the sampler's state dict when it loads a checkpoint
+        # saved in the middle of an epoch
+        sampler_state_dict = checkpoints["sampler"]
+    else:
+        sampler_state_dict = None
+
+    train_dl = MGB2.train_dataloaders(train_cuts, sampler_state_dict=sampler_state_dict)
+
+    valid_cuts = MGB2.dev_cuts()
+    valid_dl = MGB2.test_dataloaders(valid_cuts)
+
+    if not params.print_diagnostics:
+        scan_pessimistic_batches_for_oom(
+            model=model,
+            train_dl=train_dl,
+            optimizer=optimizer,
+            sp=sp,
+            params=params,
+        )
+
+    scaler = GradScaler(enabled=params.use_fp16)
+    if checkpoints and "grad_scaler" in checkpoints:
+        logging.info("Loading grad scaler state dict")
+        scaler.load_state_dict(checkpoints["grad_scaler"])
+
+    for epoch in range(params.start_epoch, params.num_epochs + 1):
+
+        scheduler.step_epoch(epoch - 1)
+        fix_random_seed(params.seed + epoch - 1)
+        train_dl.sampler.set_epoch(epoch - 1)
+
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sp=sp,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            scaler=scaler,
+            tb_writer=tb_writer,
+            world_size=world_size,
+            rank=rank,
+        )
+
+        if params.print_diagnostics:
+            diagnostic.print_diagnostics()
+            break
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sampler=train_dl.sampler,
+            scaler=scaler,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def display_and_save_batch(
+    batch: dict,
+    params: AttributeDict,
+    sp: spm.SentencePieceProcessor,
+) -> None:
+    """Display the batch statistics and save the batch into disk.
+
+    Args:
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      params:
+        Parameters for training. See :func:`get_params`.
+      sp:
+        The BPE model.
+    """
+    from lhotse.utils import uuid4
+
+    filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
+    logging.info(f"Saving batch to {filename}")
+    torch.save(batch, filename)
+
+    supervisions = batch["supervisions"]
+    features = batch["inputs"]
+
+    logging.info(f"features shape: {features.shape}")
+
+    y = sp.encode(supervisions["text"], out_type=int)
+    num_tokens = sum(len(i) for i in y)
+    logging.info(f"num tokens: {num_tokens}")
+
+
+def scan_pessimistic_batches_for_oom(
+    model: Union[nn.Module, DDP],
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    sp: spm.SentencePieceProcessor,
+    params: AttributeDict,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 1 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            # warmup = 0.0 is so that the derivs for the pruned loss stay zero
+            # (i.e. are not remembered by the decaying-average in adam), because
+            # we want to avoid these params being subject to shrinkage in adam.
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+
+                loss, _, _ = compute_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    batch=batch,
+                    is_training=True,
+                    warmup=0.0,
+                )
+            loss.backward()
+            # clip_grad_norm_(model.parameters(), 5.0, 2.0)
+            optimizer.step()
+            optimizer.zero_grad()
+        except Exception as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            display_and_save_batch(batch, params=params, sp=sp)
+            raise
+
+
+def main():
+    parser = get_parser()
+    MGB2AsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/mgb2/ASR/shared b/egs/mgb2/ASR/shared
new file mode 120000
index 000000000..4c5e91438
--- /dev/null
+++ b/egs/mgb2/ASR/shared
@@ -0,0 +1 @@
+../../../icefall/shared/
\ No newline at end of file
diff --git a/egs/ptb/LM/local/sort_lm_training_data.py b/egs/ptb/LM/local/sort_lm_training_data.py
index af54dbd07..bed3856e4 100755
--- a/egs/ptb/LM/local/sort_lm_training_data.py
+++ b/egs/ptb/LM/local/sort_lm_training_data.py
@@ -135,9 +135,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/ptb/LM/local/test_prepare_lm_training_data.py b/egs/ptb/LM/local/test_prepare_lm_training_data.py
index 877720e7b..3790045fa 100755
--- a/egs/ptb/LM/local/test_prepare_lm_training_data.py
+++ b/egs/ptb/LM/local/test_prepare_lm_training_data.py
@@ -54,9 +54,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/ptb/LM/prepare.sh b/egs/ptb/LM/prepare.sh
index 70586785d..69fab999a 100755
--- a/egs/ptb/LM/prepare.sh
+++ b/egs/ptb/LM/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 nj=15
@@ -19,9 +22,9 @@ dl_dir=$PWD/download
 # if the array contains xxx, yyy
 vocab_sizes=(
   500
-  1000
-  2000
-  5000
+  # 1000
+  # 2000
+  # 5000
 )
 
 # All files generated by this script are saved in "data".
@@ -39,11 +42,14 @@ log "dl_dir: $dl_dir"
 
 if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
   log "Stage -1: Download data"
+
+  # Caution: The downloaded data has already been normalized for LM training.
+
   if [ ! -f $dl_dir/.complete ]; then
-    url=https://raw.githubusercontent.com/townie/PTB-dataset-from-Tomas-Mikolov-s-webpage/master/data/
-    wget --no-verbose --directory-prefix $dl_dir $url/ptb.train.txt
-    wget --no-verbose --directory-prefix $dl_dir $url/ptb.valid.txt
-    wget --no-verbose --directory-prefix $dl_dir $url/ptb.test.txt
+    url=http://raw.githubusercontent.com/townie/PTB-dataset-from-Tomas-Mikolov-s-webpage/master/data
+    wget --directory-prefix $dl_dir $url/ptb.train.txt
+    wget --directory-prefix $dl_dir $url/ptb.valid.txt
+    wget --directory-prefix $dl_dir $url/ptb.test.txt
     touch $dl_dir/.complete
   fi
 fi
@@ -51,11 +57,15 @@ fi
 if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
   log "Stage 0: Train BPE model"
 
+  # Caution: You have to use the same bpe model for training your acoustic model
+  # Caution: You have to use the same bpe model for training your acoustic model
+  # Caution: You have to use the same bpe model for training your acoustic model
+
   for vocab_size in ${vocab_sizes[@]}; do
-    out_dir=data/bpe_${vocab_size}
-    mkdir -p $out_dir
+    lang_dir=data/lang_bpe_${vocab_size}
+    mkdir -p $lang_dir
     ./local/train_bpe_model.py \
-      --out-dir $out_dir \
+      --lang-dir $lang_dir \
       --vocab-size $vocab_size \
       --transcript $dl_dir/ptb.train.txt
   done
@@ -66,20 +76,21 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
   # Note: ptb.train.txt has already been normalized
 
   for vocab_size in ${vocab_sizes[@]}; do
-    out_dir=data/bpe_${vocab_size}
+    lang_dir=data/lang_bpe_${vocab_size}
+    out_dir=data/lm_training_bpe_${vocab_size}
     mkdir -p $out_dir
     ./local/prepare_lm_training_data.py \
-      --bpe-model $out_dir/bpe.model \
+      --bpe-model $lang_dir/bpe.model \
       --lm-data $dl_dir/ptb.train.txt \
       --lm-archive $out_dir/lm_data.pt
 
     ./local/prepare_lm_training_data.py \
-      --bpe-model $out_dir/bpe.model \
+      --bpe-model $lang_dir/bpe.model \
       --lm-data $dl_dir/ptb.valid.txt \
       --lm-archive $out_dir/lm_data-valid.pt
 
     ./local/prepare_lm_training_data.py \
-      --bpe-model $out_dir/bpe.model \
+      --bpe-model $lang_dir/bpe.model \
       --lm-data $dl_dir/ptb.test.txt \
       --lm-archive $out_dir/lm_data-test.pt
   done
@@ -95,7 +106,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
   # in a sentence.
 
   for vocab_size in ${vocab_sizes[@]}; do
-    out_dir=data/bpe_${vocab_size}
+    out_dir=data/lm_training_bpe_${vocab_size}
     mkdir -p $out_dir
     ./local/sort_lm_training_data.py \
       --in-lm-data $out_dir/lm_data.pt \
diff --git a/egs/ptb/LM/rnn_lm b/egs/ptb/LM/rnn_lm
new file mode 120000
index 000000000..87f29771e
--- /dev/null
+++ b/egs/ptb/LM/rnn_lm
@@ -0,0 +1 @@
+../../../icefall/rnn_lm
\ No newline at end of file
diff --git a/egs/ptb/LM/train-rnn-lm.sh b/egs/ptb/LM/train-rnn-lm.sh
new file mode 100755
index 000000000..29c609ee1
--- /dev/null
+++ b/egs/ptb/LM/train-rnn-lm.sh
@@ -0,0 +1,67 @@
+#!/usr/bin/env bash
+
+# Please run ./prepare.sh first
+
+stage=-1
+stop_stage=100
+
+# Number of GPUs to use for training
+world_size=1
+
+# Number of epochs to train
+num_epochs=20
+
+# Use this epoch for computing ppl
+use_epoch=19
+
+# number of models to average for computing ppl
+use_avg=2
+
+exp_dir=./my-rnnlm-exp
+
+. shared/parse_options.sh || exit 1
+
+log() {
+  # This function is from espnet
+  local fname=${BASH_SOURCE[1]##*/}
+  echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
+}
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+  log "Training RNN LM"
+
+  ./rnn_lm/train.py \
+    --exp-dir $exp_dir \
+    --start-epoch 0 \
+    --num-epochs $num_epochs \
+    --world-size $world_size \
+    --use-fp16 0 \
+    --vocab-size 500 \
+    \
+    --lm-data ./data/lm_training_bpe_500/sorted_lm_data.pt \
+    --lm-data-valid ./data/lm_training_bpe_500/sorted_lm_data-valid.pt \
+    \
+    --embedding-dim 800 \
+    --hidden-dim 200 \
+    --num-layers 2 \
+    --tie-weights false \
+    --batch-size 50
+fi
+
+if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
+  log "Computing perplexity"
+
+  ./rnn_lm/compute_perplexity.py \
+    --exp-dir $exp_dir \
+    --epoch $use_epoch \
+    --avg $use_avg \
+    --vocab-size 500 \
+    \
+    --lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt \
+    \
+    --embedding-dim 800 \
+    --hidden-dim 200 \
+    --num-layers 2 \
+    --tie-weights false \
+    --batch-size 50
+fi
diff --git a/egs/spgispeech/ASR/local/compute_fbank_musan.py b/egs/spgispeech/ASR/local/compute_fbank_musan.py
index 6cb8b65ae..9bea28a41 100755
--- a/egs/spgispeech/ASR/local/compute_fbank_musan.py
+++ b/egs/spgispeech/ASR/local/compute_fbank_musan.py
@@ -87,9 +87,7 @@ def compute_fbank_musan():
     # create chunks of Musan with duration 5 - 10 seconds
     musan_cuts = (
         CutSet.from_manifests(
-            recordings=combine(
-                part["recordings"] for part in manifests.values()
-            )
+            recordings=combine(part["recordings"] for part in manifests.values())
         )
         .cut_into_windows(10.0)
         .filter(lambda c: c.duration > 5)
@@ -108,8 +106,6 @@ def compute_fbank_musan():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
     logging.basicConfig(format=formatter, level=logging.INFO)
     compute_fbank_musan()
diff --git a/egs/spgispeech/ASR/local/compute_fbank_spgispeech.py b/egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
index 8116e7605..20ff6d7ab 100755
--- a/egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
+++ b/egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
@@ -103,11 +103,7 @@ def compute_fbank_spgispeech(args):
             chunk_size=chunk_size,
         )
         start = args.start
-        stop = (
-            min(args.stop, args.num_splits)
-            if args.stop > 0
-            else args.num_splits
-        )
+        stop = min(args.stop, args.num_splits) if args.stop > 0 else args.num_splits
         num_digits = len(str(args.num_splits))
         for i in range(start, stop):
             idx = f"{i + 1}".zfill(num_digits)
@@ -129,9 +125,7 @@ def compute_fbank_spgispeech(args):
                 logging.info(f"{partition} already exists - skipping.")
                 continue
             logging.info(f"Processing {partition}")
-            cut_set = load_manifest_lazy(
-                src_dir / f"cuts_{partition}_raw.jsonl.gz"
-            )
+            cut_set = load_manifest_lazy(src_dir / f"cuts_{partition}_raw.jsonl.gz")
             cut_set = cut_set.compute_and_store_features_batch(
                 extractor=extractor,
                 storage_path=output_dir / f"feats_{partition}",
@@ -144,9 +138,7 @@ def compute_fbank_spgispeech(args):
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
     logging.basicConfig(format=formatter, level=logging.INFO)
 
     args = get_args()
diff --git a/egs/spgispeech/ASR/local/prepare_splits.py b/egs/spgispeech/ASR/local/prepare_splits.py
index 8c8f1c133..508d4acd8 100755
--- a/egs/spgispeech/ASR/local/prepare_splits.py
+++ b/egs/spgispeech/ASR/local/prepare_splits.py
@@ -55,9 +55,7 @@ def split_spgispeech_train():
 
     # Add speed perturbation
     train_cuts = (
-        train_cuts
-        + train_cuts.perturb_speed(0.9)
-        + train_cuts.perturb_speed(1.1)
+        train_cuts + train_cuts.perturb_speed(0.9) + train_cuts.perturb_speed(1.1)
     )
 
     # Write the manifests to disk.
@@ -73,9 +71,7 @@ def split_spgispeech_train():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
     logging.basicConfig(format=formatter, level=logging.INFO)
 
     split_spgispeech_train()
diff --git a/egs/spgispeech/ASR/prepare.sh b/egs/spgispeech/ASR/prepare.sh
index 231ebd742..8331f94d5 100755
--- a/egs/spgispeech/ASR/prepare.sh
+++ b/egs/spgispeech/ASR/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 nj=20
@@ -105,7 +108,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
     pieces=$(find data/manifests -name "cuts_train_[0-9]*.jsonl.gz")
     lhotse combine $pieces data/manifests/cuts_train.jsonl.gz
   fi
-  gunzip -c data/manifests/train_cuts.jsonl.gz | shuf | gzip -c > data/manifests/train_cuts_shuf.jsonl.gz
+  gunzip -c data/manifests/cuts_train.jsonl.gz | shuf | gzip -c > data/manifests/cuts_train_shuf.jsonl.gz
 fi
 
 if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
@@ -133,7 +136,7 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
     # Add special words to words.txt
     echo " 0" > $lang_dir/words.txt
     echo "!SIL 1" >> $lang_dir/words.txt
-    echo "[UNK] 2" >> $lang_dir/words.txt
+    echo " 2" >> $lang_dir/words.txt
 
     # Add regular words to words.txt
     gunzip -c data/manifests/cuts_train_raw.jsonl.gz \
diff --git a/egs/spgispeech/ASR/pruned_transducer_stateless2/asr_datamodule.py b/egs/spgispeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
index f165f6e60..d94a92503 100644
--- a/egs/spgispeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
+++ b/egs/spgispeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
@@ -176,17 +176,13 @@ class SPGISpeechAsrDataModule:
             The state dict for the training sampler.
         """
         logging.info("About to get Musan cuts")
-        cuts_musan = load_manifest(
-            self.args.manifest_dir / "cuts_musan.jsonl.gz"
-        )
+        cuts_musan = load_manifest(self.args.manifest_dir / "cuts_musan.jsonl.gz")
 
         transforms = []
         if self.args.enable_musan:
             logging.info("Enable MUSAN")
             transforms.append(
-                CutMix(
-                    cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
-                )
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
             )
         else:
             logging.info("Disable MUSAN")
@@ -208,9 +204,7 @@ class SPGISpeechAsrDataModule:
         input_transforms = []
         if self.args.enable_spec_aug:
             logging.info("Enable SpecAugment")
-            logging.info(
-                f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
-            )
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
             input_transforms.append(
                 SpecAugment(
                     time_warp_factor=self.args.spec_aug_time_warp_factor,
@@ -227,9 +221,7 @@ class SPGISpeechAsrDataModule:
         if self.args.on_the_fly_feats:
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 input_transforms=input_transforms,
             )
         else:
@@ -282,9 +274,7 @@ class SPGISpeechAsrDataModule:
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
             )
         else:
             validate = K2SpeechRecognitionDataset(
@@ -328,9 +318,7 @@ class SPGISpeechAsrDataModule:
     @lru_cache()
     def train_cuts(self) -> CutSet:
         logging.info("About to get SPGISpeech train cuts")
-        return load_manifest_lazy(
-            self.args.manifest_dir / "cuts_train_shuf.jsonl.gz"
-        )
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_train_shuf.jsonl.gz")
 
     @lru_cache()
     def dev_cuts(self) -> CutSet:
diff --git a/egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py b/egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py
index c39bd0530..219c96d60 100755
--- a/egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py
+++ b/egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py
@@ -76,11 +76,7 @@ from beam_search import (
 )
 from train import get_params, get_transducer_model
 
-from icefall.checkpoint import (
-    average_checkpoints,
-    find_checkpoints,
-    load_checkpoint,
-)
+from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
 from icefall.utils import (
     AttributeDict,
     setup_logger,
@@ -187,8 +183,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -246,9 +241,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
 
     if params.decoding_method == "fast_beam_search":
@@ -263,10 +256,7 @@ def decode_one_batch(
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -389,9 +379,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -424,9 +412,7 @@ def save_results(
         # we also compute CER for spgispeech dataset.
         results_char = []
         for res in results:
-            results_char.append(
-                (res[0], list("".join(res[1])), list("".join(res[2])))
-            )
+            results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
         cers_filename = (
             params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt"
         )
@@ -438,32 +424,23 @@ def save_results(
 
         logging.info("Wrote detailed error stats to {}".format(wers_filename))
 
-    test_set_wers = {
-        k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])
-    }
-    test_set_cers = {
-        k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])
-    }
+    test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])}
+    test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])}
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER\tCER", file=f)
         for key in test_set_wers:
             print(
-                "{}\t{}\t{}".format(
-                    key, test_set_wers[key], test_set_cers[key]
-                ),
+                "{}\t{}\t{}".format(key, test_set_wers[key], test_set_cers[key]),
                 file=f,
             )
 
     s = "\nFor {}, WER/CER of different settings are:\n".format(test_set_name)
     note = "\tbest for {}".format(test_set_name)
     for key in test_set_wers:
-        s += "{}\t{}\t{}{}\n".format(
-            key, test_set_wers[key], test_set_cers[key], note
-        )
+        s += "{}\t{}\t{}{}\n".format(key, test_set_wers[key], test_set_cers[key], note)
         note = ""
     logging.info(s)
 
@@ -496,9 +473,7 @@ def main():
         params.suffix += f"-max-contexts-{params.max_contexts}"
         params.suffix += f"-max-states-{params.max_states}"
     elif "beam_search" in params.decoding_method:
-        params.suffix += (
-            f"-{params.decoding_method}-beam-size-{params.beam_size}"
-        )
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
     else:
         params.suffix += f"-context-{params.context_size}"
         params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
@@ -530,8 +505,7 @@ def main():
         ]
         if len(filenames) == 0:
             raise ValueError(
-                f"No checkpoints found for"
-                f" --iter {params.iter}, --avg {params.avg}"
+                f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
             )
         elif len(filenames) < params.avg:
             raise ValueError(
diff --git a/egs/spgispeech/ASR/pruned_transducer_stateless2/export.py b/egs/spgispeech/ASR/pruned_transducer_stateless2/export.py
index 77faa3c0e..68763808a 100755
--- a/egs/spgispeech/ASR/pruned_transducer_stateless2/export.py
+++ b/egs/spgispeech/ASR/pruned_transducer_stateless2/export.py
@@ -50,11 +50,7 @@ import sentencepiece as spm
 import torch
 from train import get_params, get_transducer_model
 
-from icefall.checkpoint import (
-    average_checkpoints,
-    find_checkpoints,
-    load_checkpoint,
-)
+from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
 from icefall.utils import str2bool
 
 
@@ -119,8 +115,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -196,9 +191,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/spgispeech/ASR/pruned_transducer_stateless2/train.py b/egs/spgispeech/ASR/pruned_transducer_stateless2/train.py
index dda29b3e5..d943180b1 100755
--- a/egs/spgispeech/ASR/pruned_transducer_stateless2/train.py
+++ b/egs/spgispeech/ASR/pruned_transducer_stateless2/train.py
@@ -77,9 +77,7 @@ from icefall.dist import cleanup_dist, setup_dist
 from icefall.env import get_env_info
 from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
 
-LRSchedulerType = Union[
-    torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
-]
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
 
 
 def get_parser():
@@ -155,8 +153,7 @@ def get_parser():
         "--initial-lr",
         type=float,
         default=0.003,
-        help="The initial learning rate.  This value should not need to be "
-        "changed.",
+        help="The initial learning rate.  This value should not need to be changed.",
     )
 
     parser.add_argument(
@@ -179,8 +176,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -203,8 +199,7 @@ def get_parser():
         "--am-scale",
         type=float,
         default=0.0,
-        help="The scale to smooth the loss with am (output of encoder network)"
-        "part.",
+        help="The scale to smooth the loss with am (output of encoder network) part.",
     )
 
     parser.add_argument(
@@ -554,23 +549,16 @@ def compute_loss(
         # overwhelming the simple_loss and causing it to diverge,
         # in case it had not fully learned the alignment yet.
         pruned_loss_scale = (
-            0.0
-            if warmup < 1.0
-            else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
-        )
-        loss = (
-            params.simple_loss_scale * simple_loss
-            + pruned_loss_scale * pruned_loss
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
         )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
 
     assert loss.requires_grad == is_training
 
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -733,9 +721,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
diff --git a/egs/tal_csasr/ASR/local/compute_fbank_tal_csasr.py b/egs/tal_csasr/ASR/local/compute_fbank_tal_csasr.py
index 4582609ac..602e50d29 100755
--- a/egs/tal_csasr/ASR/local/compute_fbank_tal_csasr.py
+++ b/egs/tal_csasr/ASR/local/compute_fbank_tal_csasr.py
@@ -84,9 +84,7 @@ def compute_fbank_tal_csasr(num_mel_bins: int = 80):
             )
             if "train" in partition:
                 cut_set = (
-                    cut_set
-                    + cut_set.perturb_speed(0.9)
-                    + cut_set.perturb_speed(1.1)
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
                 )
             cut_set = cut_set.compute_and_store_features(
                 extractor=extractor,
@@ -112,9 +110,7 @@ def get_args():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/tal_csasr/ASR/local/prepare_char.py b/egs/tal_csasr/ASR/local/prepare_char.py
index 2c5b8b8b3..1262baf63 100755
--- a/egs/tal_csasr/ASR/local/prepare_char.py
+++ b/egs/tal_csasr/ASR/local/prepare_char.py
@@ -87,9 +87,7 @@ def lexicon_to_fst_no_sil(
         cur_state = loop_state
 
         word = word2id[word]
-        pieces = [
-            token2id[i] if i in token2id else token2id[""] for i in pieces
-        ]
+        pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces]
 
         for i in range(len(pieces) - 1):
             w = word if i == 0 else eps
diff --git a/egs/tal_csasr/ASR/local/prepare_lang.py b/egs/tal_csasr/ASR/local/prepare_lang.py
index e5ae89ec4..c8cf9b881 100755
--- a/egs/tal_csasr/ASR/local/prepare_lang.py
+++ b/egs/tal_csasr/ASR/local/prepare_lang.py
@@ -317,9 +317,7 @@ def lexicon_to_fst(
 
 def get_args():
     parser = argparse.ArgumentParser()
-    parser.add_argument(
-        "--lang-dir", type=str, help="The lang dir, data/lang_phone"
-    )
+    parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
     return parser.parse_args()
 
 
diff --git a/egs/tal_csasr/ASR/local/test_prepare_lang.py b/egs/tal_csasr/ASR/local/test_prepare_lang.py
index d4cf62bba..74e025ad7 100755
--- a/egs/tal_csasr/ASR/local/test_prepare_lang.py
+++ b/egs/tal_csasr/ASR/local/test_prepare_lang.py
@@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
     fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
     fsa.draw("L.pdf", title="L")
 
-    fsa_disambig = lexicon_to_fst(
-        lexicon_disambig, phone2id=phone2id, word2id=word2id
-    )
+    fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
     fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
     fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
     fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
diff --git a/egs/tal_csasr/ASR/local/text2token.py b/egs/tal_csasr/ASR/local/text2token.py
index 71be2a613..85047c367 100755
--- a/egs/tal_csasr/ASR/local/text2token.py
+++ b/egs/tal_csasr/ASR/local/text2token.py
@@ -56,9 +56,7 @@ def get_parser():
     parser.add_argument(
         "--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
     )
-    parser.add_argument(
-        "--space", default="", type=str, help="space symbol"
-    )
+    parser.add_argument("--space", default="", type=str, help="space symbol")
     parser.add_argument(
         "--non-lang-syms",
         "-l",
@@ -66,9 +64,7 @@ def get_parser():
         type=str,
         help="list of non-linguistic symobles, e.g.,  etc.",
     )
-    parser.add_argument(
-        "text", type=str, default=False, nargs="?", help="input text"
-    )
+    parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
     parser.add_argument(
         "--trans_type",
         "-t",
@@ -108,8 +104,7 @@ def token2id(
             if token_type == "lazy_pinyin":
                 text = lazy_pinyin(chars_list)
                 sub_ids = [
-                    token_table[txt] if txt in token_table else oov_id
-                    for txt in text
+                    token_table[txt] if txt in token_table else oov_id for txt in text
                 ]
                 ids.append(sub_ids)
             else:  # token_type = "pinyin"
@@ -135,9 +130,7 @@ def main():
     if args.text:
         f = codecs.open(args.text, encoding="utf-8")
     else:
-        f = codecs.getreader("utf-8")(
-            sys.stdin if is_python2 else sys.stdin.buffer
-        )
+        f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
 
     sys.stdout = codecs.getwriter("utf-8")(
         sys.stdout if is_python2 else sys.stdout.buffer
diff --git a/egs/tal_csasr/ASR/prepare.sh b/egs/tal_csasr/ASR/prepare.sh
index 340521ad8..d9938fa63 100755
--- a/egs/tal_csasr/ASR/prepare.sh
+++ b/egs/tal_csasr/ASR/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 stage=-1
diff --git a/egs/tal_csasr/ASR/pruned_transducer_stateless5/asr_datamodule.py b/egs/tal_csasr/ASR/pruned_transducer_stateless5/asr_datamodule.py
index 49bfb148b..2240c1c1d 100644
--- a/egs/tal_csasr/ASR/pruned_transducer_stateless5/asr_datamodule.py
+++ b/egs/tal_csasr/ASR/pruned_transducer_stateless5/asr_datamodule.py
@@ -222,17 +222,13 @@ class TAL_CSASRAsrDataModule:
             The state dict for the training sampler.
         """
         logging.info("About to get Musan cuts")
-        cuts_musan = load_manifest(
-            self.args.manifest_dir / "musan_cuts.jsonl.gz"
-        )
+        cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
 
         transforms = []
         if self.args.enable_musan:
             logging.info("Enable MUSAN")
             transforms.append(
-                CutMix(
-                    cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
-                )
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
             )
         else:
             logging.info("Disable MUSAN")
@@ -254,9 +250,7 @@ class TAL_CSASRAsrDataModule:
         input_transforms = []
         if self.args.enable_spec_aug:
             logging.info("Enable SpecAugment")
-            logging.info(
-                f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
-            )
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
             # Set the value of num_frame_masks according to Lhotse's version.
             # In different Lhotse's versions, the default of num_frame_masks is
             # different.
@@ -300,9 +294,7 @@ class TAL_CSASRAsrDataModule:
             # Drop feats to be on the safe side.
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 input_transforms=input_transforms,
                 return_cuts=self.args.return_cuts,
             )
@@ -360,9 +352,7 @@ class TAL_CSASRAsrDataModule:
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 return_cuts=self.args.return_cuts,
             )
         else:
diff --git a/egs/tal_csasr/ASR/pruned_transducer_stateless5/decode.py b/egs/tal_csasr/ASR/pruned_transducer_stateless5/decode.py
index b624913f5..bf91fef7e 100755
--- a/egs/tal_csasr/ASR/pruned_transducer_stateless5/decode.py
+++ b/egs/tal_csasr/ASR/pruned_transducer_stateless5/decode.py
@@ -208,8 +208,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -268,9 +267,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
     zh_hyps = []
     en_hyps = []
@@ -303,10 +300,7 @@ def decode_one_batch(
             hyps.append(chars_new)
             zh_hyps.append(zh_text)
             en_hyps.append(en_text)
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -375,9 +369,7 @@ def decode_one_batch(
                     f"Unsupported decoding method: {params.decoding_method}"
                 )
             for i in range(encoder_out.size(0)):
-                hyp = sp.decode(
-                    [lexicon.token_table[idx] for idx in hyp_tokens[i]]
-                )
+                hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
                 chars = pattern.split(hyp.upper())
                 chars_new = []
                 zh_text = []
@@ -506,9 +498,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results, zh_results, en_results
 
 
@@ -541,8 +531,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -585,9 +574,7 @@ def main():
         params.suffix += f"-max-contexts-{params.max_contexts}"
         params.suffix += f"-max-states-{params.max_states}"
     elif "beam_search" in params.decoding_method:
-        params.suffix += (
-            f"-{params.decoding_method}-beam-size-{params.beam_size}"
-        )
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
     else:
         params.suffix += f"-context-{params.context_size}"
         params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
@@ -619,9 +606,9 @@ def main():
 
     if not params.use_averaged_model:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -648,9 +635,9 @@ def main():
             model.load_state_dict(average_checkpoints(filenames, device=device))
     else:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg + 1]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
diff --git a/egs/tal_csasr/ASR/pruned_transducer_stateless5/export.py b/egs/tal_csasr/ASR/pruned_transducer_stateless5/export.py
index 8f900208a..bc33dd160 100755
--- a/egs/tal_csasr/ASR/pruned_transducer_stateless5/export.py
+++ b/egs/tal_csasr/ASR/pruned_transducer_stateless5/export.py
@@ -139,8 +139,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     add_model_arguments(parser)
@@ -176,9 +175,9 @@ def main():
 
     if not params.use_averaged_model:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -205,9 +204,9 @@ def main():
             model.load_state_dict(average_checkpoints(filenames, device=device))
     else:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg + 1]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -277,9 +276,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tal_csasr/ASR/pruned_transducer_stateless5/pretrained.py b/egs/tal_csasr/ASR/pruned_transducer_stateless5/pretrained.py
index dbe213b24..3305f5bd3 100755
--- a/egs/tal_csasr/ASR/pruned_transducer_stateless5/pretrained.py
+++ b/egs/tal_csasr/ASR/pruned_transducer_stateless5/pretrained.py
@@ -165,8 +165,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -197,10 +196,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -263,15 +261,11 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=features, x_lens=feature_lengths
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
 
     num_waves = encoder_out.size(0)
     hyps = []
@@ -367,9 +361,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tal_csasr/ASR/pruned_transducer_stateless5/train.py b/egs/tal_csasr/ASR/pruned_transducer_stateless5/train.py
index ca35eba45..43f3231ba 100755
--- a/egs/tal_csasr/ASR/pruned_transducer_stateless5/train.py
+++ b/egs/tal_csasr/ASR/pruned_transducer_stateless5/train.py
@@ -86,9 +86,7 @@ from icefall.env import get_env_info
 from icefall.lexicon import Lexicon
 from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
 
-LRSchedulerType = Union[
-    torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
-]
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
 
 
 def add_model_arguments(parser: argparse.ArgumentParser):
@@ -214,8 +212,7 @@ def get_parser():
         "--initial-lr",
         type=float,
         default=0.003,
-        help="The initial learning rate.  This value should not need "
-        "to be changed.",
+        help="The initial learning rate.  This value should not need to be changed.",
     )
 
     parser.add_argument(
@@ -238,8 +235,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -262,8 +258,7 @@ def get_parser():
         "--am-scale",
         type=float,
         default=0.0,
-        help="The scale to smooth the loss with am (output of encoder network)"
-        "part.",
+        help="The scale to smooth the loss with am (output of encoder network) part.",
     )
 
     parser.add_argument(
@@ -600,11 +595,7 @@ def compute_loss(
      warmup: a floating point value which increases throughout training;
         values >= 1.0 are fully warmed up and have all modules present.
     """
-    device = (
-        model.device
-        if isinstance(model, DDP)
-        else next(model.parameters()).device
-    )
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
     feature = batch["inputs"]
     # at entry, feature is (N, T, C)
     assert feature.ndim == 3
@@ -634,22 +625,15 @@ def compute_loss(
         # overwhelming the simple_loss and causing it to diverge,
         # in case it had not fully learned the alignment yet.
         pruned_loss_scale = (
-            0.0
-            if warmup < 1.0
-            else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
-        )
-        loss = (
-            params.simple_loss_scale * simple_loss
-            + pruned_loss_scale * pruned_loss
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
         )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
     assert loss.requires_grad == is_training
 
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -828,9 +812,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -944,7 +926,7 @@ def run(rank, world_size, args):
 
     if params.print_diagnostics:
         opts = diagnostics.TensorDiagnosticOptions(
-            2 ** 22
+            2**22
         )  # allow 4 megabytes per sub-module
         diagnostic = diagnostics.attach_diagnostics(model, opts)
 
diff --git a/egs/tedlium3/ASR/RESULTS.md b/egs/tedlium3/ASR/RESULTS.md
index 511b19f73..38eaa8f44 100644
--- a/egs/tedlium3/ASR/RESULTS.md
+++ b/egs/tedlium3/ASR/RESULTS.md
@@ -1,5 +1,88 @@
 ## Results
 
+### TedLium3 BPE training results (Conformer-CTC 2)
+
+#### [conformer_ctc2](./conformer_ctc2)
+
+See  for more details.
+
+The tensorboard log can be found at
+
+
+You can find a pretrained model and decoding results at:
+
+
+Number of model parameters: 101141699, i.e., 101.14 M
+
+The WERs are
+
+|                          | dev        | test        | comment             |
+|--------------------------|------------|-------------|---------------------|
+| ctc decoding             | 6.45       | 5.96        | --epoch 38 --avg 26 |
+| 1best                    | 5.92       | 5.51        | --epoch 38 --avg 26 |
+| whole lattice rescoring  | 5.96       | 5.47        | --epoch 38 --avg 26 |
+| attention decoder        | 5.60       | 5.33        | --epoch 38 --avg 26 |
+
+The training command for reproducing is given below:
+
+```
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./conformer_ctc2/train.py \
+    --world-size 4 \
+    --num-epochs 40 \
+    --exp-dir conformer_ctc2/exp \
+    --max-duration 350 \
+    --use-fp16 true
+```
+
+The decoding command is:
+```
+epoch=38
+avg=26
+
+## ctc decoding
+./conformer_ctc2/decode.py \
+  --method ctc-decoding \
+  --exp-dir conformer_ctc2/exp \
+  --lang-dir data/lang_bpe_500 \
+  --result-dir conformer_ctc2/exp \
+  --max-duration 500 \
+  --epoch $epoch \
+  --avg $avg
+
+## 1best
+./conformer_ctc2/decode.py \
+  --method 1best \
+  --exp-dir conformer_ctc2/exp \
+  --lang-dir data/lang_bpe_500 \
+  --result-dir conformer_ctc2/exp \
+  --max-duration 500 \
+  --epoch $epoch \
+  --avg $avg
+
+## whole lattice rescoring
+./conformer_ctc2/decode.py \
+  --method whole-lattice-rescoring \
+  --exp-dir conformer_ctc2/exp \
+  --lm-path data/lm/G_4_gram_big.pt \
+  --lang-dir data/lang_bpe_500 \
+  --result-dir conformer_ctc2/exp \
+  --max-duration 500 \
+  --epoch $epoch \
+  --avg $avg
+
+## attention decoder
+./conformer_ctc2/decode.py \
+  --method attention-decoder \
+  --exp-dir conformer_ctc2/exp \
+  --lang-dir data/lang_bpe_500 \
+  --result-dir conformer_ctc2/exp \
+  --max-duration 500 \
+  --epoch $epoch \
+  --avg $avg
+```
+
 ### TedLium3 BPE training results (Pruned Transducer)
 
 #### 2022-03-21
diff --git a/egs/tedlium3/ASR/conformer_ctc2/__init__.py b/egs/tedlium3/ASR/conformer_ctc2/__init__.py
new file mode 100755
index 000000000..e69de29bb
diff --git a/egs/tedlium3/ASR/conformer_ctc2/asr_datamodule.py b/egs/tedlium3/ASR/conformer_ctc2/asr_datamodule.py
new file mode 120000
index 000000000..49b2ee483
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/asr_datamodule.py
@@ -0,0 +1 @@
+../transducer_stateless/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/attention.py b/egs/tedlium3/ASR/conformer_ctc2/attention.py
new file mode 100644
index 000000000..178cd7e62
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/attention.py
@@ -0,0 +1,201 @@
+# Copyright    2022  Behavox LLC.        (author: Daniil Kulko)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Optional, Tuple, Union
+
+import torch
+from scaling import ScaledLinear
+
+
+class MultiheadAttention(torch.nn.Module):
+    """Allows the model to jointly attend to information
+    from different representation subspaces. This is a modified
+    version of the original version of multihead attention
+    (see Attention Is All You Need )
+    with replacement of input / output projection layers
+    with newly introduced ScaleLinear layer
+    (see https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py).
+
+    Args:
+        embed_dim:
+          total dimension of the model.
+        num_heads:
+          number of parallel attention heads. Note that embed_dim will be split
+          across num_heads, i.e. each head will have dimension (embed_dim // num_heads).
+        dropout:
+          dropout probability on attn_output_weights. (default=0.0).
+        bias:
+          if specified, adds bias to input / output projection layers (default=True).
+        add_bias_kv:
+          if specified, adds bias to the key and value sequences at dim=0 (default=False).
+        add_zero_attn:
+          if specified, adds a new batch of zeros to the key and value sequences
+          at dim=1 (default=False).
+        batch_first:
+          if True, then the input and output tensors are provided as
+          (batch, seq, feature), otherwise (seq, batch, feature) (default=False).
+
+    Examples::
+        >>> multihead_attn = MultiheadAttention(embed_dim, num_heads)
+        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
+    """
+
+    def __init__(
+        self,
+        embed_dim: int,
+        num_heads: int,
+        dropout: float = 0.0,
+        bias: bool = True,
+        add_bias_kv: bool = False,
+        add_zero_attn: bool = False,
+        batch_first: bool = False,
+        device: Union[torch.device, str, None] = None,
+        dtype: Union[torch.dtype, str, None] = None,
+    ) -> None:
+
+        super().__init__()
+
+        self.embed_dim = embed_dim
+        self.num_heads = num_heads
+        self.dropout = dropout
+        self.batch_first = batch_first
+
+        if embed_dim % num_heads != 0:
+            raise ValueError(
+                f"embed_dim must be divisible by num_heads. "
+                "Got embedding dim vs number 0f heads: "
+                f"{embed_dim} vs {num_heads}"
+            )
+
+        self.head_dim = embed_dim // num_heads
+
+        self.in_proj = ScaledLinear(
+            embed_dim,
+            3 * embed_dim,
+            bias=bias,
+            device=device,
+            dtype=dtype,
+        )
+        self.out_proj = ScaledLinear(
+            embed_dim,
+            embed_dim,
+            bias=bias,
+            initial_scale=0.25,
+            device=device,
+            dtype=dtype,
+        )
+
+        if add_bias_kv:
+            self.bias_k = torch.nn.Parameter(
+                torch.empty((1, 1, embed_dim), device=device, dtype=dtype)
+            )
+            self.bias_v = torch.nn.Parameter(
+                torch.empty((1, 1, embed_dim), device=device, dtype=dtype)
+            )
+        else:
+            self.register_parameter("bias_k", None)
+            self.register_parameter("bias_v", None)
+
+        self.add_zero_attn = add_zero_attn
+
+        self._reset_parameters()
+
+    def _reset_parameters(self) -> None:
+        if self.bias_k is not None:
+            torch.nn.init.xavier_normal_(self.bias_k)
+        if self.bias_v is not None:
+            torch.nn.init.xavier_normal_(self.bias_v)
+
+    def forward(
+        self,
+        query: torch.Tensor,
+        key: torch.Tensor,
+        value: torch.Tensor,
+        key_padding_mask: Optional[torch.Tensor] = None,
+        need_weights: bool = True,
+        attn_mask: Optional[torch.Tensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+        """
+        Args:
+            query:
+              Query embeddings of shape (L, N, E_q) when batch_first=False or (N, L, E_q)
+              when batch_first=True, where L is the target sequence length, N is the batch size,
+              and E_q is the query embedding dimension embed_dim. Queries are compared against
+              key-value pairs to produce the output. See "Attention Is All You Need" for more details.
+            key:
+              Key embeddings of shape (S, N, E_k) when batch_first=False or (N, S, E_k) when
+              batch_first=True, where S is the source sequence length, N is the batch size, and
+              E_k is the key embedding dimension kdim. See "Attention Is All You Need" for more details.
+            value:
+              Value embeddings of shape (S, N, E_v) when batch_first=False or (N, S, E_v) when
+              batch_first=True, where S is the source sequence length, N is the batch size, and
+              E_v is the value embedding dimension vdim. See "Attention Is All You Need" for more details.
+            key_padding_mask:
+              If specified, a mask of shape (N, S) indicating which elements within key
+              to ignore for the purpose of attention (i.e. treat as "padding").
+              Binary and byte masks are supported. For a binary mask, a True value indicates
+              that the corresponding key value will be ignored for the purpose of attention.
+              For a byte mask, a non-zero value indicates that the corresponding key value will be ignored.
+            need_weights:
+              If specifid, returns attn_output_weights in addition to attn_outputs (default=True).
+            attn_mask:
+              If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
+              (L, S) or (N * num_heads, L, S), where N is the batch size, L is the target sequence length,
+              and S is the source sequence length. A 2D mask will be broadcasted across the batch while
+              a 3D mask allows for a different mask for each entry in the batch.
+              Binary, byte, and float masks are supported. For a binary mask, a True value indicates
+              that the corresponding position is not allowed to attend. For a byte mask, a non-zero
+              value indicates that the corresponding position is not allowed to attend. For a float mask,
+              the mask values will be added to the attention weight.
+
+        Returns:
+            attn_output:
+              Attention outputs of shape (L, N, E) when batch_first=False or (N, L, E) when batch_first=True,
+              where L is the target sequence length, N is the batch size, and E is the embedding dimension
+              embed_dim.
+            attn_output_weights:
+              Attention output weights of shape (N, L, S), where N is the batch size, L is the target sequence
+              length, and S is the source sequence length. Only returned when need_weights=True.
+        """
+        if self.batch_first:
+            query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
+
+        (
+            attn_output,
+            attn_output_weights,
+        ) = torch.nn.functional.multi_head_attention_forward(
+            query,
+            key,
+            value,
+            self.embed_dim,
+            self.num_heads,
+            in_proj_weight=self.in_proj.get_weight(),
+            in_proj_bias=self.in_proj.get_bias(),
+            bias_k=self.bias_k,
+            bias_v=self.bias_v,
+            add_zero_attn=self.add_zero_attn,
+            dropout_p=self.dropout,
+            out_proj_weight=self.out_proj.get_weight(),
+            out_proj_bias=self.out_proj.get_bias(),
+            training=self.training,
+            key_padding_mask=key_padding_mask,
+            need_weights=need_weights,
+            attn_mask=attn_mask,
+        )
+
+        if self.batch_first:
+            return attn_output.transpose(1, 0), attn_output_weights
+        return attn_output, attn_output_weights
diff --git a/egs/tedlium3/ASR/conformer_ctc2/combiner.py b/egs/tedlium3/ASR/conformer_ctc2/combiner.py
new file mode 100644
index 000000000..ff526029d
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/combiner.py
@@ -0,0 +1,244 @@
+# Copyright    2022  Behavox LLC.        (author: Daniil Kulko)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List
+
+import torch
+
+
+class RandomCombine(torch.nn.Module):
+    """
+    This module combines a list of Tensors, all with the same shape, to
+    produce a single output of that same shape which, in training time,
+    is a random combination of all the inputs; but which in test time
+    will be just the last input.
+    The idea is that the list of Tensors will be a list of outputs of multiple
+    conformer layers.  This has a similar effect as iterated loss. (See:
+    DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER
+    NETWORKS).
+    """
+
+    def __init__(
+        self,
+        num_inputs: int,
+        final_weight: float = 0.5,
+        pure_prob: float = 0.5,
+        stddev: float = 2.0,
+    ) -> None:
+        """
+        Args:
+          num_inputs:
+            The number of tensor inputs, which equals the number of layers'
+            outputs that are fed into this module.  E.g. in an 18-layer neural
+            net if we output layers 16, 12, 18, num_inputs would be 3.
+          final_weight:
+            The amount of weight or probability we assign to the
+            final layer when randomly choosing layers or when choosing
+            continuous layer weights.
+          pure_prob:
+            The probability, on each frame, with which we choose
+            only a single layer to output (rather than an interpolation)
+          stddev:
+            A standard deviation that we add to log-probs for computing
+            randomized weights.
+        The method of choosing which layers, or combinations of layers, to use,
+        is conceptually as follows::
+            With probability `pure_prob`::
+               With probability `final_weight`: choose final layer,
+               Else: choose random non-final layer.
+            Else::
+               Choose initial log-weights that correspond to assigning
+               weight `final_weight` to the final layer and equal
+               weights to other layers; then add Gaussian noise
+               with variance `stddev` to these log-weights, and normalize
+               to weights (note: the average weight assigned to the
+               final layer here will not be `final_weight` if stddev>0).
+        """
+        super().__init__()
+        assert 0 <= pure_prob <= 1, pure_prob
+        assert 0 < final_weight < 1, final_weight
+        assert num_inputs >= 1, num_inputs
+
+        self.num_inputs = num_inputs
+        self.final_weight = final_weight
+        self.pure_prob = pure_prob
+        self.stddev = stddev
+
+        self.final_log_weight = (
+            torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1))
+            .log()
+            .item()
+        )
+
+    def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
+        """Forward function.
+        Args:
+          inputs:
+            A list of Tensor, e.g. from various layers of a transformer.
+            All must be the same shape, of (*, num_channels)
+        Returns:
+          A Tensor of shape (*, num_channels). In test mode
+          this is just the final input.
+        """
+        num_inputs = self.num_inputs
+        assert len(inputs) == num_inputs, f"{len(inputs)}, {num_inputs}"
+        if not self.training or torch.jit.is_scripting() or len(inputs) == 1:
+            return inputs[-1]
+
+        # Shape of weights: (*, num_inputs)
+        num_channels = inputs[0].shape[-1]
+        num_frames = inputs[0].numel() // num_channels
+
+        ndim = inputs[0].ndim
+        # stacked_inputs: (num_frames, num_channels, num_inputs)
+        stacked_inputs = torch.stack(inputs, dim=ndim).reshape(
+            (num_frames, num_channels, num_inputs)
+        )
+
+        # weights: (num_frames, num_inputs)
+        weights = self._get_random_weights(
+            inputs[0].dtype, inputs[0].device, num_frames
+        )
+
+        weights = weights.reshape(num_frames, num_inputs, 1)
+        # ans: (num_frames, num_channels, 1)
+        ans = torch.matmul(stacked_inputs, weights)
+        # ans: (*, num_channels)
+
+        ans = ans.reshape(inputs[0].shape[:-1] + (num_channels,))
+
+        return ans
+
+    def _get_random_weights(
+        self, dtype: torch.dtype, device: torch.device, num_frames: int
+    ) -> torch.Tensor:
+        """Return a tensor of random weights, of shape
+        `(num_frames, self.num_inputs)`,
+        Args:
+          dtype:
+            The data-type desired for the answer, e.g. float, double.
+          device:
+            The device needed for the answer.
+          num_frames:
+            The number of sets of weights desired
+        Returns:
+          A tensor of shape (num_frames, self.num_inputs), such that
+          `ans.sum(dim=1)` is all ones.
+        """
+        pure_prob = self.pure_prob
+        if pure_prob == 0.0:
+            return self._get_random_mixed_weights(dtype, device, num_frames)
+        elif pure_prob == 1.0:
+            return self._get_random_pure_weights(dtype, device, num_frames)
+        else:
+            p = self._get_random_pure_weights(dtype, device, num_frames)
+            m = self._get_random_mixed_weights(dtype, device, num_frames)
+            return torch.where(
+                torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m
+            )
+
+    def _get_random_pure_weights(
+        self, dtype: torch.dtype, device: torch.device, num_frames: int
+    ) -> torch.Tensor:
+        """Return a tensor of random one-hot weights, of shape
+        `(num_frames, self.num_inputs)`,
+        Args:
+          dtype:
+            The data-type desired for the answer, e.g. float, double.
+          device:
+            The device needed for the answer.
+          num_frames:
+            The number of sets of weights desired.
+        Returns:
+          A one-hot tensor of shape `(num_frames, self.num_inputs)`, with
+          exactly one weight equal to 1.0 on each frame.
+        """
+        final_prob = self.final_weight
+
+        # final contains self.num_inputs - 1 in all elements
+        final = torch.full((num_frames,), self.num_inputs - 1, device=device)
+        # nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights.
+        nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device)
+
+        indexes = torch.where(
+            torch.rand(num_frames, device=device) < final_prob, final, nonfinal
+        )
+        ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to(
+            dtype=dtype
+        )
+        return ans
+
+    def _get_random_mixed_weights(
+        self, dtype: torch.dtype, device: torch.device, num_frames: int
+    ) -> torch.Tensor:
+        """Return a tensor of random one-hot weights, of shape
+        `(num_frames, self.num_inputs)`,
+        Args:
+          dtype:
+            The data-type desired for the answer, e.g. float, double.
+          device:
+            The device needed for the answer.
+          num_frames:
+            The number of sets of weights desired.
+        Returns:
+          A tensor of shape (num_frames, self.num_inputs), which elements
+          in [0..1] that sum to one over the second axis, i.e.
+          `ans.sum(dim=1)` is all ones.
+        """
+        logprobs = (
+            torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device)
+            * self.stddev
+        )
+        logprobs[:, -1] += self.final_log_weight
+        return logprobs.softmax(dim=1)
+
+
+def _test_random_combine(
+    final_weight: float,
+    pure_prob: float,
+    stddev: float,
+) -> None:
+    print(
+        f"_test_random_combine: final_weight={final_weight}, "
+        f"pure_prob={pure_prob}, stddev={stddev}"
+    )
+    num_inputs = 3
+    num_channels = 50
+    m = RandomCombine(
+        num_inputs=num_inputs,
+        final_weight=final_weight,
+        pure_prob=pure_prob,
+        stddev=stddev,
+    )
+
+    x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)]
+
+    y = m(x)
+    assert y.shape == x[0].shape
+    assert torch.allclose(y, x[0])  # .. since actually all ones.
+
+
+def _test_random_combine_main() -> None:
+    _test_random_combine(0.999, 0, 0.0)
+    _test_random_combine(0.5, 0, 0.0)
+    _test_random_combine(0.999, 0, 0.0)
+    _test_random_combine(0.5, 0, 0.3)
+    _test_random_combine(0.5, 1, 0.3)
+    _test_random_combine(0.5, 0.5, 0.3)
+
+
+if __name__ == "__main__":
+    _test_random_combine_main()
diff --git a/egs/tedlium3/ASR/conformer_ctc2/conformer.py b/egs/tedlium3/ASR/conformer_ctc2/conformer.py
new file mode 100644
index 000000000..fad2f371f
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/conformer.py
@@ -0,0 +1,1033 @@
+#!/usr/bin/env python3
+# Copyright (c)  2021  University of Chinese Academy of Sciences (author: Han Zhu)
+#                2022  Xiaomi Corp.                              (author: Quandong Wang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import copy
+import math
+import warnings
+from typing import List, Optional, Tuple
+
+import torch
+import torch.nn as nn
+from combiner import RandomCombine
+from scaling import (
+    ActivationBalancer,
+    BasicNorm,
+    DoubleSwish,
+    ScaledConv1d,
+    ScaledLinear,
+)
+from subsampling import Conv2dSubsampling
+from transformer import Supervisions, Transformer, encoder_padding_mask
+
+
+class Conformer(Transformer):
+    def __init__(
+        self,
+        num_features: int,
+        num_classes: int,
+        subsampling_factor: int = 4,
+        d_model: int = 256,
+        nhead: int = 4,
+        dim_feedforward: int = 2048,
+        num_encoder_layers: int = 12,
+        num_decoder_layers: int = 6,
+        dropout: float = 0.1,
+        layer_dropout: float = 0.075,
+        cnn_module_kernel: int = 31,
+        aux_layer_period: int = 3,
+    ) -> None:
+        """
+        Args:
+          num_features (int):
+            number of input features.
+          num_classes (int):
+            number of output classes.
+          subsampling_factor (int):
+            subsampling factor of encoder;
+            currently, subsampling_factor MUST be 4.
+          d_model (int):
+            attention dimension, also the output dimension.
+          nhead (int):
+            number of heads in multi-head attention;
+            must satisfy d_model // nhead == 0.
+          dim_feedforward (int):
+            feedforward dimention.
+          num_encoder_layers (int):
+            number of encoder layers.
+          num_decoder_layers (int):
+            number of decoder layers.
+          dropout (float):
+            dropout rate.
+          layer_dropout (float):
+            layer-dropout rate.
+          cnn_module_kernel (int):
+            kernel size of convolution module.
+          aux_layer_period (int):
+            determines the auxiliary encoder layers.
+        """
+
+        super().__init__(
+            num_features=num_features,
+            num_classes=num_classes,
+            subsampling_factor=subsampling_factor,
+            d_model=d_model,
+            nhead=nhead,
+            dim_feedforward=dim_feedforward,
+            num_encoder_layers=num_encoder_layers,
+            num_decoder_layers=num_decoder_layers,
+            dropout=dropout,
+            layer_dropout=layer_dropout,
+        )
+
+        self.num_features = num_features
+        self.subsampling_factor = subsampling_factor
+        if subsampling_factor != 4:
+            raise NotImplementedError("Support only 'subsampling_factor=4'.")
+
+        # self.encoder_embed converts the input of shape (N, T, num_features)
+        # to the shape (N, T//subsampling_factor, d_model).
+        # That is, it does two things simultaneously:
+        #   (1) subsampling: T -> T//subsampling_factor
+        #   (2) embedding: num_features -> d_model
+        self.encoder_embed = Conv2dSubsampling(num_features, d_model)
+
+        self.encoder_pos = RelPositionalEncoding(d_model, dropout)
+
+        encoder_layer = ConformerEncoderLayer(
+            d_model=d_model,
+            nhead=nhead,
+            dim_feedforward=dim_feedforward,
+            dropout=dropout,
+            layer_dropout=layer_dropout,
+            cnn_module_kernel=cnn_module_kernel,
+        )
+
+        # aux_layers from 1/3
+        self.encoder = ConformerEncoder(
+            encoder_layer=encoder_layer,
+            num_layers=num_encoder_layers,
+            aux_layers=list(
+                range(
+                    num_encoder_layers // 3,
+                    num_encoder_layers - 1,
+                    aux_layer_period,
+                )
+            ),
+        )
+
+    def run_encoder(
+        self,
+        x: torch.Tensor,
+        supervisions: Optional[Supervisions] = None,
+        warmup: float = 1.0,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+        """
+        Args:
+          x:
+            the input tensor. Its shape is (batch_size, seq_len, feature_dim).
+          supervisions:
+            Supervision in lhotse format.
+            See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32  # noqa
+            CAUTION: It contains length information, i.e., start and number of
+            frames, before subsampling
+            It is read directly from the batch, without any sorting. It is used
+            to compute encoder padding mask, which is used as memory key padding
+            mask for the decoder.
+          warmup:
+            a floating point value that gradually increases from 0 throughout
+            training; when it is >= 1.0 we are "fully warmed up".  It is used
+            to turn modules on sequentially.
+
+        Returns:
+          torch.Tensor: Predictor tensor of dimension (S, N, C).
+          torch.Tensor: Mask tensor of dimension (N, S)
+        """
+        x = self.encoder_embed(x)
+        x, pos_emb = self.encoder_pos(x)
+        x = x.permute(1, 0, 2)  # (N, S, C) -> (S, N, C)
+        mask = encoder_padding_mask(x.size(0), supervisions)
+        mask = mask.to(x.device) if mask is not None else None
+
+        x = self.encoder(
+            x, pos_emb, src_key_padding_mask=mask, warmup=warmup
+        )  # (S, N, C)
+
+        return x, mask
+
+
+class ConformerEncoderLayer(nn.Module):
+    """
+    ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
+    See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
+
+    Examples:
+        >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
+        >>> src = torch.rand(10, 32, 512)
+        >>> pos_emb = torch.rand(32, 19, 512)
+        >>> out = encoder_layer(src, pos_emb)
+    """
+
+    def __init__(
+        self,
+        d_model: int,
+        nhead: int,
+        dim_feedforward: int = 2048,
+        dropout: float = 0.1,
+        bypass_scale: float = 0.1,
+        layer_dropout: float = 0.075,
+        cnn_module_kernel: int = 31,
+    ) -> None:
+        """
+        Args:
+          d_model:
+            the number of expected features in the input (required).
+          nhead:
+            the number of heads in the multiheadattention models (required).
+          dim_feedforward:
+            the dimension of the feedforward network model (default=2048).
+          dropout:
+            the dropout value (default=0.1).
+          bypass_scale:
+            a scale on the layer's output, used in bypass (resnet-type) skip-connection;
+            when the layer is bypassed the final output will be a
+            weighted sum of the layer's input and layer's output with weights
+            (1.0-bypass_scale) and bypass_scale correspondingly (default=0.1).
+          layer_dropout:
+            the probability to bypass the layer (default=0.075).
+          cnn_module_kernel (int):
+            kernel size of convolution module (default=31).
+        """
+        super().__init__()
+
+        if bypass_scale < 0.0 or bypass_scale > 1.0:
+            raise ValueError("bypass_scale should be between 0.0 and 1.0")
+
+        if layer_dropout < 0.0 or layer_dropout > 1.0:
+            raise ValueError("layer_dropout should be between 0.0 and 1.0")
+
+        self.bypass_scale = bypass_scale
+        self.layer_dropout = layer_dropout
+
+        self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
+
+        self.feed_forward = nn.Sequential(
+            ScaledLinear(d_model, dim_feedforward),
+            ActivationBalancer(channel_dim=-1),
+            DoubleSwish(),
+            nn.Dropout(dropout),
+            ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
+        )
+
+        self.feed_forward_macaron = nn.Sequential(
+            ScaledLinear(d_model, dim_feedforward),
+            ActivationBalancer(channel_dim=-1),
+            DoubleSwish(),
+            nn.Dropout(dropout),
+            ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
+        )
+
+        self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
+
+        self.norm_final = BasicNorm(d_model)
+
+        # try to ensure the output is close to zero-mean (or at least, zero-median).
+        self.balancer = ActivationBalancer(
+            channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
+        )
+
+        self.dropout = nn.Dropout(dropout)
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        pos_emb: torch.Tensor,
+        src_mask: Optional[torch.Tensor] = None,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """
+        Pass the input through the encoder layer.
+
+        Args:
+          src:
+            the sequence to the encoder layer of shape (S, N, C) (required).
+          pos_emb:
+            positional embedding tensor of shape (N, 2*S-1, C) (required).
+          src_mask:
+            the mask for the src sequence of shape (S, S) (optional).
+          src_key_padding_mask:
+            the mask for the src keys per batch of shape (N, S) (optional).
+          warmup:
+            controls selective bypass of of layers; if < 1.0, we will
+            bypass layers more frequently.
+
+        Returns:
+            Output tensor of the shape (S, N, C), where
+            S is the source sequence length,
+            N is the batch size,
+            C is the feature number
+        """
+        src_orig = src
+
+        warmup_scale = min(self.bypass_scale + warmup, 1.0)
+        # alpha = 1.0 means fully use this encoder layer, 0.0 would mean
+        # completely bypass it.
+        if self.training:
+            alpha = (
+                warmup_scale
+                if torch.rand(()).item() <= (1.0 - self.layer_dropout)
+                else self.bypass_scale
+            )
+        else:
+            alpha = 1.0
+
+        # macaron style feed forward module
+        src = src + self.dropout(self.feed_forward_macaron(src))
+
+        # multi-headed self-attention module
+        src_att = self.self_attn(
+            src,
+            src,
+            src,
+            pos_emb=pos_emb,
+            attn_mask=src_mask,
+            key_padding_mask=src_key_padding_mask,
+        )[0]
+
+        src = src + self.dropout(src_att)
+
+        # convolution module
+        src = src + self.dropout(self.conv_module(src))
+
+        # feed forward module
+        src = src + self.dropout(self.feed_forward(src))
+
+        src = self.norm_final(self.balancer(src))
+
+        if alpha != 1.0:
+            src = alpha * src + (1 - alpha) * src_orig
+
+        return src
+
+
+class ConformerEncoder(nn.Module):
+    """
+    ConformerEncoder is a stack of N encoder layers
+
+    Examples:
+        >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
+        >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
+        >>> src = torch.rand(10, 32, 512)
+        >>> pos_emb = torch.rand(32, 19, 512)
+        >>> out = conformer_encoder(src, pos_emb)
+    """
+
+    def __init__(
+        self,
+        encoder_layer: nn.Module,
+        num_layers: int,
+        aux_layers: List[int],
+    ) -> None:
+
+        """
+        Args:
+          encoder_layer:
+            an instance of the ConformerEncoderLayer() class (required).
+          num_layers:
+            the number of sub-encoder-layers in the encoder (required).
+          aux_layers:
+            list of indexes of sub-encoder-layers outputs to be combined (required).
+        """
+
+        super().__init__()
+        self.layers = nn.ModuleList(
+            [copy.deepcopy(encoder_layer) for i in range(num_layers)]
+        )
+        self.num_layers = num_layers
+
+        assert len(set(aux_layers)) == len(aux_layers)
+
+        assert num_layers - 1 not in aux_layers
+        self.aux_layers = aux_layers + [num_layers - 1]
+
+        self.combiner = RandomCombine(
+            num_inputs=len(self.aux_layers),
+            final_weight=0.5,
+            pure_prob=0.333,
+            stddev=2.0,
+        )
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        pos_emb: torch.Tensor,
+        mask: Optional[torch.Tensor] = None,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """
+        Pass the input through the encoder layers in turn.
+
+        Args:
+          src:
+            the sequence to the encoder of shape (S, N, C) (required).
+          pos_emb:
+            positional embedding tensor of shape (N, 2*S-1, C) (required).
+          mask:
+            the mask for the src sequence of shape (S, S) (optional).
+          src_key_padding_mask:
+            the mask for the src keys per batch of shape (N, S) (optional).
+          warmup:
+            controls selective bypass of layer; if < 1.0, we will
+            bypass the layer more frequently (default=1.0).
+
+        Returns:
+          Output tensor of the shape (S, N, C), where
+          S is the source sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        output = src
+
+        outputs = []
+        for i, mod in enumerate(self.layers):
+            output = mod(
+                output,
+                pos_emb,
+                src_mask=mask,
+                src_key_padding_mask=src_key_padding_mask,
+                warmup=warmup,
+            )
+
+            if i in self.aux_layers:
+                outputs.append(output)
+
+        output = self.combiner(outputs)
+
+        return output
+
+
+class RelPositionalEncoding(torch.nn.Module):
+    """
+    Relative positional encoding module.
+
+    See: Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
+    Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
+
+    """
+
+    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
+        """
+        Construct an PositionalEncoding object.
+
+        Args:
+          d_model: Embedding dimension.
+          dropout_rate: Dropout rate.
+          max_len: Maximum input length.
+
+        """
+        super().__init__()
+        self.d_model = d_model
+        self.dropout = torch.nn.Dropout(p=dropout_rate)
+        self.pe = None
+        self.extend_pe(torch.tensor(0.0).expand(1, max_len))
+
+    def extend_pe(self, x: torch.Tensor) -> None:
+        """
+        Reset the positional encodings.
+
+        Args:
+          x:
+            input tensor (N, T, C), where
+            T is the source sequence length,
+            N is the batch size.
+            C is the feature number.
+
+        """
+        if self.pe is not None:
+            # self.pe contains both positive and negative parts
+            # the length of self.pe is 2 * input_len - 1
+            if self.pe.size(1) >= x.size(1) * 2 - 1:
+                # Note: TorchScript doesn't implement operator== for torch.Device
+                if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
+                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+                return
+        # Suppose `i` means to the position of query vecotr and `j` means the
+        # position of key vector. We use position relative positions when keys
+        # are to the left (i>j) and negative relative positions otherwise (i Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Add positional encoding.
+
+        Args:
+          x:
+            input tensor (N, T, C).
+
+        Returns:
+          torch.Tensor: Encoded tensor (N, T, C).
+          torch.Tensor: Encoded tensor (N, 2*T-1, C), where
+          T is the source sequence length,
+          N is the batch size.
+          C is the feature number.
+
+        """
+        self.extend_pe(x)
+        pos_emb = self.pe[
+            :,
+            self.pe.size(1) // 2
+            - x.size(1)
+            + 1 : self.pe.size(1) // 2  # noqa E203
+            + x.size(1),
+        ]
+        return self.dropout(x), self.dropout(pos_emb)
+
+
+class RelPositionMultiheadAttention(nn.Module):
+    """
+    Multi-Head Attention layer with relative position encoding
+    See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context".
+
+    """
+
+    def __init__(
+        self,
+        embed_dim: int,
+        num_heads: int,
+        dropout: float = 0.0,
+    ) -> None:
+        """
+        Args:
+          embed_dim:
+            total dimension of the model.
+          num_heads:
+            parallel attention heads.
+          dropout:
+            a Dropout layer on attn_output_weights. Default: 0.0.
+        """
+        super().__init__()
+        self.embed_dim = embed_dim
+        self.num_heads = num_heads
+        self.dropout = dropout
+        self.head_dim = embed_dim // num_heads
+        assert (
+            self.head_dim * num_heads == self.embed_dim
+        ), "embed_dim must be divisible by num_heads"
+
+        self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
+        self.out_proj = ScaledLinear(
+            embed_dim, embed_dim, bias=True, initial_scale=0.25
+        )
+
+        # linear transformation for positional encoding.
+        self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
+        # these two learnable bias are used in matrix c and matrix d
+        # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+        self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+        self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+        self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
+        self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
+        self._reset_parameters()
+
+    def _pos_bias_u(self):
+        return self.pos_bias_u * self.pos_bias_u_scale.exp()
+
+    def _pos_bias_v(self):
+        return self.pos_bias_v * self.pos_bias_v_scale.exp()
+
+    def _reset_parameters(self) -> None:
+        nn.init.normal_(self.pos_bias_u, std=0.01)
+        nn.init.normal_(self.pos_bias_v, std=0.01)
+
+    def forward(
+        self,
+        query: torch.Tensor,
+        key: torch.Tensor,
+        value: torch.Tensor,
+        pos_emb: torch.Tensor,
+        key_padding_mask: Optional[torch.Tensor] = None,
+        need_weights: bool = False,
+        attn_mask: Optional[torch.Tensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+        """
+        Args:
+          query, key, value: map a query and a set of key-value pairs to an output.
+          pos_emb: Positional embedding tensor
+          key_padding_mask: if provided, specified padding elements in the key will
+                            be ignored by the attention. When given a binary mask
+                            and a value is True, the corresponding value on the attention
+                            layer will be ignored. When given a byte mask and a value is
+                            non-zero, the corresponding value on the attention layer will be ignored.
+          need_weights: output attn_output_weights.
+          attn_mask: 2D or 3D mask that prevents attention to certain positions.
+                     A 2D mask will be broadcasted for all the batches while a 3D
+                     mask allows to specify a different mask for the entries of each batch.
+
+        Shape:
+          - Inputs:
+          - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+          - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+          - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+          - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+          - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+            If a ByteTensor is provided, the non-zero positions will be ignored while the position
+            with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+          - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+            3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+            S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
+            positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+            while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+            is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+            is provided, it will be added to the attention weight.
+
+          - Outputs:
+          - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+            E is the embedding dimension.
+          - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+            L is the target sequence length, S is the source sequence length.
+        """
+        return self.multi_head_attention_forward(
+            query,
+            key,
+            value,
+            pos_emb,
+            self.embed_dim,
+            self.num_heads,
+            self.in_proj.get_weight(),
+            self.in_proj.get_bias(),
+            self.dropout,
+            self.out_proj.get_weight(),
+            self.out_proj.get_bias(),
+            training=self.training,
+            key_padding_mask=key_padding_mask,
+            need_weights=need_weights,
+            attn_mask=attn_mask,
+        )
+
+    def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
+        """
+        Compute relative positional encoding.
+
+        Args:
+          x:
+            input tensor (batch, head, time1, 2*time1-1).
+            time1 means the length of query vector.
+
+        Returns:
+          torch.Tensor: tensor of shape (batch, head, time1, time2)
+          (note: time2 has the same value as time1, but it is for
+          the key, while time1 is for the query).
+        """
+        (batch_size, num_heads, time1, n) = x.shape
+        assert n == 2 * time1 - 1
+        # Note: TorchScript requires explicit arg for stride()
+        batch_stride = x.stride(0)
+        head_stride = x.stride(1)
+        time1_stride = x.stride(2)
+        n_stride = x.stride(3)
+        return x.as_strided(
+            (batch_size, num_heads, time1, time1),
+            (batch_stride, head_stride, time1_stride - n_stride, n_stride),
+            storage_offset=n_stride * (time1 - 1),
+        )
+
+    def multi_head_attention_forward(
+        self,
+        query: torch.Tensor,
+        key: torch.Tensor,
+        value: torch.Tensor,
+        pos_emb: torch.Tensor,
+        embed_dim_to_check: int,
+        num_heads: int,
+        in_proj_weight: torch.Tensor,
+        in_proj_bias: torch.Tensor,
+        dropout_p: float,
+        out_proj_weight: torch.Tensor,
+        out_proj_bias: torch.Tensor,
+        training: bool = True,
+        key_padding_mask: Optional[torch.Tensor] = None,
+        need_weights: bool = False,
+        attn_mask: Optional[torch.Tensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+        """
+        Args:
+          query, key, value: map a query and a set of key-value pairs to an output.
+          pos_emb: Positional embedding tensor
+          embed_dim_to_check: total dimension of the model.
+          num_heads: parallel attention heads.
+          in_proj_weight, in_proj_bias: input projection weight and bias.
+          dropout_p: probability of an element to be zeroed.
+          out_proj_weight, out_proj_bias: the output projection weight and bias.
+          training: apply dropout if is ``True``.
+          key_padding_mask: if provided, specified padding elements in the key will
+                            be ignored by the attention. This is an binary mask.
+                            When the value is True, the corresponding value on the
+                            attention layer will be filled with -inf.
+          need_weights: output attn_output_weights.
+          attn_mask: 2D or 3D mask that prevents attention to certain positions.
+                     A 2D mask will be broadcasted for all the batches while a 3D
+                     mask allows to specify a different mask for the entries of each batch.
+
+        Shape:
+          Inputs:
+          - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+          - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+          - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+          - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
+            length, N is the batch size, E is the embedding dimension.
+          - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+            If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+            will be unchanged. If a BoolTensor is provided, the positions with the
+            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+          - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+            3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+            S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+            positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+            while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+            are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+            is provided, it will be added to the attention weight.
+
+          Outputs:
+          - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+            E is the embedding dimension.
+          - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+            L is the target sequence length, S is the source sequence length.
+        """
+
+        tgt_len, bsz, embed_dim = query.size()
+        assert embed_dim == embed_dim_to_check
+        assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+        head_dim = embed_dim // num_heads
+        assert (
+            head_dim * num_heads == embed_dim
+        ), "embed_dim must be divisible by num_heads"
+
+        scaling = float(head_dim) ** -0.5
+
+        if torch.equal(query, key) and torch.equal(key, value):
+            # self-attention
+            q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
+                3, dim=-1
+            )
+
+        elif torch.equal(key, value):
+            # encoder-decoder attention
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = nn.functional.linear(query, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim
+            _end = None
+            _w = in_proj_weight[_start:, :]
+            if _b is not None:
+                _b = _b[_start:]
+            k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
+
+        else:
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = nn.functional.linear(query, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim
+            _end = embed_dim * 2
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            k = nn.functional.linear(key, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim * 2
+            _end = None
+            _w = in_proj_weight[_start:, :]
+            if _b is not None:
+                _b = _b[_start:]
+            v = nn.functional.linear(value, _w, _b)
+
+        if attn_mask is not None:
+            assert (
+                attn_mask.dtype == torch.float32
+                or attn_mask.dtype == torch.float64
+                or attn_mask.dtype == torch.float16
+                or attn_mask.dtype == torch.uint8
+                or attn_mask.dtype == torch.bool
+            ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
+                attn_mask.dtype
+            )
+            if attn_mask.dtype == torch.uint8:
+                warnings.warn(
+                    "Byte tensor for attn_mask is deprecated. Use bool tensor instead."
+                )
+                attn_mask = attn_mask.to(torch.bool)
+
+            if attn_mask.dim() == 2:
+                attn_mask = attn_mask.unsqueeze(0)
+                if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
+            elif attn_mask.dim() == 3:
+                if list(attn_mask.size()) != [
+                    bsz * num_heads,
+                    query.size(0),
+                    key.size(0),
+                ]:
+                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
+            else:
+                raise RuntimeError(
+                    f"attn_mask's dimension {attn_mask.dim()} is not supported"
+                )
+            # attn_mask's dim is 3 now.
+
+        # convert ByteTensor key_padding_mask to bool
+        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
+            warnings.warn(
+                "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
+            )
+            key_padding_mask = key_padding_mask.to(torch.bool)
+
+        q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
+        k = k.contiguous().view(-1, bsz, num_heads, head_dim)
+        v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+
+        src_len = k.size(0)
+
+        if key_padding_mask is not None:
+            assert key_padding_mask.size(0) == bsz, "{} == {}".format(
+                key_padding_mask.size(0), bsz
+            )
+            assert key_padding_mask.size(1) == src_len, "{} == {}".format(
+                key_padding_mask.size(1), src_len
+            )
+
+        q = q.transpose(0, 1)  # (batch, time1, head, d_k)
+
+        pos_emb_bsz = pos_emb.size(0)
+        assert pos_emb_bsz in (1, bsz)  # actually it is 1
+        p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
+        p = p.transpose(1, 2)  # (batch, head, 2*time1-1, d_k)
+
+        q_with_bias_u = (q + self._pos_bias_u()).transpose(
+            1, 2
+        )  # (batch, head, time1, d_k)
+
+        q_with_bias_v = (q + self._pos_bias_v()).transpose(
+            1, 2
+        )  # (batch, head, time1, d_k)
+
+        # compute attention score
+        # first compute matrix a and matrix c
+        # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+        k = k.permute(1, 2, 3, 0)  # (batch, head, d_k, time2)
+        matrix_ac = torch.matmul(q_with_bias_u, k)  # (batch, head, time1, time2)
+
+        # compute matrix b and matrix d
+        matrix_bd = torch.matmul(
+            q_with_bias_v, p.transpose(-2, -1)
+        )  # (batch, head, time1, 2*time1-1)
+        matrix_bd = self.rel_shift(matrix_bd)
+
+        attn_output_weights = matrix_ac + matrix_bd  # (batch, head, time1, time2)
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
+
+        assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
+
+        if attn_mask is not None:
+            if attn_mask.dtype == torch.bool:
+                attn_output_weights.masked_fill_(attn_mask, float("-inf"))
+            else:
+                attn_output_weights += attn_mask
+
+        if key_padding_mask is not None:
+            attn_output_weights = attn_output_weights.view(
+                bsz, num_heads, tgt_len, src_len
+            )
+            attn_output_weights = attn_output_weights.masked_fill(
+                key_padding_mask.unsqueeze(1).unsqueeze(2),
+                float("-inf"),
+            )
+            attn_output_weights = attn_output_weights.view(
+                bsz * num_heads, tgt_len, src_len
+            )
+
+        attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
+        attn_output_weights = nn.functional.dropout(
+            attn_output_weights, p=dropout_p, training=training
+        )
+
+        attn_output = torch.bmm(attn_output_weights, v)
+        assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
+        attn_output = (
+            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+        )
+        attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
+
+        if need_weights:
+            # average attention weights over heads
+            attn_output_weights = attn_output_weights.view(
+                bsz, num_heads, tgt_len, src_len
+            )
+            return attn_output, attn_output_weights.sum(dim=1) / num_heads
+        else:
+            return attn_output, None
+
+
+class ConvolutionModule(nn.Module):
+    def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None:
+        """
+        ConvolutionModule in Conformer model.
+        Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
+        Construct a ConvolutionModule object.
+
+        Args:
+          channels (int):
+            the number of channels of conv layers.
+          kernel_size (int):
+            kernerl size of conv layers.
+          bias (bool):
+            whether to use bias in conv layers (default=True).
+        """
+        super().__init__()
+        # kernerl_size should be a odd number for 'SAME' padding
+        assert (kernel_size - 1) % 2 == 0
+
+        self.pointwise_conv1 = ScaledConv1d(
+            channels,
+            2 * channels,
+            kernel_size=1,
+            stride=1,
+            padding=0,
+            bias=bias,
+        )
+
+        # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu).
+        # For most layers the normal rms value of channels of x seems to be in the range 1 to 4,
+        # but sometimes, for some reason, for layer 0 the rms ends up being very large,
+        # between 50 and 100 for different channels.  This will cause very peaky and
+        # sparse derivatives for the sigmoid gating function, which will tend to make
+        # the loss function not learn effectively.  (for most layers the average absolute values
+        # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion,
+        # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different
+        # layers, which likely breaks down as 0.5 for the "linear" half and
+        # 0.2 to 0.3 for the part that goes into the sigmoid.  The idea is that if we
+        # constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
+        # it will be in a better position to start learning something, i.e. to latch onto
+        # the correct range.
+        self.deriv_balancer1 = ActivationBalancer(
+            channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0
+        )
+
+        self.depthwise_conv = ScaledConv1d(
+            channels,
+            channels,
+            kernel_size,
+            stride=1,
+            padding=(kernel_size - 1) // 2,
+            groups=channels,
+            bias=bias,
+        )
+
+        self.deriv_balancer2 = ActivationBalancer(
+            channel_dim=1, min_positive=0.05, max_positive=1.0
+        )
+
+        self.activation = DoubleSwish()
+
+        self.pointwise_conv2 = ScaledConv1d(
+            channels,
+            channels,
+            kernel_size=1,
+            stride=1,
+            padding=0,
+            bias=bias,
+            initial_scale=0.25,
+        )
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        """Compute convolution module.
+
+        Args:
+          x:
+            input tensor of shape (T, N, C).
+
+        Returns:
+          torch.Tensor: Output tensor (T, N, C), where
+          T is the source sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        # exchange the temporal dimension and the feature dimension
+        x = x.permute(1, 2, 0)  # (#batch, channels, time).
+
+        # GLU mechanism
+        x = self.pointwise_conv1(x)  # (batch, 2*channels, time)
+
+        x = self.deriv_balancer1(x)
+        x = nn.functional.glu(x, dim=1)  # (batch, channels, time)
+
+        # 1D Depthwise Conv
+        x = self.depthwise_conv(x)
+
+        x = self.deriv_balancer2(x)
+        x = self.activation(x)
+
+        x = self.pointwise_conv2(x)  # (batch, channel, time)
+
+        return x.permute(2, 0, 1)
diff --git a/egs/tedlium3/ASR/conformer_ctc2/decode.py b/egs/tedlium3/ASR/conformer_ctc2/decode.py
new file mode 100755
index 000000000..28d39de70
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/decode.py
@@ -0,0 +1,896 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
+#                                            Fangjun Kuang,
+#                                            Quandong Wang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import TedLiumAsrDataModule
+from conformer import Conformer
+from train import add_model_arguments
+
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.decode import (
+    get_lattice,
+    nbest_decoding,
+    nbest_oracle,
+    one_best_decoding,
+    rescore_with_attention_decoder,
+    rescore_with_n_best_list,
+    rescore_with_whole_lattice,
+)
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    get_texts,
+    load_averaged_model,
+    setup_logger,
+    store_transcripts,
+    str2bool,
+    write_error_stats,
+)
+
+
+def get_parser() -> argparse.ArgumentParser:
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="attention-decoder",
+        help="""Decoding method.
+        Supported values are:
+            - (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
+              model, i.e., lang_dir/bpe.model, to convert word pieces to words.
+              It needs neither a lexicon nor an n-gram LM.
+            - (1) ctc-greedy-search. It only use CTC output and a sentence piece
+              model for decoding. It produces the same results with ctc-decoding.
+            - (2) 1best. Extract the best path from the decoding lattice as the
+              decoding result.
+            - (3) nbest. Extract n paths from the decoding lattice; the path
+              with the highest score is the decoding result.
+            - (4) nbest-rescoring. Extract n paths from the decoding lattice,
+              rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
+              the highest score is the decoding result.
+            - (5) whole-lattice-rescoring. Rescore the decoding lattice with an
+              n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
+              is the decoding result.
+            - (6) attention-decoder. Extract n paths from the LM rescored
+              lattice, the path with the highest score is the decoding result.
+            - (7) nbest-oracle. Its WER is the lower bound of any n-best
+              rescoring method can achieve. Useful for debugging n-best
+              rescoring method.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=100,
+        help="""Number of paths for n-best based decoding method.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, attention-decoder, and nbest-oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=0.5,
+        help="""The scale to be applied to `lattice.scores`.
+        It's needed if you use any kinds of n-best based rescoring.
+        Used only when "method" is one of the following values:
+        nbest, nbest-rescoring, attention-decoder, and nbest-oracle
+        A smaller value results in more unique paths.
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc2/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="The lang dir",
+    )
+
+    parser.add_argument(
+        "--lm-path",
+        type=str,
+        default="data/lm/G_4_gram.pt",
+        help="""The n-gram LM dir for rescoring.
+        It should contain either lm_fname.pt or lm_fname.fst.txt
+        """,
+    )
+
+    parser.add_argument(
+        "--result-dir",
+        type=str,
+        default="conformer_ctc2/exp/results",
+        help="Directory to store results.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+    """
+    params = AttributeDict(
+        {
+            # parameters for conformer
+            "subsampling_factor": 4,
+            "feature_dim": 80,
+            # parameters for decoding
+            "search_beam": 15,
+            "output_beam": 8,
+            "min_active_states": 10,
+            "max_active_states": 7000,
+            "use_double_scores": True,
+            "env_info": get_env_info(),
+        }
+    )
+    return params
+
+
+def ctc_greedy_search(
+    ctc_probs: torch.Tensor,
+    mask: torch.Tensor,
+) -> List[List[int]]:
+    """Apply CTC greedy search
+    Args:
+      ctc_probs (torch.Tensor): (batch, max_len, num_bpe)
+      mask (torch.Tensor): (batch, max_len)
+    Returns:
+      best path result
+    """
+
+    _, max_index = ctc_probs.max(2)  # (B, maxlen)
+    max_index = max_index.masked_fill_(mask, 0)  # (B, maxlen)
+
+    ret_hyps = []
+    for hyp in max_index:
+        hyp = torch.unique_consecutive(hyp)
+        hyp = hyp[hyp > 0].tolist()
+        ret_hyps.append(hyp)
+    return ret_hyps
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    HLG: Optional[k2.Fsa],
+    H: Optional[k2.Fsa],
+    bpe_model: Optional[spm.SentencePieceProcessor],
+    batch: dict,
+    word_table: k2.SymbolTable,
+    sos_id: int,
+    eos_id: int,
+    G: Optional[k2.Fsa] = None,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+
+        - key: It indicates the setting used for decoding. For example,
+               if no rescoring is used, the key is the string `no_rescore`.
+               If LM rescoring is used, the key is the string `lm_scale_xxx`,
+               where `xxx` is the value of `lm_scale`. An example key is
+               `lm_scale_0.7`
+        - value: It contains the decoding result. `len(value)` equals to
+                 batch size. `value[i]` is the decoding result for the i-th
+                 utterance in the given batch.
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+
+        - params.method is "1best", it uses 1best decoding without LM rescoring.
+        - params.method is "nbest", it uses nbest decoding without LM rescoring.
+        - params.method is "nbest-rescoring", it uses nbest LM rescoring.
+        - params.method is "whole-lattice-rescoring", it uses whole lattice LM
+          rescoring.
+
+      model:
+        The neural model.
+      HLG:
+        The decoding graph. Used only when params.method is NOT ctc-decoding.
+      H:
+        The ctc topo. Used only when params.method is ctc-decoding.
+      bpe_model:
+        The BPE model. Used only when params.method is ctc-decoding.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      word_table:
+        The word symbol table.
+      sos_id:
+        The token ID of the SOS.
+      eos_id:
+        The token ID of the EOS.
+      G:
+        An LM. It is not None when params.method is "nbest-rescoring"
+        or "whole-lattice-rescoring". In general, the G in HLG
+        is a 3-gram LM, while this G is a 4-gram LM.
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict. Note: If it decodes to nothing, then return None.
+    """
+    if HLG is not None:
+        device = HLG.device
+    else:
+        device = H.device
+    feature = batch["inputs"]
+    assert feature.ndim == 3
+    feature = feature.to(device)
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+
+    nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
+    # nnet_output is (N, T, C)
+
+    supervision_segments = torch.stack(
+        (
+            supervisions["sequence_idx"],
+            torch.div(
+                supervisions["start_frame"],
+                params.subsampling_factor,
+                rounding_mode="floor",
+            ),
+            torch.div(
+                supervisions["num_frames"],
+                params.subsampling_factor,
+                rounding_mode="floor",
+            ),
+        ),
+        1,
+    ).to(torch.int32)
+
+    if H is None:
+        assert HLG is not None
+        decoding_graph = HLG
+    else:
+        assert HLG is None
+        assert bpe_model is not None
+        decoding_graph = H
+
+    lattice = get_lattice(
+        nnet_output=nnet_output,
+        decoding_graph=decoding_graph,
+        supervision_segments=supervision_segments,
+        search_beam=params.search_beam,
+        output_beam=params.output_beam,
+        min_active_states=params.min_active_states,
+        max_active_states=params.max_active_states,
+        subsampling_factor=params.subsampling_factor,
+    )
+
+    if params.method == "ctc-decoding":
+        best_path = one_best_decoding(
+            lattice=lattice, use_double_scores=params.use_double_scores
+        )
+        # Note: `best_path.aux_labels` contains token IDs, not word IDs
+        # since we are using H, not HLG here.
+        #
+        # token_ids is a lit-of-list of IDs
+        token_ids = get_texts(best_path)
+
+        # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+        hyps = bpe_model.decode(token_ids)
+
+        # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+        unk = bpe_model.decode(bpe_model.unk_id()).strip()
+        hyps = [[w for w in s.split() if w != unk] for s in hyps]
+        key = "ctc-decoding"
+
+        return {key: hyps}
+
+    if params.method == "ctc-greedy-search":
+        hyps = ctc_greedy_search(nnet_output, memory_key_padding_mask)
+
+        # hyps is a list of str, e.g., ['xxx yyy zzz', ...]
+        hyps = bpe_model.decode(hyps)
+
+        # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
+        unk = bpe_model.decode(bpe_model.unk_id()).strip()
+        hyps = [[w for w in s.split() if w != unk] for s in hyps]
+        key = "ctc-greedy-search"
+
+        return {key: hyps}
+
+    if params.method == "nbest-oracle":
+        # Note: You can also pass rescored lattices to it.
+        # We choose the HLG decoded lattice for speed reasons
+        # as HLG decoding is faster and the oracle WER
+        # is only slightly worse than that of rescored lattices.
+        best_path = nbest_oracle(
+            lattice=lattice,
+            num_paths=params.num_paths,
+            ref_texts=supervisions["text"],
+            word_table=word_table,
+            nbest_scale=params.nbest_scale,
+            oov="",
+        )
+        hyps = get_texts(best_path)
+        hyps = [
+            [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps
+        ]
+        key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}"  # noqa
+        return {key: hyps}
+
+    if params.method == "nbest":
+        best_path = nbest_decoding(
+            lattice=lattice,
+            num_paths=params.num_paths,
+            use_double_scores=params.use_double_scores,
+            nbest_scale=params.nbest_scale,
+        )
+        key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}"  # noqa
+
+        hyps = get_texts(best_path)
+        hyps = [
+            [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps
+        ]
+        return {key: hyps}
+
+    assert params.method in [
+        "1best",
+        "nbest-rescoring",
+        "whole-lattice-rescoring",
+        "attention-decoder",
+    ]
+
+    lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
+    lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
+    lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
+
+    if params.method == "1best":
+        best_path_dict = one_best_decoding(
+            lattice=lattice,
+            lm_scale_list=lm_scale_list,
+        )
+    elif params.method == "nbest-rescoring":
+        best_path_dict = rescore_with_n_best_list(
+            lattice=lattice,
+            G=G,
+            num_paths=params.num_paths,
+            lm_scale_list=lm_scale_list,
+            nbest_scale=params.nbest_scale,
+        )
+    elif params.method == "whole-lattice-rescoring":
+        best_path_dict = rescore_with_whole_lattice(
+            lattice=lattice,
+            G_with_epsilon_loops=G,
+            lm_scale_list=lm_scale_list,
+        )
+    elif params.method == "attention-decoder":
+        best_path_dict = rescore_with_attention_decoder(
+            lattice=lattice,
+            num_paths=params.num_paths,
+            model=model,
+            memory=memory,
+            memory_key_padding_mask=memory_key_padding_mask,
+            sos_id=sos_id,
+            eos_id=eos_id,
+            nbest_scale=params.nbest_scale,
+        )
+    else:
+        raise ValueError(f"Unsupported decoding method: {params.method}")
+
+    ans = dict()
+    if best_path_dict is not None:
+        for lm_scale_str, best_path in best_path_dict.items():
+            hyps = get_texts(best_path)
+            hyps = [
+                [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps
+            ]
+            ans[lm_scale_str] = hyps
+    else:
+        ans = None
+    return ans
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    HLG: Optional[k2.Fsa],
+    H: Optional[k2.Fsa],
+    bpe_model: Optional[spm.SentencePieceProcessor],
+    word_table: k2.SymbolTable,
+    sos_id: int,
+    eos_id: int,
+    G: Optional[k2.Fsa] = None,
+) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      HLG:
+        The decoding graph. Used only when params.method is NOT ctc-decoding.
+      H:
+        The ctc topo. Used only when params.method is ctc-decoding.
+      bpe_model:
+        The BPE model. Used only when params.method is ctc-decoding.
+      word_table:
+        It is the word symbol table.
+      sos_id:
+        The token ID for SOS.
+      eos_id:
+        The token ID for EOS.
+      G:
+        An LM. It is not None when params.method is "nbest-rescoring"
+        or "whole-lattice-rescoring". In general, the G in HLG
+        is a 3-gram LM, while this G is a 4-gram LM.
+    Returns:
+      Return a dict, whose key may be "no-rescore" if no LM rescoring
+      is used, or it may be "lm_scale_0.7" if LM rescoring is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        texts = batch["supervisions"]["text"]
+        cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            HLG=HLG,
+            H=H,
+            bpe_model=bpe_model,
+            batch=batch,
+            word_table=word_table,
+            G=G,
+            sos_id=sos_id,
+            eos_id=eos_id,
+        )
+
+        if hyps_dict is not None:
+            for lm_scale, hyps in hyps_dict.items():
+                this_batch = []
+                assert len(hyps) == len(texts)
+                for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
+                    ref_words = ref_text.split()
+                    this_batch.append((cut_id, ref_words, hyp_words))
+
+                results[lm_scale].extend(this_batch)
+        else:
+            assert len(results) > 0, "It should not decode to empty in the first batch!"
+            this_batch = []
+            hyp_words = []
+            for ref_text in texts:
+                ref_words = ref_text.split()
+                this_batch.append((ref_words, hyp_words))
+
+            for lm_scale in results.keys():
+                results[lm_scale].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % 100 == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
+) -> None:
+    if params.method == "attention-decoder":
+        # Set it to False since there are too many logs.
+        enable_log = False
+    else:
+        enable_log = True
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = params.result_dir / f"recogs-{test_set_name}-{key}.txt"
+        results = sorted(results)
+        store_transcripts(filename=recog_path, texts=results)
+        if enable_log:
+            logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = params.result_dir / f"errs-{test_set_name}-{key}.txt"
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(
+                f, f"{test_set_name}-{key}", results, enable_log=enable_log
+            )
+            test_set_wers[key] = wer
+
+        if enable_log:
+            logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = params.result_dir / f"wer-summary-{test_set_name}.txt"
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main() -> None:
+    parser = get_parser()
+    TedLiumAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lang_dir = Path(args.lang_dir)
+    args.lm_path = Path(args.lm_path)
+    args.result_dir = Path(args.result_dir)
+
+    args.result_dir.mkdir(exist_ok=True)
+
+    params = get_params()
+    params.update(vars(args))
+
+    setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
+    logging.info("Decoding started")
+    logging.info(params)
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+    sos_id = graph_compiler.sos_id
+    eos_id = graph_compiler.eos_id
+
+    if params.method in ("ctc-decoding", "ctc-greedy-search"):
+        HLG = None
+        H = k2.ctc_topo(
+            max_token=max_token_id,
+            modified=False,
+            device=device,
+        )
+        bpe_model = spm.SentencePieceProcessor()
+        bpe_model.load(str(params.lang_dir / "bpe.model"))
+    else:
+        H = None
+        bpe_model = None
+        HLG = k2.Fsa.from_dict(
+            torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
+        )
+        assert HLG.requires_grad is False
+
+        if not hasattr(HLG, "lm_scores"):
+            HLG.lm_scores = HLG.scores.clone()
+
+    if params.method in ("nbest-rescoring", "whole-lattice-rescoring"):
+        assert params.lm_path.suffix in (".pt", ".txt")
+
+        if params.lm_path.is_file() and params.lm_path.suffix == ".pt":
+            logging.info(f"Loading pre-compiled {params.lm_path.name}")
+            d = torch.load(params.lm_path, map_location=device)
+            G = k2.Fsa.from_dict(d)
+        elif not params.lm_path.is_file() and params.lm_path.suffix == ".txt":
+            raise FileNotFoundError(f"No such language model file: '{params.lm_path}'")
+        else:
+            # here we pass only if LM filename ends with '.pt' and doesn't exist
+            # or if LM filename ends '.txt' and exists.
+            if (
+                not params.lm_path.is_file()
+                and params.lm_path.suffix == ".pt"
+                and not (
+                    params.lm_path.parent / f"{params.lm_path.stem}.fst.txt"
+                ).is_file()
+            ):
+                raise FileNotFoundError(
+                    f"No such language model file: '{params.lm_path}'\n"
+                    "'.fst.txt' representation of the language model was "
+                    "not found either."
+                )
+            else:
+                # whatever params.lm_path.name we got lm_name.pt or lm_name.fst.txt
+                # we are going to load lm_name.fst.txt here
+                params.lm_path = params.lm_path.parent / params.lm_path.name.replace(
+                    ".pt", ".fst.txt"
+                )
+                logging.info(f"Loading {params.lm_path.name}")
+                logging.warning("It may take 8 minutes.")
+                with open(params.lm_path) as f:
+                    first_word_disambig_id = lexicon.word_table["#0"]
+
+                    G = k2.Fsa.from_openfst(f.read(), acceptor=False)
+                    # G.aux_labels is not needed in later computations, so
+                    # remove it here.
+                    del G.aux_labels
+                    # CAUTION: The following line is crucial.
+                    # Arcs entering the back-off state have label equal to #0.
+                    # We have to change it to 0 here.
+                    G.labels[G.labels >= first_word_disambig_id] = 0
+                    # See https://github.com/k2-fsa/k2/issues/874
+                    # for why we need to set G.properties to None
+                    G.__dict__["_properties"] = None
+                    G = k2.Fsa.from_fsas([G]).to(device)
+                    G = k2.arc_sort(G)
+                    # Save a dummy value so that it can be loaded in C++.
+                    # See https://github.com/pytorch/pytorch/issues/67902
+                    # for why we need to do this.
+                    G.dummy = 1
+
+                    torch.save(
+                        G.as_dict(),
+                        params.lm_path.parent
+                        / params.lm_path.name.replace(".fst.txt", ".pt"),
+                    )
+
+        if params.method == "whole-lattice-rescoring":
+            # Add epsilon self-loops to G as we will compose
+            # it with the whole lattice later
+            G = k2.add_epsilon_self_loops(G)
+            G = k2.arc_sort(G)
+            G = G.to(device)
+
+        # G.lm_scores is used to replace HLG.lm_scores during
+        # LM rescoring.
+        G.lm_scores = G.scores.clone()
+    else:
+        G = None
+
+    model = Conformer(
+        num_features=params.feature_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        d_model=params.dim_model,
+        nhead=params.nhead,
+        dim_feedforward=params.dim_feedforward,
+        num_encoder_layers=params.num_encoder_layers,
+        num_decoder_layers=params.num_decoder_layers,
+    )
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to(device)
+    model.eval()
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    # we need cut ids to display recognition results.
+    args.return_cuts = True
+    tedlium = TedLiumAsrDataModule(args)
+
+    valid_cuts = tedlium.dev_cuts()
+    test_cuts = tedlium.test_cuts()
+
+    valid_dl = tedlium.valid_dataloaders(valid_cuts)
+    test_dl = tedlium.test_dataloaders(test_cuts)
+
+    test_sets = ["dev", "test"]
+    test_dls = [valid_dl, test_dl]
+
+    for test_set, test_dl in zip(test_sets, test_dls):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            HLG=HLG,
+            H=H,
+            bpe_model=bpe_model,
+            word_table=lexicon.word_table,
+            G=G,
+            sos_id=sos_id,
+            eos_id=eos_id,
+        )
+
+        save_results(params=params, test_set_name=test_set, results_dict=results_dict)
+
+    logging.info("Done!")
+
+
+torch.set_num_threads(1)
+# when we import add_model_arguments from train.py
+# we enforce torch.set_num_interop_threads(1) in it,
+# so we ended up with setting num_interop_threads to one
+# two times: in train.py and decode.py which cause an error,
+# that is why added an additional if statement.
+if torch.get_num_interop_threads() != 1:
+    torch.set_num_interop_threads(1)
+
+# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
+# in PyTorch 1.12 and later.
+torch.backends.cuda.matmul.allow_tf32 = True
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/tedlium3/ASR/conformer_ctc2/export.py b/egs/tedlium3/ASR/conformer_ctc2/export.py
new file mode 100755
index 000000000..009bea230
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/export.py
@@ -0,0 +1,294 @@
+#!/usr/bin/env python3
+#
+# Copyright 2022 Behavox LLC (Author: Daniil Kulko)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./conformer_ctc2/export.py \
+  --exp-dir ./conformer_ctc2/exp \
+  --epoch 20 \
+  --avg 10
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `conformer_ctc2/decode.py`,
+you can do:
+
+    cd /path/to/exp_dir
+    ln -s pretrained.pt epoch-9999.pt
+
+    cd /path/to/egs/tedlium3/ASR
+    ./conformer_ctc2/decode.py \
+        --exp-dir ./conformer_ctc2/exp \
+        --epoch 9999 \
+        --avg 1 \
+        --max-duration 100
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import torch
+from conformer import Conformer
+from scaling_converter import convert_scaled_to_non_scaled
+from train import add_model_arguments
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict, str2bool
+
+
+def get_parser() -> argparse.ArgumentParser:
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for averaging.
+        Note: Epoch counts from 0.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help=(
+            "Number of checkpoints to average. Automatically select "
+            "consecutive checkpoints before the checkpoint specified by "
+            "'--epoch' and '--iter'"
+        ),
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help=(
+            "Whether to load averaged model. Currently it only supports "
+            "using --epoch. If True, it would decode with the averaged model "
+            "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+            "Actually only the models with epoch number of `epoch-avg` and "
+            "`epoch` are loaded for averaging. "
+        ),
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc2/exp",
+        help="""It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="The lang dir",
+    )
+
+    parser.add_argument(
+        "--jit",
+        type=str2bool,
+        default=True,
+        help="""True to save a model after applying torch.jit.script.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+    """
+    # parameters for conformer
+    params = AttributeDict({"subsampling_factor": 4, "feature_dim": 80})
+    return params
+
+
+def main():
+    args = get_parser().parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lang_dir = Path(args.lang_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info(params)
+
+    logging.info("About to create model")
+
+    model = Conformer(
+        num_features=params.feature_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        d_model=params.dim_model,
+        nhead=params.nhead,
+        dim_feedforward=params.dim_feedforward,
+        num_encoder_layers=params.num_encoder_layers,
+        num_decoder_layers=params.num_decoder_layers,
+    )
+
+    model.to(device)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                "Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to("cpu")
+    model.eval()
+
+    if params.jit:
+        convert_scaled_to_non_scaled(model, inplace=True)
+        logging.info("Using torch.jit.script")
+        model = torch.jit.script(model)
+        filename = params.exp_dir / "cpu_jit.pt"
+        model.save(str(filename))
+        logging.info(f"Saved to {filename}")
+    else:
+        logging.info("Not using torch.jit.script")
+        # Save it using a format so that it can be loaded
+        # by :func:`load_checkpoint`
+        filename = params.exp_dir / "pretrained.pt"
+        torch.save({"model": model.state_dict()}, str(filename))
+        logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/tedlium3/ASR/conformer_ctc2/label_smoothing.py b/egs/tedlium3/ASR/conformer_ctc2/label_smoothing.py
new file mode 120000
index 000000000..e9d239fff
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/label_smoothing.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc/label_smoothing.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/lstmp.py b/egs/tedlium3/ASR/conformer_ctc2/lstmp.py
new file mode 120000
index 000000000..b82e115fc
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/lstmp.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/lstm_transducer_stateless2/lstmp.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/optim.py b/egs/tedlium3/ASR/conformer_ctc2/optim.py
new file mode 120000
index 000000000..0a2f285aa
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/optim.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/scaling.py b/egs/tedlium3/ASR/conformer_ctc2/scaling.py
new file mode 120000
index 000000000..c10cdfe12
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/scaling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/scaling_converter.py b/egs/tedlium3/ASR/conformer_ctc2/scaling_converter.py
new file mode 120000
index 000000000..db93d155b
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/scaling_converter.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/subsampling.py b/egs/tedlium3/ASR/conformer_ctc2/subsampling.py
new file mode 120000
index 000000000..8c91f2336
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/subsampling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/conformer_ctc2/subsampling.py
\ No newline at end of file
diff --git a/egs/tedlium3/ASR/conformer_ctc2/train.py b/egs/tedlium3/ASR/conformer_ctc2/train.py
new file mode 100755
index 000000000..42e4c010a
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/train.py
@@ -0,0 +1,1061 @@
+#!/usr/bin/env python3
+# Copyright    2022  Behavox LLC.        (authors: Daniil Kulko)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./conformer_ctc/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir conformer_ctc/exp \
+  --max-duration 300
+
+# For mix precision training:
+
+./conformer_ctc/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --use-fp16 1 \
+  --exp-dir conformer_ctc/exp \
+  --max-duration 550
+
+"""
+
+
+import argparse
+import copy
+import logging
+from pathlib import Path
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple, Union
+
+import k2
+import optim
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+from asr_datamodule import TedLiumAsrDataModule
+from conformer import Conformer
+from lhotse.dataset.sampling.base import CutSampler
+from lhotse.utils import fix_random_seed
+from local.convert_transcript_words_to_bpe_ids import convert_texts_into_ids
+from torch import Tensor
+from torch.cuda.amp import GradScaler
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+
+from icefall import diagnostics
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint, remove_checkpoints
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.checkpoint import (
+    save_checkpoint_with_global_batch_idx,
+    update_averaged_model,
+)
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    MetricsTracker,
+    display_and_save_batch,
+    encode_supervisions,
+    setup_logger,
+    str2bool,
+)
+
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
+
+
+def add_model_arguments(parser: argparse.ArgumentParser) -> None:
+    parser.add_argument(
+        "--num-encoder-layers",
+        type=int,
+        default=24,
+        help="Number of conformer encoder layers..",
+    )
+
+    parser.add_argument(
+        "--num-decoder-layers",
+        type=int,
+        default=6,
+        help="""Number of decoder layer of transformer decoder.
+        Setting this to 0 will not create the decoder at all (pure CTC model)
+        """,
+    )
+
+    parser.add_argument(
+        "--att-rate",
+        type=float,
+        default=0.8,
+        help="""The attention rate.
+        The total loss is (1 -  att_rate) * ctc_loss + att_rate * att_loss
+        """,
+    )
+
+    parser.add_argument(
+        "--dim-feedforward",
+        type=int,
+        default=1536,
+        help="Feedforward module dimension of the conformer model.",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=int,
+        default=8,
+        help="Number of attention heads in the conformer multiheadattention modules.",
+    )
+
+    parser.add_argument(
+        "--dim-model",
+        type=int,
+        default=384,
+        help="Attention dimension in the conformer model.",
+    )
+
+
+def get_parser() -> argparse.ArgumentParser:
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=1,
+        help="""Resume training from this epoch. It should be positive.
+        If larger than 1, it will load checkpoint from
+        exp-dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--start-batch",
+        type=int,
+        default=0,
+        help="""If positive, --start-epoch is ignored and
+        it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="conformer_ctc/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        default="data/lang_bpe_500",
+        help="""The lang dir
+        It contains language related input files such as
+        "lexicon.txt" and "bpe.model"
+        """,
+    )
+
+    parser.add_argument(
+        "--initial-lr",
+        type=float,
+        default=0.003,
+        help="The initial learning rate.  This value should not need to be changed.",
+    )
+
+    parser.add_argument(
+        "--lr-batches",
+        type=float,
+        default=5000,
+        help="""Number of steps that affects how rapidly the learning rate
+        decreases. We suggest not to change this.""",
+    )
+
+    parser.add_argument(
+        "--lr-epochs",
+        type=float,
+        default=6,
+        help="Number of epochs that affects how rapidly the learning rate decreases.",
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    parser.add_argument(
+        "--print-diagnostics",
+        type=str2bool,
+        default=False,
+        help="Accumulate stats on activations, print them and exit.",
+    )
+
+    parser.add_argument(
+        "--save-every-n",
+        type=int,
+        default=4000,
+        help="""Save checkpoint after processing this number of batches"
+        periodically. We save checkpoint to exp-dir/ whenever
+        params.batch_idx_train % save_every_n == 0. The checkpoint filename
+        has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
+        Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
+        end of each epoch where `xxx` is the epoch number counting from 0.
+        """,
+    )
+
+    parser.add_argument(
+        "--keep-last-k",
+        type=int,
+        default=30,
+        help="""Only keep this number of checkpoints on disk.
+        For instance, if it is 3, there are only 3 checkpoints
+        in the exp-dir with filenames `checkpoint-xxx.pt`.
+        It does not affect checkpoints with name `epoch-xxx.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--average-period",
+        type=int,
+        default=100,
+        help="""Update the averaged model, namely `model_avg`, after processing
+        this number of batches. `model_avg` is a separate version of model,
+        in which each floating-point parameter is the average of all the
+        parameters from the start of training. Each time we take the average,
+        we do: `model_avg = model * (average_period / batch_idx_train) +
+            model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=False,
+        help="Whether to use half precision training.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - warm_step: The warm_step for Noam optimizer.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 10,
+            "reset_interval": 200,
+            "valid_interval": 1000,
+            # parameters for conformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,
+            # parameters for ctc loss
+            "beam_size": 10,
+            "reduction": "none",
+            "use_double_scores": True,
+            # parameters for Noam
+            "model_warm_step": 3000,  # arg given to model, not for lrate
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: torch.nn.Module,
+    model_avg: torch.nn.Module = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+) -> Optional[Dict[str, Any]]:
+    """Load checkpoint from file.
+
+    If params.start_batch is positive, it will load the checkpoint from
+    `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
+    params.start_epoch is larger than 1, it will load the checkpoint from
+    `params.start_epoch - 1`.
+
+    Apart from loading state dict for `model` and `optimizer` it also updates
+    `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The scheduler that is used for training.
+    Returns:
+      Return a dict containing previously saved training info.
+    """
+    if params.start_batch > 0:
+        filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
+    elif params.start_epoch > 1:
+        filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    else:
+        return None
+
+    assert filename.is_file(), f"{filename} does not exist!"
+
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        model_avg=model_avg,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    if params.start_batch > 0:
+        if "cur_epoch" in saved_params:
+            params["start_epoch"] = saved_params["cur_epoch"]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: Union[torch.nn.Module, DDP],
+    model_avg: Optional[torch.nn.Module] = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+    sampler: Optional[CutSampler] = None,
+    scaler: Optional[GradScaler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer used for training.
+      scheduler:
+        The learning rate scheduler used for training.
+      sampler:
+       The sampler for the training dataset.
+      scaler:
+        The scaler used for mix precision training.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        model_avg=model_avg,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        sampler=sampler,
+        scaler=scaler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: Union[torch.nn.Module, DDP],
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    batch: dict,
+    is_training: bool,
+    warmup: float = 1.0,
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute CTC loss given the model and its inputs.
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Conformer in our case.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      graph_compiler:
+        It is used to build a decoding graph from a ctc topo and training
+        transcript. The training transcript is contained in the given `batch`,
+        while the ctc topo is built when this compiler is instantiated.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+     warmup: a floating point value which increases throughout training;
+        values >= 1.0 are fully warmed up and have all modules present.
+    """
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    with torch.set_grad_enabled(is_training):
+        nnet_output, encoder_memory, memory_mask = model(
+            feature, supervisions, warmup=warmup
+        )
+
+        supervision_segments, texts = encode_supervisions(
+            supervisions, subsampling_factor=params.subsampling_factor
+        )
+
+        token_ids = convert_texts_into_ids(texts, graph_compiler.sp)
+        decoding_graph = graph_compiler.compile(token_ids)
+
+        dense_fsa_vec = k2.DenseFsaVec(
+            nnet_output,
+            supervision_segments,
+            allow_truncate=params.subsampling_factor - 1,
+        )
+
+        ctc_loss = k2.ctc_loss(
+            decoding_graph=decoding_graph,
+            dense_fsa_vec=dense_fsa_vec,
+            output_beam=params.beam_size,
+            reduction=params.reduction,
+            use_double_scores=params.use_double_scores,
+        )
+
+        if params.att_rate > 0.0:
+            with torch.set_grad_enabled(is_training):
+                mmodel = model.module if hasattr(model, "module") else model
+                # Note: We need to generate an unsorted version of token_ids
+                # `encode_supervisions()` called above sorts text, but
+                # encoder_memory and memory_mask are not sorted, so we
+                # use an unsorted version `supervisions["text"]` to regenerate
+                # the token_ids
+                #
+                # See https://github.com/k2-fsa/icefall/issues/97
+                # for more details
+                unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
+                att_loss = mmodel.decoder_forward(
+                    encoder_memory,
+                    memory_mask,
+                    token_ids=unsorted_token_ids,
+                    sos_id=graph_compiler.sos_id,
+                    eos_id=graph_compiler.eos_id,
+                    warmup=warmup,
+                )
+        else:
+            att_loss = torch.tensor([0])
+
+        ctc_loss_is_finite = torch.isfinite(ctc_loss)
+        att_loss_is_finite = torch.isfinite(att_loss)
+        if torch.any(~ctc_loss_is_finite) or torch.any(~att_loss_is_finite):
+            logging.info(
+                "Not all losses are finite!\n"
+                f"ctc_loss: {ctc_loss}\n"
+                f"att_loss: {att_loss}"
+            )
+            display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
+            ctc_loss = ctc_loss[ctc_loss_is_finite]
+            att_loss = att_loss[att_loss_is_finite]
+
+            # If the batch contains more than 10 utterances AND
+            # if either all ctc_loss or att_loss is inf or nan,
+            # we stop the training process by raising an exception
+            if torch.all(~ctc_loss_is_finite) or torch.all(~att_loss_is_finite):
+                raise ValueError(
+                    "There are too many utterances in this batch "
+                    "leading to inf or nan losses."
+                )
+
+        ctc_loss = ctc_loss.sum()
+        att_loss = att_loss.sum()
+
+        if params.att_rate > 0.0:
+            loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
+        else:
+            loss = ctc_loss
+
+    assert loss.requires_grad == is_training
+
+    info = MetricsTracker()
+    # info["frames"] is an approximate number for two reasons:
+    # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2
+    # (2) If some utterances in the batch lead to inf/nan loss, they
+    #     are filtered out.
+    info["frames"] = (
+        torch.div(feature_lens, params.subsampling_factor, rounding_mode="floor")
+        .sum()
+        .item()
+    )
+
+    # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances`  # noqa
+    info["utterances"] = feature.size(0)
+    # averaged input duration in frames over utterances
+    info["utt_duration"] = feature_lens.sum().item()
+    # averaged padding proportion over utterances
+    info["utt_pad_proportion"] = (
+        ((feature.size(1) - feature_lens) / feature.size(1)).sum().item()
+    )
+
+    # Note: We use reduction=sum while computing the loss.
+    info["loss"] = loss.detach().cpu().item()
+    info["ctc_loss"] = ctc_loss.detach().cpu().item()
+    if params.att_rate > 0.0:
+        info["att_loss"] = att_loss.detach().cpu().item()
+
+    return loss, info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: Union[torch.nn.Module, DDP],
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch in valid_dl:
+        loss, loss_info = compute_loss(
+            params=params,
+            model=model,
+            graph_compiler=graph_compiler,
+            batch=batch,
+            is_training=False,
+        )
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: Union[torch.nn.Module, DDP],
+    optimizer: torch.optim.Optimizer,
+    scheduler: LRSchedulerType,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    scaler: GradScaler,
+    model_avg: Optional[torch.nn.Module] = None,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+    rank: int = 0,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      scheduler:
+        The learning rate scheduler, we call step() every step.
+      graph_compiler:
+        It is used to convert transcripts to FSAs.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      scaler:
+        The scaler used for mix precision training.
+      model_avg:
+        The stored model averaged from the start of training.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+      rank:
+        The rank of the node in DDP training. If no DDP is used, it should
+        be set to 0.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(train_dl):
+        params.batch_idx_train += 1
+        batch_size = len(batch["supervisions"]["text"])
+
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, loss_info = compute_loss(
+                    params=params,
+                    model=model,
+                    graph_compiler=graph_compiler,
+                    batch=batch,
+                    is_training=True,
+                    warmup=(params.batch_idx_train / params.model_warm_step),
+                )
+            # summary stats
+            tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+            # NOTE: We use reduction==sum and loss is computed over utterances
+            # in the batch and there is no normalization to it so far.
+            scaler.scale(loss).backward()
+            scheduler.step_batch(params.batch_idx_train)
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+        except:  # noqa
+            display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
+            raise
+
+        if params.print_diagnostics and batch_idx == 5:
+            return
+
+        if (
+            rank == 0
+            and params.batch_idx_train > 0
+            and params.batch_idx_train % params.average_period == 0
+        ):
+            update_averaged_model(
+                params=params,
+                model_cur=model,
+                model_avg=model_avg,
+            )
+
+        if (
+            params.batch_idx_train > 0
+            and params.batch_idx_train % params.save_every_n == 0
+        ):
+            save_checkpoint_with_global_batch_idx(
+                out_dir=params.exp_dir,
+                global_batch_idx=params.batch_idx_train,
+                model=model,
+                model_avg=model_avg,
+                params=params,
+                optimizer=optimizer,
+                scheduler=scheduler,
+                sampler=train_dl.sampler,
+                scaler=scaler,
+                rank=rank,
+            )
+            remove_checkpoints(
+                out_dir=params.exp_dir,
+                topk=params.keep_last_k,
+                rank=rank,
+            )
+
+        if batch_idx % params.log_interval == 0:
+            cur_lr = scheduler.get_last_lr()[0]
+            logging.info(
+                f"Epoch {params.cur_epoch}, "
+                f"batch {batch_idx}, loss[{loss_info}], "
+                f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+                f"lr: {cur_lr:.2e}"
+            )
+
+            if tb_writer is not None:
+                tb_writer.add_scalar(
+                    "train/learning_rate", cur_lr, params.batch_idx_train
+                )
+
+                loss_info.write_summary(
+                    tb_writer, "train/current_", params.batch_idx_train
+                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
+
+        if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+            logging.info("Computing validation loss")
+            valid_info = compute_validation_loss(
+                params=params,
+                model=model,
+                graph_compiler=graph_compiler,
+                valid_dl=valid_dl,
+                world_size=world_size,
+            )
+            model.train()
+            logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+            if tb_writer is not None:
+                valid_info.write_summary(
+                    tb_writer, "train/valid_", params.batch_idx_train
+                )
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+
+    fix_random_seed(params.seed)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+    logging.info(params)
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    lexicon = Lexicon(params.lang_dir)
+    max_token_id = max(lexicon.tokens)
+    num_classes = max_token_id + 1  # +1 for the blank
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+    logging.info(f"Device: {device}")
+
+    if "lang_bpe" not in str(params.lang_dir):
+        raise ValueError(
+            f"Unsupported type of lang dir (we expected it to have "
+            f"'lang_bpe' in its name): {params.lang_dir}"
+        )
+
+    graph_compiler = BpeCtcTrainingGraphCompiler(
+        params.lang_dir,
+        device=device,
+        sos_token="",
+        eos_token="",
+    )
+
+    logging.info("About to create model")
+    model = Conformer(
+        num_features=params.feature_dim,
+        num_classes=num_classes,
+        subsampling_factor=params.subsampling_factor,
+        d_model=params.dim_model,
+        nhead=params.nhead,
+        dim_feedforward=params.dim_feedforward,
+        num_encoder_layers=params.num_encoder_layers,
+        num_decoder_layers=params.num_decoder_layers,
+    )
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    assert params.save_every_n >= params.average_period
+    model_avg: Optional[torch.nn.Module] = None
+    if rank == 0:
+        # model_avg is only used with rank 0
+        model_avg = copy.deepcopy(model)
+
+    assert params.start_epoch > 0, params.start_epoch
+    checkpoints = load_checkpoint_if_available(
+        params=params, model=model, model_avg=model_avg
+    )
+
+    model.to(device)
+    if world_size > 1:
+        logging.info("Using DDP")
+        model = DDP(model, device_ids=[rank])
+
+    optimizer = optim.Eve(model.parameters(), lr=params.initial_lr)
+    scheduler = optim.Eden(optimizer, params.lr_batches, params.lr_epochs)
+
+    if checkpoints and checkpoints.get("optimizer") is not None:
+        logging.info("Loading optimizer state dict")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    if checkpoints and checkpoints.get("scheduler") is not None:
+        logging.info("Loading scheduler state dict")
+        scheduler.load_state_dict(checkpoints["scheduler"])
+
+    if params.print_diagnostics:
+        opts = diagnostics.TensorDiagnosticOptions(
+            2**22
+        )  # allow 4 megabytes per sub-module
+        diagnostic = diagnostics.attach_diagnostics(model, opts)
+
+    tedlium = TedLiumAsrDataModule(args)
+
+    train_cuts = tedlium.train_cuts()
+
+    if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
+        # We only load the sampler's state dict when it loads a checkpoint
+        # saved in the middle of an epoch
+        sampler_state_dict = checkpoints["sampler"]
+    else:
+        sampler_state_dict = None
+
+    train_dl = tedlium.train_dataloaders(
+        train_cuts, sampler_state_dict=sampler_state_dict
+    )
+
+    valid_cuts = tedlium.dev_cuts()
+    valid_dl = tedlium.valid_dataloaders(valid_cuts)
+
+    if (
+        params.start_epoch <= 1
+        and params.start_batch <= 0
+        and not params.print_diagnostics
+    ):
+        scan_pessimistic_batches_for_oom(
+            model=model,
+            train_dl=train_dl,
+            optimizer=optimizer,
+            graph_compiler=graph_compiler,
+            params=params,
+            warmup=0.0 if params.start_epoch == 1 else 1.0,
+        )
+
+    scaler = GradScaler(enabled=params.use_fp16)
+    if checkpoints and "grad_scaler" in checkpoints:
+        logging.info("Loading grad scaler state dict")
+        scaler.load_state_dict(checkpoints["grad_scaler"])
+
+    for epoch in range(params.start_epoch, params.num_epochs + 1):
+        scheduler.step_epoch(epoch - 1)
+        fix_random_seed(params.seed + epoch - 1)
+        train_dl.sampler.set_epoch(epoch - 1)
+        train_dl.dataset.epoch = epoch - 1
+
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            graph_compiler=graph_compiler,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            scaler=scaler,
+            tb_writer=tb_writer,
+            world_size=world_size,
+            rank=rank,
+        )
+
+        if params.print_diagnostics:
+            diagnostic.print_diagnostics()
+            break
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sampler=train_dl.sampler,
+            scaler=scaler,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+    model: Union[torch.nn.Module, DDP],
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    graph_compiler: BpeCtcTrainingGraphCompiler,
+    params: AttributeDict,
+    warmup: float,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 1 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, _ = compute_loss(
+                    params=params,
+                    model=model,
+                    graph_compiler=graph_compiler,
+                    batch=batch,
+                    is_training=True,
+                    warmup=warmup,
+                )
+            loss.backward()
+            optimizer.step()
+            optimizer.zero_grad()
+        except Exception as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
+            raise
+
+
+def main():
+    parser = get_parser()
+    TedLiumAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
+# in PyTorch 1.12 and later.
+torch.backends.cuda.matmul.allow_tf32 = True
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/tedlium3/ASR/conformer_ctc2/transformer.py b/egs/tedlium3/ASR/conformer_ctc2/transformer.py
new file mode 100644
index 000000000..9dbf32e48
--- /dev/null
+++ b/egs/tedlium3/ASR/conformer_ctc2/transformer.py
@@ -0,0 +1,1093 @@
+# Copyright    2021  University of Chinese Academy of Sciences (author: Han Zhu)
+# Copyright    2022  Xiaomi Corp.                              (author: Quandong Wang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import copy
+import math
+from typing import Dict, List, Optional, Tuple
+
+import torch
+import torch.nn as nn
+from attention import MultiheadAttention
+from combiner import RandomCombine
+from label_smoothing import LabelSmoothingLoss
+from scaling import (
+    ActivationBalancer,
+    BasicNorm,
+    DoubleSwish,
+    ScaledEmbedding,
+    ScaledLinear,
+)
+from subsampling import Conv2dSubsampling
+from torch.nn.utils.rnn import pad_sequence
+
+# Note: TorchScript requires Dict/List/etc. to be fully typed.
+Supervisions = Dict[str, torch.Tensor]
+
+
+class Transformer(nn.Module):
+    def __init__(
+        self,
+        num_features: int,
+        num_classes: int,
+        subsampling_factor: int = 4,
+        d_model: int = 256,
+        nhead: int = 4,
+        dim_feedforward: int = 2048,
+        num_encoder_layers: int = 12,
+        num_decoder_layers: int = 6,
+        dropout: float = 0.1,
+        layer_dropout: float = 0.075,
+        aux_layer_period: int = 3,
+    ) -> None:
+        """
+        Args:
+          num_features:
+            the input dimension of the model.
+          num_classes:
+            the output dimension of the model.
+          subsampling_factor:
+            number of output frames is num_in_frames // subsampling_factor;
+            currently, subsampling_factor MUST be 4.
+          d_model:
+            attention dimension.
+          nhead:
+            number of heads in multi-head attention;
+            must satisfy d_model // nhead == 0.
+          dim_feedforward:
+            the output dimension of the feedforward layers in encoder/decoder.
+          num_encoder_layers:
+            number of encoder layers.
+          num_decoder_layers:
+            number of decoder layers.
+          dropout:
+            dropout in encoder/decoder.
+          layer_dropout:
+            layer-dropout rate.
+          aux_layer_period:
+            determines the auxiliary encoder layers.
+        """
+        super().__init__()
+
+        self.num_features = num_features
+        self.num_classes = num_classes
+        self.subsampling_factor = subsampling_factor
+        if subsampling_factor != 4:
+            raise NotImplementedError("Support only 'subsampling_factor=4'.")
+
+        # self.encoder_embed converts the input of shape (N, T, num_classes)
+        # to the shape (N, T//subsampling_factor, d_model).
+        # That is, it does two things simultaneously:
+        #   (1) subsampling: T -> T//subsampling_factor
+        #   (2) embedding: num_classes -> d_model
+        self.encoder_embed = Conv2dSubsampling(num_features, d_model)
+
+        self.encoder_pos = PositionalEncoding(d_model, dropout)
+
+        encoder_layer = TransformerEncoderLayer(
+            d_model=d_model,
+            nhead=nhead,
+            dim_feedforward=dim_feedforward,
+            dropout=dropout,
+            layer_dropout=layer_dropout,
+        )
+        # aux_layers from 1/3
+        self.encoder = TransformerEncoder(
+            encoder_layer=encoder_layer,
+            num_layers=num_encoder_layers,
+            aux_layers=list(
+                range(
+                    num_encoder_layers // 3,
+                    num_encoder_layers - 1,
+                    aux_layer_period,
+                )
+            ),
+        )
+
+        # TODO(fangjun): remove dropout
+        self.encoder_output_layer = nn.Sequential(
+            nn.Dropout(p=dropout), ScaledLinear(d_model, num_classes, bias=True)
+        )
+
+        if num_decoder_layers > 0:
+            self.decoder_num_class = (
+                self.num_classes
+            )  # bpe model already has sos/eos symbol
+
+            self.decoder_embed = ScaledEmbedding(
+                num_embeddings=self.decoder_num_class, embedding_dim=d_model
+            )
+            self.decoder_pos = PositionalEncoding(d_model, dropout)
+
+            decoder_layer = TransformerDecoderLayer(
+                d_model=d_model,
+                nhead=nhead,
+                dim_feedforward=dim_feedforward,
+                dropout=dropout,
+            )
+
+            self.decoder = TransformerDecoder(
+                decoder_layer=decoder_layer,
+                num_layers=num_decoder_layers,
+                aux_layers=[],
+            )
+
+            self.decoder_output_layer = ScaledLinear(
+                d_model, self.decoder_num_class, bias=True
+            )
+
+            self.decoder_criterion = LabelSmoothingLoss(reduction="none")
+        else:
+            self.decoder_criterion = None
+
+    def forward(
+        self,
+        x: torch.Tensor,
+        supervision: Optional[Supervisions] = None,
+        warmup: float = 1.0,
+    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
+        """
+        Args:
+          x:
+            The input tensor. Its shape is (N, S, C).
+          supervision:
+            Supervision in lhotse format.
+            See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32  # noqa
+            (CAUTION: It contains length information, i.e., start and number of
+             frames, before subsampling)
+          warmup:
+            a floating point value that gradually increases from 0 throughout
+            training; when it is >= 1.0 we are "fully warmed up". It is used
+            to turn modules on sequentially.
+
+        Returns:
+          Return a tuple containing 3 tensors:
+            - CTC output for ctc decoding. Its shape is (N, S, C)
+            - Encoder output with shape (S, N, C). It can be used as key and
+              value for the decoder.
+            - Encoder output padding mask. It can be used as
+              memory_key_padding_mask for the decoder. Its shape is (N, S).
+              It is None if `supervision` is None.
+        """
+
+        encoder_memory, memory_key_padding_mask = self.run_encoder(
+            x, supervision, warmup
+        )
+
+        x = self.ctc_output(encoder_memory)
+        return x, encoder_memory, memory_key_padding_mask
+
+    def run_encoder(
+        self,
+        x: torch.Tensor,
+        supervisions: Optional[Supervisions] = None,
+        warmup: float = 1.0,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+        """Run the transformer encoder.
+
+        Args:
+          x:
+            The model input. Its shape is (N, S, C).
+          supervisions:
+            Supervision in lhotse format.
+            See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32  # noqa
+            CAUTION: It contains length information, i.e., start and number of
+            frames, before subsampling
+            It is read directly from the batch, without any sorting. It is used
+            to compute the encoder padding mask, which is used as memory key
+            padding mask for the decoder.
+          warmup:
+            a floating point value that gradually increases from 0 throughout
+            training; when it is >= 1.0 we are "fully warmed up". It is used
+            to turn modules on sequentially.
+
+        Returns:
+          Return a tuple with two tensors:
+            - The encoder output, with shape (S, N, C)
+            - encoder padding mask, with shape (N, S).
+              The mask is None if `supervisions` is None.
+              It is used as memory key padding mask in the decoder.
+        """
+        x = self.encoder_embed(x)
+        x = self.encoder_pos(x)
+        x = x.permute(1, 0, 2)  # (N, S, C) -> (S, N, C)
+        mask = encoder_padding_mask(x.size(0), supervisions)
+        mask = mask.to(x.device) if mask is not None else None
+        x = self.encoder(x, src_key_padding_mask=mask, warmup=warmup)  # (S, N, C)
+
+        return x, mask
+
+    def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
+        """
+        Args:
+          x:
+            the output tensor from the transformer encoder;
+            its shape is (S, N, C)
+
+        Returns:
+          Return a tensor that can be used for CTC decoding.
+          Its shape is (N, S, C)
+        """
+        x = self.encoder_output_layer(x)
+        x = x.permute(1, 0, 2)  # (S, N, C) -> (N, S, C)
+        x = nn.functional.log_softmax(x, dim=-1)  # (N, S, C)
+        return x
+
+    @torch.jit.export
+    def decoder_forward(
+        self,
+        memory: torch.Tensor,
+        memory_key_padding_mask: torch.Tensor,
+        token_ids: List[List[int]],
+        sos_id: int,
+        eos_id: int,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """
+        Args:
+          memory:
+            It's the output of the encoder of shape (S, N, C)
+          memory_key_padding_mask:
+            The padding mask from the encoder of shape (N, S).
+          token_ids:
+            A list-of-list IDs. Each sublist contains IDs for an utterance.
+            The IDs can be either phone IDs or word piece IDs.
+          sos_id:
+            sos token id
+          eos_id:
+            eos token id
+          warmup:
+            a floating point value that gradually increases from 0 throughout
+            training; when it is >= 1.0 we are "fully warmed up". It is used
+            to turn modules on sequentially.
+
+        Returns:
+          A scalar, the **sum** of label smoothing loss over utterances
+          in the batch without any normalization.
+        """
+        ys_in = add_sos(token_ids, sos_id=sos_id)
+        ys_in = [torch.tensor(y) for y in ys_in]
+        ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
+
+        ys_out = add_eos(token_ids, eos_id=eos_id)
+        ys_out = [torch.tensor(y) for y in ys_out]
+        ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
+
+        device = memory.device
+        ys_in_pad = ys_in_pad.to(device)
+        ys_out_pad = ys_out_pad.to(device)
+
+        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
+
+        tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
+        # TODO: Use length information to create the decoder padding mask
+        # We set the first column to False since the first column in ys_in_pad
+        # contains sos_id, which is the same as eos_id in our current setting.
+        tgt_key_padding_mask[:, 0] = False
+
+        tgt = self.decoder_embed(ys_in_pad)  # (N, T) -> (N, T, C)
+        tgt = self.decoder_pos(tgt)
+        tgt = tgt.permute(1, 0, 2)  # (N, T, C) -> (T, N, C)
+        pred_pad = self.decoder(
+            tgt=tgt,
+            memory=memory,
+            tgt_mask=tgt_mask,
+            tgt_key_padding_mask=tgt_key_padding_mask,
+            memory_key_padding_mask=memory_key_padding_mask,
+            warmup=warmup,
+        )  # (T, N, C)
+        pred_pad = pred_pad.permute(1, 0, 2)  # (T, N, C) -> (N, T, C)
+        pred_pad = self.decoder_output_layer(pred_pad)  # (N, T, C)
+
+        decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
+
+        return decoder_loss
+
+    @torch.jit.export
+    def decoder_nll(
+        self,
+        memory: torch.Tensor,
+        memory_key_padding_mask: torch.Tensor,
+        token_ids: List[torch.Tensor],
+        sos_id: int,
+        eos_id: int,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """
+        Args:
+          memory:
+            It's the output of the encoder of shape (S, N, C).
+          memory_key_padding_mask:
+            The padding mask from the encoder of shape (N, S).
+          token_ids:
+            A list-of-list IDs (e.g., word piece IDs).
+            Each sublist represents an utterance.
+          sos_id:
+            The token ID for SOS.
+          eos_id:
+            The token ID for EOS.
+          warmup:
+            a floating point value that gradually increases from 0 throughout
+            training; when it is >= 1.0 we are "fully warmed up". It is used
+            to turn modules on sequentially.
+
+        Returns:
+          A 2-D tensor of shape (len(token_ids), max_token_length)
+          representing the cross entropy loss (i.e., negative log-likelihood).
+        """
+        # The common part between this function and decoder_forward could be
+        # extracted as a separate function.
+        if isinstance(token_ids[0], torch.Tensor):
+            # This branch is executed by torchscript in C++.
+            # See https://github.com/k2-fsa/k2/pull/870
+            # https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
+            token_ids = [tolist(t) for t in token_ids]
+
+        ys_in = add_sos(token_ids, sos_id=sos_id)
+        ys_in = [torch.tensor(y) for y in ys_in]
+        ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
+
+        ys_out = add_eos(token_ids, eos_id=eos_id)
+        ys_out = [torch.tensor(y) for y in ys_out]
+        ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
+
+        device = memory.device
+        ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
+        ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
+
+        tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
+
+        tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
+        # TODO: Use length information to create the decoder padding mask
+        # We set the first column to False since the first column in ys_in_pad
+        # contains sos_id, which is the same as eos_id in our current setting.
+        tgt_key_padding_mask[:, 0] = False
+
+        tgt = self.decoder_embed(ys_in_pad)  # (N, T) -> (N, T, C)
+        tgt = self.decoder_pos(tgt)
+        tgt = tgt.permute(1, 0, 2)  # (N, T, С) -> (T, N, C)
+        pred_pad = self.decoder(
+            tgt=tgt,
+            memory=memory,
+            tgt_mask=tgt_mask,
+            tgt_key_padding_mask=tgt_key_padding_mask,
+            memory_key_padding_mask=memory_key_padding_mask,
+            warmup=warmup,
+        )  # (T, B, F)
+        pred_pad = pred_pad.permute(1, 0, 2)  # (T, N, C) -> (N, T, C)
+        pred_pad = self.decoder_output_layer(pred_pad)  # (N, T, C)
+        # nll: negative log-likelihood
+        nll = torch.nn.functional.cross_entropy(
+            pred_pad.view(-1, self.decoder_num_class),
+            ys_out_pad.view(-1),
+            ignore_index=-1,
+            reduction="none",
+        )
+
+        nll = nll.view(pred_pad.shape[0], -1)
+
+        return nll
+
+
+class TransformerEncoderLayer(nn.Module):
+    """
+    Modified from torch.nn.TransformerEncoderLayer.
+
+    Example:
+        >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
+        >>> src = torch.rand(10, 32, 512)
+        >>> out = encoder_layer(src)
+    """
+
+    def __init__(
+        self,
+        d_model: int,
+        nhead: int,
+        dim_feedforward: int = 2048,
+        dropout: float = 0.1,
+        bypass_scale: float = 0.1,
+        layer_dropout: float = 0.075,
+    ) -> None:
+        """
+        Args:
+          d_model:
+            the number of expected features in the input (required).
+          nhead:
+            the number of heads in the multiheadattention models (required).
+          dim_feedforward:
+            the dimension of the feedforward network model (default=2048).
+          dropout:
+            the dropout value (default=0.1).
+          bypass_scale:
+            a scale on the layer's output, used in bypass (resnet-type) skip-connection;
+            when the layer is bypassed the final output will be a
+            weighted sum of the layer's input and layer's output with weights
+            (1.0-bypass_scale) and bypass_scale correspondingly (default=0.1).
+          layer_dropout:
+            the probability to bypass the layer (default=0.075).
+        """
+
+        super().__init__()
+
+        if bypass_scale < 0.0 or bypass_scale > 1.0:
+            raise ValueError("bypass_scale should be between 0.0 and 1.0")
+
+        if layer_dropout < 0.0 or layer_dropout > 1.0:
+            raise ValueError("layer_dropout should be between 0.0 and 1.0")
+
+        self.bypass_scale = bypass_scale
+        self.layer_dropout = layer_dropout
+
+        self.self_attn = MultiheadAttention(d_model, nhead)
+        # Implementation of Feedforward model
+
+        self.feed_forward = nn.Sequential(
+            ScaledLinear(d_model, dim_feedforward),
+            ActivationBalancer(channel_dim=-1),
+            DoubleSwish(),
+            nn.Dropout(dropout),
+            ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
+        )
+
+        self.norm_final = BasicNorm(d_model)
+
+        # try to ensure the output is close to zero-mean (or at least, zero-median).
+        self.balancer = ActivationBalancer(
+            channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
+        )
+
+        self.dropout = nn.Dropout(dropout)
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        src_mask: Optional[torch.Tensor] = None,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """
+        Pass the input through the encoder layer.
+
+        Args:
+          src:
+            the sequence to the encoder layer of shape (S, N, C) (required).
+          src_mask:
+            the mask for the src sequence of shape (S, S) (optional).
+          src_key_padding_mask:
+            the mask for the src keys per batch of shape (N, S) (optional)
+          warmup:
+            controls selective bypass of layers; if < 1.0, we will
+            bypass the layer more frequently (default=1.0).
+
+        Returns:
+          Output tensor of the shape (S, N, C), where
+          S is the source sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        src_orig = src
+
+        warmup_scale = min(self.bypass_scale + warmup, 1.0)
+        # alpha = 1.0 means fully use this encoder layer, 0.0 would mean
+        # completely bypass it.
+        if self.training:
+            alpha = (
+                warmup_scale
+                if torch.rand(()).item() <= (1.0 - self.layer_dropout)
+                else self.bypass_scale
+            )
+        else:
+            alpha = 1.0
+
+        src_att = self.self_attn(
+            src,
+            src,
+            src,
+            attn_mask=src_mask,
+            key_padding_mask=src_key_padding_mask,
+        )[0]
+        src = src + self.dropout(src_att)
+
+        src = src + self.dropout(self.feed_forward(src))
+
+        src = self.norm_final(self.balancer(src))
+
+        if alpha != 1.0:
+            src = alpha * src + (1.0 - alpha) * src_orig
+
+        return src
+
+
+class TransformerDecoderLayer(nn.Module):
+    """Modified from torch.nn.TransformerDecoderLayer.
+
+    Example:
+        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
+        >>> memory = torch.rand(10, 32, 512)
+        >>> tgt = torch.rand(20, 32, 512)
+        >>> out = decoder_layer(tgt, memory)
+    """
+
+    def __init__(
+        self,
+        d_model: int,
+        nhead: int,
+        dim_feedforward: int = 2048,
+        dropout: float = 0.1,
+        bypass_scale: float = 0.1,
+        layer_dropout: float = 0.075,
+    ) -> None:
+
+        """
+        Args:
+          d_model:
+            the number of expected features in the input (required).
+          nhead:
+            the number of heads in the multiheadattention models (required).
+          dim_feedforward:
+            the dimension of the feedforward network model (default=2048).
+          dropout:
+            the dropout value (default=0.1).
+          bypass_scale:
+            a scale on the layer's output, used in bypass (resnet-type) skip-connection;
+            when the layer is bypassed, the final output will be a
+            weighted sum of the layer's input and layer's output with weights
+            (1.0-bypass_scale) and bypass_scale correspondingly (default=0.1).
+          layer_dropout:
+            the probability to bypass the layer (default=0.075).
+        """
+
+        super().__init__()
+
+        if bypass_scale < 0.0 or bypass_scale > 1.0:
+            raise ValueError("bypass_scale should be between 0.0 and 1.0")
+
+        if layer_dropout < 0.0 or layer_dropout > 1.0:
+            raise ValueError("layer_dropout should be between 0.0 and 1.0")
+
+        self.bypass_scale = bypass_scale
+        self.layer_dropout = layer_dropout
+
+        self.self_attn = MultiheadAttention(d_model, nhead)
+        self.src_attn = MultiheadAttention(d_model, nhead)
+
+        # Implementation of Feedforward model
+        self.feed_forward = nn.Sequential(
+            ScaledLinear(d_model, dim_feedforward),
+            ActivationBalancer(channel_dim=-1),
+            DoubleSwish(),
+            nn.Dropout(dropout),
+            ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
+        )
+
+        self.norm_final = BasicNorm(d_model)
+
+        # try to ensure the output is close to zero-mean (or at least, zero-median).
+        self.balancer = ActivationBalancer(
+            channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
+        )
+
+        self.dropout = nn.Dropout(dropout)
+
+    def forward(
+        self,
+        tgt: torch.Tensor,
+        memory: torch.Tensor,
+        tgt_mask: Optional[torch.Tensor] = None,
+        memory_mask: Optional[torch.Tensor] = None,
+        tgt_key_padding_mask: Optional[torch.Tensor] = None,
+        memory_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """Pass the inputs (and mask) through the decoder layer.
+
+        Args:
+          tgt:
+            the sequence to the decoder layer of shape (T, N, C) (required).
+          memory:
+            the sequence from the last layer of the encoder of shape (S, N, C) (required).
+          tgt_mask:
+            the mask for the tgt sequence of shape (T, T) (optional).
+          memory_mask:
+            the mask for the memory sequence of shape (T, S) (optional).
+          tgt_key_padding_mask:
+            the mask for the tgt keys per batch of shape (N, T) (optional).
+          memory_key_padding_mask:
+            the mask for the memory keys per batch of shape (N, S) (optional).
+          warmup: controls selective bypass of layers; if < 1.0, we will
+            bypass the layer more frequently (default=1.0).
+
+        Returns:
+          Output tensor of the shape (T, N, C), where
+          S is the source sequence length,
+          T is the target sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        tgt_orig = tgt
+
+        warmup_scale = min(self.bypass_scale + warmup, 1.0)
+        # alpha = 1.0 means fully use this encoder layer, 0.0 would mean
+        # completely bypass it.
+        if self.training:
+            alpha = (
+                warmup_scale
+                if torch.rand(()).item() <= (1.0 - self.layer_dropout)
+                else self.bypass_scale
+            )
+        else:
+            alpha = 1.0
+
+        tgt_att = self.self_attn(
+            tgt,
+            tgt,
+            tgt,
+            attn_mask=tgt_mask,
+            key_padding_mask=tgt_key_padding_mask,
+        )[0]
+        tgt = tgt + self.dropout(tgt_att)
+
+        src_att = self.src_attn(
+            tgt,
+            memory,
+            memory,
+            attn_mask=memory_mask,
+            key_padding_mask=memory_key_padding_mask,
+        )[0]
+        tgt = tgt + self.dropout(src_att)
+
+        tgt = tgt + self.dropout(self.feed_forward(tgt))
+
+        tgt = self.norm_final(self.balancer(tgt))
+
+        if alpha != 1.0:
+            tgt = alpha * tgt + (1.0 - alpha) * tgt_orig
+
+        return tgt
+
+
+class TransformerEncoder(nn.Module):
+    """TransformerEncoder is a stack of N encoder layers
+
+    Examples:
+        >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
+        >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
+        >>> src = torch.rand(10, 32, 512)
+        >>> out = transformer_encoder(src)
+    """
+
+    def __init__(
+        self,
+        encoder_layer: nn.Module,
+        num_layers: int,
+        aux_layers: List[int],
+    ) -> None:
+        """
+        Args:
+          encoder_layer:
+            an instance of the TransformerEncoderLayer() class (required).
+          num_layers:
+            the number of sub-encoder-layers in the encoder (required).
+          aux_layers:
+            list of indexes of sub-encoder-layers outputs to be combined (required).
+        """
+
+        super().__init__()
+        self.layers = nn.ModuleList(
+            [copy.deepcopy(encoder_layer) for i in range(num_layers)]
+        )
+        self.num_layers = num_layers
+
+        assert len(set(aux_layers)) == len(aux_layers)
+
+        assert num_layers - 1 not in aux_layers
+        self.aux_layers = aux_layers + [num_layers - 1]
+
+        self.combiner = RandomCombine(
+            num_inputs=len(self.aux_layers),
+            final_weight=0.5,
+            pure_prob=0.333,
+            stddev=2.0,
+        )
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        mask: Optional[torch.Tensor] = None,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """Pass the input through the encoder layers in turn.
+
+        Args:
+          src:
+            the input to the encoder of shape (S, N, C) (required).
+          mask:
+            the mask for the src sequence of shape (S, S) (optional).
+          src_key_padding_mask:
+            the mask for the src keys per batch of shape (N, S) (optional).
+          warmup:
+            controls selective bypass of layer; if < 1.0, we will
+            bypass the layer more frequently (default=1.0).
+
+        Returns:
+          Output tensor of the shape (S, N, C), where
+          S is the source sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        output = src
+
+        outputs = []
+        for i, mod in enumerate(self.layers):
+            output = mod(
+                output,
+                src_mask=mask,
+                src_key_padding_mask=src_key_padding_mask,
+                warmup=warmup,
+            )
+
+            if i in self.aux_layers:
+                outputs.append(output)
+
+        output = self.combiner(outputs)
+
+        return output
+
+
+class TransformerDecoder(nn.Module):
+    """TransformerDecoder is a stack of N decoder layers
+
+    Examples:
+        >>> decoder_layer = TransformerDecoderLayer(d_model=512, nhead=8)
+        >>> transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
+        >>> memory = torch.rand(10, 32, 512)
+        >>> tgt = torch.rand(20, 32, 512)
+        >>> out = transformer_decoder(tgt, memory)
+    """
+
+    def __init__(
+        self,
+        decoder_layer: nn.Module,
+        num_layers: int,
+        aux_layers: List[int],
+    ) -> None:
+        """
+        Args:
+          decoder_layer:
+            an instance of the TransformerDecoderLayer() class (required).
+          num_layers:
+            the number of decoder layers in the decoder (required).
+          aux_layers:
+            list of indexes of decoder layer outputs to be combined (required).
+        """
+
+        super().__init__()
+        self.layers = nn.ModuleList(
+            [copy.deepcopy(decoder_layer) for i in range(num_layers)]
+        )
+        self.num_layers = num_layers
+
+        assert len(set(aux_layers)) == len(aux_layers)
+
+        assert num_layers - 1 not in aux_layers
+        self.aux_layers = aux_layers + [num_layers - 1]
+
+        self.combiner = RandomCombine(
+            num_inputs=len(self.aux_layers),
+            final_weight=0.5,
+            pure_prob=0.333,
+            stddev=2.0,
+        )
+
+    def forward(
+        self,
+        tgt: torch.Tensor,
+        memory: torch.Tensor,
+        tgt_mask: Optional[torch.Tensor] = None,
+        memory_mask: Optional[torch.Tensor] = None,
+        tgt_key_padding_mask: Optional[torch.Tensor] = None,
+        memory_key_padding_mask: Optional[torch.Tensor] = None,
+        warmup: float = 1.0,
+    ) -> torch.Tensor:
+        """Pass the input (and mask) through the decoder layers in turn.
+
+        Args:
+          tgt:
+            the sequence to the decoder of shape (T, N, C) (required).
+          memory:
+            the sequence from the last layer of the encoder of shape (S, N, C) (required).
+          tgt_mask:
+            the mask for the tgt sequence of shape (T, T) (optional).
+          memory_mask:
+            the mask for the memory sequence of shape (T, S) (optional).
+          tgt_key_padding_mask:
+            the mask for the tgt keys per batch of shape (N, T)  (optional).
+          memory_key_padding_mask:
+            the mask for the memory keys per batch of shape (N, S) (optional).
+          warmup:
+            controls selective bypass of layer; if < 1.0, we will
+            bypass the layer more frequently (default=1.0).
+
+        Returns:
+          Output tensor of the shape (T, N, C), where
+          S is the source sequence length,
+          T is the target sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        output = tgt
+
+        outputs = []
+        for i, mod in enumerate(self.layers):
+            output = mod(
+                output,
+                memory,
+                tgt_mask=tgt_mask,
+                memory_mask=memory_mask,
+                tgt_key_padding_mask=tgt_key_padding_mask,
+                memory_key_padding_mask=memory_key_padding_mask,
+                warmup=warmup,
+            )
+
+            if i in self.aux_layers:
+                outputs.append(output)
+
+        output = self.combiner(outputs)
+
+        return output
+
+
+class PositionalEncoding(nn.Module):
+    """This class implements the positional encoding
+    proposed in the following paper:
+
+    - Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
+
+        PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
+        PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
+
+    Note:
+
+      1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
+                               = exp(-1* 2i / d_model * log(100000))
+                               = exp(2i * -(log(10000) / d_model))
+    """
+
+    def __init__(self, d_model: int, dropout: float = 0.1) -> None:
+        """
+        Args:
+          d_model: Embedding dimension.
+          dropout: Dropout probability to be applied to the output of this module.
+        """
+        super().__init__()
+        self.d_model = d_model
+        self.xscale = math.sqrt(self.d_model)
+        self.dropout = nn.Dropout(p=dropout)
+        # not doing: self.pe = None because of errors thrown by torchscript
+        self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
+
+    def extend_pe(self, x: torch.Tensor) -> None:
+        """Extend the time t in the positional encoding if required.
+        The shape of `self.pe` is (1, T1, d_model). The shape of the input x
+        is (N, T, d_model). If T > T1, then we change the shape of self.pe
+        to (N, T, d_model). Otherwise, nothing is done.
+
+        Args:
+          x:
+            It is a tensor of shape (N, T, C).
+            T is the target sequence length,
+            N is the batch size,
+            C is the feature number.
+        """
+        if self.pe is not None:
+            if self.pe.size(1) >= x.size(1):
+                self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+                return
+        pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
+        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
+        div_term = torch.exp(
+            torch.arange(0, self.d_model, 2, dtype=torch.float32)
+            * -(math.log(10000.0) / self.d_model)
+        )
+        pe[:, 0::2] = torch.sin(position * div_term)
+        pe[:, 1::2] = torch.cos(position * div_term)
+        pe = pe.unsqueeze(0)
+        # Now pe is of shape (1, T, d_model), where T is x.size(1)
+        self.pe = pe.to(device=x.device, dtype=x.dtype)
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        """
+        Add positional encoding.
+
+        Args:
+          x: Input of shape is (N, T, C)
+
+        Returns:
+          A tensor of the same shape (N, T, C),
+          T is the target sequence length,
+          N is the batch size,
+          C is the feature number.
+
+        """
+        self.extend_pe(x)
+        x = x + self.pe[:, : x.size(1), :]
+        return self.dropout(x)
+
+
+def encoder_padding_mask(
+    max_len: int, supervisions: Optional[Supervisions] = None
+) -> Optional[torch.Tensor]:
+    """Make mask tensor containing indexes of padded part.
+
+    TODO:
+      This function **assumes** that the model uses
+      a subsampling factor of 4. We should remove that
+      assumption later.
+
+    Args:
+      max_len:
+        Maximum length of input features.
+        CAUTION: It is the length after subsampling.
+      supervisions:
+        Supervision in lhotse format.
+        See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32  # noqa
+        (CAUTION: It contains length information, i.e., start and number of
+         frames, before subsampling)
+
+    Returns:
+      Mask tensor of dimension (batch_size, input_length),
+      True denotes the masked indices.
+    """
+    if supervisions is None:
+        return None
+
+    supervision_segments = torch.stack(
+        (
+            supervisions["sequence_idx"],
+            supervisions["start_frame"],
+            supervisions["num_frames"],
+        ),
+        1,
+    ).to(torch.int32)
+
+    lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
+    for idx in range(supervision_segments.size(0)):
+        # Note: TorchScript doesn't allow to unpack tensors as tuples
+        sequence_idx = supervision_segments[idx, 0].item()
+        start_frame = supervision_segments[idx, 1].item()
+        num_frames = supervision_segments[idx, 2].item()
+        lengths[sequence_idx] = start_frame + num_frames
+
+    lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
+    bs = int(len(lengths))
+    seq_range = torch.arange(0, max_len, dtype=torch.int64)
+    seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
+    # Note: TorchScript doesn't implement Tensor.new()
+    seq_length_expand = torch.tensor(
+        lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
+    ).unsqueeze(-1)
+    mask = seq_range_expand >= seq_length_expand
+
+    return mask
+
+
+def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
+    """Generate a length mask for input.
+
+    The masked position are filled with True,
+    Unmasked positions are filled with False.
+
+    Args:
+      ys_pad:
+        padded tensor of dimension (batch_size, input_length).
+      ignore_id:
+        the ignored number (the padding number) in ys_pad
+
+    Returns:
+        A bool tensor of the same shape as the input tensor.
+    """
+    ys_mask = ys_pad == ignore_id
+    return ys_mask
+
+
+def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
+    """Generate a square mask for the sequence. The masked positions are
+    filled with float('-inf'). Unmasked positions are filled with float(0.0).
+    The mask can be used for masked self-attention.
+
+    For instance, if sz is 3, it returns::
+
+        tensor([[0., -inf, -inf],
+                [0., 0., -inf],
+                [0., 0., 0]])
+
+    Args:
+      sz: mask size
+
+    Returns:
+      A square mask tensor of dimension (sz, sz)
+    """
+    mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
+    mask = (
+        mask.float()
+        .masked_fill(mask == 0, float("-inf"))
+        .masked_fill(mask == 1, float(0.0))
+    )
+    return mask
+
+
+def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
+    """Prepend sos_id to each utterance.
+
+    Args:
+      token_ids:
+        A list-of-list of token IDs. Each sublist contains
+        token IDs (e.g., word piece IDs) of an utterance.
+      sos_id:
+        The ID of the SOS token.
+
+    Return:
+      Return a new list-of-list, where each sublist starts
+      with SOS ID.
+    """
+    return [[sos_id] + utt for utt in token_ids]
+
+
+def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
+    """Append eos_id to each utterance.
+
+    Args:
+      token_ids:
+        A list-of-lists of token IDs. Each sublist contains
+        token IDs (e.g., word piece IDs) of an utterance.
+      eos_id:
+        The ID of the EOS token.
+
+    Return:
+      Return a new list-of-lists, where each sublist ends
+      with EOS ID.
+    """
+    return [utt + [eos_id] for utt in token_ids]
+
+
+def tolist(t: torch.Tensor) -> List[int]:
+    """Used by jit"""
+    return torch.jit.annotate(List[int], t.tolist())
diff --git a/egs/tedlium3/ASR/local/compute_fbank_tedlium.py b/egs/tedlium3/ASR/local/compute_fbank_tedlium.py
index 327962a79..733ebf235 100755
--- a/egs/tedlium3/ASR/local/compute_fbank_tedlium.py
+++ b/egs/tedlium3/ASR/local/compute_fbank_tedlium.py
@@ -83,9 +83,7 @@ def compute_fbank_tedlium():
             )
             if "train" in partition:
                 cut_set = (
-                    cut_set
-                    + cut_set.perturb_speed(0.9)
-                    + cut_set.perturb_speed(1.1)
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
                 )
             cur_num_jobs = num_jobs if ex is None else 80
             cur_num_jobs = min(cur_num_jobs, len(cut_set))
@@ -104,9 +102,7 @@ def compute_fbank_tedlium():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/tedlium3/ASR/local/convert_transcript_words_to_bpe_ids.py b/egs/tedlium3/ASR/local/convert_transcript_words_to_bpe_ids.py
index 49544ccb3..19ba8d24b 100644
--- a/egs/tedlium3/ASR/local/convert_transcript_words_to_bpe_ids.py
+++ b/egs/tedlium3/ASR/local/convert_transcript_words_to_bpe_ids.py
@@ -4,16 +4,18 @@
 """
 Convert a transcript based on words to a list of BPE ids.
 
-For example, if we use 2 as the encoding id of :
+For example, if we use 2 as the encoding id of 
+Note: it, inserts a space token before each 
 
 texts = ['this is a  day']
-spm_ids = [[38, 33, 6, 2, 316]]
+spm_ids = [[38, 33, 6, 15, 2, 316]]
 
 texts = [' this is a sunny day']
-spm_ids = [[2, 38, 33, 6, 118, 11, 11, 21, 316]]
+spm_ids = [[15, 2, 38, 33, 6, 118, 11, 11, 21, 316]]
 
 texts = ['']
-spm_ids = [[2]]
+spm_ids = [[15, 2]]
+
 """
 
 import argparse
@@ -25,9 +27,7 @@ import sentencepiece as spm
 
 def get_args():
     parser = argparse.ArgumentParser()
-    parser.add_argument(
-        "--texts", type=List[str], help="The input transcripts list."
-    )
+    parser.add_argument("--texts", type=List[str], help="The input transcripts list.")
     parser.add_argument(
         "--bpe-model",
         type=str,
@@ -40,29 +40,27 @@ def get_args():
 
 def convert_texts_into_ids(
     texts: List[str],
-    unk_id: int,
     sp: spm.SentencePieceProcessor,
 ) -> List[List[int]]:
     """
     Args:
       texts:
         A string list of transcripts, such as ['Today is Monday', 'It's sunny'].
-      unk_id:
-        A number id for the token ''.
+      sp:
+        A sentencepiece BPE model.
     Returns:
       Return an integer list of bpe ids.
     """
     y = []
     for text in texts:
-        y_ids = []
         if "" in text:
-            text_segments = text.split("")
-            id_segments = sp.encode(text_segments, out_type=int)
+            id_segments = sp.encode(text.split(""), out_type=int)
+
+            y_ids = []
             for i in range(len(id_segments)):
-                if i != len(id_segments) - 1:
-                    y_ids.extend(id_segments[i] + [unk_id])
-                else:
-                    y_ids.extend(id_segments[i])
+                y_ids += id_segments[i]
+                if i < len(id_segments) - 1:
+                    y_ids += [sp.piece_to_id("▁"), sp.unk_id()]
         else:
             y_ids = sp.encode(text, out_type=int)
         y.append(y_ids)
@@ -72,19 +70,13 @@ def convert_texts_into_ids(
 
 def main():
     args = get_args()
-    texts = args.texts
-    bpe_model = args.bpe_model
 
     sp = spm.SentencePieceProcessor()
-    sp.load(bpe_model)
-    unk_id = sp.piece_to_id("")
+    sp.load(args.bpe_model)
 
-    y = convert_texts_into_ids(
-        texts=texts,
-        unk_id=unk_id,
-        sp=sp,
-    )
-    logging.info(f"The input texts: {texts}")
+    y = convert_texts_into_ids(texts=args.texts, sp=sp)
+
+    logging.info(f"The input texts: {args.texts}")
     logging.info(f"The encoding ids: {y}")
 
 
diff --git a/egs/tedlium3/ASR/local/prepare_lexicon.py b/egs/tedlium3/ASR/local/prepare_lexicon.py
deleted file mode 100755
index 35dd332e8..000000000
--- a/egs/tedlium3/ASR/local/prepare_lexicon.py
+++ /dev/null
@@ -1,97 +0,0 @@
-#!/usr/bin/env python3
-# Copyright    2022  Xiaomi Corp.        (authors: Mingshuang Luo)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-"""
-This script takes as input supervisions json dir "data/manifests"
-consisting of supervisions_train.json and does the following:
-
-1. Generate lexicon_words.txt.
-
-"""
-import lhotse
-import argparse
-import logging
-from pathlib import Path
-
-
-def get_args():
-    parser = argparse.ArgumentParser()
-    parser.add_argument(
-        "--manifests-dir",
-        type=str,
-        help="""Input directory.
-        """,
-    )
-    parser.add_argument(
-        "--lang-dir",
-        type=str,
-        help="""Output directory.
-        """,
-    )
-
-    return parser.parse_args()
-
-
-def prepare_lexicon(manifests_dir: str, lang_dir: str):
-    """
-    Args:
-      manifests_dir:
-        The manifests directory, e.g., data/manifests.
-      lang_dir:
-        The language directory, e.g., data/lang_phone.
-
-    Return:
-      The lexicon_words.txt file.
-    """
-    words = set()
-
-    lexicon = Path(lang_dir) / "lexicon_words.txt"
-    sups = lhotse.load_manifest(
-        f"{manifests_dir}/tedlium_supervisions_train.jsonl.gz"
-    )
-    for s in sups:
-        # list the words units and filter the empty item
-        words_list = list(filter(None, s.text.split()))
-
-        for word in words_list:
-            if word not in words and word != "":
-                words.add(word)
-
-    with open(lexicon, "w") as f:
-        for word in sorted(words):
-            f.write(word + "  " + word)
-            f.write("\n")
-
-
-def main():
-    args = get_args()
-    manifests_dir = Path(args.manifests_dir)
-    lang_dir = Path(args.lang_dir)
-
-    logging.info("Generating lexicon_words.txt")
-    prepare_lexicon(manifests_dir, lang_dir)
-
-
-if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
-
-    logging.basicConfig(format=formatter, level=logging.INFO)
-
-    main()
diff --git a/egs/tedlium3/ASR/local/prepare_transcripts.py b/egs/tedlium3/ASR/local/prepare_transcripts.py
index 1039ac5bb..d4ccdd1e3 100755
--- a/egs/tedlium3/ASR/local/prepare_transcripts.py
+++ b/egs/tedlium3/ASR/local/prepare_transcripts.py
@@ -1,5 +1,6 @@
 #!/usr/bin/env python3
-# Copyright    2021  Xiaomi Corp.        (authors: Mingshuang Luo)
+# Copyright    2021  Xiaomi Corp.        (author: Mingshuang Luo)
+# Copyright    2022  Behavox LLC.        (author: Daniil Kulko)
 #
 # See ../../../../LICENSE for clarification regarding multiple authors
 #
@@ -17,75 +18,71 @@
 
 
 """
-This script takes as input supervisions json dir "data/manifests"
-consisting of supervisions_train.json and does the following:
-
-1. Generate train.text.
+This script takes input text file and removes all words
+that iclude any character out of English alphabet.
 
 """
-import lhotse
 import argparse
 import logging
+import re
 from pathlib import Path
 
 
 def get_args():
     parser = argparse.ArgumentParser()
     parser.add_argument(
-        "--manifests-dir",
+        "--input-text-path",
         type=str,
-        help="""Input directory.
-        """,
+        help="Input text file path.",
     )
     parser.add_argument(
-        "--lang-dir",
+        "--output-text-path",
         type=str,
-        help="""Output directory.
-        """,
+        help="Output text file path.",
     )
 
     return parser.parse_args()
 
 
-def prepare_transcripts(manifests_dir: str, lang_dir: str):
+def prepare_transcripts(input_text_path: Path, output_text_path: Path) -> None:
     """
     Args:
-      manifests_dir:
-        The manifests directory, e.g., data/manifests.
-      lang_dir:
-        The language directory, e.g., data/lang_phone.
+      input_text_path:
+        The input data text file path, e.g., data/lang/train_orig.txt.
+      output_text_path:
+        The output data text file path, e.g., data/lang/train.txt.
 
     Return:
-      The train.text in lang_dir.
+      Saved text file in output_text_path.
     """
-    texts = []
 
-    train_text = Path(lang_dir) / "train.text"
-    sups = lhotse.load_manifest(
-        f"{manifests_dir}/tedlium_supervisions_train.jsonl.gz"
-    )
-    for s in sups:
-        texts.append(s.text)
+    foreign_chr_check = re.compile(r"[^a-z']")
 
-    with open(train_text, "w") as f:
-        for text in texts:
-            f.write(text)
-            f.write("\n")
+    logging.info(f"Loading {input_text_path.name}")
+    with open(input_text_path, "r", encoding="utf8") as f:
+        texts = {t.rstrip("\n") for t in f}
+
+    texts = {
+        " ".join([w for w in t.split() if foreign_chr_check.search(w) is None])
+        for t in texts
+    }
+
+    with open(output_text_path, "w+", encoding="utf8") as f:
+        for t in texts:
+            f.write(f"{t}\n")
 
 
-def main():
+def main() -> None:
     args = get_args()
-    manifests_dir = Path(args.manifests_dir)
-    lang_dir = Path(args.lang_dir)
+    input_text_path = Path(args.input_text_path)
+    output_text_path = Path(args.output_text_path)
 
-    logging.info("Generating train.text")
-    prepare_transcripts(manifests_dir, lang_dir)
+    logging.info(f"Generating {output_text_path.name}")
+    prepare_transcripts(input_text_path, output_text_path)
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/tedlium3/ASR/local/prepare_words.py b/egs/tedlium3/ASR/local/prepare_words.py
new file mode 100755
index 000000000..a37d0f08f
--- /dev/null
+++ b/egs/tedlium3/ASR/local/prepare_words.py
@@ -0,0 +1,83 @@
+#!/usr/bin/env python3
+# Copyright    2022  Behavox LLC.        (authors: Daniil Kulko)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+This script takes as input supervisions json dir "data/manifests"
+consisting of tedlium_supervisions_train.json and does the following:
+
+1. Generate words.txt.
+
+"""
+import argparse
+import logging
+import re
+from pathlib import Path
+
+
+def get_args():
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "--lang-dir",
+        type=str,
+        help="Output directory.",
+    )
+
+    return parser.parse_args()
+
+
+def prepare_words(lang_dir: str) -> None:
+    """
+    Args:
+      lang_dir:
+        The language directory, e.g., data/lang.
+
+    Return:
+      The words.txt file.
+    """
+
+    words_orig_path = Path(lang_dir) / "words_orig.txt"
+    words_path = Path(lang_dir) / "words.txt"
+
+    foreign_chr_check = re.compile(r"[^a-z']")
+
+    logging.info(f"Loading {words_orig_path.name}")
+    with open(words_orig_path, "r", encoding="utf8") as f:
+        words = {w for w_compl in f for w in w_compl.strip("-\n").split("_")}
+    words = {w for w in words if foreign_chr_check.search(w) is None and w != ""}
+    words.add("")
+    words = ["", "!SIL"] + sorted(words) + ["#0", "", ""]
+
+    with open(words_path, "w+", encoding="utf8") as f:
+        for idx, word in enumerate(words):
+            f.write(f"{word} {idx}\n")
+
+
+def main() -> None:
+    args = get_args()
+    lang_dir = Path(args.lang_dir)
+
+    logging.info("Generating words.txt")
+    prepare_words(lang_dir)
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+
+    main()
diff --git a/egs/tedlium3/ASR/prepare.sh b/egs/tedlium3/ASR/prepare.sh
index ccb307a52..3d90436ff 100755
--- a/egs/tedlium3/ASR/prepare.sh
+++ b/egs/tedlium3/ASR/prepare.sh
@@ -1,8 +1,10 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
-nj=15
 stage=0
 stop_stage=100
 
@@ -60,6 +62,13 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
     mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3
   fi
 
+  # Download big and small 4 gram lanuage models
+  if [ ! -d $dl_dir/lm ]; then
+    wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm
+    wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm
+    gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz
+  fi
+
   # If you have pre-downloaded it to /path/to/musan,
   # you can create a symlink
   #
@@ -97,7 +106,14 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
 
   if [ ! -e data/fbank/.tedlium3.done ]; then
     mkdir -p data/fbank
+
     python3 ./local/compute_fbank_tedlium.py
+
+    gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \
+    gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz
+    mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \
+       data/fbank/tedlium_cuts_train.jsonl.gz
+
     touch data/fbank/.tedlium3.done
   fi
 fi
@@ -112,28 +128,24 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
 fi
 
 if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
-  log "Stage 5: Prepare phone based lang"
-  lang_dir=data/lang_phone
+  log "Stage 5: Prepare BPE train data and set of words"
+  lang_dir=data/lang
   mkdir -p $lang_dir
 
-  if [ ! -f $lang_dir/train.text ]; then
+  if [ ! -f $lang_dir/train.txt ]; then
+    gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt
+
     ./local/prepare_transcripts.py \
-      --lang-dir $lang_dir \
-      --manifests-dir data/manifests
+      --input-text-path $lang_dir/train_orig.txt \
+      --output-text-path $lang_dir/train.txt
   fi
 
-  if [ ! -f $lang_dir/lexicon_words.txt ]; then
-    ./local/prepare_lexicon.py \
-      --lang-dir $lang_dir \
-      --manifests-dir data/manifests
-  fi
+  if [ ! -f $lang_dir/words.txt ]; then
 
-  (echo '!SIL SIL'; echo ' '; ) |
-    cat - $lang_dir/lexicon_words.txt |
-    sort | uniq > $lang_dir/lexicon.txt
+    awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic |
+    sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt
 
-  if [ ! -f $lang_dir/L_disambig.pt ]; then
-    ./local/prepare_lang.py --lang-dir $lang_dir
+    ./local/prepare_words.py --lang-dir $lang_dir
   fi
 fi
 
@@ -145,25 +157,56 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
     mkdir -p $lang_dir
     # We reuse words.txt from phone based lexicon
     # so that the two can share G.pt later.
-    cp data/lang_phone/words.txt $lang_dir
-
-    if [ ! -f $lang_dir/transcript_words.txt ]; then
-      log "Generate data for BPE training"
-      cat data/lang_phone/train.text |
-      cut -d " " -f 2- > $lang_dir/transcript_words.txt
-      # remove the  for transcript_words.txt
-      sed -i 's/ //g' $lang_dir/transcript_words.txt
-      sed -i 's/ //g' $lang_dir/transcript_words.txt
-      sed -i 's///g' $lang_dir/transcript_words.txt
-    fi
+    cp data/lang/words.txt $lang_dir
 
     ./local/train_bpe_model.py \
       --lang-dir $lang_dir \
       --vocab-size $vocab_size \
-      --transcript $lang_dir/transcript_words.txt
+      --transcript data/lang/train.txt
 
     if [ ! -f $lang_dir/L_disambig.pt ]; then
-      ./local/prepare_lang_bpe.py --lang-dir $lang_dir
+      ./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov ""
+    fi
+  done
+fi
+
+if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
+  log "Stage 7: Prepare G"
+  # We assume you have install kaldilm, if not, please install
+  # it using: pip install kaldilm
+
+  mkdir -p data/lm
+  if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then
+    # It is used in building HLG
+    python3 -m kaldilm \
+      --read-symbol-table="data/lang/words.txt" \
+      --disambig-symbol='#0' \
+      --max-order=4 \
+      --max-arpa-warnings=-1 \
+      $dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt
+  fi
+
+  if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then
+    # It is used for LM rescoring
+    python3 -m kaldilm \
+      --read-symbol-table="data/lang/words.txt" \
+      --disambig-symbol='#0' \
+      --max-order=4 \
+      --max-arpa-warnings=-1 \
+      $dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt
+  fi
+fi
+
+if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
+  log "Stage 8: Compile HLG"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+
+    if [ ! -f $lang_dir/HLG.pt ]; then
+      ./local/compile_hlg.py \
+        --lang-dir $lang_dir \
+        --lm G_4_gram_small
     fi
   done
 fi
diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless/decode.py b/egs/tedlium3/ASR/pruned_transducer_stateless/decode.py
index 2b294e601..38f2ae83c 100755
--- a/egs/tedlium3/ASR/pruned_transducer_stateless/decode.py
+++ b/egs/tedlium3/ASR/pruned_transducer_stateless/decode.py
@@ -172,8 +172,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -231,9 +230,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
 
     if params.decoding_method == "fast_beam_search":
@@ -248,10 +245,7 @@ def decode_one_batch(
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -374,9 +368,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -409,8 +401,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless/export.py b/egs/tedlium3/ASR/pruned_transducer_stateless/export.py
index a1c3bcea3..aa22f82ec 100644
--- a/egs/tedlium3/ASR/pruned_transducer_stateless/export.py
+++ b/egs/tedlium3/ASR/pruned_transducer_stateless/export.py
@@ -106,8 +106,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -179,9 +178,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless/pretrained.py b/egs/tedlium3/ASR/pruned_transducer_stateless/pretrained.py
index 8480ac029..8a89c3578 100644
--- a/egs/tedlium3/ASR/pruned_transducer_stateless/pretrained.py
+++ b/egs/tedlium3/ASR/pruned_transducer_stateless/pretrained.py
@@ -165,8 +165,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -203,10 +202,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -271,9 +269,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -298,10 +294,7 @@ def main():
         )
         for hyp in sp.decode(hyp_tokens):
             hyps.append(hyp.split())
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -353,9 +346,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless/train.py b/egs/tedlium3/ASR/pruned_transducer_stateless/train.py
index 8d5cdf683..170f37767 100755
--- a/egs/tedlium3/ASR/pruned_transducer_stateless/train.py
+++ b/egs/tedlium3/ASR/pruned_transducer_stateless/train.py
@@ -133,8 +133,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -157,8 +156,7 @@ def get_parser():
         "--am-scale",
         type=float,
         default=0.0,
-        help="The scale to smooth the loss with am (output of encoder network)"
-        "part.",
+        help="The scale to smooth the loss with am (output of encoder network) part.",
     )
 
     parser.add_argument(
@@ -556,9 +554,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -678,9 +674,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/tedlium3/ASR/transducer_stateless/asr_datamodule.py b/egs/tedlium3/ASR/transducer_stateless/asr_datamodule.py
index 51de46ae8..c647392f0 100644
--- a/egs/tedlium3/ASR/transducer_stateless/asr_datamodule.py
+++ b/egs/tedlium3/ASR/transducer_stateless/asr_datamodule.py
@@ -17,10 +17,10 @@
 
 
 import argparse
-import inspect
 import logging
 from functools import lru_cache
 from pathlib import Path
+from typing import Any, Dict, Optional
 
 from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
 from lhotse.dataset import (
@@ -28,7 +28,6 @@ from lhotse.dataset import (
     CutMix,
     DynamicBucketingSampler,
     K2SpeechRecognitionDataset,
-    PrecomputedFeatures,
     SingleCutSampler,
     SpecAugment,
 )
@@ -140,7 +139,6 @@ class TedLiumAsrDataModule:
             "field: batch['supervisions']['cut'] with the cuts that "
             "were used to construct it.",
         )
-
         group.add_argument(
             "--num-workers",
             type=int,
@@ -148,14 +146,12 @@ class TedLiumAsrDataModule:
             help="The number of training dataloader workers that "
             "collect the batches.",
         )
-
         group.add_argument(
             "--enable-spec-aug",
             type=str2bool,
             default=True,
             help="When enabled, use SpecAugment for training dataset.",
         )
-
         group.add_argument(
             "--spec-aug-time-warp-factor",
             type=int,
@@ -165,27 +161,51 @@ class TedLiumAsrDataModule:
             "Larger values mean more warping. "
             "A value less than 1 means to disable time warp.",
         )
-
         group.add_argument(
             "--enable-musan",
             type=str2bool,
             default=True,
             help="When enabled, select noise from MUSAN and mix it"
-            "with training dataset. ",
+            "with training dataset.",
         )
 
-    def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
+    def train_dataloaders(
+        self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
+    ) -> DataLoader:
+        """
+        Args:
+          cuts_train:
+            CutSet for training.
+          sampler_state_dict:
+            The state dict for the training sampler.
+        """
+
+        input_transforms = []
+        if self.args.enable_spec_aug:
+            logging.info("Enable SpecAugment")
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
+
+            input_transforms.append(
+                SpecAugment(
+                    time_warp_factor=self.args.spec_aug_time_warp_factor,
+                    num_frame_masks=10,
+                    features_mask_size=27,
+                    num_feature_masks=2,
+                    frames_mask_size=100,
+                    max_frames_mask_fraction=0.15,
+                    p=0.9,
+                )
+            )
+        else:
+            logging.info("Disable SpecAugment")
+
         logging.info("About to get Musan cuts")
         transforms = []
         if self.args.enable_musan:
             logging.info("Enable MUSAN")
-            cuts_musan = load_manifest(
-                self.args.manifest_dir / "musan_cuts.jsonl.gz"
-            )
+            cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
             transforms.append(
-                CutMix(
-                    cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
-                )
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
             )
         else:
             logging.info("Disable MUSAN")
@@ -204,42 +224,7 @@ class TedLiumAsrDataModule:
                 )
             ] + transforms
 
-        input_transforms = []
-        if self.args.enable_spec_aug:
-            logging.info("Enable SpecAugment")
-            logging.info(
-                f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
-            )
-            # Set the value of num_frame_masks according to Lhotse's version.
-            # In different Lhotse's versions, the default of num_frame_masks is
-            # different.
-            num_frame_masks = 10
-            num_frame_masks_parameter = inspect.signature(
-                SpecAugment.__init__
-            ).parameters["num_frame_masks"]
-            if num_frame_masks_parameter.default == 1:
-                num_frame_masks = 2
-            logging.info(f"Num frame mask: {num_frame_masks}")
-            input_transforms.append(
-                SpecAugment(
-                    time_warp_factor=self.args.spec_aug_time_warp_factor,
-                    num_frame_masks=num_frame_masks,
-                    features_mask_size=27,
-                    num_feature_masks=2,
-                    frames_mask_size=100,
-                    max_frames_mask_fraction=0.15,
-                    p=0.9,
-                )
-            )
-        else:
-            logging.info("Disable SpecAugment")
-
         logging.info("About to create train dataset")
-        train = K2SpeechRecognitionDataset(
-            cut_transforms=transforms,
-            input_transforms=input_transforms,
-            return_cuts=self.args.return_cuts,
-        )
         if self.args.on_the_fly_feats:
             # NOTE: the PerturbSpeed transform should be added only if we
             # remove it from data prep stage.
@@ -253,9 +238,13 @@ class TedLiumAsrDataModule:
             # Drop feats to be on the safe side.
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                input_transforms=input_transforms,
+                return_cuts=self.args.return_cuts,
+            )
+        else:
+            train = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
                 input_transforms=input_transforms,
                 return_cuts=self.args.return_cuts,
             )
@@ -276,6 +265,11 @@ class TedLiumAsrDataModule:
                 max_duration=self.args.max_duration,
                 shuffle=self.args.shuffle,
             )
+
+        if sampler_state_dict is not None:
+            logging.info("Loading sampler state dict")
+            train_sampler.load_state_dict(sampler_state_dict)
+
         logging.info("About to create train dataloader")
         train_dl = DataLoader(
             train,
@@ -288,6 +282,7 @@ class TedLiumAsrDataModule:
         return train_dl
 
     def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
+
         transforms = []
         if self.args.concatenate_cuts:
             transforms = [
@@ -300,9 +295,7 @@ class TedLiumAsrDataModule:
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 return_cuts=self.args.return_cuts,
             )
         else:
@@ -310,11 +303,13 @@ class TedLiumAsrDataModule:
                 cut_transforms=transforms,
                 return_cuts=self.args.return_cuts,
             )
+
         valid_sampler = DynamicBucketingSampler(
             cuts_valid,
             max_duration=self.args.max_duration,
             shuffle=False,
         )
+
         logging.info("About to create dev dataloader")
         valid_dl = DataLoader(
             validate,
@@ -326,25 +321,32 @@ class TedLiumAsrDataModule:
 
         return valid_dl
 
-    def test_dataloaders(self, cuts: CutSet) -> DataLoader:
+    def test_dataloaders(self, cuts_test: CutSet) -> DataLoader:
+
         logging.debug("About to create test dataset")
-        test = K2SpeechRecognitionDataset(
-            input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
-            if self.args.on_the_fly_feats
-            else PrecomputedFeatures(),
-            return_cuts=self.args.return_cuts,
-        )
-        sampler = DynamicBucketingSampler(
-            cuts,
+        if self.args.on_the_fly_feats:
+            test = K2SpeechRecognitionDataset(
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                return_cuts=self.args.return_cuts,
+            )
+        else:
+            test = K2SpeechRecognitionDataset(
+                return_cuts=self.args.return_cuts,
+            )
+
+        test_sampler = DynamicBucketingSampler(
+            cuts_test,
             max_duration=self.args.max_duration,
             shuffle=False,
         )
+
         logging.debug("About to create test dataloader")
         test_dl = DataLoader(
             test,
             batch_size=None,
-            sampler=sampler,
+            sampler=test_sampler,
             num_workers=self.args.num_workers,
+            persistent_workers=False,
         )
         return test_dl
 
@@ -358,13 +360,9 @@ class TedLiumAsrDataModule:
     @lru_cache()
     def dev_cuts(self) -> CutSet:
         logging.info("About to get dev cuts")
-        return load_manifest_lazy(
-            self.args.manifest_dir / "tedlium_cuts_dev.jsonl.gz"
-        )
+        return load_manifest_lazy(self.args.manifest_dir / "tedlium_cuts_dev.jsonl.gz")
 
     @lru_cache()
     def test_cuts(self) -> CutSet:
         logging.info("About to get test cuts")
-        return load_manifest_lazy(
-            self.args.manifest_dir / "tedlium_cuts_test.jsonl.gz"
-        )
+        return load_manifest_lazy(self.args.manifest_dir / "tedlium_cuts_test.jsonl.gz")
diff --git a/egs/tedlium3/ASR/transducer_stateless/beam_search.py b/egs/tedlium3/ASR/transducer_stateless/beam_search.py
index 77caf6460..1f99edaf3 100644
--- a/egs/tedlium3/ASR/transducer_stateless/beam_search.py
+++ b/egs/tedlium3/ASR/transducer_stateless/beam_search.py
@@ -87,9 +87,9 @@ def greedy_search(
         y = logits.argmax().item()
         if y != blank_id and y != unk_id:
             hyp.append(y)
-            decoder_input = torch.tensor(
-                [hyp[-context_size:]], device=device
-            ).reshape(1, context_size)
+            decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
+                1, context_size
+            )
 
             decoder_out = model.decoder(decoder_input, need_pad=False)
 
@@ -148,9 +148,7 @@ class HypothesisList(object):
         key = hyp.key
         if key in self:
             old_hyp = self._data[key]  # shallow copy
-            torch.logaddexp(
-                old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
-            )
+            torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
         else:
             self._data[key] = hyp
 
@@ -166,9 +164,7 @@ class HypothesisList(object):
           Return the hypothesis that has the largest `log_prob`.
         """
         if length_norm:
-            return max(
-                self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
-            )
+            return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
         else:
             return max(self._data.values(), key=lambda hyp: hyp.log_prob)
 
@@ -344,9 +340,9 @@ def modified_beam_search(
 
     device = model.device
 
-    decoder_input = torch.tensor(
-        [blank_id] * context_size, device=device
-    ).reshape(1, context_size)
+    decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
+        1, context_size
+    )
 
     decoder_out = model.decoder(decoder_input, need_pad=False)
 
@@ -383,9 +379,7 @@ def modified_beam_search(
         decoder_out = model.decoder(decoder_input, need_pad=False)
         # decoder_output is of shape (num_hyps, 1, decoder_output_dim)
 
-        current_encoder_out = current_encoder_out.expand(
-            decoder_out.size(0), 1, -1
-        )
+        current_encoder_out = current_encoder_out.expand(decoder_out.size(0), 1, -1)
 
         logits = model.joiner(
             current_encoder_out,
@@ -454,9 +448,9 @@ def beam_search(
 
     device = model.device
 
-    decoder_input = torch.tensor(
-        [blank_id] * context_size, device=device
-    ).reshape(1, context_size)
+    decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
+        1, context_size
+    )
 
     decoder_out = model.decoder(decoder_input, need_pad=False)
 
diff --git a/egs/tedlium3/ASR/transducer_stateless/decode.py b/egs/tedlium3/ASR/transducer_stateless/decode.py
index d3e9e55e7..01f08ce59 100755
--- a/egs/tedlium3/ASR/transducer_stateless/decode.py
+++ b/egs/tedlium3/ASR/transducer_stateless/decode.py
@@ -130,8 +130,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -250,9 +249,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
     batch_size = encoder_out.size(0)
 
@@ -275,9 +272,7 @@ def decode_one_batch(
                 model=model, encoder_out=encoder_out_i, beam=params.beam_size
             )
         else:
-            raise ValueError(
-                f"Unsupported decoding method: {params.decoding_method}"
-            )
+            raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
         hyps.append(sp.decode(hyp).split())
 
     if params.decoding_method == "greedy_search":
@@ -348,9 +343,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -383,8 +376,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
diff --git a/egs/tedlium3/ASR/transducer_stateless/decoder.py b/egs/tedlium3/ASR/transducer_stateless/decoder.py
index f0c6f32b6..f9a3814c6 100644
--- a/egs/tedlium3/ASR/transducer_stateless/decoder.py
+++ b/egs/tedlium3/ASR/transducer_stateless/decoder.py
@@ -90,9 +90,7 @@ class Decoder(nn.Module):
         if self.context_size > 1:
             embedding_out = embedding_out.permute(0, 2, 1)
             if need_pad is True:
-                embedding_out = F.pad(
-                    embedding_out, pad=(self.context_size - 1, 0)
-                )
+                embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
             else:
                 # During inference time, there is no need to do extra padding
                 # as we only need one output
diff --git a/egs/tedlium3/ASR/transducer_stateless/export.py b/egs/tedlium3/ASR/transducer_stateless/export.py
index c32b1d002..48dcdc736 100644
--- a/egs/tedlium3/ASR/transducer_stateless/export.py
+++ b/egs/tedlium3/ASR/transducer_stateless/export.py
@@ -110,8 +110,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -247,9 +246,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tedlium3/ASR/transducer_stateless/pretrained.py b/egs/tedlium3/ASR/transducer_stateless/pretrained.py
index c0e3bb844..81afd6a4e 100644
--- a/egs/tedlium3/ASR/transducer_stateless/pretrained.py
+++ b/egs/tedlium3/ASR/transducer_stateless/pretrained.py
@@ -127,8 +127,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -222,10 +221,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -285,9 +283,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -335,9 +331,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/tedlium3/ASR/transducer_stateless/train.py b/egs/tedlium3/ASR/transducer_stateless/train.py
index 09cbf4a00..6fed32e81 100755
--- a/egs/tedlium3/ASR/transducer_stateless/train.py
+++ b/egs/tedlium3/ASR/transducer_stateless/train.py
@@ -133,8 +133,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -525,9 +524,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -647,9 +644,7 @@ def run(rank, world_size, args):
 
         cur_lr = optimizer._rate
         if tb_writer is not None:
-            tb_writer.add_scalar(
-                "train/learning_rate", cur_lr, params.batch_idx_train
-            )
+            tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
             tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
 
         if rank == 0:
diff --git a/egs/timit/ASR/README.md b/egs/timit/ASR/README.md
index f10bfccfd..d493fc479 100644
--- a/egs/timit/ASR/README.md
+++ b/egs/timit/ASR/README.md
@@ -1,3 +1,3 @@
 
-Please refer to 
+Please refer to 
 for how to run models in this recipe.
diff --git a/egs/timit/ASR/RESULTS.md b/egs/timit/ASR/RESULTS.md
index b78c16b88..d8ceb82b6 100644
--- a/egs/timit/ASR/RESULTS.md
+++ b/egs/timit/ASR/RESULTS.md
@@ -71,4 +71,4 @@ python tdnn_ligru_ctc/decode.py --epoch 25 \
                                --avg 17 \
                                --max-duration 20 \
                                --lang-dir data/lang_phone
-```
\ No newline at end of file
+```
diff --git a/egs/timit/ASR/local/compile_hlg.py b/egs/timit/ASR/local/compile_hlg.py
index 58cab4cf2..32c248d7e 100644
--- a/egs/timit/ASR/local/compile_hlg.py
+++ b/egs/timit/ASR/local/compile_hlg.py
@@ -146,9 +146,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/timit/ASR/local/compute_fbank_timit.py b/egs/timit/ASR/local/compute_fbank_timit.py
index f25786a0c..ecdf10ba9 100644
--- a/egs/timit/ASR/local/compute_fbank_timit.py
+++ b/egs/timit/ASR/local/compute_fbank_timit.py
@@ -85,9 +85,7 @@ def compute_fbank_timit():
             )
             if partition == "TRAIN":
                 cut_set = (
-                    cut_set
-                    + cut_set.perturb_speed(0.9)
-                    + cut_set.perturb_speed(1.1)
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
                 )
             cut_set = cut_set.compute_and_store_features(
                 extractor=extractor,
@@ -101,9 +99,7 @@ def compute_fbank_timit():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/timit/ASR/local/prepare_lexicon.py b/egs/timit/ASR/local/prepare_lexicon.py
index 04023a9ab..0cf0f0deb 100644
--- a/egs/timit/ASR/local/prepare_lexicon.py
+++ b/egs/timit/ASR/local/prepare_lexicon.py
@@ -62,9 +62,7 @@ def prepare_lexicon(manifests_dir: str, lang_dir: str):
 
     phones = set()
 
-    supervisions_train = (
-        Path(manifests_dir) / "timit_supervisions_TRAIN.jsonl.gz"
-    )
+    supervisions_train = Path(manifests_dir) / "timit_supervisions_TRAIN.jsonl.gz"
     lexicon = Path(lang_dir) / "lexicon.txt"
 
     logging.info(f"Loading {supervisions_train}!")
@@ -97,9 +95,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/timit/ASR/prepare.sh b/egs/timit/ASR/prepare.sh
index ae1b96a68..148a9f51b 100644
--- a/egs/timit/ASR/prepare.sh
+++ b/egs/timit/ASR/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 num_phones=39
@@ -20,9 +23,9 @@ stop_stage=100
 #  - $dl_dir/lm
 #      This directory contains the language model(LM) downloaded from
 #      https://huggingface.co/luomingshuang/timit_lm, and the LM is based
-#	     on 39 phones. About how to get these LM files, you can know it 
+#	     on 39 phones. About how to get these LM files, you can know it
 #      from https://github.com/luomingshuang/Train_LM_with_kaldilm.
-#	
+#
 #	    - lm_3_gram.arpa
 #     - lm_4_gram.arpa
 #
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/decode.py b/egs/timit/ASR/tdnn_ligru_ctc/decode.py
index 4f2aa2340..4beeed18c 100644
--- a/egs/timit/ASR/tdnn_ligru_ctc/decode.py
+++ b/egs/timit/ASR/tdnn_ligru_ctc/decode.py
@@ -336,9 +336,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -400,9 +398,7 @@ def main():
 
     logging.info(f"device: {device}")
 
-    HLG = k2.Fsa.from_dict(
-        torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
-    )
+    HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu"))
     HLG = HLG.to(device)
     assert HLG.requires_grad is False
 
@@ -462,9 +458,7 @@ def main():
 
     if params.export:
         logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
-        torch.save(
-            {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
-        )
+        torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
         return
 
     model.to(device)
@@ -485,9 +479,7 @@ def main():
         G=G,
     )
 
-    save_results(
-        params=params, test_set_name=test_set, results_dict=results_dict
-    )
+    save_results(params=params, test_set_name=test_set, results_dict=results_dict)
 
     logging.info("Done!")
 
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/model.py b/egs/timit/ASR/tdnn_ligru_ctc/model.py
index 4d2199ace..9a594a969 100644
--- a/egs/timit/ASR/tdnn_ligru_ctc/model.py
+++ b/egs/timit/ASR/tdnn_ligru_ctc/model.py
@@ -16,11 +16,11 @@
 # limitations under the License.
 
 
+from typing import Optional
+
 import torch
 import torch.nn as nn
-
 from torch import Tensor
-from typing import Optional
 
 
 class TdnnLiGRU(nn.Module):
@@ -261,9 +261,7 @@ class LiGRU(torch.nn.Module):
         h = []
         if hx is not None:
             if self.bidirectional:
-                hx = hx.reshape(
-                    self.num_layers, self.batch_size * 2, self.hidden_size
-                )
+                hx = hx.reshape(self.num_layers, self.batch_size * 2, self.hidden_size)
         # Processing the different layers
         for i, ligru_lay in enumerate(self.rnn):
             if hx is not None:
@@ -445,9 +443,7 @@ class LiGRU_Layer(torch.nn.Module):
             if self.drop_mask_cnt + self.batch_size > self.N_drop_masks:
                 self.drop_mask_cnt = 0
                 self.drop_masks = self.drop(
-                    torch.ones(
-                        self.N_drop_masks, self.hidden_size, device=w.device
-                    )
+                    torch.ones(self.N_drop_masks, self.hidden_size, device=w.device)
                 ).data
 
             # Sampling the mask
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/pretrained.py b/egs/timit/ASR/tdnn_ligru_ctc/pretrained.py
index 7da285944..3fdf3b855 100644
--- a/egs/timit/ASR/tdnn_ligru_ctc/pretrained.py
+++ b/egs/timit/ASR/tdnn_ligru_ctc/pretrained.py
@@ -29,11 +29,7 @@ import torchaudio
 from model import TdnnLiGRU
 from torch.nn.utils.rnn import pad_sequence
 
-from icefall.decode import (
-    get_lattice,
-    one_best_decoding,
-    rescore_with_whole_lattice,
-)
+from icefall.decode import get_lattice, one_best_decoding, rescore_with_whole_lattice
 from icefall.utils import AttributeDict, get_texts
 
 
@@ -58,9 +54,7 @@ def get_parser():
         help="Path to words.txt",
     )
 
-    parser.add_argument(
-        "--HLG", type=str, required=True, help="Path to HLG.pt."
-    )
+    parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
 
     parser.add_argument(
         "--method",
@@ -144,10 +138,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -215,9 +208,7 @@ def main():
     logging.info("Decoding started")
     features = fbank(waves)
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
     features = features.permute(0, 2, 1)  # now features is (N, C, T)
 
     with torch.no_grad():
@@ -269,9 +260,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/train.py b/egs/timit/ASR/tdnn_ligru_ctc/train.py
index 452c2a7cb..48b7feda0 100644
--- a/egs/timit/ASR/tdnn_ligru_ctc/train.py
+++ b/egs/timit/ASR/tdnn_ligru_ctc/train.py
@@ -449,9 +449,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             valid_info = compute_validation_loss(
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
index 1554e987f..51ca4cc6e 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
@@ -154,9 +154,7 @@ class TimitAsrDataModule(DataModule):
         cuts_train = self.train_cuts()
 
         logging.info("About to get Musan cuts")
-        cuts_musan = load_manifest(
-            self.args.feature_dir / "musan_cuts.jsonl.gz"
-        )
+        cuts_musan = load_manifest(self.args.feature_dir / "musan_cuts.jsonl.gz")
 
         logging.info("About to create train dataset")
         transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
@@ -178,9 +176,9 @@ class TimitAsrDataModule(DataModule):
         # In different Lhotse's versions, the default of num_frame_masks is
         # different.
         num_frame_masks = 10
-        num_frame_masks_parameter = inspect.signature(
-            SpecAugment.__init__
-        ).parameters["num_frame_masks"]
+        num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[
+            "num_frame_masks"
+        ]
         if num_frame_masks_parameter.default == 1:
             num_frame_masks = 2
         logging.info(f"Num frame mask: {num_frame_masks}")
@@ -212,9 +210,7 @@ class TimitAsrDataModule(DataModule):
             # Drop feats to be on the safe side.
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 input_transforms=input_transforms,
                 return_cuts=self.args.return_cuts,
             )
@@ -263,9 +259,7 @@ class TimitAsrDataModule(DataModule):
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 return_cuts=self.args.return_cuts,
             )
         else:
@@ -299,20 +293,14 @@ class TimitAsrDataModule(DataModule):
         for cuts_test in cuts:
             logging.debug("About to create test dataset")
             test = K2SpeechRecognitionDataset(
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                )
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
                 if self.args.on_the_fly_feats
                 else PrecomputedFeatures(),
                 return_cuts=self.args.return_cuts,
             )
-            sampler = SingleCutSampler(
-                cuts_test, max_duration=self.args.max_duration
-            )
+            sampler = SingleCutSampler(cuts_test, max_duration=self.args.max_duration)
             logging.debug("About to create test dataloader")
-            test_dl = DataLoader(
-                test, batch_size=None, sampler=sampler, num_workers=1
-            )
+            test_dl = DataLoader(test, batch_size=None, sampler=sampler, num_workers=1)
             test_loaders.append(test_dl)
 
         if is_list:
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/decode.py b/egs/timit/ASR/tdnn_lstm_ctc/decode.py
index 5e7300cf2..502a48def 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/decode.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/decode.py
@@ -335,9 +335,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -399,9 +397,7 @@ def main():
 
     logging.info(f"device: {device}")
 
-    HLG = k2.Fsa.from_dict(
-        torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
-    )
+    HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu"))
     HLG = HLG.to(device)
     assert HLG.requires_grad is False
 
@@ -461,9 +457,7 @@ def main():
 
     if params.export:
         logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
-        torch.save(
-            {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
-        )
+        torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
         return
 
     model.to(device)
@@ -483,9 +477,7 @@ def main():
         G=G,
     )
 
-    save_results(
-        params=params, test_set_name=test_set, results_dict=results_dict
-    )
+    save_results(params=params, test_set_name=test_set, results_dict=results_dict)
 
     logging.info("Done!")
 
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/model.py b/egs/timit/ASR/tdnn_lstm_ctc/model.py
index 51edb97e2..e211ad80d 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/model.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/model.py
@@ -74,10 +74,7 @@ class TdnnLstm(nn.Module):
             nn.BatchNorm1d(num_features=512, affine=False),
         )
         self.lstms = nn.ModuleList(
-            [
-                nn.LSTM(input_size=512, hidden_size=512, num_layers=1)
-                for _ in range(4)
-            ]
+            [nn.LSTM(input_size=512, hidden_size=512, num_layers=1) for _ in range(4)]
         )
         self.lstm_bnorms = nn.ModuleList(
             [nn.BatchNorm1d(num_features=512, affine=False) for _ in range(5)]
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/pretrained.py b/egs/timit/ASR/tdnn_lstm_ctc/pretrained.py
index 5f478da1c..98c746ce5 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/pretrained.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/pretrained.py
@@ -29,11 +29,7 @@ import torchaudio
 from model import TdnnLstm
 from torch.nn.utils.rnn import pad_sequence
 
-from icefall.decode import (
-    get_lattice,
-    one_best_decoding,
-    rescore_with_whole_lattice,
-)
+from icefall.decode import get_lattice, one_best_decoding, rescore_with_whole_lattice
 from icefall.utils import AttributeDict, get_texts
 
 
@@ -58,9 +54,7 @@ def get_parser():
         help="Path to words.txt",
     )
 
-    parser.add_argument(
-        "--HLG", type=str, required=True, help="Path to HLG.pt."
-    )
+    parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
 
     parser.add_argument(
         "--method",
@@ -144,10 +138,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -215,9 +208,7 @@ def main():
     logging.info("Decoding started")
     features = fbank(waves)
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
     features = features.permute(0, 2, 1)  # now features is (N, C, T)
 
     with torch.no_grad():
@@ -269,9 +260,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/train.py b/egs/timit/ASR/tdnn_lstm_ctc/train.py
index 849256b98..be1ecffaa 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/train.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/train.py
@@ -449,9 +449,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             valid_info = compute_validation_loss(
diff --git a/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py b/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
index 8a9f6ed30..bd73e520e 100755
--- a/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
+++ b/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
@@ -20,12 +20,7 @@ import logging
 from pathlib import Path
 
 import torch
-from lhotse import (
-    CutSet,
-    KaldifeatFbank,
-    KaldifeatFbankConfig,
-    LilcomHdf5Writer,
-)
+from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomHdf5Writer
 
 # Torch's multithreaded behavior needs to be disabled or
 # it wastes a lot of CPU and slow things down.
@@ -83,9 +78,7 @@ def compute_fbank_wenetspeech_dev_test():
 
 
 def main():
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
     logging.basicConfig(format=formatter, level=logging.INFO)
 
     compute_fbank_wenetspeech_dev_test()
diff --git a/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py b/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
index a882b6113..1b257fb70 100755
--- a/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
+++ b/egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
@@ -152,9 +152,7 @@ def main():
     date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
 
     log_filename = "log-compute_fbank_wenetspeech_splits"
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
     log_filename = f"{log_filename}-{date_time}"
 
     logging.basicConfig(
diff --git a/egs/wenetspeech/ASR/local/display_manifest_statistics.py b/egs/wenetspeech/ASR/local/display_manifest_statistics.py
index c41445b8d..36e4ac5c3 100644
--- a/egs/wenetspeech/ASR/local/display_manifest_statistics.py
+++ b/egs/wenetspeech/ASR/local/display_manifest_statistics.py
@@ -33,6 +33,7 @@ def main():
     paths = [
         "./data/fbank/cuts_S.jsonl.gz",
         "./data/fbank/cuts_M.jsonl.gz",
+        "./data/fbank/cuts_L.jsonl.gz",
         "./data/fbank/cuts_DEV.jsonl.gz",
         "./data/fbank/cuts_TEST_NET.jsonl.gz",
         "./data/fbank/cuts_TEST_MEETING.jsonl.gz",
@@ -48,6 +49,24 @@ if __name__ == "__main__":
     main()
 
 """
+Starting display the statistics for ./data/fbank/cuts_L.jsonl.gz
+
+Cuts count: 43874235
+Total duration (hours): 30217.3
+Speech duration (hours): 30217.3 (100.0%)
+***
+Duration statistics (seconds):
+mean    2.5
+std     1.7
+min     0.2
+25%     1.4
+50%     2.0
+75%     3.0
+99%     8.4
+99.5%   9.1
+99.9%   15.4
+max     405.1
+
 Starting display the statistics for ./data/fbank/cuts_S.jsonl.gz
 Duration statistics (seconds):
 mean    2.4
diff --git a/egs/wenetspeech/ASR/local/prepare_char.py b/egs/wenetspeech/ASR/local/prepare_char.py
index 8bc073c75..d8622842f 100755
--- a/egs/wenetspeech/ASR/local/prepare_char.py
+++ b/egs/wenetspeech/ASR/local/prepare_char.py
@@ -83,9 +83,7 @@ def lexicon_to_fst_no_sil(
         cur_state = loop_state
 
         word = word2id[word]
-        pieces = [
-            token2id[i] if i in token2id else token2id[""] for i in pieces
-        ]
+        pieces = [token2id[i] if i in token2id else token2id[""] for i in pieces]
 
         for i in range(len(pieces) - 1):
             w = word if i == 0 else eps
@@ -138,9 +136,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
     return False
 
 
-def generate_lexicon(
-    token_sym_table: Dict[str, int], words: List[str]
-) -> Lexicon:
+def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
     """Generate a lexicon from a word list and token_sym_table.
     Args:
       token_sym_table:
diff --git a/egs/wenetspeech/ASR/local/preprocess_wenetspeech.py b/egs/wenetspeech/ASR/local/preprocess_wenetspeech.py
index 817969c47..93ce750f8 100755
--- a/egs/wenetspeech/ASR/local/preprocess_wenetspeech.py
+++ b/egs/wenetspeech/ASR/local/preprocess_wenetspeech.py
@@ -115,11 +115,7 @@ def preprocess_wenet_speech():
                 f"Speed perturb for {partition} with factors 0.9 and 1.1 "
                 "(Perturbing may take 8 minutes and saving may take 20 minutes)"
             )
-            cut_set = (
-                cut_set
-                + cut_set.perturb_speed(0.9)
-                + cut_set.perturb_speed(1.1)
-            )
+            cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
         logging.info(f"Saving to {raw_cuts_path}")
         cut_set.to_file(raw_cuts_path)
 
diff --git a/egs/wenetspeech/ASR/local/text2token.py b/egs/wenetspeech/ASR/local/text2token.py
index 1c463cf1c..d1d237a68 100755
--- a/egs/wenetspeech/ASR/local/text2token.py
+++ b/egs/wenetspeech/ASR/local/text2token.py
@@ -56,9 +56,7 @@ def get_parser():
     parser.add_argument(
         "--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
     )
-    parser.add_argument(
-        "--space", default="", type=str, help="space symbol"
-    )
+    parser.add_argument("--space", default="", type=str, help="space symbol")
     parser.add_argument(
         "--non-lang-syms",
         "-l",
@@ -66,9 +64,7 @@ def get_parser():
         type=str,
         help="list of non-linguistic symobles, e.g.,  etc.",
     )
-    parser.add_argument(
-        "text", type=str, default=False, nargs="?", help="input text"
-    )
+    parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
     parser.add_argument(
         "--trans_type",
         "-t",
@@ -108,8 +104,7 @@ def token2id(
             if token_type == "lazy_pinyin":
                 text = lazy_pinyin(chars_list)
                 sub_ids = [
-                    token_table[txt] if txt in token_table else oov_id
-                    for txt in text
+                    token_table[txt] if txt in token_table else oov_id for txt in text
                 ]
                 ids.append(sub_ids)
             else:  # token_type = "pinyin"
@@ -135,9 +130,7 @@ def main():
     if args.text:
         f = codecs.open(args.text, encoding="utf-8")
     else:
-        f = codecs.getreader("utf-8")(
-            sys.stdin if is_python2 else sys.stdin.buffer
-        )
+        f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
 
     sys.stdout = codecs.getwriter("utf-8")(
         sys.stdout if is_python2 else sys.stdout.buffer
diff --git a/egs/wenetspeech/ASR/prepare.sh b/egs/wenetspeech/ASR/prepare.sh
index 755fbb2d7..50a00253d 100755
--- a/egs/wenetspeech/ASR/prepare.sh
+++ b/egs/wenetspeech/ASR/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 nj=15
@@ -190,7 +193,7 @@ if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
   mkdir -p $lang_char_dir
 
   if ! which jq; then
-      echo "This script is intended to be used with jq but you have not installed jq 
+      echo "This script is intended to be used with jq but you have not installed jq
       Note: in Linux, you can install jq with the following command:
       1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
       2. chmod +x ./jq
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
index 10c953e3b..9c07263a2 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/asr_datamodule.py
@@ -212,17 +212,13 @@ class WenetSpeechAsrDataModule:
             The state dict for the training sampler.
         """
         logging.info("About to get Musan cuts")
-        cuts_musan = load_manifest(
-            self.args.manifest_dir / "musan_cuts.jsonl.gz"
-        )
+        cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
 
         transforms = []
         if self.args.enable_musan:
             logging.info("Enable MUSAN")
             transforms.append(
-                CutMix(
-                    cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
-                )
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
             )
         else:
             logging.info("Disable MUSAN")
@@ -244,9 +240,7 @@ class WenetSpeechAsrDataModule:
         input_transforms = []
         if self.args.enable_spec_aug:
             logging.info("Enable SpecAugment")
-            logging.info(
-                f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
-            )
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
             # Set the value of num_frame_masks according to Lhotse's version.
             # In different Lhotse's versions, the default of num_frame_masks is
             # different.
@@ -289,9 +283,7 @@ class WenetSpeechAsrDataModule:
             # Drop feats to be on the safe side.
             train = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 input_transforms=input_transforms,
                 return_cuts=self.args.return_cuts,
             )
@@ -348,9 +340,7 @@ class WenetSpeechAsrDataModule:
         if self.args.on_the_fly_feats:
             validate = K2SpeechRecognitionDataset(
                 cut_transforms=transforms,
-                input_strategy=OnTheFlyFeatures(
-                    Fbank(FbankConfig(num_mel_bins=80))
-                ),
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
                 return_cuts=self.args.return_cuts,
             )
         else:
@@ -414,8 +404,7 @@ class WenetSpeechAsrDataModule:
     def train_cuts(self) -> CutSet:
         logging.info("About to get train cuts")
         cuts_train = load_manifest_lazy(
-            self.args.manifest_dir
-            / f"cuts_{self.args.training_subset}.jsonl.gz"
+            self.args.manifest_dir / f"cuts_{self.args.training_subset}.jsonl.gz"
         )
         return cuts_train
 
@@ -427,13 +416,9 @@ class WenetSpeechAsrDataModule:
     @lru_cache()
     def test_net_cuts(self) -> List[CutSet]:
         logging.info("About to get TEST_NET cuts")
-        return load_manifest_lazy(
-            self.args.manifest_dir / "cuts_TEST_NET.jsonl.gz"
-        )
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST_NET.jsonl.gz")
 
     @lru_cache()
     def test_meeting_cuts(self) -> List[CutSet]:
         logging.info("About to get TEST_MEETING cuts")
-        return load_manifest_lazy(
-            self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz"
-        )
+        return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz")
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/decode.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/decode.py
index f0c9bebec..04602ea2e 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/decode.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/decode.py
@@ -114,11 +114,7 @@ from beam_search import (
 from train import get_params, get_transducer_model
 
 from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
-from icefall.checkpoint import (
-    average_checkpoints,
-    find_checkpoints,
-    load_checkpoint,
-)
+from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
 from icefall.lexicon import Lexicon
 from icefall.utils import (
     AttributeDict,
@@ -252,8 +248,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -328,9 +323,7 @@ def decode_one_batch(
     supervisions = batch["supervisions"]
     feature_lens = supervisions["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
     hyps = []
 
     if params.decoding_method == "fast_beam_search":
@@ -389,10 +382,7 @@ def decode_one_batch(
         )
         for i in range(encoder_out.size(0)):
             hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -515,9 +505,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -550,8 +538,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -663,9 +650,7 @@ def main():
             )
             decoding_graph.scores *= params.ngram_lm_scale
         else:
-            decoding_graph = k2.trivial_graph(
-                params.vocab_size - 1, device=device
-            )
+            decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
     else:
         decoding_graph = None
 
@@ -716,8 +701,7 @@ def main():
         )
 
     dev_shards = [
-        str(path)
-        for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
+        str(path) for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
     ]
     cuts_dev_webdataset = CutSet.from_webdataset(
         dev_shards,
@@ -727,8 +711,7 @@ def main():
     )
 
     test_net_shards = [
-        str(path)
-        for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
+        str(path) for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
     ]
     cuts_test_net_webdataset = CutSet.from_webdataset(
         test_net_shards,
@@ -739,9 +722,7 @@ def main():
 
     test_meeting_shards = [
         str(path)
-        for path in sorted(
-            glob.glob(os.path.join(test_meeting, "shared-*.tar"))
-        )
+        for path in sorted(glob.glob(os.path.join(test_meeting, "shared-*.tar")))
     ]
     cuts_test_meeting_webdataset = CutSet.from_webdataset(
         test_meeting_shards,
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/export.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/export.py
index 933642a0f..8c4fbdd47 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/export.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/export.py
@@ -205,8 +205,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     return parser
@@ -468,13 +467,9 @@ def export_joiner_model_onnx(
 
         - projected_decoder_out: a tensor of shape (N, joiner_dim)
     """
-    encoder_proj_filename = str(joiner_filename).replace(
-        ".onnx", "_encoder_proj.onnx"
-    )
+    encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
 
-    decoder_proj_filename = str(joiner_filename).replace(
-        ".onnx", "_decoder_proj.onnx"
-    )
+    decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
 
     encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
     decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
@@ -645,9 +640,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/jit_pretrained.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/jit_pretrained.py
index e5cc47bfe..f90dd2b43 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/jit_pretrained.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/jit_pretrained.py
@@ -145,10 +145,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -331,9 +330,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_check.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_check.py
index c396c50ef..a46ff5a07 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_check.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_check.py
@@ -219,9 +219,7 @@ def test_joiner(
         )
 
         # Now test encoder_proj
-        joiner_encoder_proj_inputs = {
-            encoder_proj_input_name: encoder_out.numpy()
-        }
+        joiner_encoder_proj_inputs = {encoder_proj_input_name: encoder_out.numpy()}
         joiner_encoder_proj_out = joiner_encoder_proj_session.run(
             [encoder_proj_output_name], joiner_encoder_proj_inputs
         )[0]
@@ -230,16 +228,10 @@ def test_joiner(
         torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out)
         assert torch.allclose(
             joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5
-        ), (
-            (joiner_encoder_proj_out - torch_joiner_encoder_proj_out)
-            .abs()
-            .max()
-        )
+        ), ((joiner_encoder_proj_out - torch_joiner_encoder_proj_out).abs().max())
 
         # Now test decoder_proj
-        joiner_decoder_proj_inputs = {
-            decoder_proj_input_name: decoder_out.numpy()
-        }
+        joiner_decoder_proj_inputs = {decoder_proj_input_name: decoder_out.numpy()}
         joiner_decoder_proj_out = joiner_decoder_proj_session.run(
             [decoder_proj_output_name], joiner_decoder_proj_inputs
         )[0]
@@ -248,11 +240,7 @@ def test_joiner(
         torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out)
         assert torch.allclose(
             joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5
-        ), (
-            (joiner_decoder_proj_out - torch_joiner_decoder_proj_out)
-            .abs()
-            .max()
-        )
+        ), ((joiner_decoder_proj_out - torch_joiner_decoder_proj_out).abs().max())
 
 
 @torch.no_grad()
@@ -304,9 +292,7 @@ def main():
 
 if __name__ == "__main__":
     torch.manual_seed(20220727)
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_pretrained.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_pretrained.py
index 3770fbbb4..9e34b4427 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_pretrained.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/onnx_pretrained.py
@@ -149,10 +149,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -200,11 +199,7 @@ def greedy_search(
 
     projected_encoder_out = joiner_encoder_proj.run(
         [joiner_encoder_proj.get_outputs()[0].name],
-        {
-            joiner_encoder_proj.get_inputs()[
-                0
-            ].name: packed_encoder_out.data.numpy()
-        },
+        {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()},
     )[0]
 
     blank_id = 0  # hard-code to 0
@@ -389,9 +384,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/pretrained.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/pretrained.py
index 9a549efd9..bc499f3dd 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/pretrained.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/pretrained.py
@@ -158,8 +158,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -189,10 +188,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -253,9 +251,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -280,10 +276,7 @@ def main():
         )
         for i in range(encoder_out.size(0)):
             hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -335,9 +328,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless2/train.py b/egs/wenetspeech/ASR/pruned_transducer_stateless2/train.py
index d3cc7c9c9..48b347b64 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless2/train.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless2/train.py
@@ -115,9 +115,7 @@ from icefall.env import get_env_info
 from icefall.lexicon import Lexicon
 from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
 
-LRSchedulerType = Union[
-    torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
-]
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
 
 
 def get_parser():
@@ -219,8 +217,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -243,8 +240,7 @@ def get_parser():
         "--am-scale",
         type=float,
         default=0.0,
-        help="The scale to smooth the loss with am (output of encoder network)"
-        "part.",
+        help="The scale to smooth the loss with am (output of encoder network) part.",
     )
 
     parser.add_argument(
@@ -590,22 +586,15 @@ def compute_loss(
         # overwhelming the simple_loss and causing it to diverge,
         # in case it had not fully learned the alignment yet.
         pruned_loss_scale = (
-            0.0
-            if warmup < 1.0
-            else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
-        )
-        loss = (
-            params.simple_loss_scale * simple_loss
-            + pruned_loss_scale * pruned_loss
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
         )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
     assert loss.requires_grad == is_training
 
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -762,9 +751,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -864,7 +851,7 @@ def run(rank, world_size, args):
 
     if params.print_diagnostics:
         opts = diagnostics.TensorDiagnosticOptions(
-            2 ** 22
+            2**22
         )  # allow 4 megabytes per sub-module
         diagnostic = diagnostics.attach_diagnostics(model, opts)
 
@@ -874,15 +861,41 @@ def run(rank, world_size, args):
     valid_cuts = wenetspeech.valid_cuts()
 
     def remove_short_and_long_utt(c: Cut):
-        # Keep only utterances with duration between 1 second and 15.0 seconds
+        # Keep only utterances with duration between 1 second and 10 seconds
         #
-        # Caution: There is a reason to select 15.0 here. Please see
+        # Caution: There is a reason to select 10.0 here. Please see
         # ../local/display_manifest_statistics.py
         #
         # You should use ../local/display_manifest_statistics.py to get
         # an utterance duration distribution for your dataset to select
         # the threshold
-        return 1.0 <= c.duration <= 15.0
+        if c.duration < 1.0 or c.duration > 10.0:
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
+            )
+            return False
+
+        # In pruned RNN-T, we require that T >= S
+        # where T is the number of feature frames after subsampling
+        # and S is the number of tokens in the utterance
+
+        # In ./conformer.py, the conv module uses the following expression
+        # for subsampling
+        T = ((c.num_frames - 1) // 2 - 1) // 2
+        tokens = c.supervisions[0].text.replace(" ", "")
+
+        if T < len(tokens):
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. "
+                f"Number of frames (before subsampling): {c.num_frames}. "
+                f"Number of frames (after subsampling): {T}. "
+                f"Text: {c.supervisions[0].text}. "
+                f"Tokens: {tokens}. "
+                f"Number of tokens: {len(tokens)}"
+            )
+            return False
+
+        return True
 
     train_cuts = train_cuts.filter(remove_short_and_long_utt)
 
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/conformer.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/conformer.py
index dd27c17f0..23a877b2f 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/conformer.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/conformer.py
@@ -210,10 +210,7 @@ class Conformer(EncoderInterface):
           (num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
           NOTE: the returned tensors are on the given device.
         """
-        if (
-            len(self._init_state) == 2
-            and self._init_state[0].size(1) == left_context
-        ):
+        if len(self._init_state) == 2 and self._init_state[0].size(1) == left_context:
             # Note: It is OK to share the init state as it is
             # not going to be modified by the model
             return self._init_state
@@ -433,9 +430,7 @@ class ConformerEncoderLayer(nn.Module):
 
         self.d_model = d_model
 
-        self.self_attn = RelPositionMultiheadAttention(
-            d_model, nhead, dropout=0.0
-        )
+        self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
 
         self.feed_forward = nn.Sequential(
             ScaledLinear(d_model, dim_feedforward),
@@ -453,9 +448,7 @@ class ConformerEncoderLayer(nn.Module):
             ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
         )
 
-        self.conv_module = ConvolutionModule(
-            d_model, cnn_module_kernel, causal=causal
-        )
+        self.conv_module = ConvolutionModule(d_model, cnn_module_kernel, causal=causal)
 
         self.norm_final = BasicNorm(d_model)
 
@@ -520,9 +513,7 @@ class ConformerEncoderLayer(nn.Module):
         src = src + self.dropout(src_att)
 
         # convolution module
-        conv, _ = self.conv_module(
-            src, src_key_padding_mask=src_key_padding_mask
-        )
+        conv, _ = self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
         src = src + self.dropout(conv)
 
         # feed forward module
@@ -766,9 +757,7 @@ class RelPositionalEncoding(torch.nn.Module):
         max_len: Maximum input length.
     """
 
-    def __init__(
-        self, d_model: int, dropout_rate: float, max_len: int = 5000
-    ) -> None:
+    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
         """Construct an PositionalEncoding object."""
         super(RelPositionalEncoding, self).__init__()
         self.d_model = d_model
@@ -784,9 +773,7 @@ class RelPositionalEncoding(torch.nn.Module):
             # the length of self.pe is 2 * input_len - 1
             if self.pe.size(1) >= x_size_1 * 2 - 1:
                 # Note: TorchScript doesn't implement operator== for torch.Device
-                if self.pe.dtype != x.dtype or str(self.pe.device) != str(
-                    x.device
-                ):
+                if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
                     self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                 return
         # Suppose `i` means to the position of query vector and `j` means the
@@ -979,20 +966,32 @@ class RelPositionMultiheadAttention(nn.Module):
         (batch_size, num_heads, time1, n) = x.shape
 
         time2 = time1 + left_context
-        assert (
-            n == left_context + 2 * time1 - 1
-        ), f"{n} == {left_context} + 2 * {time1} - 1"
+        if not torch.jit.is_tracing():
+            assert (
+                n == left_context + 2 * time1 - 1
+            ), f"{n} == {left_context} + 2 * {time1} - 1"
 
-        # Note: TorchScript requires explicit arg for stride()
-        batch_stride = x.stride(0)
-        head_stride = x.stride(1)
-        time1_stride = x.stride(2)
-        n_stride = x.stride(3)
-        return x.as_strided(
-            (batch_size, num_heads, time1, time2),
-            (batch_stride, head_stride, time1_stride - n_stride, n_stride),
-            storage_offset=n_stride * (time1 - 1),
-        )
+        if torch.jit.is_tracing():
+            rows = torch.arange(start=time1 - 1, end=-1, step=-1)
+            cols = torch.arange(time2)
+            rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
+            indexes = rows + cols
+
+            x = x.reshape(-1, n)
+            x = torch.gather(x, dim=1, index=indexes)
+            x = x.reshape(batch_size, num_heads, time1, time2)
+            return x
+        else:
+            # Note: TorchScript requires explicit arg for stride()
+            batch_stride = x.stride(0)
+            head_stride = x.stride(1)
+            time1_stride = x.stride(2)
+            n_stride = x.stride(3)
+            return x.as_strided(
+                (batch_size, num_heads, time1, time2),
+                (batch_stride, head_stride, time1_stride - n_stride, n_stride),
+                storage_offset=n_stride * (time1 - 1),
+            )
 
     def multi_head_attention_forward(
         self,
@@ -1073,9 +1072,9 @@ class RelPositionMultiheadAttention(nn.Module):
 
         if torch.equal(query, key) and torch.equal(key, value):
             # self-attention
-            q, k, v = nn.functional.linear(
-                query, in_proj_weight, in_proj_bias
-            ).chunk(3, dim=-1)
+            q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
+                3, dim=-1
+            )
 
         elif torch.equal(key, value):
             # encoder-decoder attention
@@ -1144,31 +1143,22 @@ class RelPositionMultiheadAttention(nn.Module):
             if attn_mask.dim() == 2:
                 attn_mask = attn_mask.unsqueeze(0)
                 if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
-                    raise RuntimeError(
-                        "The size of the 2D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
             elif attn_mask.dim() == 3:
                 if list(attn_mask.size()) != [
                     bsz * num_heads,
                     query.size(0),
                     key.size(0),
                 ]:
-                    raise RuntimeError(
-                        "The size of the 3D attn_mask is not correct."
-                    )
+                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
             else:
                 raise RuntimeError(
-                    "attn_mask's dimension {} is not supported".format(
-                        attn_mask.dim()
-                    )
+                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
                 )
             # attn_mask's dim is 3 now.
 
         # convert ByteTensor key_padding_mask to bool
-        if (
-            key_padding_mask is not None
-            and key_padding_mask.dtype == torch.uint8
-        ):
+        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
             warnings.warn(
                 "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
             )
@@ -1208,23 +1198,15 @@ class RelPositionMultiheadAttention(nn.Module):
         # first compute matrix a and matrix c
         # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
         k = k.permute(1, 2, 3, 0)  # (batch, head, d_k, time2)
-        matrix_ac = torch.matmul(
-            q_with_bias_u, k
-        )  # (batch, head, time1, time2)
+        matrix_ac = torch.matmul(q_with_bias_u, k)  # (batch, head, time1, time2)
 
         # compute matrix b and matrix d
-        matrix_bd = torch.matmul(
-            q_with_bias_v, p
-        )  # (batch, head, time1, 2*time1-1)
+        matrix_bd = torch.matmul(q_with_bias_v, p)  # (batch, head, time1, 2*time1-1)
         matrix_bd = self.rel_shift(matrix_bd, left_context)
 
-        attn_output_weights = (
-            matrix_ac + matrix_bd
-        )  # (batch, head, time1, time2)
+        attn_output_weights = matrix_ac + matrix_bd  # (batch, head, time1, time2)
 
-        attn_output_weights = attn_output_weights.view(
-            bsz * num_heads, tgt_len, -1
-        )
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
 
         assert list(attn_output_weights.size()) == [
             bsz * num_heads,
@@ -1265,21 +1247,17 @@ class RelPositionMultiheadAttention(nn.Module):
         ):
             if attn_mask.size(0) != 1:
                 attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
-                combined_mask = attn_mask | key_padding_mask.unsqueeze(
-                    1
-                ).unsqueeze(2)
+                combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
             else:
                 # attn_mask.shape == (1, tgt_len, src_len)
-                combined_mask = attn_mask.unsqueeze(
-                    0
-                ) | key_padding_mask.unsqueeze(1).unsqueeze(2)
+                combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
+                    1
+                ).unsqueeze(2)
 
             attn_output_weights = attn_output_weights.view(
                 bsz, num_heads, tgt_len, src_len
             )
-            attn_output_weights = attn_output_weights.masked_fill(
-                combined_mask, 0.0
-            )
+            attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
             attn_output_weights = attn_output_weights.view(
                 bsz * num_heads, tgt_len, src_len
             )
@@ -1291,13 +1269,9 @@ class RelPositionMultiheadAttention(nn.Module):
         attn_output = torch.bmm(attn_output_weights, v)
         assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
         attn_output = (
-            attn_output.transpose(0, 1)
-            .contiguous()
-            .view(tgt_len, bsz, embed_dim)
-        )
-        attn_output = nn.functional.linear(
-            attn_output, out_proj_weight, out_proj_bias
+            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
         )
+        attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
 
         if need_weights:
             # average attention weights over heads
@@ -1430,16 +1404,12 @@ class ConvolutionModule(nn.Module):
                 # manualy padding self.lorder zeros to the left
                 x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
             else:
-                assert (
-                    not self.training
-                ), "Cache should be None in training time"
+                assert not self.training, "Cache should be None in training time"
                 assert cache.size(0) == self.lorder
                 x = torch.cat([cache.permute(1, 2, 0), x], dim=2)
                 if right_context > 0:
                     cache = x.permute(2, 0, 1)[
-                        -(self.lorder + right_context) : (  # noqa
-                            -right_context
-                        ),
+                        -(self.lorder + right_context) : (-right_context),  # noqa
                         ...,
                     ]
                 else:
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode.py
index 344e31283..7bd1177bd 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode.py
@@ -244,8 +244,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     parser.add_argument(
         "--max-sym-per-frame",
@@ -342,9 +341,7 @@ def decode_one_batch(
             simulate_streaming=True,
         )
     else:
-        encoder_out, encoder_out_lens = model.encoder(
-            x=feature, x_lens=feature_lens
-        )
+        encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
     hyps = []
 
@@ -360,10 +357,7 @@ def decode_one_batch(
         )
         for i in range(encoder_out.size(0)):
             hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -484,9 +478,7 @@ def decode_dataset(
         if batch_idx % log_interval == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -519,8 +511,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -589,9 +580,9 @@ def main():
 
     if not params.use_averaged_model:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -618,9 +609,9 @@ def main():
             model.load_state_dict(average_checkpoints(filenames, device=device))
     else:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg + 1]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -720,8 +711,7 @@ def main():
         )
 
     dev_shards = [
-        str(path)
-        for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
+        str(path) for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
     ]
     cuts_dev_webdataset = CutSet.from_webdataset(
         dev_shards,
@@ -731,8 +721,7 @@ def main():
     )
 
     test_net_shards = [
-        str(path)
-        for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
+        str(path) for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
     ]
     cuts_test_net_webdataset = CutSet.from_webdataset(
         test_net_shards,
@@ -743,9 +732,7 @@ def main():
 
     test_meeting_shards = [
         str(path)
-        for path in sorted(
-            glob.glob(os.path.join(test_meeting, "shared-*.tar"))
-        )
+        for path in sorted(glob.glob(os.path.join(test_meeting, "shared-*.tar")))
     ]
     cuts_test_meeting_webdataset = CutSet.from_webdataset(
         test_meeting_shards,
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode_stream.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode_stream.py
index 386248554..e522943c0 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode_stream.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/decode_stream.py
@@ -75,9 +75,7 @@ class DecodeStream(object):
         # encoder.streaming_forward
         self.done_frames: int = 0
 
-        self.pad_length = (
-            params.right_context + 2
-        ) * params.subsampling_factor + 3
+        self.pad_length = (params.right_context + 2) * params.subsampling_factor + 3
 
         if params.decoding_method == "greedy_search":
             self.hyp = [params.blank_id] * params.context_size
@@ -91,13 +89,11 @@ class DecodeStream(object):
             )
         elif params.decoding_method == "fast_beam_search":
             # The rnnt_decoding_stream for fast_beam_search.
-            self.rnnt_decoding_stream: k2.RnntDecodingStream = (
-                k2.RnntDecodingStream(decoding_graph)
+            self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
+                decoding_graph
             )
         else:
-            raise ValueError(
-                f"Unsupported decoding method: {params.decoding_method}"
-            )
+            raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
 
     @property
     def done(self) -> bool:
@@ -126,13 +122,10 @@ class DecodeStream(object):
         """Consume chunk_size frames of features"""
         chunk_length = chunk_size + self.pad_length
 
-        ret_length = min(
-            self.num_frames - self.num_processed_frames, chunk_length
-        )
+        ret_length = min(self.num_frames - self.num_processed_frames, chunk_length)
 
         ret_features = self.features[
-            self.num_processed_frames : self.num_processed_frames  # noqa
-            + ret_length
+            self.num_processed_frames : self.num_processed_frames + ret_length  # noqa
         ]
 
         self.num_processed_frames += chunk_size
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/export.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/export.py
old mode 100644
new mode 100755
index d0a7fd69f..cb541070e
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/export.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/export.py
@@ -74,6 +74,7 @@ import logging
 from pathlib import Path
 
 import torch
+from scaling_converter import convert_scaled_to_non_scaled
 from train import add_model_arguments, get_params, get_transducer_model
 
 from icefall.checkpoint import average_checkpoints, load_checkpoint
@@ -131,8 +132,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
     add_model_arguments(parser)
 
@@ -185,6 +185,7 @@ def main():
         # it here.
         # Otherwise, one of its arguments is a ragged tensor and is not
         # torch scriptabe.
+        convert_scaled_to_non_scaled(model, inplace=True)
         model.__class__.forward = torch.jit.ignore(model.__class__.forward)
         logging.info("Using torch.jit.script")
         model = torch.jit.script(model)
@@ -201,9 +202,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/lstmp.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/lstmp.py
new file mode 120000
index 000000000..d13a1e063
--- /dev/null
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/lstmp.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/lstmp.py
\ No newline at end of file
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/pretrained.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/pretrained.py
index 1b064c874..1cac20435 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/pretrained.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/pretrained.py
@@ -157,8 +157,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -189,10 +188,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -253,9 +251,7 @@ def main():
     features = fbank(waves)
     feature_lengths = [f.size(0) for f in features]
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     feature_lengths = torch.tensor(feature_lengths, device=device)
 
@@ -280,10 +276,7 @@ def main():
         )
         for i in range(encoder_out.size(0)):
             hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
-    elif (
-        params.decoding_method == "greedy_search"
-        and params.max_sym_per_frame == 1
-    ):
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
         hyp_tokens = greedy_search_batch(
             model=model,
             encoder_out=encoder_out,
@@ -335,9 +328,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/scaling_converter.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/scaling_converter.py
new file mode 120000
index 000000000..e58473a04
--- /dev/null
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/scaling_converter.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/scaling_converter.py
\ No newline at end of file
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_beam_search.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_beam_search.py
index 651aff6c9..810d94135 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_beam_search.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_beam_search.py
@@ -173,14 +173,10 @@ def modified_beam_search(
         log_probs_shape = k2.ragged.create_ragged_shape2(
             row_splits=row_splits, cached_tot_size=log_probs.numel()
         )
-        ragged_log_probs = k2.RaggedTensor(
-            shape=log_probs_shape, value=log_probs
-        )
+        ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
 
         for i in range(batch_size):
-            topk_log_probs, topk_indexes = ragged_log_probs[i].topk(
-                num_active_paths
-            )
+            topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
 
             with warnings.catch_warnings():
                 warnings.simplefilter("ignore")
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_decode.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_decode.py
index ff96c6487..c7863415b 100644
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_decode.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/streaming_decode.py
@@ -201,8 +201,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -311,9 +310,7 @@ def decode_one_chunk(
     encoder_out = model.joiner.encoder_proj(encoder_out)
 
     if params.decoding_method == "greedy_search":
-        greedy_search(
-            model=model, encoder_out=encoder_out, streams=decode_streams
-        )
+        greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
     elif params.decoding_method == "fast_beam_search":
         processed_lens = processed_lens + encoder_out_lens
         fast_beam_search_one_best(
@@ -333,9 +330,7 @@ def decode_one_chunk(
             num_active_paths=params.num_active_paths,
         )
     else:
-        raise ValueError(
-            f"Unsupported decoding method: {params.decoding_method}"
-        )
+        raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
 
     states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
 
@@ -389,9 +384,7 @@ def decode_dataset(
     decode_results = []
     # Contain decode streams currently running.
     decode_streams = []
-    initial_states = model.encoder.get_init_state(
-        params.left_context, device=device
-    )
+    initial_states = model.encoder.get_init_state(params.left_context, device=device)
     for num, cut in enumerate(cuts):
         # each utterance has a DecodeStream.
         decode_stream = DecodeStream(
@@ -461,9 +454,7 @@ def decode_dataset(
     elif params.decoding_method == "modified_beam_search":
         key = f"num_active_paths_{params.num_active_paths}"
     else:
-        raise ValueError(
-            f"Unsupported decoding method: {params.decoding_method}"
-        )
+        raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
 
     return {key: decode_results}
 
@@ -499,8 +490,7 @@ def save_results(
 
     test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
     errs_info = (
-        params.res_dir
-        / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
     )
     with open(errs_info, "w") as f:
         print("settings\tWER", file=f)
@@ -565,9 +555,9 @@ def main():
 
     if not params.use_averaged_model:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
@@ -594,9 +584,9 @@ def main():
             model.load_state_dict(average_checkpoints(filenames, device=device))
     else:
         if params.iter > 0:
-            filenames = find_checkpoints(
-                params.exp_dir, iteration=-params.iter
-            )[: params.avg + 1]
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
             if len(filenames) == 0:
                 raise ValueError(
                     f"No checkpoints found for"
diff --git a/egs/wenetspeech/ASR/pruned_transducer_stateless5/train.py b/egs/wenetspeech/ASR/pruned_transducer_stateless5/train.py
index 2052e9da7..34a72be8f 100755
--- a/egs/wenetspeech/ASR/pruned_transducer_stateless5/train.py
+++ b/egs/wenetspeech/ASR/pruned_transducer_stateless5/train.py
@@ -98,9 +98,7 @@ from icefall.env import get_env_info
 from icefall.lexicon import Lexicon
 from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
 
-LRSchedulerType = Union[
-    torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
-]
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
 
 
 def add_model_arguments(parser: argparse.ArgumentParser):
@@ -260,8 +258,7 @@ def get_parser():
         "--initial-lr",
         type=float,
         default=0.003,
-        help="The initial learning rate.  This value should not need "
-        "to be changed.",
+        help="The initial learning rate.  This value should not need to be changed.",
     )
 
     parser.add_argument(
@@ -284,8 +281,7 @@ def get_parser():
         "--context-size",
         type=int,
         default=2,
-        help="The context size in the decoder. 1 means bigram; "
-        "2 means tri-gram",
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
     )
 
     parser.add_argument(
@@ -308,8 +304,7 @@ def get_parser():
         "--am-scale",
         type=float,
         default=0.0,
-        help="The scale to smooth the loss with am (output of encoder network)"
-        "part.",
+        help="The scale to smooth the loss with am (output of encoder network) part.",
     )
 
     parser.add_argument(
@@ -665,11 +660,7 @@ def compute_loss(
      warmup: a floating point value which increases throughout training;
         values >= 1.0 are fully warmed up and have all modules present.
     """
-    device = (
-        model.device
-        if isinstance(model, DDP)
-        else next(model.parameters()).device
-    )
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
     feature = batch["inputs"]
     # at entry, feature is (N, T, C)
     assert feature.ndim == 3
@@ -701,23 +692,16 @@ def compute_loss(
         # overwhelming the simple_loss and causing it to diverge,
         # in case it had not fully learned the alignment yet.
         pruned_loss_scale = (
-            0.0
-            if warmup < 1.0
-            else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
-        )
-        loss = (
-            params.simple_loss_scale * simple_loss
-            + pruned_loss_scale * pruned_loss
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
         )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
 
     assert loss.requires_grad == is_training
 
     info = MetricsTracker()
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
-        info["frames"] = (
-            (feature_lens // params.subsampling_factor).sum().item()
-        )
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
 
     # Note: We use reduction=sum while computing the loss.
     info["loss"] = loss.detach().cpu().item()
@@ -841,9 +825,7 @@ def train_one_epoch(
             scaler.update()
             optimizer.zero_grad()
         except:  # noqa
-            display_and_save_batch(
-                batch, params=params, graph_compiler=graph_compiler
-            )
+            display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
             raise
 
         if params.print_diagnostics and batch_idx == 5:
@@ -901,9 +883,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -1016,7 +996,7 @@ def run(rank, world_size, args):
 
     if params.print_diagnostics:
         opts = diagnostics.TensorDiagnosticOptions(
-            2 ** 22
+            2**22
         )  # allow 4 megabytes per sub-module
         diagnostic = diagnostics.attach_diagnostics(model, opts)
 
@@ -1026,15 +1006,41 @@ def run(rank, world_size, args):
     valid_cuts = wenetspeech.valid_cuts()
 
     def remove_short_and_long_utt(c: Cut):
-        # Keep only utterances with duration between 1 second and 15.0 seconds
+        # Keep only utterances with duration between 1 second and 10 seconds
         #
-        # Caution: There is a reason to select 15.0 here. Please see
+        # Caution: There is a reason to select 10.0 here. Please see
         # ../local/display_manifest_statistics.py
         #
         # You should use ../local/display_manifest_statistics.py to get
         # an utterance duration distribution for your dataset to select
         # the threshold
-        return 1.0 <= c.duration <= 15.0
+        if c.duration < 1.0 or c.duration > 10.0:
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
+            )
+            return False
+
+        # In pruned RNN-T, we require that T >= S
+        # where T is the number of feature frames after subsampling
+        # and S is the number of tokens in the utterance
+
+        # In ./conformer.py, the conv module uses the following expression
+        # for subsampling
+        T = ((c.num_frames - 1) // 2 - 1) // 2
+        tokens = c.supervisions[0].text.replace(" ", "")
+
+        if T < len(tokens):
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. "
+                f"Number of frames (before subsampling): {c.num_frames}. "
+                f"Number of frames (after subsampling): {T}. "
+                f"Text: {c.supervisions[0].text}. "
+                f"Tokens: {tokens}. "
+                f"Number of tokens: {len(tokens)}"
+            )
+            return False
+
+        return True
 
     train_cuts = train_cuts.filter(remove_short_and_long_utt)
 
@@ -1184,9 +1190,7 @@ def scan_pessimistic_batches_for_oom(
                     f"Failing criterion: {criterion} "
                     f"(={crit_values[criterion]}) ..."
                 )
-            display_and_save_batch(
-                batch, params=params, graph_compiler=graph_compiler
-            )
+            display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
             raise
 
 
diff --git a/egs/xbmu_amdo31/ASR/README.md b/egs/xbmu_amdo31/ASR/README.md
new file mode 100644
index 000000000..0a441d070
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/README.md
@@ -0,0 +1,16 @@
+# Introduction
+About the XBMU-AMDO31 corpus
+XBMU-AMDO31 is an open-source Amdo Tibetan speech corpus published by Northwest Minzu University.
+publicly available on https://huggingface.co/datasets/syzym/xbmu_amdo31
+
+XBMU-AMDO31 dataset is a speech recognition corpus of Amdo Tibetan dialect. 
+The open source corpus contains 31 hours of speech data and resources related 
+to build speech recognition systems,including transcribed texts and a Tibetan 
+pronunciation lexicon.
+(The lexicon is a Tibetan lexicon of the Lhasa dialect, which has been reused 
+for the Amdo dialect because of the uniformity of the Tibetan language)
+The dataset can be used to train a model for Amdo Tibetan Automatic Speech Recognition (ASR). 
+
+This recipe includes some different ASR models trained with XBMU-AMDO31.
+
+[./RESULTS.md](./RESULTS.md) contains the latest results.
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/RESULTS.md b/egs/xbmu_amdo31/ASR/RESULTS.md
new file mode 100644
index 000000000..1bd9b2e2b
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/RESULTS.md
@@ -0,0 +1,92 @@
+## Results
+
+### XBMU-AMDO31 BPE training result (Stateless Transducer)
+
+#### Pruned transducer stateless 5
+
+[./pruned_transducer_stateless5](./pruned_transducer_stateless5)
+
+It uses pruned RNN-T.
+
+A pre-trained model and decoding logs can be found at 
+
+You can use  to deploy it.
+
+Number of model parameters: 87801200, i.e., 87.8 M
+
+|                        | test | dev  | comment                               |
+|------------------------|------|------|---------------------------------------|
+| greedy search          | 11.06| 11.73| --epoch 28 --avg 23 --max-duration 600|
+| beam search            | 10.64| 11.42| --epoch 28 --avg 23 --max-duration 600|
+| modified beam search   | 10.57| 11.24| --epoch 28 --avg 23 --max-duration 600|
+
+
+Training command is:
+
+```bash
+cd egs/xbmu_amdo31/ASR
+./prepare.sh
+
+export CUDA_VISIBLE_DEVICES="0"
+
+./pruned_transducer_stateless5/train.py
+```
+
+**Caution**: It uses `--context-size=1`.
+
+
+The decoding command is:
+```bash
+for method in greedy_search beam_search modified_beam_search;
+do
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 23 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method $method
+done
+```
+
+### pruned_transducer_stateless7 (zipformer)
+
+See  for more details.
+
+[pruned_transducer_stateless7](./pruned_transducer_stateless7)
+
+You can find a pretrained model, training logs, decoding logs, and decoding
+results at:
+
+
+You can use  to deploy it.
+
+Number of model parameters: 70369391, i.e., 70.37 M
+
+|                      | test | dev  | comment                                |
+|----------------------|------|------|----------------------------------------|
+| greedy search        | 10.06| 10.59| --epoch 23 --avg 11 --max-duration 600 |
+| beam search          | 9.77 | 10.11| --epoch 23 --avg 11 --max-duration 600 |
+| modified beam search | 9.7  | 10.12| --epoch 23 --avg 11 --max-duration 600 |
+
+The training commands are:
+```bash
+export CUDA_VISIBLE_DEVICES="0"
+
+./pruned_transducer_stateless7/train.py
+```
+
+The decoding commands are:
+```bash
+for m in greedy_search beam_search modified_beam_search; do
+  for epoch in 23; do
+    for avg in 11; do
+      ./pruned_transducer_stateless7/decode.py \
+          --epoch $epoch \
+          --avg $avg \
+          --exp-dir ./pruned_transducer_stateless7/exp \
+          --max-duration 600 \
+          --decoding-method $m
+    done
+  done
+done
+```
diff --git a/egs/xbmu_amdo31/ASR/local/compile_hlg.py b/egs/xbmu_amdo31/ASR/local/compile_hlg.py
new file mode 120000
index 000000000..471aa7fb4
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/compile_hlg.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compile_hlg.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/compile_lg.py b/egs/xbmu_amdo31/ASR/local/compile_lg.py
new file mode 120000
index 000000000..462d6d3fb
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/compile_lg.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compile_lg.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/compute_fbank_musan.py b/egs/xbmu_amdo31/ASR/local/compute_fbank_musan.py
new file mode 120000
index 000000000..5833f2484
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/compute_fbank_musan.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compute_fbank_musan.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/compute_fbank_xbmu_amdo31.py b/egs/xbmu_amdo31/ASR/local/compute_fbank_xbmu_amdo31.py
new file mode 100755
index 000000000..a593e7be3
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/compute_fbank_xbmu_amdo31.py
@@ -0,0 +1,130 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+This file computes fbank features of the XBMU-AMDO31 dataset.
+It looks for manifests in the directory data/manifests.
+
+The generated fbank features are saved in data/fbank.
+"""
+
+import argparse
+import logging
+import os
+from pathlib import Path
+from typing import Optional
+
+import sentencepiece as spm
+import torch
+from filter_cuts import filter_cuts
+from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
+from lhotse.recipes.utils import read_manifests_if_cached
+
+from icefall.utils import get_executor
+
+# Torch's multithreaded behavior needs to be disabled or
+# it wastes a lot of CPU and slow things down.
+# Do this outside of main() in case it needs to take effect
+# even when we are not invoking the main (e.g. when spawning subprocesses).
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+
+def get_args():
+    parser = argparse.ArgumentParser()
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to the bpe.model. If not None, we will remove short and
+        long utterances before extracting features""",
+    )
+    return parser.parse_args()
+
+
+def compute_fbank_xbmu_amdo31(bpe_model: Optional[str] = None):
+    src_dir = Path("data/manifests")
+    output_dir = Path("data/fbank")
+    num_jobs = min(15, os.cpu_count())
+    num_mel_bins = 80
+
+    if bpe_model:
+        logging.info(f"Loading {bpe_model}")
+        sp = spm.SentencePieceProcessor()
+        sp.load(bpe_model)
+
+    dataset_parts = (
+        "train",
+        "dev",
+        "test",
+    )
+    prefix = "xbmu_amdo31"
+    suffix = "jsonl.gz"
+    manifests = read_manifests_if_cached(
+        dataset_parts=dataset_parts,
+        output_dir=src_dir,
+        prefix=prefix,
+        suffix=suffix,
+    )
+    assert manifests is not None
+
+    assert len(manifests) == len(dataset_parts), (
+        len(manifests),
+        len(dataset_parts),
+        list(manifests.keys()),
+        dataset_parts,
+    )
+
+    extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
+
+    with get_executor() as ex:  # Initialize the executor only once.
+        for partition, m in manifests.items():
+            cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
+            if (output_dir / cuts_filename).is_file():
+                logging.info(f"{partition} already exists - skipping.")
+                continue
+            logging.info(f"Processing {partition}")
+            cut_set = CutSet.from_manifests(
+                recordings=m["recordings"],
+                supervisions=m["supervisions"],
+            )
+            if bpe_model:
+                cut_set = filter_cuts(cut_set, sp)
+
+            if "train" in partition:
+                cut_set = (
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
+                )
+            cut_set = cut_set.compute_and_store_features(
+                extractor=extractor,
+                storage_path=f"{output_dir}/{prefix}_feats_{partition}",
+                # when an executor is specified, make more partitions
+                num_jobs=num_jobs if ex is None else 80,
+                executor=ex,
+                storage_type=LilcomChunkyWriter,
+            )
+            cut_set.to_file(output_dir / cuts_filename)
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    args = get_args()
+    logging.info(vars(args))
+    compute_fbank_xbmu_amdo31(bpe_model=args.bpe_model)
diff --git a/egs/xbmu_amdo31/ASR/local/convert_transcript_words_to_tokens.py b/egs/xbmu_amdo31/ASR/local/convert_transcript_words_to_tokens.py
new file mode 120000
index 000000000..2ce13fd69
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/convert_transcript_words_to_tokens.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/convert_transcript_words_to_tokens.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/filter_cuts.py b/egs/xbmu_amdo31/ASR/local/filter_cuts.py
new file mode 120000
index 000000000..27aca1729
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/filter_cuts.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/filter_cuts.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/generate_unique_lexicon.py b/egs/xbmu_amdo31/ASR/local/generate_unique_lexicon.py
new file mode 120000
index 000000000..c0aea1403
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/generate_unique_lexicon.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/generate_unique_lexicon.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/prepare_lang.py b/egs/xbmu_amdo31/ASR/local/prepare_lang.py
new file mode 120000
index 000000000..747f2ab39
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/prepare_lang.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/prepare_lang.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/prepare_lang_bpe.py b/egs/xbmu_amdo31/ASR/local/prepare_lang_bpe.py
new file mode 120000
index 000000000..36b40e7fc
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/prepare_lang_bpe.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/prepare_lang_bpe.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/prepare_lm_training_data.py b/egs/xbmu_amdo31/ASR/local/prepare_lm_training_data.py
new file mode 120000
index 000000000..abc00d421
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/prepare_lm_training_data.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/prepare_lm_training_data.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/sort_lm_training_data.py b/egs/xbmu_amdo31/ASR/local/sort_lm_training_data.py
new file mode 120000
index 000000000..1d6ccbe33
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/sort_lm_training_data.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/sort_lm_training_data.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/train_bpe_model.py b/egs/xbmu_amdo31/ASR/local/train_bpe_model.py
new file mode 120000
index 000000000..6fad36421
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/train_bpe_model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/train_bpe_model.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/local/validate_bpe_lexicon.py b/egs/xbmu_amdo31/ASR/local/validate_bpe_lexicon.py
new file mode 120000
index 000000000..721bb48e7
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/local/validate_bpe_lexicon.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/validate_bpe_lexicon.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/prepare.sh b/egs/xbmu_amdo31/ASR/prepare.sh
new file mode 100755
index 000000000..32ae440f7
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/prepare.sh
@@ -0,0 +1,357 @@
+#!/usr/bin/env bash
+
+set -eou pipefail
+
+nj=15
+stage=-1
+stop_stage=100
+
+# We assume dl_dir (download dir) contains the following
+# directories and files. If not, they will be downloaded
+# by this script automatically.
+#
+#  - $dl_dir/xbmu_amdo31
+#      You can find data, resource, etc, inside it.
+#      You can download them from https://huggingface.co/datasets/syzym/xbmu_amdo31
+#
+#  - $dl_dir/lm
+#      This directory contains the following files downloaded from
+#       git lfs install
+#       https://huggingface.co/syzym/xbmu_amdo31_lm
+#
+#        - tibetan.3-gram.arpa
+#        - tibetan.4-gram.arpa
+#
+#  - $dl_dir/musan
+#      This directory contains the following directories downloaded from
+#       http://www.openslr.org/17/
+#
+#     - music
+#     - noise
+#     - speech
+
+dl_dir=$PWD/download
+
+. shared/parse_options.sh || exit 1
+
+# vocab size for sentence piece models.
+# It will generate data/lang_bpe_xxx,
+# data/lang_bpe_yyy if the array contains xxx, yyy
+vocab_sizes=(
+  1000
+  500
+)
+
+# All files generated by this script are saved in "data".
+# You can safely remove "data" and rerun this script to regenerate it.
+mkdir -p data
+
+log() {
+  # This function is from espnet
+  local fname=${BASH_SOURCE[1]##*/}
+  echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
+}
+
+log "dl_dir: $dl_dir"
+
+if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
+  log "stage -1: Download LM"
+  # We assume that you have installed the git-lfs, if not, you could install it
+  # using: `sudo apt-get install git-lfs && git-lfs install`
+  git lfs 1>/dev/null 2>&1 || (echo "please install git-lfs, consider using: sudo apt-get install git-lfs && git-lfs install" && exit 1)
+
+  if [ ! -f $dl_dir/lm/3-gram.unpruned.arpa ]; then
+    git clone https://huggingface.co/syzym/xbmu_amdo31_lm $dl_dir/lm
+    pushd $dl_dir/lm
+    git lfs pull --include "tibetan.3-gram.arpa"
+    git lfs pull --include "tibetan.4-gram.arpa"
+    popd
+  fi
+fi
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+  log "Stage 0: Download data"
+
+  # If you have pre-downloaded it to /path/to/xbmu_amdo31,
+  # you can create a symlink
+  #
+  #   ln -sfv /path/to/xbmu_amdo31 $dl_dir/xbmu_amdo31
+  #
+  
+  if [ ! -f $dl_dir/xbmu_amdo31 ]; then
+    git lfs 1>/dev/null 2>&1 || (echo "please install git-lfs, consider using: sudo apt-get install git-lfs && git-lfs install" && exit 1)
+    lhotse download xbmu-amdo31 $dl_dir
+  fi
+
+  # If you have pre-downloaded it to /path/to/musan,
+  # you can create a symlink
+  #
+  #   ln -sfv /path/to/musan $dl_dir/
+  #
+  if [ ! -d $dl_dir/musan ]; then
+    lhotse download musan $dl_dir
+  fi
+fi
+
+if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
+  log "Stage 1: Prepare xbmu_amdo31 manifest"
+  # We assume that you have downloaded the xbmu_amdo31 corpus
+  # to $dl_dir/xbmu_amdo31
+  if [ ! -f data/manifests/.xbmu_amdo31_manifests.done ]; then
+    mkdir -p data/manifests
+    lhotse prepare xbmu-amdo31 $dl_dir/xbmu_amdo31 data/manifests
+    touch data/manifests/.xbmu_amdo31_manifests.done
+  fi
+fi
+
+if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
+  log "Stage 2: Prepare musan manifest"
+  # We assume that you have downloaded the musan corpus
+  # to data/musan
+  if [ ! -f data/manifests/.musan_manifests.done ]; then
+    log "It may take 6 minutes"
+    mkdir -p data/manifests
+    lhotse prepare musan $dl_dir/musan data/manifests
+    touch data/manifests/.musan_manifests.done
+  fi
+fi
+
+if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
+  log "Stage 3: Compute fbank for xbmu_amdo31"
+  if [ ! -f data/fbank/.xbmu_amdo31.done ]; then
+    mkdir -p data/fbank
+    ./local/compute_fbank_xbmu_amdo31.py
+    touch data/fbank/.xbmu_amdo31.done
+  fi
+fi
+
+
+
+if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
+  log "Stage 4: Compute fbank for musan"
+  if [ ! -f data/fbank/.msuan.done ]; then
+    mkdir -p data/fbank
+    ./local/compute_fbank_musan.py
+    touch data/fbank/.msuan.done
+  fi
+fi
+
+
+if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
+  log "Stage 5: Prepare phone based lang"
+  lang_dir=data/lang_phone
+  mkdir -p $lang_dir
+
+  (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) |
+    cat - $dl_dir/xbmu_amdo31/resource/lexicon.txt |
+    sort | uniq > $lang_dir/lexicon.txt
+
+  ./local/generate_unique_lexicon.py --lang-dir $lang_dir
+
+  if [ ! -f $lang_dir/L_disambig.pt ]; then
+    ./local/prepare_lang.py --lang-dir $lang_dir
+  fi
+fi
+
+
+if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
+  log "Stage 6: Prepare BPE based lang"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    mkdir -p $lang_dir
+    # We reuse words.txt from phone based lexicon
+    # so that the two can share G.pt later.
+    cp data/lang_phone/words.txt $lang_dir
+
+  if [ ! -f $lang_dir/transcript_words.txt ]; then
+    log "Generate data to train phone based bigram P"
+    xbmu_amdo31_text=$dl_dir/xbmu_amdo31/data/transcript/transcript_clean.txt
+    xbmu_amdo31_train_uid=$dl_dir/xbmu_amdo31/data/transcript/xbmu_amdo31_train_uid
+    find $dl_dir/xbmu_amdo31/data/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '-' '{print $NF}' > $xbmu_amdo31_train_uid
+    awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $xbmu_amdo31_train_uid $xbmu_amdo31_text |
+	    cut -d " " -f 2- > $lang_dir/transcript_words.txt
+  fi
+
+    if [ ! -f $lang_dir/bpe.model ]; then
+      ./local/train_bpe_model.py \
+        --lang-dir $lang_dir \
+        --vocab-size $vocab_size \
+        --transcript $lang_dir/transcript_words.txt
+    fi
+
+    if [ ! -f $lang_dir/L_disambig.pt ]; then
+      ./local/prepare_lang_bpe.py --lang-dir $lang_dir
+
+      log "Validating $lang_dir/lexicon.txt"
+      ./local/validate_bpe_lexicon.py \
+        --lexicon $lang_dir/lexicon.txt \
+        --bpe-model $lang_dir/bpe.model
+    fi
+  done
+fi
+
+if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
+  log "Stage 7: Prepare bigram P"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+
+    if [ ! -f $lang_dir/transcript_tokens.txt ]; then
+      ./local/convert_transcript_words_to_tokens.py \
+        --lexicon $lang_dir/lexicon.txt \
+        --transcript $lang_dir/transcript_words.txt \
+        --oov "" \
+        > $lang_dir/transcript_tokens.txt
+    fi
+
+    if [ ! -f $lang_dir/P.arpa ]; then
+      ./shared/make_kn_lm.py \
+        -ngram-order 2 \
+        -text $lang_dir/transcript_tokens.txt \
+        -lm $lang_dir/P.arpa
+    fi
+
+    if [ ! -f $lang_dir/P.fst.txt ]; then
+      python3 -m kaldilm \
+        --read-symbol-table="$lang_dir/tokens.txt" \
+        --disambig-symbol='#0' \
+        --max-order=2 \
+        $lang_dir/P.arpa > $lang_dir/P.fst.txt
+    fi
+  done
+fi
+
+if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
+  log "Stage 8: Prepare G"
+  # We assume you have install kaldilm, if not, please install
+  # it using: pip install kaldilm
+
+  mkdir -p data/lm
+  if [ ! -f data/lm/G_3_gram.fst.txt ]; then
+    # It is used in building HLG
+    python3 -m kaldilm \
+      --read-symbol-table="data/lang_phone/words.txt" \
+      --disambig-symbol='#0' \
+      --max-order=3 \
+      $dl_dir/lm/tibetan.3-gram.arpa > data/lm/G_3_gram.fst.txt
+  fi
+
+  if [ ! -f data/lm/G_4_gram.fst.txt ]; then
+    # It is used for LM rescoring
+    python3 -m kaldilm \
+      --read-symbol-table="data/lang_phone/words.txt" \
+      --disambig-symbol='#0' \
+      --max-order=4 \
+      $dl_dir/lm/tibetan.4-gram.arpa > data/lm/G_4_gram.fst.txt
+  fi
+fi
+
+if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
+  log "Stage 9: Compile HLG"
+  ./local/compile_hlg.py --lang-dir data/lang_phone
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    ./local/compile_hlg.py --lang-dir $lang_dir
+  done
+fi
+
+# Compile LG for RNN-T fast_beam_search decoding
+if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
+  log "Stage 10: Compile LG"
+  ./local/compile_lg.py --lang-dir data/lang_phone
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    lang_dir=data/lang_bpe_${vocab_size}
+    ./local/compile_lg.py --lang-dir $lang_dir
+  done
+fi
+
+if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
+  log "Stage 11: Generate LM training data"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    log "Processing vocab_size == ${vocab_size}"
+    lang_dir=data/lang_bpe_${vocab_size}
+    out_dir=data/lm_training_bpe_${vocab_size}
+    mkdir -p $out_dir
+
+    ./local/prepare_lm_training_data.py \
+      --bpe-model $lang_dir/bpe.model \
+      --lm-data $dl_dir/lm/lm_train.txt \
+      --lm-archive $out_dir/lm_data.pt
+  done
+fi
+
+if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
+  log "Stage 12: Generate LM validation data"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    log "Processing vocab_size == ${vocab_size}"
+    out_dir=data/lm_training_bpe_${vocab_size}
+    mkdir -p $out_dir
+
+    if [ ! -f $out_dir/valid.txt ]; then
+      files=$dl_dir/xbmu_amdo31/data/transcript/dev_text
+      for f in ${files[@]}; do
+        cat $f | cut -d " " -f 2-
+      done > $out_dir/valid.txt
+    fi
+
+    lang_dir=data/lang_bpe_${vocab_size}
+    ./local/prepare_lm_training_data.py \
+      --bpe-model $lang_dir/bpe.model \
+      --lm-data $out_dir/valid.txt \
+      --lm-archive $out_dir/lm_data-valid.pt
+  done
+fi
+
+if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
+  log "Stage 13: Generate LM test data"
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    log "Processing vocab_size == ${vocab_size}"
+    out_dir=data/lm_training_bpe_${vocab_size}
+    mkdir -p $out_dir
+
+    if [ ! -f $out_dir/test.txt ]; then
+        files=$dl_dir/xbmu_amdo31/data/transcript/test_text
+        cat $f | cut -d " " -f 2- > $out_dir/test.txt
+    fi
+
+    lang_dir=data/lang_bpe_${vocab_size}
+    ./local/prepare_lm_training_data.py \
+      --bpe-model $lang_dir/bpe.model \
+      --lm-data $out_dir/test.txt \
+      --lm-archive $out_dir/lm_data-test.pt
+  done
+fi
+
+if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
+  log "Stage 14: Sort LM training data"
+  # Sort LM training data by sentence length in descending order
+  # for ease of training.
+  #
+  # Sentence length equals to the number of BPE tokens
+  # in a sentence.
+
+  for vocab_size in ${vocab_sizes[@]}; do
+    out_dir=data/lm_training_bpe_${vocab_size}
+    mkdir -p $out_dir
+    ./local/sort_lm_training_data.py \
+      --in-lm-data $out_dir/lm_data.pt \
+      --out-lm-data $out_dir/sorted_lm_data.pt \
+      --out-statistics $out_dir/statistics.txt
+
+    ./local/sort_lm_training_data.py \
+      --in-lm-data $out_dir/lm_data-valid.pt \
+      --out-lm-data $out_dir/sorted_lm_data-valid.pt \
+      --out-statistics $out_dir/statistics-valid.txt
+
+    ./local/sort_lm_training_data.py \
+      --in-lm-data $out_dir/lm_data-test.pt \
+      --out-lm-data $out_dir/sorted_lm_data-test.pt \
+      --out-statistics $out_dir/statistics-test.txt
+  done
+fi
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/__init__.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py
new file mode 100644
index 000000000..55d5f4636
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py
@@ -0,0 +1,408 @@
+# Copyright      2021  Piotr Żelasko
+# Copyright      2022  Xiaomi Corporation     (Author: Mingshuang Luo)
+# Copyright      2022  Northwest Minzu University     (Author: Senyan Li)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import inspect
+import logging
+from functools import lru_cache
+from pathlib import Path
+from typing import Any, Dict, Optional
+
+import torch
+from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
+from lhotse.dataset import CutConcatenate  # noqa F401 for PrecomputedFeatures
+from lhotse.dataset import (
+    CutMix,
+    DynamicBucketingSampler,
+    K2SpeechRecognitionDataset,
+    PrecomputedFeatures,
+    SingleCutSampler,
+    SpecAugment,
+)
+from lhotse.dataset.input_strategies import AudioSamples  # noqa F401 For AudioSamples
+from lhotse.dataset.input_strategies import OnTheFlyFeatures
+from lhotse.utils import fix_random_seed
+from torch.utils.data import DataLoader
+
+from icefall.utils import str2bool
+
+
+class _SeedWorkers:
+    def __init__(self, seed: int):
+        self.seed = seed
+
+    def __call__(self, worker_id: int):
+        fix_random_seed(self.seed + worker_id)
+
+
+class Xbmu_AmdoAsrDataModule:
+    """
+    DataModule for k2 ASR experiments.
+    It assumes there is always one train and valid dataloader,
+    but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
+    and test-other).
+
+    It contains all the common data pipeline modules used in ASR
+    experiments, e.g.:
+    - dynamic batch size,
+    - bucketing samplers,
+    - cut concatenation,
+    - augmentation,
+    - on-the-fly feature extraction
+
+    This class should be derived for specific corpora used in ASR tasks.
+    """
+
+    def __init__(self, args: argparse.Namespace):
+        self.args = args
+
+    @classmethod
+    def add_arguments(cls, parser: argparse.ArgumentParser):
+        group = parser.add_argument_group(
+            title="ASR data related options",
+            description="These options are used for the preparation of "
+            "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
+            "effective batch sizes, sampling strategies, applied data "
+            "augmentations, etc.",
+        )
+        group.add_argument(
+            "--manifest-dir",
+            type=Path,
+            default=Path("data/fbank"),
+            help="Path to directory with train/valid/test cuts.",
+        )
+        group.add_argument(
+            "--max-duration",
+            type=int,
+            default=200.0,
+            help="Maximum pooled recordings duration (seconds) in a "
+            "single batch. You can reduce it if it causes CUDA OOM.",
+        )
+        group.add_argument(
+            "--bucketing-sampler",
+            type=str2bool,
+            default=True,
+            help="When enabled, the batches will come from buckets of "
+            "similar duration (saves padding frames).",
+        )
+        group.add_argument(
+            "--num-buckets",
+            type=int,
+            default=30,
+            help="The number of buckets for the DynamicBucketingSampler"
+            "(you might want to increase it for larger datasets).",
+        )
+        group.add_argument(
+            "--concatenate-cuts",
+            type=str2bool,
+            default=False,
+            help="When enabled, utterances (cuts) will be concatenated "
+            "to minimize the amount of padding.",
+        )
+        group.add_argument(
+            "--duration-factor",
+            type=float,
+            default=1.0,
+            help="Determines the maximum duration of a concatenated cut "
+            "relative to the duration of the longest cut in a batch.",
+        )
+        group.add_argument(
+            "--gap",
+            type=float,
+            default=1.0,
+            help="The amount of padding (in seconds) inserted between "
+            "concatenated cuts. This padding is filled with noise when "
+            "noise augmentation is used.",
+        )
+        group.add_argument(
+            "--on-the-fly-feats",
+            type=str2bool,
+            default=False,
+            help="When enabled, use on-the-fly cut mixing and feature "
+            "extraction. Will drop existing precomputed feature manifests "
+            "if available.",
+        )
+        group.add_argument(
+            "--shuffle",
+            type=str2bool,
+            default=True,
+            help="When enabled (=default), the examples will be "
+            "shuffled for each epoch.",
+        )
+        group.add_argument(
+            "--drop-last",
+            type=str2bool,
+            default=True,
+            help="Whether to drop last batch. Used by sampler.",
+        )
+        group.add_argument(
+            "--return-cuts",
+            type=str2bool,
+            default=True,
+            help="When enabled, each batch will have the "
+            "field: batch['supervisions']['cut'] with the cuts that "
+            "were used to construct it.",
+        )
+
+        group.add_argument(
+            "--num-workers",
+            type=int,
+            default=2,
+            help="The number of training dataloader workers that "
+            "collect the batches.",
+        )
+
+        group.add_argument(
+            "--enable-spec-aug",
+            type=str2bool,
+            default=True,
+            help="When enabled, use SpecAugment for training dataset.",
+        )
+
+        group.add_argument(
+            "--spec-aug-time-warp-factor",
+            type=int,
+            default=80,
+            help="Used only when --enable-spec-aug is True. "
+            "It specifies the factor for time warping in SpecAugment. "
+            "Larger values mean more warping. "
+            "A value less than 1 means to disable time warp.",
+        )
+
+        group.add_argument(
+            "--enable-musan",
+            type=str2bool,
+            default=True,
+            help="When enabled, select noise from MUSAN and mix it"
+            "with training dataset. ",
+        )
+
+        group.add_argument(
+            "--input-strategy",
+            type=str,
+            default="PrecomputedFeatures",
+            help="AudioSamples or PrecomputedFeatures",
+        )
+
+    def train_dataloaders(
+        self,
+        cuts_train: CutSet,
+        sampler_state_dict: Optional[Dict[str, Any]] = None,
+    ) -> DataLoader:
+        """
+        Args:
+          cuts_train:
+            CutSet for training.
+          sampler_state_dict:
+            The state dict for the training sampler.
+        """
+        transforms = []
+        if self.args.enable_musan:
+            logging.info("Enable MUSAN")
+            logging.info("About to get Musan cuts")
+            cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
+            transforms.append(
+                CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
+            )
+        else:
+            logging.info("Disable MUSAN")
+
+        if self.args.concatenate_cuts:
+            logging.info(
+                f"Using cut concatenation with duration factor "
+                f"{self.args.duration_factor} and gap {self.args.gap}."
+            )
+            # Cut concatenation should be the first transform in the list,
+            # so that if we e.g. mix noise in, it will fill the gaps between
+            # different utterances.
+            transforms = [
+                CutConcatenate(
+                    duration_factor=self.args.duration_factor, gap=self.args.gap
+                )
+            ] + transforms
+
+        input_transforms = []
+        if self.args.enable_spec_aug:
+            logging.info("Enable SpecAugment")
+            logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
+            # Set the value of num_frame_masks according to Lhotse's version.
+            # In different Lhotse's versions, the default of num_frame_masks is
+            # different.
+            num_frame_masks = 10
+            num_frame_masks_parameter = inspect.signature(
+                SpecAugment.__init__
+            ).parameters["num_frame_masks"]
+            if num_frame_masks_parameter.default == 1:
+                num_frame_masks = 2
+            logging.info(f"Num frame mask: {num_frame_masks}")
+            input_transforms.append(
+                SpecAugment(
+                    time_warp_factor=self.args.spec_aug_time_warp_factor,
+                    num_frame_masks=num_frame_masks,
+                    features_mask_size=27,
+                    num_feature_masks=2,
+                    frames_mask_size=100,
+                )
+            )
+        else:
+            logging.info("Disable SpecAugment")
+
+        logging.info("About to create train dataset")
+        train = K2SpeechRecognitionDataset(
+            input_strategy=eval(self.args.input_strategy)(),
+            cut_transforms=transforms,
+            input_transforms=input_transforms,
+            return_cuts=self.args.return_cuts,
+        )
+
+        if self.args.on_the_fly_feats:
+            # NOTE: the PerturbSpeed transform should be added only if we
+            # remove it from data prep stage.
+            # Add on-the-fly speed perturbation; since originally it would
+            # have increased epoch size by 3, we will apply prob 2/3 and use
+            # 3x more epochs.
+            # Speed perturbation probably should come first before
+            # concatenation, but in principle the transforms order doesn't have
+            # to be strict (e.g. could be randomized)
+            # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms   # noqa
+            # Drop feats to be on the safe side.
+            train = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                input_transforms=input_transforms,
+                return_cuts=self.args.return_cuts,
+            )
+
+        if self.args.bucketing_sampler:
+            logging.info("Using DynamicBucketingSampler.")
+            train_sampler = DynamicBucketingSampler(
+                cuts_train,
+                max_duration=self.args.max_duration,
+                shuffle=self.args.shuffle,
+                num_buckets=self.args.num_buckets,
+                drop_last=self.args.drop_last,
+            )
+        else:
+            logging.info("Using SingleCutSampler.")
+            train_sampler = SingleCutSampler(
+                cuts_train,
+                max_duration=self.args.max_duration,
+                shuffle=self.args.shuffle,
+            )
+        logging.info("About to create train dataloader")
+
+        if sampler_state_dict is not None:
+            logging.info("Loading sampler state dict")
+            train_sampler.load_state_dict(sampler_state_dict)
+
+        # 'seed' is derived from the current random state, which will have
+        # previously been set in the main process.
+        seed = torch.randint(0, 100000, ()).item()
+        worker_init_fn = _SeedWorkers(seed)
+
+        train_dl = DataLoader(
+            train,
+            sampler=train_sampler,
+            batch_size=None,
+            num_workers=self.args.num_workers,
+            persistent_workers=False,
+            worker_init_fn=worker_init_fn,
+        )
+
+        return train_dl
+
+    def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
+        transforms = []
+        if self.args.concatenate_cuts:
+            transforms = [
+                CutConcatenate(
+                    duration_factor=self.args.duration_factor, gap=self.args.gap
+                )
+            ] + transforms
+
+        logging.info("About to create dev dataset")
+        if self.args.on_the_fly_feats:
+            validate = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
+                return_cuts=self.args.return_cuts,
+            )
+        else:
+            validate = K2SpeechRecognitionDataset(
+                cut_transforms=transforms,
+                return_cuts=self.args.return_cuts,
+            )
+        valid_sampler = DynamicBucketingSampler(
+            cuts_valid,
+            max_duration=self.args.max_duration,
+            shuffle=False,
+        )
+        logging.info("About to create dev dataloader")
+        valid_dl = DataLoader(
+            validate,
+            sampler=valid_sampler,
+            batch_size=None,
+            num_workers=2,
+            persistent_workers=False,
+        )
+
+        return valid_dl
+
+    def test_dataloaders(self, cuts: CutSet) -> DataLoader:
+        logging.debug("About to create test dataset")
+        test = K2SpeechRecognitionDataset(
+            input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+            if self.args.on_the_fly_feats
+            else eval(self.args.input_strategy)(),
+            return_cuts=self.args.return_cuts,
+        )
+        sampler = DynamicBucketingSampler(
+            cuts,
+            max_duration=self.args.max_duration,
+            shuffle=False,
+        )
+        logging.debug("About to create test dataloader")
+        test_dl = DataLoader(
+            test,
+            batch_size=None,
+            sampler=sampler,
+            num_workers=self.args.num_workers,
+        )
+        return test_dl
+
+    @lru_cache()
+    def train_cuts(self) -> CutSet:
+        f = self.args.manifest_dir / "xbmu_amdo31_cuts_train.jsonl.gz"
+        logging.info(f"About to get train cuts from {f}")
+        cuts_train = load_manifest_lazy(f)
+        return cuts_train
+
+    @lru_cache()
+    def valid_cuts(self) -> CutSet:
+        f = self.args.manifest_dir / "xbmu_amdo31_cuts_dev.jsonl.gz"
+        logging.info(f"About to get valid cuts from {f}")
+        cuts_valid = load_manifest_lazy(f)
+        return cuts_valid
+
+    @lru_cache()
+    def test_cuts(self) -> CutSet:
+        f = self.args.manifest_dir / "xbmu_amdo31_cuts_test.jsonl.gz"
+        logging.info(f"About to get test cuts from {f}")
+        cuts_test = load_manifest_lazy(f)
+        return cuts_test
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/beam_search.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/beam_search.py
new file mode 120000
index 000000000..e24eca39f
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/conformer.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/conformer.py
new file mode 120000
index 000000000..c7c1a4b6e
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/conformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/conformer.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode.py
new file mode 100755
index 000000000..6a67e26f8
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode.py
@@ -0,0 +1,970 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
+#                                                 Zengwei Yao,
+#                                                 Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method greedy_search
+(2) beam search (not recommended)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method beam_search \
+    --beam-size 4
+(3) modified beam search
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method modified_beam_search \
+    --beam-size 4
+(4) fast beam search (one best)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64
+(5) fast beam search (nbest)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64 \
+    --num-paths 200 \
+    --nbest-scale 0.5
+(6) fast beam search (nbest oracle WER)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest_oracle \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64 \
+    --num-paths 200 \
+    --nbest-scale 0.5
+(7) fast beam search (with LG)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest_LG \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64
+
+(8) modified beam search with RNNLM shallow fusion (with LG)
+./pruned_transducer_stateless5/decode.py \
+    --epoch 35 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless5/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest_LG \
+    --beam 4 \
+    --max-contexts 4 \
+    --rnn-lm-scale 0.4 \
+    --rnn-lm-exp-dir /path/to/RNNLM/exp \
+    --rnn-lm-epoch 99 \
+    --rnn-lm-avg 1 \
+    --rnn-lm-num-layers 3 \
+    --rnn-lm-tie-weights 1
+
+
+"""
+
+
+import argparse
+import logging
+import math
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import Xbmu_AmdoAsrDataModule
+from beam_search import (
+    beam_search,
+    fast_beam_search_nbest,
+    fast_beam_search_nbest_LG,
+    fast_beam_search_nbest_oracle,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+    modified_beam_search_rnnlm_shallow_fusion,
+)
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.lexicon import Lexicon
+from icefall.rnn_lm.model import RnnLmModel
+from icefall.utils import (
+    AttributeDict,
+    setup_logger,
+    store_transcripts,
+    str2bool,
+    write_error_stats,
+)
+
+LOG_EPS = math.log(1e-10)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=Path,
+        default="data/lang_bpe_500",
+        help="The lang dir containing word table and LG graph",
+    )
+
+    parser.add_argument(
+        "--decoding-method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+          - fast_beam_search_LG
+          - fast_beam_search_nbest
+          - fast_beam_search_nbest_oracle
+          - fast_beam_search_nbest_LG
+          - modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
+        If you use fast_beam_search_nbest_LG, you have to specify
+        `--lang-dir`, which should contain `LG.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --decoding-method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=20.0,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --decoding-method is fast_beam_search, fast_beam_search_LG,
+        fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--ngram-lm-scale",
+        type=float,
+        default=0.01,
+        help="""
+        Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG.
+        It specifies the scale for n-gram LM scores.
+        """,
+    )
+
+    parser.add_argument(
+        "--decode-chunk-size",
+        type=int,
+        default=16,
+        help="The chunk size for decoding (in frames after subsampling)",
+    )
+
+    parser.add_argument(
+        "--left-context",
+        type=int,
+        default=64,
+        help="left context can be seen during decoding (in frames after subsampling)",
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=8,
+        help="""Used only when --decoding-method is fast_beam_search_LG,
+        fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=64,
+        help="""Used only when --decoding-method is fast_beam_search_LG,
+        fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame.
+        Used only when --decoding_method is greedy_search""",
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=200,
+        help="""Number of paths for nbest decoding.
+        Used only when the decoding method is fast_beam_search_nbest,
+        fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=0.5,
+        help="""Scale applied to lattice scores when computing nbest paths.
+        Used only when the decoding method is fast_beam_search_nbest,
+        fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--simulate-streaming",
+        type=str2bool,
+        default=False,
+        help="""Whether to simulate streaming in decoding, this is a good way to
+        test a streaming model.
+        """,
+    )
+
+    parser.add_argument(
+        "--rnn-lm-scale",
+        type=float,
+        default=0.0,
+        help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
+        It specifies the path to RNN LM exp dir.
+        """,
+    )
+
+    parser.add_argument(
+        "--rnn-lm-exp-dir",
+        type=str,
+        default="rnn_lm/exp",
+        help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
+        It specifies the path to RNN LM exp dir.
+        """,
+    )
+
+    parser.add_argument(
+        "--rnn-lm-epoch",
+        type=int,
+        default=7,
+        help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
+        It specifies the checkpoint to use.
+        """,
+    )
+
+    parser.add_argument(
+        "--rnn-lm-avg",
+        type=int,
+        default=2,
+        help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
+        It specifies the number of checkpoints to average.
+        """,
+    )
+
+    parser.add_argument(
+        "--rnn-lm-embedding-dim",
+        type=int,
+        default=2048,
+        help="Embedding dim of the model",
+    )
+
+    parser.add_argument(
+        "--rnn-lm-hidden-dim",
+        type=int,
+        default=2048,
+        help="Hidden dim of the model",
+    )
+
+    parser.add_argument(
+        "--rnn-lm-num-layers",
+        type=int,
+        default=4,
+        help="Number of RNN layers the model",
+    )
+    parser.add_argument(
+        "--rnn-lm-tie-weights",
+        type=str2bool,
+        default=False,
+        help="""True to share the weights between the input embedding layer and the
+        last output linear layer
+        """,
+    )
+    add_model_arguments(parser)
+
+    return parser
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    word_table: Optional[k2.SymbolTable] = None,
+    decoding_graph: Optional[k2.Fsa] = None,
+    rnnlm: Optional[RnnLmModel] = None,
+    rnnlm_scale: float = 1.0,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+
+        - key: It indicates the setting used for decoding. For example,
+               if greedy_search is used, it would be "greedy_search"
+               If beam search with a beam size of 7 is used, it would be
+               "beam_7"
+        - value: It contains the decoding result. `len(value)` equals to
+                 batch size. `value[i]` is the decoding result for the i-th
+                 utterance in the given batch.
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      word_table:
+        The word symbol table.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
+        only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
+        fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict.
+    """
+    device = next(model.parameters()).device
+    feature = batch["inputs"]
+    assert feature.ndim == 3
+
+    feature = feature.to(device)
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    if params.simulate_streaming:
+        feature_lens += params.left_context
+        feature = torch.nn.functional.pad(
+            feature,
+            pad=(0, 0, 0, params.left_context),
+            value=LOG_EPS,
+        )
+        encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
+            x=feature,
+            x_lens=feature_lens,
+            chunk_size=params.decode_chunk_size,
+            left_context=params.left_context,
+            simulate_streaming=True,
+        )
+    else:
+        encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
+
+    hyps = []
+
+    if (
+        params.decoding_method == "fast_beam_search"
+        or params.decoding_method == "fast_beam_search_LG"
+    ):
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        if params.decoding_method == "fast_beam_search":
+            for hyp in sp.decode(hyp_tokens):
+                hyps.append(hyp.split())
+        else:
+            for hyp in hyp_tokens:
+                hyps.append([word_table[i] for i in hyp])
+    elif params.decoding_method == "fast_beam_search_nbest_LG":
+        hyp_tokens = fast_beam_search_nbest_LG(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in hyp_tokens:
+            hyps.append([word_table[i] for i in hyp])
+    elif params.decoding_method == "fast_beam_search_nbest":
+        hyp_tokens = fast_beam_search_nbest(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "fast_beam_search_nbest_oracle":
+        hyp_tokens = fast_beam_search_nbest_oracle(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            ref_texts=sp.encode(supervisions["text"]),
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
+        hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+            sp=sp,
+            rnnlm=rnnlm,
+            rnnlm_scale=rnnlm_scale,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        batch_size = encoder_out.size(0)
+
+        for i in range(batch_size):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.decoding_method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.decoding_method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(
+                    f"Unsupported decoding method: {params.decoding_method}"
+                )
+            hyps.append(sp.decode(hyp).split())
+
+    if params.decoding_method == "greedy_search":
+        return {"greedy_search": hyps}
+    elif "fast_beam_search" in params.decoding_method:
+        key = f"beam_{params.beam}_"
+        key += f"max_contexts_{params.max_contexts}_"
+        key += f"max_states_{params.max_states}"
+        if "nbest" in params.decoding_method:
+            key += f"_num_paths_{params.num_paths}_"
+            key += f"nbest_scale_{params.nbest_scale}"
+        if "LG" in params.decoding_method:
+            key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
+
+        return {key: hyps}
+    else:
+        return {f"beam_size_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    word_table: Optional[k2.SymbolTable] = None,
+    decoding_graph: Optional[k2.Fsa] = None,
+    rnnlm: Optional[RnnLmModel] = None,
+    rnnlm_scale: float = 1.0,
+) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      word_table:
+        The word symbol table.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
+        only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
+        fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
+    Returns:
+      Return a dict, whose key may be "greedy_search" if greedy search
+      is used, or it may be "beam_7" if beam size of 7 is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    if params.decoding_method == "greedy_search":
+        log_interval = 50
+    else:
+        log_interval = 20
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        texts = batch["supervisions"]["text"]
+        cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
+        logging.info(f"Decoding {batch_idx}-th batch")
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            sp=sp,
+            decoding_graph=decoding_graph,
+            word_table=word_table,
+            batch=batch,
+            rnnlm=rnnlm,
+            rnnlm_scale=rnnlm_scale,
+        )
+
+        for name, hyps in hyps_dict.items():
+            this_batch = []
+            assert len(hyps) == len(texts)
+            for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
+                ref_words = ref_text.split()
+                this_batch.append((cut_id, ref_words, hyp_words))
+
+            results[name].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % log_interval == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
+):
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = (
+            params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        results = sorted(results)
+        store_transcripts(filename=recog_path, texts=results)
+        logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = (
+            params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(
+                f, f"{test_set_name}-{key}", results, enable_log=True
+            )
+            test_set_wers[key] = wer
+
+        logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = (
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+    )
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    Xbmu_AmdoAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    assert params.decoding_method in (
+        "greedy_search",
+        "beam_search",
+        "fast_beam_search",
+        "fast_beam_search_LG",
+        "fast_beam_search_nbest",
+        "fast_beam_search_nbest_LG",
+        "fast_beam_search_nbest_oracle",
+        "modified_beam_search",
+        "modified_beam_search_rnnlm_shallow_fusion",
+    )
+    params.res_dir = params.exp_dir / params.decoding_method
+
+    if params.iter > 0:
+        params.suffix = f"iter-{params.iter}-avg-{params.avg}"
+    else:
+        params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+    if params.simulate_streaming:
+        params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
+        params.suffix += f"-left-context-{params.left_context}"
+    if "fast_beam_search" in params.decoding_method:
+        params.suffix += f"-beam-{params.beam}"
+        params.suffix += f"-max-contexts-{params.max_contexts}"
+        params.suffix += f"-max-states-{params.max_states}"
+        if "nbest" in params.decoding_method:
+            params.suffix += f"-nbest-scale-{params.nbest_scale}"
+            params.suffix += f"-num-paths-{params.num_paths}"
+        if "LG" in params.decoding_method:
+            params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
+    elif "beam_search" in params.decoding_method:
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
+    else:
+        params.suffix += f"-context-{params.context_size}"
+        params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+    params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
+
+    if params.use_averaged_model:
+        params.suffix += "-use-averaged-model"
+
+    setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+    logging.info("Decoding started")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  and  are defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    if params.simulate_streaming:
+        assert (
+            params.causal_convolution
+        ), "Decoding in streaming requires causal convolution"
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to(device)
+    model.eval()
+
+    rnn_lm_model = None
+    rnn_lm_scale = params.rnn_lm_scale
+    if params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
+        rnn_lm_model = RnnLmModel(
+            vocab_size=params.vocab_size,
+            embedding_dim=params.rnn_lm_embedding_dim,
+            hidden_dim=params.rnn_lm_hidden_dim,
+            num_layers=params.rnn_lm_num_layers,
+            tie_weights=params.rnn_lm_tie_weights,
+        )
+        assert params.rnn_lm_avg == 1
+
+        load_checkpoint(
+            f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
+            rnn_lm_model,
+        )
+        rnn_lm_model.to(device)
+        rnn_lm_model.eval()
+
+    if "fast_beam_search" in params.decoding_method:
+        if "LG" in params.decoding_method:
+            lexicon = Lexicon(params.lang_dir)
+            word_table = lexicon.word_table
+            lg_filename = params.lang_dir / "LG.pt"
+            logging.info(f"Loading {lg_filename}")
+            decoding_graph = k2.Fsa.from_dict(
+                torch.load(lg_filename, map_location=device)
+            )
+            decoding_graph.scores *= params.ngram_lm_scale
+        else:
+            word_table = None
+            decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+    else:
+        decoding_graph = None
+        word_table = None
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    # we need cut ids to display recognition results.
+    args.return_cuts = True
+    xbmu_amdo = Xbmu_AmdoAsrDataModule(args)
+
+    test_cuts = xbmu_amdo.test_cuts()
+
+    test_dl = xbmu_amdo.test_dataloaders(test_cuts)
+
+    test_sets = ["test"]
+    test_dl = [test_dl]
+
+    for test_set, test_dl in zip(test_sets, test_dl):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            sp=sp,
+            word_table=word_table,
+            decoding_graph=decoding_graph,
+            rnnlm=rnn_lm_model,
+            rnnlm_scale=rnn_lm_scale,
+        )
+
+        save_results(
+            params=params,
+            test_set_name=test_set,
+            results_dict=results_dict,
+        )
+
+    logging.info("Done!")
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode_stream.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode_stream.py
new file mode 120000
index 000000000..d59ef95f7
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decode_stream.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/decode_stream.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decoder.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decoder.py
new file mode 120000
index 000000000..722e1c894
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/decoder.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/encoder_interface.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/encoder_interface.py
new file mode 120000
index 000000000..f58253127
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/encoder_interface.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/export.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/export.py
new file mode 100755
index 000000000..54f656859
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/export.py
@@ -0,0 +1,287 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./pruned_transducer_stateless5/export.py \
+  --exp-dir ./pruned_transducer_stateless5/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `pruned_transducer_stateless5/decode.py`,
+you can do:
+
+    cd /path/to/exp_dir
+    ln -s pretrained.pt epoch-9999.pt
+
+    cd /path/to/egs/librispeech/ASR
+    ./pruned_transducer_stateless5/decode.py \
+        --exp-dir ./pruned_transducer_stateless5/exp \
+        --epoch 9999 \
+        --avg 1 \
+        --max-duration 600 \
+        --decoding-method greedy_search \
+        --bpe-model data/lang_bpe_500/bpe.model
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+from scaling_converter import convert_scaled_to_non_scaled
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.utils import str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=28,
+        help="""It specifies the checkpoint to use for averaging.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=15,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="""It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--jit",
+        type=str2bool,
+        default=False,
+        help="""True to save a model after applying torch.jit.script.
+        """,
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+
+    parser.add_argument(
+        "--streaming-model",
+        type=str2bool,
+        default=False,
+        help="""Whether to export a streaming model, if the models in exp-dir
+        are streaming model, this should be True.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def main():
+    args = get_parser().parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    if params.streaming_model:
+        assert params.causal_convolution
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to("cpu")
+    model.eval()
+
+    if params.jit:
+        # We won't use the forward() method of the model in C++, so just ignore
+        # it here.
+        # Otherwise, one of its arguments is a ragged tensor and is not
+        # torch scriptabe.
+        convert_scaled_to_non_scaled(model, inplace=True)
+        model.__class__.forward = torch.jit.ignore(model.__class__.forward)
+        logging.info("Using torch.jit.script")
+        model = torch.jit.script(model)
+        filename = params.exp_dir / "cpu_jit.pt"
+        model.save(str(filename))
+        logging.info(f"Saved to {filename}")
+    else:
+        logging.info("Not using torch.jit.script")
+        # Save it using a format so that it can be loaded
+        # by :func:`load_checkpoint`
+        filename = params.exp_dir / "pretrained.pt"
+        torch.save({"model": model.state_dict()}, str(filename))
+        logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/joiner.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/joiner.py
new file mode 120000
index 000000000..9052f3cbb
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/joiner.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/lstmp.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/lstmp.py
new file mode 120000
index 000000000..b82e115fc
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/lstmp.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/lstm_transducer_stateless2/lstmp.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/model.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/model.py
new file mode 120000
index 000000000..a99e74334
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/model.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/optim.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/optim.py
new file mode 120000
index 000000000..0a2f285aa
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/optim.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/pretrained.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/pretrained.py
new file mode 100755
index 000000000..74a2210c3
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/pretrained.py
@@ -0,0 +1,344 @@
+#!/usr/bin/env python3
+# Copyright      2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+(1) greedy search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method greedy_search \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(2) beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(3) modified beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method modified_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(4) fast beam search
+./pruned_transducer_stateless5/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method fast_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+You can also use `./pruned_transducer_stateless5/exp/epoch-xx.pt`.
+
+Note: ./pruned_transducer_stateless5/exp/pretrained.pt is generated by
+./pruned_transducer_stateless5/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from beam_search import (
+    beam_search,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+)
+from torch.nn.utils.rnn import pad_sequence
+from train import add_model_arguments, get_params, get_transducer_model
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--checkpoint",
+        type=str,
+        required=True,
+        help="Path to the checkpoint. "
+        "The checkpoint is assumed to be saved by "
+        "icefall.checkpoint.save_checkpoint().",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.""",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    parser.add_argument(
+        "--sample-rate",
+        type=int,
+        default=16000,
+        help="The sample rate of the input sound file",
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=4,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=4,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=8,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame. Used only when
+        --method is greedy_search.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+
+    params = get_params()
+
+    params.update(vars(args))
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(f"{params}")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("Creating model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    checkpoint = torch.load(args.checkpoint, map_location="cpu")
+    model.load_state_dict(checkpoint["model"], strict=False)
+    model.to(device)
+    model.eval()
+    model.device = device
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = params.sample_rate
+    opts.mel_opts.num_bins = params.feature_dim
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {params.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+    feature_lengths = [f.size(0) for f in features]
+
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
+
+    feature_lengths = torch.tensor(feature_lengths, device=device)
+
+    encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
+
+    num_waves = encoder_out.size(0)
+    hyps = []
+    msg = f"Using {params.method}"
+    if params.method == "beam_search":
+        msg += f" with beam size {params.beam_size}"
+    logging.info(msg)
+
+    if params.method == "fast_beam_search":
+        decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        for i in range(num_waves):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(f"Unsupported method: {params.method}")
+
+            hyps.append(sp.decode(hyp).split())
+
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling.py
new file mode 120000
index 000000000..c10cdfe12
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling_converter.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling_converter.py
new file mode 120000
index 000000000..db93d155b
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/scaling_converter.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_beam_search.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_beam_search.py
new file mode 120000
index 000000000..1199a61d6
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_decode.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_decode.py
new file mode 120000
index 000000000..f29284163
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/streaming_decode.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless5/streaming_decode.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/test_model.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/test_model.py
new file mode 100755
index 000000000..9aad32014
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/test_model.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python3
+# Copyright    2022  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+To run this file, do:
+
+    cd icefall/egs/librispeech/ASR
+    python ./pruned_transducer_stateless4/test_model.py
+"""
+
+from train import get_params, get_transducer_model
+
+
+def test_model_1():
+    params = get_params()
+    params.vocab_size = 500
+    params.blank_id = 0
+    params.context_size = 2
+    params.num_encoder_layers = 24
+    params.dim_feedforward = 1536  # 384 * 4
+    params.encoder_dim = 384
+    model = get_transducer_model(params)
+    num_param = sum([p.numel() for p in model.parameters()])
+    print(f"Number of model parameters: {num_param}")
+
+
+# See Table 1 from https://arxiv.org/pdf/2005.08100.pdf
+def test_model_M():
+    params = get_params()
+    params.vocab_size = 500
+    params.blank_id = 0
+    params.context_size = 2
+    params.num_encoder_layers = 18
+    params.dim_feedforward = 1024
+    params.encoder_dim = 256
+    params.nhead = 4
+    params.decoder_dim = 512
+    params.joiner_dim = 512
+    model = get_transducer_model(params)
+    num_param = sum([p.numel() for p in model.parameters()])
+    print(f"Number of model parameters: {num_param}")
+
+
+def main():
+    #  test_model_1()
+    test_model_M()
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py
new file mode 100755
index 000000000..5b5ac17be
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py
@@ -0,0 +1,1187 @@
+#!/usr/bin/env python3
+# Copyright    2021-2022  Xiaomi Corp.        (authors: Fangjun Kuang,
+#                                                       Wei Kang,
+#                                                       Mingshuang Luo,)
+#                                                       Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./pruned_transducer_stateless5/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir pruned_transducer_stateless5/exp \
+  --full-libri 1 \
+  --max-duration 300
+
+# For mix precision training:
+
+./pruned_transducer_stateless5/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --use-fp16 1 \
+  --exp-dir pruned_transducer_stateless5/exp \
+  --full-libri 1 \
+  --max-duration 550
+
+"""
+
+
+import argparse
+import copy
+import logging
+import warnings
+from pathlib import Path
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple, Union
+
+import k2
+import optim
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import Xbmu_AmdoAsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from lhotse.cut import Cut
+from lhotse.dataset.sampling.base import CutSampler
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from optim import Eden, Eve
+from torch import Tensor
+from torch.cuda.amp import GradScaler
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+
+from icefall import diagnostics
+from icefall.checkpoint import load_checkpoint, remove_checkpoints
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.checkpoint import (
+    save_checkpoint_with_global_batch_idx,
+    update_averaged_model,
+)
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.utils import (
+    AttributeDict,
+    MetricsTracker,
+    display_and_save_batch,
+    setup_logger,
+    str2bool,
+)
+
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
+
+
+def add_model_arguments(parser: argparse.ArgumentParser):
+    parser.add_argument(
+        "--num-encoder-layers",
+        type=int,
+        default=24,
+        help="Number of conformer encoder layers..",
+    )
+
+    parser.add_argument(
+        "--dim-feedforward",
+        type=int,
+        default=1536,
+        help="Feedforward dimension of the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=int,
+        default=8,
+        help="Number of attention heads in the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--encoder-dim",
+        type=int,
+        default=384,
+        help="Attention dimension in the conformer encoder layer.",
+    )
+
+    parser.add_argument(
+        "--decoder-dim",
+        type=int,
+        default=512,
+        help="Embedding dimension in the decoder model.",
+    )
+
+    parser.add_argument(
+        "--joiner-dim",
+        type=int,
+        default=512,
+        help="""Dimension used in the joiner model.
+        Outputs from the encoder and decoder model are projected
+        to this dimension before adding.
+        """,
+    )
+
+    parser.add_argument(
+        "--dynamic-chunk-training",
+        type=str2bool,
+        default=False,
+        help="""Whether to use dynamic_chunk_training, if you want a streaming
+        model, this requires to be True.
+        """,
+    )
+
+    parser.add_argument(
+        "--causal-convolution",
+        type=str2bool,
+        default=False,
+        help="""Whether to use causal convolution, this requires to be True when
+        using dynamic_chunk_training.
+        """,
+    )
+
+    parser.add_argument(
+        "--short-chunk-size",
+        type=int,
+        default=25,
+        help="""Chunk length of dynamic training, the chunk size would be either
+        max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
+        """,
+    )
+
+    parser.add_argument(
+        "--num-left-chunks",
+        type=int,
+        default=4,
+        help="How many left context can be seen in chunks when calculating attention.",
+    )
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=1,
+        help="""Resume training from this epoch. It should be positive.
+        If larger than 1, it will load checkpoint from
+        exp-dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--start-batch",
+        type=int,
+        default=0,
+        help="""If positive, --start-epoch is ignored and
+        it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless5/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--initial-lr",
+        type=float,
+        default=0.003,
+        help="The initial learning rate.  This value should not need to be changed.",
+    )
+
+    parser.add_argument(
+        "--lr-batches",
+        type=float,
+        default=5000,
+        help="""Number of steps that affects how rapidly the learning rate
+        decreases. We suggest not to change this.""",
+    )
+
+    parser.add_argument(
+        "--lr-epochs",
+        type=float,
+        default=6,
+        help="""Number of epochs that affects how rapidly the learning rate decreases.
+        """,
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+
+    parser.add_argument(
+        "--prune-range",
+        type=int,
+        default=5,
+        help="The prune range for rnnt loss, it means how many symbols(context)"
+        "we are using to compute the loss",
+    )
+
+    parser.add_argument(
+        "--lm-scale",
+        type=float,
+        default=0.25,
+        help="The scale to smooth the loss with lm "
+        "(output of prediction network) part.",
+    )
+
+    parser.add_argument(
+        "--am-scale",
+        type=float,
+        default=0.0,
+        help="The scale to smooth the loss with am (output of encoder network) part.",
+    )
+
+    parser.add_argument(
+        "--simple-loss-scale",
+        type=float,
+        default=0.5,
+        help="To get pruning ranges, we will calculate a simple version"
+        "loss(joiner is just addition), this simple loss also uses for"
+        "training (as a regularization item). We will scale the simple loss"
+        "with this parameter before adding to the final loss.",
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    parser.add_argument(
+        "--print-diagnostics",
+        type=str2bool,
+        default=False,
+        help="Accumulate stats on activations, print them and exit.",
+    )
+
+    parser.add_argument(
+        "--save-every-n",
+        type=int,
+        default=4000,
+        help="""Save checkpoint after processing this number of batches"
+        periodically. We save checkpoint to exp-dir/ whenever
+        params.batch_idx_train % save_every_n == 0. The checkpoint filename
+        has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
+        Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
+        end of each epoch where `xxx` is the epoch number counting from 0.
+        """,
+    )
+
+    parser.add_argument(
+        "--keep-last-k",
+        type=int,
+        default=30,
+        help="""Only keep this number of checkpoints on disk.
+        For instance, if it is 3, there are only 3 checkpoints
+        in the exp-dir with filenames `checkpoint-xxx.pt`.
+        It does not affect checkpoints with name `epoch-xxx.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--average-period",
+        type=int,
+        default=100,
+        help="""Update the averaged model, namely `model_avg`, after processing
+        this number of batches. `model_avg` is a separate version of model,
+        in which each floating-point parameter is the average of all the
+        parameters from the start of training. Each time we take the average,
+        we do: `model_avg = model * (average_period / batch_idx_train) +
+            model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=False,
+        help="Whether to use half precision training.",
+    )
+
+    parser.add_argument(
+        "--delay-penalty",
+        type=float,
+        default=0.0,
+        help="""A constant value used to penalize symbol delay,
+        to encourage streaming models to emit symbols earlier.
+        See https://github.com/k2-fsa/k2/issues/955 and
+        https://arxiv.org/pdf/2211.00490.pdf for more details.""",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - encoder_dim: Hidden dim for multi-head attention model.
+
+        - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+        - warm_step: The warm_step for Noam optimizer.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 50,
+            "reset_interval": 200,
+            "valid_interval": 3000,  # For the 100h subset, use 800
+            # parameters for conformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,
+            # parameters for Noam
+            "model_warm_step": 3000,  # arg given to model, not for lrate
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+    # TODO: We can add an option to switch between Conformer and Transformer
+    encoder = Conformer(
+        num_features=params.feature_dim,
+        subsampling_factor=params.subsampling_factor,
+        d_model=params.encoder_dim,
+        nhead=params.nhead,
+        dim_feedforward=params.dim_feedforward,
+        num_encoder_layers=params.num_encoder_layers,
+        dynamic_chunk_training=params.dynamic_chunk_training,
+        short_chunk_size=params.short_chunk_size,
+        num_left_chunks=params.num_left_chunks,
+        causal=params.causal_convolution,
+    )
+    return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+    decoder = Decoder(
+        vocab_size=params.vocab_size,
+        decoder_dim=params.decoder_dim,
+        blank_id=params.blank_id,
+        context_size=params.context_size,
+    )
+    return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+    joiner = Joiner(
+        encoder_dim=params.encoder_dim,
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+    encoder = get_encoder_model(params)
+    decoder = get_decoder_model(params)
+    joiner = get_joiner_model(params)
+
+    model = Transducer(
+        encoder=encoder,
+        decoder=decoder,
+        joiner=joiner,
+        encoder_dim=params.encoder_dim,
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return model
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    model_avg: nn.Module = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+) -> Optional[Dict[str, Any]]:
+    """Load checkpoint from file.
+
+    If params.start_batch is positive, it will load the checkpoint from
+    `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
+    params.start_epoch is larger than 1, it will load the checkpoint from
+    `params.start_epoch - 1`.
+
+    Apart from loading state dict for `model` and `optimizer` it also updates
+    `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The scheduler that we are using.
+    Returns:
+      Return a dict containing previously saved training info.
+    """
+    if params.start_batch > 0:
+        filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
+    elif params.start_epoch > 1:
+        filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    else:
+        return None
+
+    assert filename.is_file(), f"{filename} does not exist!"
+
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        model_avg=model_avg,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    if params.start_batch > 0:
+        if "cur_epoch" in saved_params:
+            params["start_epoch"] = saved_params["cur_epoch"]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    model_avg: Optional[nn.Module] = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+    sampler: Optional[CutSampler] = None,
+    scaler: Optional[GradScaler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer used in the training.
+      sampler:
+       The sampler for the training dataset.
+      scaler:
+        The scaler used for mix precision training.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        model_avg=model_avg,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        sampler=sampler,
+        scaler=scaler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    is_training: bool,
+    warmup: float = 1.0,
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute RNN-T loss given the model and its inputs.
+
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Conformer in our case.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+     warmup: a floating point value which increases throughout training;
+        values >= 1.0 are fully warmed up and have all modules present.
+    """
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    texts = batch["supervisions"]["text"]
+    y = sp.encode(texts, out_type=int)
+    y = k2.RaggedTensor(y).to(device)
+
+    with torch.set_grad_enabled(is_training):
+        simple_loss, pruned_loss = model(
+            x=feature,
+            x_lens=feature_lens,
+            y=y,
+            prune_range=params.prune_range,
+            am_scale=params.am_scale,
+            lm_scale=params.lm_scale,
+            warmup=warmup,
+            reduction="none",
+            delay_penalty=params.delay_penalty if warmup >= 2.0 else 0,
+        )
+        simple_loss_is_finite = torch.isfinite(simple_loss)
+        pruned_loss_is_finite = torch.isfinite(pruned_loss)
+        is_finite = simple_loss_is_finite & pruned_loss_is_finite
+        if not torch.all(is_finite):
+            logging.info(
+                "Not all losses are finite!\n"
+                f"simple_loss: {simple_loss}\n"
+                f"pruned_loss: {pruned_loss}"
+            )
+            display_and_save_batch(batch, params=params, sp=sp)
+            simple_loss = simple_loss[simple_loss_is_finite]
+            pruned_loss = pruned_loss[pruned_loss_is_finite]
+
+            # If the batch contains more than 10 utterances AND
+            # if either all simple_loss or pruned_loss is inf or nan,
+            # we stop the training process by raising an exception
+            if torch.all(~simple_loss_is_finite) or torch.all(~pruned_loss_is_finite):
+                raise ValueError(
+                    "There are too many utterances in this batch "
+                    "leading to inf or nan losses."
+                )
+
+        simple_loss = simple_loss.sum()
+        pruned_loss = pruned_loss.sum()
+        # after the main warmup step, we keep pruned_loss_scale small
+        # for the same amount of time (model_warm_step), to avoid
+        # overwhelming the simple_loss and causing it to diverge,
+        # in case it had not fully learned the alignment yet.
+        pruned_loss_scale = (
+            0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
+        )
+        loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
+
+    assert loss.requires_grad == is_training
+
+    info = MetricsTracker()
+    with warnings.catch_warnings():
+        warnings.simplefilter("ignore")
+        # info["frames"] is an approximate number for two reasons:
+        # (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2
+        # (2) If some utterances in the batch lead to inf/nan loss, they
+        #     are filtered out.
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+    # `utt_duration` and `utt_pad_proportion` would be normalized by `utterances`  # noqa
+    info["utterances"] = feature.size(0)
+    # averaged input duration in frames over utterances
+    info["utt_duration"] = feature_lens.sum().item()
+    # averaged padding proportion over utterances
+    info["utt_pad_proportion"] = (
+        ((feature.size(1) - feature_lens) / feature.size(1)).sum().item()
+    )
+
+    # Note: We use reduction=sum while computing the loss.
+    info["loss"] = loss.detach().cpu().item()
+    info["simple_loss"] = simple_loss.detach().cpu().item()
+    info["pruned_loss"] = pruned_loss.detach().cpu().item()
+
+    return loss, info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(valid_dl):
+        loss, loss_info = compute_loss(
+            params=params,
+            model=model,
+            sp=sp,
+            batch=batch,
+            is_training=False,
+        )
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    optimizer: torch.optim.Optimizer,
+    scheduler: LRSchedulerType,
+    sp: spm.SentencePieceProcessor,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    scaler: GradScaler,
+    model_avg: Optional[nn.Module] = None,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+    rank: int = 0,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      scheduler:
+        The learning rate scheduler, we call step() every step.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      scaler:
+        The scaler used for mix precision training.
+      model_avg:
+        The stored model averaged from the start of training.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+      rank:
+        The rank of the node in DDP training. If no DDP is used, it should
+        be set to 0.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(train_dl):
+        params.batch_idx_train += 1
+        batch_size = len(batch["supervisions"]["text"])
+
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, loss_info = compute_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    batch=batch,
+                    is_training=True,
+                    warmup=(params.batch_idx_train / params.model_warm_step),
+                )
+            # summary stats
+            tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+            # NOTE: We use reduction==sum and loss is computed over utterances
+            # in the batch and there is no normalization to it so far.
+            scaler.scale(loss).backward()
+            scheduler.step_batch(params.batch_idx_train)
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+        except:  # noqa
+            display_and_save_batch(batch, params=params, sp=sp)
+            raise
+
+        if params.print_diagnostics and batch_idx == 5:
+            return
+
+        if (
+            rank == 0
+            and params.batch_idx_train > 0
+            and params.batch_idx_train % params.average_period == 0
+        ):
+            update_averaged_model(
+                params=params,
+                model_cur=model,
+                model_avg=model_avg,
+            )
+
+        if (
+            params.batch_idx_train > 0
+            and params.batch_idx_train % params.save_every_n == 0
+        ):
+            save_checkpoint_with_global_batch_idx(
+                out_dir=params.exp_dir,
+                global_batch_idx=params.batch_idx_train,
+                model=model,
+                model_avg=model_avg,
+                params=params,
+                optimizer=optimizer,
+                scheduler=scheduler,
+                sampler=train_dl.sampler,
+                scaler=scaler,
+                rank=rank,
+            )
+            remove_checkpoints(
+                out_dir=params.exp_dir,
+                topk=params.keep_last_k,
+                rank=rank,
+            )
+
+        if batch_idx % params.log_interval == 0:
+            cur_lr = scheduler.get_last_lr()[0]
+            logging.info(
+                f"Epoch {params.cur_epoch}, "
+                f"batch {batch_idx}, loss[{loss_info}], "
+                f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+                f"lr: {cur_lr:.2e}"
+            )
+
+            if tb_writer is not None:
+                tb_writer.add_scalar(
+                    "train/learning_rate", cur_lr, params.batch_idx_train
+                )
+
+                loss_info.write_summary(
+                    tb_writer, "train/current_", params.batch_idx_train
+                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
+
+        if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+            logging.info("Computing validation loss")
+            valid_info = compute_validation_loss(
+                params=params,
+                model=model,
+                sp=sp,
+                valid_dl=valid_dl,
+                world_size=world_size,
+            )
+            model.train()
+            logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+            if tb_writer is not None:
+                valid_info.write_summary(
+                    tb_writer, "train/valid_", params.batch_idx_train
+                )
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+
+    fix_random_seed(params.seed)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    if params.dynamic_chunk_training:
+        assert (
+            params.causal_convolution
+        ), "dynamic_chunk_training requires causal convolution"
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    assert params.save_every_n >= params.average_period
+    model_avg: Optional[nn.Module] = None
+    if rank == 0:
+        # model_avg is only used with rank 0
+        model_avg = copy.deepcopy(model)
+
+    assert params.start_epoch > 0, params.start_epoch
+    checkpoints = load_checkpoint_if_available(
+        params=params, model=model, model_avg=model_avg
+    )
+
+    model.to(device)
+    if world_size > 1:
+        logging.info("Using DDP")
+        model = DDP(model, device_ids=[rank])
+
+    optimizer = Eve(model.parameters(), lr=params.initial_lr)
+
+    scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
+
+    if checkpoints and "optimizer" in checkpoints:
+        logging.info("Loading optimizer state dict")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    if (
+        checkpoints
+        and "scheduler" in checkpoints
+        and checkpoints["scheduler"] is not None
+    ):
+        logging.info("Loading scheduler state dict")
+        scheduler.load_state_dict(checkpoints["scheduler"])
+
+    if params.print_diagnostics:
+        opts = diagnostics.TensorDiagnosticOptions(
+            2**22
+        )  # allow 4 megabytes per sub-module
+        diagnostic = diagnostics.attach_diagnostics(model, opts)
+
+    xbmu_amdo = Xbmu_AmdoAsrDataModule(args)
+
+    train_cuts = xbmu_amdo.train_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 20 seconds
+        #
+        # Caution: There is a reason to select 20.0 here. Please see
+        # ../local/display_manifest_statistics.py
+        #
+        # You should use ../local/display_manifest_statistics.py to get
+        # an utterance duration distribution for your dataset to select
+        # the threshold
+        if c.duration < 1.0 or c.duration > 20.0:
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
+            )
+            return False
+
+        # In pruned RNN-T, we require that T >= S
+        # where T is the number of feature frames after subsampling
+        # and S is the number of tokens in the utterance
+
+        # In ./conformer.py, the conv module uses the following expression
+        # for subsampling
+        T = ((c.num_frames - 1) // 2 - 1) // 2
+        tokens = sp.encode(c.supervisions[0].text, out_type=str)
+
+        if T < len(tokens):
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. "
+                f"Number of frames (before subsampling): {c.num_frames}. "
+                f"Number of frames (after subsampling): {T}. "
+                f"Text: {c.supervisions[0].text}. "
+                f"Tokens: {tokens}. "
+                f"Number of tokens: {len(tokens)}"
+            )
+            return False
+
+        return True
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+    if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
+        # We only load the sampler's state dict when it loads a checkpoint
+        # saved in the middle of an epoch
+        sampler_state_dict = checkpoints["sampler"]
+    else:
+        sampler_state_dict = None
+
+    train_dl = xbmu_amdo.train_dataloaders(
+        train_cuts, sampler_state_dict=sampler_state_dict
+    )
+
+    valid_cuts = xbmu_amdo.valid_cuts()
+    valid_dl = xbmu_amdo.valid_dataloaders(valid_cuts)
+
+    if params.start_batch <= 0 and not params.print_diagnostics:
+        scan_pessimistic_batches_for_oom(
+            model=model,
+            train_dl=train_dl,
+            optimizer=optimizer,
+            sp=sp,
+            params=params,
+            warmup=0.0 if params.start_epoch == 1 else 1.0,
+        )
+
+    scaler = GradScaler(enabled=params.use_fp16)
+    if checkpoints and "grad_scaler" in checkpoints:
+        logging.info("Loading grad scaler state dict")
+        scaler.load_state_dict(checkpoints["grad_scaler"])
+
+    for epoch in range(params.start_epoch, params.num_epochs + 1):
+        scheduler.step_epoch(epoch - 1)
+        fix_random_seed(params.seed + epoch - 1)
+        train_dl.sampler.set_epoch(epoch - 1)
+
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sp=sp,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            scaler=scaler,
+            tb_writer=tb_writer,
+            world_size=world_size,
+            rank=rank,
+        )
+
+        if params.print_diagnostics:
+            diagnostic.print_diagnostics()
+            break
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sampler=train_dl.sampler,
+            scaler=scaler,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+    model: Union[nn.Module, DDP],
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    sp: spm.SentencePieceProcessor,
+    params: AttributeDict,
+    warmup: float,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 1 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, _ = compute_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    batch=batch,
+                    is_training=True,
+                    warmup=warmup,
+                )
+            loss.backward()
+            optimizer.step()
+            optimizer.zero_grad()
+        except Exception as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            display_and_save_batch(batch, params=params, sp=sp)
+            raise
+
+
+def main():
+    parser = get_parser()
+    Xbmu_AmdoAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/__init__.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/asr_datamodule.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/asr_datamodule.py
new file mode 120000
index 000000000..c473a600a
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/asr_datamodule.py
@@ -0,0 +1 @@
+../pruned_transducer_stateless5/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/beam_search.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/beam_search.py
new file mode 120000
index 000000000..e24eca39f
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decode.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decode.py
new file mode 100755
index 000000000..ace792e13
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decode.py
@@ -0,0 +1,843 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
+#                                                 Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method greedy_search
+
+(2) beam search (not recommended)
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method beam_search \
+    --beam-size 4
+
+(3) modified beam search
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method modified_beam_search \
+    --beam-size 4
+
+(4) fast beam search (one best)
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64
+
+(5) fast beam search (nbest)
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64 \
+    --num-paths 200 \
+    --nbest-scale 0.5
+
+(6) fast beam search (nbest oracle WER)
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest_oracle \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64 \
+    --num-paths 200 \
+    --nbest-scale 0.5
+
+(7) fast beam search (with LG)
+./pruned_transducer_stateless7/decode.py \
+    --epoch 28 \
+    --avg 15 \
+    --exp-dir ./pruned_transducer_stateless7/exp \
+    --max-duration 600 \
+    --decoding-method fast_beam_search_nbest_LG \
+    --beam 20.0 \
+    --max-contexts 8 \
+    --max-states 64
+"""
+
+
+import argparse
+import logging
+import math
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import Xbmu_AmdoAsrDataModule
+from beam_search import (
+    beam_search,
+    fast_beam_search_nbest,
+    fast_beam_search_nbest_LG,
+    fast_beam_search_nbest_oracle,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+)
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.checkpoint import (
+    average_checkpoints,
+    average_checkpoints_with_averaged_model,
+    find_checkpoints,
+    load_checkpoint,
+)
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+    AttributeDict,
+    setup_logger,
+    store_transcripts,
+    str2bool,
+    write_error_stats,
+)
+
+LOG_EPS = math.log(1e-10)
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=30,
+        help="""It specifies the checkpoint to use for decoding.
+        Note: Epoch counts from 1.
+        You can specify --avg to use more checkpoints for model averaging.""",
+    )
+
+    parser.add_argument(
+        "--iter",
+        type=int,
+        default=0,
+        help="""If positive, --epoch is ignored and it
+        will use the checkpoint exp_dir/checkpoint-iter.pt.
+        You can specify --avg to use more checkpoints for model averaging.
+        """,
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=9,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch' and '--iter'",
+    )
+
+    parser.add_argument(
+        "--use-averaged-model",
+        type=str2bool,
+        default=True,
+        help="Whether to load averaged model. Currently it only supports "
+        "using --epoch. If True, it would decode with the averaged model "
+        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
+        "Actually only the models with epoch number of `epoch-avg` and "
+        "`epoch` are loaded for averaging. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless7/exp",
+        help="The experiment dir",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--lang-dir",
+        type=Path,
+        default="data/lang_bpe_500",
+        help="The lang dir containing word table and LG graph",
+    )
+
+    parser.add_argument(
+        "--decoding-method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+          - fast_beam_search_nbest
+          - fast_beam_search_nbest_oracle
+          - fast_beam_search_nbest_LG
+        If you use fast_beam_search_nbest_LG, you have to specify
+        `--lang-dir`, which should contain `LG.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --decoding-method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=20.0,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --decoding-method is fast_beam_search,
+        fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle
+        """,
+    )
+
+    parser.add_argument(
+        "--ngram-lm-scale",
+        type=float,
+        default=0.01,
+        help="""
+        Used only when --decoding_method is fast_beam_search_nbest_LG.
+        It specifies the scale for n-gram LM scores.
+        """,
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=8,
+        help="""Used only when --decoding-method is
+        fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=64,
+        help="""Used only when --decoding-method is
+        fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
+        and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame.
+        Used only when --decoding_method is greedy_search""",
+    )
+
+    parser.add_argument(
+        "--num-paths",
+        type=int,
+        default=200,
+        help="""Number of paths for nbest decoding.
+        Used only when the decoding method is fast_beam_search_nbest,
+        fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--nbest-scale",
+        type=float,
+        default=0.5,
+        help="""Scale applied to lattice scores when computing nbest paths.
+        Used only when the decoding method is fast_beam_search_nbest,
+        fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
+    )
+
+    parser.add_argument(
+        "--simulate-streaming",
+        type=str2bool,
+        default=False,
+        help="""Whether to simulate streaming in decoding, this is a good way to
+        test a streaming model.
+        """,
+    )
+
+    parser.add_argument(
+        "--decode-chunk-size",
+        type=int,
+        default=16,
+        help="The chunk size for decoding (in frames after subsampling)",
+    )
+
+    parser.add_argument(
+        "--left-context",
+        type=int,
+        default=64,
+        help="left context can be seen during decoding (in frames after subsampling)",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def decode_one_batch(
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    word_table: Optional[k2.SymbolTable] = None,
+    decoding_graph: Optional[k2.Fsa] = None,
+) -> Dict[str, List[List[str]]]:
+    """Decode one batch and return the result in a dict. The dict has the
+    following format:
+
+        - key: It indicates the setting used for decoding. For example,
+               if greedy_search is used, it would be "greedy_search"
+               If beam search with a beam size of 7 is used, it would be
+               "beam_7"
+        - value: It contains the decoding result. `len(value)` equals to
+                 batch size. `value[i]` is the decoding result for the i-th
+                 utterance in the given batch.
+    Args:
+      params:
+        It's the return value of :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      batch:
+        It is the return value from iterating
+        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+        for the format of the `batch`.
+      word_table:
+        The word symbol table.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
+        only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
+        fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
+    Returns:
+      Return the decoding result. See above description for the format of
+      the returned dict.
+    """
+    device = next(model.parameters()).device
+    feature = batch["inputs"]
+    assert feature.ndim == 3
+
+    feature = feature.to(device)
+    # at entry, feature is (N, T, C)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    if params.simulate_streaming:
+        feature_lens += params.left_context
+        feature = torch.nn.functional.pad(
+            feature,
+            pad=(0, 0, 0, params.left_context),
+            value=LOG_EPS,
+        )
+        encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
+            x=feature,
+            x_lens=feature_lens,
+            chunk_size=params.decode_chunk_size,
+            left_context=params.left_context,
+            simulate_streaming=True,
+        )
+    else:
+        encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
+
+    hyps = []
+
+    if params.decoding_method == "fast_beam_search":
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "fast_beam_search_nbest_LG":
+        hyp_tokens = fast_beam_search_nbest_LG(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in hyp_tokens:
+            hyps.append([word_table[i] for i in hyp])
+    elif params.decoding_method == "fast_beam_search_nbest":
+        hyp_tokens = fast_beam_search_nbest(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "fast_beam_search_nbest_oracle":
+        hyp_tokens = fast_beam_search_nbest_oracle(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+            num_paths=params.num_paths,
+            ref_texts=sp.encode(supervisions["text"]),
+            nbest_scale=params.nbest_scale,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.decoding_method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        batch_size = encoder_out.size(0)
+
+        for i in range(batch_size):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.decoding_method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.decoding_method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(
+                    f"Unsupported decoding method: {params.decoding_method}"
+                )
+            hyps.append(sp.decode(hyp).split())
+
+    if params.decoding_method == "greedy_search":
+        return {"greedy_search": hyps}
+    elif "fast_beam_search" in params.decoding_method:
+        key = f"beam_{params.beam}_"
+        key += f"max_contexts_{params.max_contexts}_"
+        key += f"max_states_{params.max_states}"
+        if "nbest" in params.decoding_method:
+            key += f"_num_paths_{params.num_paths}_"
+            key += f"nbest_scale_{params.nbest_scale}"
+            if "LG" in params.decoding_method:
+                key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
+
+        return {key: hyps}
+    else:
+        return {f"beam_size_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+    dl: torch.utils.data.DataLoader,
+    params: AttributeDict,
+    model: nn.Module,
+    sp: spm.SentencePieceProcessor,
+    word_table: Optional[k2.SymbolTable] = None,
+    decoding_graph: Optional[k2.Fsa] = None,
+) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
+    """Decode dataset.
+
+    Args:
+      dl:
+        PyTorch's dataloader containing the dataset to decode.
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The neural model.
+      sp:
+        The BPE model.
+      word_table:
+        The word symbol table.
+      decoding_graph:
+        The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
+        only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
+        fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
+    Returns:
+      Return a dict, whose key may be "greedy_search" if greedy search
+      is used, or it may be "beam_7" if beam size of 7 is used.
+      Its value is a list of tuples. Each tuple contains two elements:
+      The first is the reference transcript, and the second is the
+      predicted result.
+    """
+    num_cuts = 0
+
+    try:
+        num_batches = len(dl)
+    except TypeError:
+        num_batches = "?"
+
+    if params.decoding_method == "greedy_search":
+        log_interval = 50
+    else:
+        log_interval = 20
+
+    results = defaultdict(list)
+    for batch_idx, batch in enumerate(dl):
+        texts = batch["supervisions"]["text"]
+        cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
+
+        hyps_dict = decode_one_batch(
+            params=params,
+            model=model,
+            sp=sp,
+            decoding_graph=decoding_graph,
+            word_table=word_table,
+            batch=batch,
+        )
+
+        for name, hyps in hyps_dict.items():
+            this_batch = []
+            assert len(hyps) == len(texts)
+            for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
+                ref_words = ref_text.split()
+                this_batch.append((cut_id, ref_words, hyp_words))
+
+            results[name].extend(this_batch)
+
+        num_cuts += len(texts)
+
+        if batch_idx % log_interval == 0:
+            batch_str = f"{batch_idx}/{num_batches}"
+
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
+    return results
+
+
+def save_results(
+    params: AttributeDict,
+    test_set_name: str,
+    results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
+):
+    test_set_wers = dict()
+    for key, results in results_dict.items():
+        recog_path = (
+            params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        results = sorted(results)
+        store_transcripts(filename=recog_path, texts=results)
+        logging.info(f"The transcripts are stored in {recog_path}")
+
+        # The following prints out WERs, per-word error statistics and aligned
+        # ref/hyp pairs.
+        errs_filename = (
+            params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+        )
+        with open(errs_filename, "w") as f:
+            wer = write_error_stats(
+                f, f"{test_set_name}-{key}", results, enable_log=True
+            )
+            test_set_wers[key] = wer
+
+        logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+    errs_info = (
+        params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+    )
+    with open(errs_info, "w") as f:
+        print("settings\tWER", file=f)
+        for key, val in test_set_wers:
+            print("{}\t{}".format(key, val), file=f)
+
+    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+    note = "\tbest for {}".format(test_set_name)
+    for key, val in test_set_wers:
+        s += "{}\t{}{}\n".format(key, val, note)
+        note = ""
+    logging.info(s)
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    Xbmu_AmdoAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = get_params()
+    params.update(vars(args))
+
+    assert params.decoding_method in (
+        "greedy_search",
+        "beam_search",
+        "fast_beam_search",
+        "fast_beam_search_nbest",
+        "fast_beam_search_nbest_LG",
+        "fast_beam_search_nbest_oracle",
+        "modified_beam_search",
+    )
+    params.res_dir = params.exp_dir / params.decoding_method
+
+    if params.iter > 0:
+        params.suffix = f"iter-{params.iter}-avg-{params.avg}"
+    else:
+        params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+
+    if params.simulate_streaming:
+        params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
+        params.suffix += f"-left-context-{params.left_context}"
+
+    if "fast_beam_search" in params.decoding_method:
+        params.suffix += f"-beam-{params.beam}"
+        params.suffix += f"-max-contexts-{params.max_contexts}"
+        params.suffix += f"-max-states-{params.max_states}"
+        if "nbest" in params.decoding_method:
+            params.suffix += f"-nbest-scale-{params.nbest_scale}"
+            params.suffix += f"-num-paths-{params.num_paths}"
+            if "LG" in params.decoding_method:
+                params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
+    elif "beam_search" in params.decoding_method:
+        params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
+    else:
+        params.suffix += f"-context-{params.context_size}"
+        params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+    if params.use_averaged_model:
+        params.suffix += "-use-averaged-model"
+
+    setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+    logging.info("Decoding started")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  and  are defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    if params.simulate_streaming:
+        assert (
+            params.causal_convolution
+        ), "Decoding in streaming requires causal convolution"
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    if not params.use_averaged_model:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+        elif params.avg == 1:
+            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        else:
+            start = params.epoch - params.avg + 1
+            filenames = []
+            for i in range(start, params.epoch + 1):
+                if i >= 1:
+                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+            logging.info(f"averaging {filenames}")
+            model.to(device)
+            model.load_state_dict(average_checkpoints(filenames, device=device))
+    else:
+        if params.iter > 0:
+            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
+                : params.avg + 1
+            ]
+            if len(filenames) == 0:
+                raise ValueError(
+                    f"No checkpoints found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            elif len(filenames) < params.avg + 1:
+                raise ValueError(
+                    f"Not enough checkpoints ({len(filenames)}) found for"
+                    f" --iter {params.iter}, --avg {params.avg}"
+                )
+            filename_start = filenames[-1]
+            filename_end = filenames[0]
+            logging.info(
+                "Calculating the averaged model over iteration checkpoints"
+                f" from {filename_start} (excluded) to {filename_end}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+        else:
+            assert params.avg > 0, params.avg
+            start = params.epoch - params.avg
+            assert start >= 1, start
+            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
+            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
+            logging.info(
+                f"Calculating the averaged model over epoch range from "
+                f"{start} (excluded) to {params.epoch}"
+            )
+            model.to(device)
+            model.load_state_dict(
+                average_checkpoints_with_averaged_model(
+                    filename_start=filename_start,
+                    filename_end=filename_end,
+                    device=device,
+                )
+            )
+
+    model.to(device)
+    model.eval()
+
+    if "fast_beam_search" in params.decoding_method:
+        if params.decoding_method == "fast_beam_search_nbest_LG":
+            lexicon = Lexicon(params.lang_dir)
+            word_table = lexicon.word_table
+            lg_filename = params.lang_dir / "LG.pt"
+            logging.info(f"Loading {lg_filename}")
+            decoding_graph = k2.Fsa.from_dict(
+                torch.load(lg_filename, map_location=device)
+            )
+            decoding_graph.scores *= params.ngram_lm_scale
+        else:
+            word_table = None
+            decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+    else:
+        decoding_graph = None
+        word_table = None
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    # we need cut ids to display recognition results.
+    args.return_cuts = True
+    xbmu_amdo = Xbmu_AmdoAsrDataModule(args)
+
+    test_cuts = xbmu_amdo.test_cuts()
+
+    test_dl = xbmu_amdo.test_dataloaders(test_cuts)
+
+    test_sets = [
+        "test",
+    ]
+    test_dl = [
+        test_dl,
+    ]
+
+    for test_set, test_dl in zip(test_sets, test_dl):
+        results_dict = decode_dataset(
+            dl=test_dl,
+            params=params,
+            model=model,
+            sp=sp,
+            word_table=word_table,
+            decoding_graph=decoding_graph,
+        )
+
+        save_results(
+            params=params,
+            test_set_name=test_set,
+            results_dict=results_dict,
+        )
+
+    logging.info("Done!")
+
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decoder.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decoder.py
new file mode 120000
index 000000000..8283d8c5a
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/decoder.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/decoder.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/encoder_interface.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/encoder_interface.py
new file mode 120000
index 000000000..f58253127
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/encoder_interface.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/export.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/export.py
new file mode 120000
index 000000000..2713792e6
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/export.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/export.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/jit_pretrained.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/jit_pretrained.py
new file mode 120000
index 000000000..a44034e34
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/jit_pretrained.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/jit_pretrained.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/joiner.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/joiner.py
new file mode 120000
index 000000000..0f0c3c90a
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/joiner.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/joiner.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/model.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/model.py
new file mode 120000
index 000000000..0d8bc665b
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/model.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/optim.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/optim.py
new file mode 120000
index 000000000..8a05abb5f
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/optim.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/optim.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/pretrained.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/pretrained.py
new file mode 100755
index 000000000..d05bafcfb
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/pretrained.py
@@ -0,0 +1,355 @@
+#!/usr/bin/env python3
+# Copyright      2021  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+This script loads a checkpoint and uses it to decode waves.
+You can generate the checkpoint with the following command:
+
+./pruned_transducer_stateless7/export.py \
+  --exp-dir ./pruned_transducer_stateless7/exp \
+  --bpe-model data/lang_bpe_500/bpe.model \
+  --epoch 20 \
+  --avg 10
+
+Usage of this script:
+
+(1) greedy search
+./pruned_transducer_stateless7/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method greedy_search \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(2) beam search
+./pruned_transducer_stateless7/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(3) modified beam search
+./pruned_transducer_stateless7/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method modified_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+(4) fast beam search
+./pruned_transducer_stateless7/pretrained.py \
+    --checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
+    --bpe-model ./data/lang_bpe_500/bpe.model \
+    --method fast_beam_search \
+    --beam-size 4 \
+    /path/to/foo.wav \
+    /path/to/bar.wav
+
+You can also use `./pruned_transducer_stateless7/exp/epoch-xx.pt`.
+
+Note: ./pruned_transducer_stateless7/exp/pretrained.pt is generated by
+./pruned_transducer_stateless7/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import k2
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from beam_search import (
+    beam_search,
+    fast_beam_search_one_best,
+    greedy_search,
+    greedy_search_batch,
+    modified_beam_search,
+)
+from torch.nn.utils.rnn import pad_sequence
+from train import add_model_arguments, get_params, get_transducer_model
+
+from icefall.utils import str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--checkpoint",
+        type=str,
+        required=True,
+        help="Path to the checkpoint. "
+        "The checkpoint is assumed to be saved by "
+        "icefall.checkpoint.save_checkpoint().",
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        help="""Path to bpe.model.""",
+    )
+
+    parser.add_argument(
+        "--method",
+        type=str,
+        default="greedy_search",
+        help="""Possible values are:
+          - greedy_search
+          - beam_search
+          - modified_beam_search
+          - fast_beam_search
+        """,
+    )
+
+    parser.add_argument(
+        "sound_files",
+        type=str,
+        nargs="+",
+        help="The input sound file(s) to transcribe. "
+        "Supported formats are those supported by torchaudio.load(). "
+        "For example, wav and flac are supported. "
+        "The sample rate has to be 16kHz.",
+    )
+
+    parser.add_argument(
+        "--sample-rate",
+        type=int,
+        default=16000,
+        help="The sample rate of the input sound file",
+    )
+
+    parser.add_argument(
+        "--beam-size",
+        type=int,
+        default=4,
+        help="""An integer indicating how many candidates we will keep for each
+        frame. Used only when --method is beam_search or
+        modified_beam_search.""",
+    )
+
+    parser.add_argument(
+        "--beam",
+        type=float,
+        default=4,
+        help="""A floating point value to calculate the cutoff score during beam
+        search (i.e., `cutoff = max-score - beam`), which is the same as the
+        `beam` in Kaldi.
+        Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-contexts",
+        type=int,
+        default=4,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--max-states",
+        type=int,
+        default=8,
+        help="""Used only when --method is fast_beam_search""",
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+    parser.add_argument(
+        "--max-sym-per-frame",
+        type=int,
+        default=1,
+        help="""Maximum number of symbols per frame. Used only when
+        --method is greedy_search.
+        """,
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def read_sound_files(
+    filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+    """Read a list of sound files into a list 1-D float32 torch tensors.
+    Args:
+      filenames:
+        A list of sound filenames.
+      expected_sample_rate:
+        The expected sample rate of the sound files.
+    Returns:
+      Return a list of 1-D float32 torch tensors.
+    """
+    ans = []
+    for f in filenames:
+        wave, sample_rate = torchaudio.load(f)
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
+        # We use only the first channel
+        ans.append(wave[0])
+    return ans
+
+
+@torch.no_grad()
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+
+    params = get_params()
+
+    params.update(vars(args))
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.unk_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(f"{params}")
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("Creating model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    checkpoint = torch.load(args.checkpoint, map_location="cpu")
+    model.load_state_dict(checkpoint["model"], strict=False)
+    model.to(device)
+    model.eval()
+    model.device = device
+
+    logging.info("Constructing Fbank computer")
+    opts = kaldifeat.FbankOptions()
+    opts.device = device
+    opts.frame_opts.dither = 0
+    opts.frame_opts.snip_edges = False
+    opts.frame_opts.samp_freq = params.sample_rate
+    opts.mel_opts.num_bins = params.feature_dim
+
+    fbank = kaldifeat.Fbank(opts)
+
+    logging.info(f"Reading sound files: {params.sound_files}")
+    waves = read_sound_files(
+        filenames=params.sound_files, expected_sample_rate=params.sample_rate
+    )
+    waves = [w.to(device) for w in waves]
+
+    logging.info("Decoding started")
+    features = fbank(waves)
+    feature_lengths = [f.size(0) for f in features]
+
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
+
+    feature_lengths = torch.tensor(feature_lengths, device=device)
+
+    encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
+
+    num_waves = encoder_out.size(0)
+    hyps = []
+    msg = f"Using {params.method}"
+    if params.method == "beam_search":
+        msg += f" with beam size {params.beam_size}"
+    logging.info(msg)
+
+    if params.method == "fast_beam_search":
+        decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
+        hyp_tokens = fast_beam_search_one_best(
+            model=model,
+            decoding_graph=decoding_graph,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam,
+            max_contexts=params.max_contexts,
+            max_states=params.max_states,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "modified_beam_search":
+        hyp_tokens = modified_beam_search(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+            beam=params.beam_size,
+        )
+
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
+        hyp_tokens = greedy_search_batch(
+            model=model,
+            encoder_out=encoder_out,
+            encoder_out_lens=encoder_out_lens,
+        )
+        for hyp in sp.decode(hyp_tokens):
+            hyps.append(hyp.split())
+    else:
+        for i in range(num_waves):
+            # fmt: off
+            encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+            # fmt: on
+            if params.method == "greedy_search":
+                hyp = greedy_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    max_sym_per_frame=params.max_sym_per_frame,
+                )
+            elif params.method == "beam_search":
+                hyp = beam_search(
+                    model=model,
+                    encoder_out=encoder_out_i,
+                    beam=params.beam_size,
+                )
+            else:
+                raise ValueError(f"Unsupported method: {params.method}")
+
+            hyps.append(sp.decode(hyp).split())
+
+    s = "\n"
+    for filename, hyp in zip(params.sound_files, hyps):
+        words = " ".join(hyp)
+        s += f"{filename}:\n{words}\n\n"
+    logging.info(s)
+
+    logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling.py
new file mode 120000
index 000000000..5f9be9fe0
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling_converter.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling_converter.py
new file mode 120000
index 000000000..f9960e5c6
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/scaling_converter.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/test_model.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/test_model.py
new file mode 120000
index 000000000..7ceac5d10
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/test_model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/test_model.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/train.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/train.py
new file mode 100755
index 000000000..1332bafd8
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/train.py
@@ -0,0 +1,1224 @@
+#!/usr/bin/env python3
+# Copyright    2021-2022  Xiaomi Corp.        (authors: Fangjun Kuang,
+#                                                       Wei Kang,
+#                                                       Mingshuang Luo,)
+#                                                       Zengwei Yao)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./pruned_transducer_stateless7/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --exp-dir pruned_transducer_stateless7/exp \
+  --full-libri 1 \
+  --max-duration 300
+
+# For mix precision training:
+
+./pruned_transducer_stateless7/train.py \
+  --world-size 4 \
+  --num-epochs 30 \
+  --start-epoch 1 \
+  --use-fp16 1 \
+  --exp-dir pruned_transducer_stateless7/exp \
+  --full-libri 1 \
+  --max-duration 550
+
+"""
+
+
+import argparse
+import copy
+import logging
+import warnings
+from pathlib import Path
+from shutil import copyfile
+from typing import Any, Dict, Optional, Tuple, Union
+
+import k2
+import optim
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import Xbmu_AmdoAsrDataModule
+from decoder import Decoder
+from joiner import Joiner
+from lhotse.cut import Cut
+from lhotse.dataset.sampling.base import CutSampler
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from optim import Eden, ScaledAdam
+from torch import Tensor
+from torch.cuda.amp import GradScaler
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.utils.tensorboard import SummaryWriter
+from zipformer import Zipformer
+
+from icefall import diagnostics
+from icefall.checkpoint import load_checkpoint, remove_checkpoints
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.checkpoint import (
+    save_checkpoint_with_global_batch_idx,
+    update_averaged_model,
+)
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.hooks import register_inf_check_hooks
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
+
+
+def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
+    if isinstance(model, DDP):
+        # get underlying nn.Module
+        model = model.module
+    for module in model.modules():
+        if hasattr(module, "batch_count"):
+            module.batch_count = batch_count
+
+
+def add_model_arguments(parser: argparse.ArgumentParser):
+    parser.add_argument(
+        "--num-encoder-layers",
+        type=str,
+        default="2,4,3,2,4",
+        help="Number of zipformer encoder layers, comma separated.",
+    )
+
+    parser.add_argument(
+        "--feedforward-dims",
+        type=str,
+        default="1024,1024,2048,2048,1024",
+        help="Feedforward dimension of the zipformer encoder layers, comma separated.",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=str,
+        default="8,8,8,8,8",
+        help="Number of attention heads in the zipformer encoder layers.",
+    )
+
+    parser.add_argument(
+        "--encoder-dims",
+        type=str,
+        default="384,384,384,384,384",
+        help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated",
+    )
+
+    parser.add_argument(
+        "--attention-dims",
+        type=str,
+        default="192,192,192,192,192",
+        help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated;
+        not the same as embedding dimension.""",
+    )
+
+    parser.add_argument(
+        "--encoder-unmasked-dims",
+        type=str,
+        default="256,256,256,256,256",
+        help="Unmasked dimensions in the encoders, relates to augmentation during training.  "
+        "Must be <= each of encoder_dims.  Empirically, less than 256 seems to make performance "
+        " worse.",
+    )
+
+    parser.add_argument(
+        "--zipformer-downsampling-factors",
+        type=str,
+        default="1,2,4,8,2",
+        help="Downsampling factor for each stack of encoder layers.",
+    )
+
+    parser.add_argument(
+        "--cnn-module-kernels",
+        type=str,
+        default="31,31,31,31,31",
+        help="Sizes of kernels in convolution modules",
+    )
+
+    parser.add_argument(
+        "--decoder-dim",
+        type=int,
+        default=512,
+        help="Embedding dimension in the decoder model.",
+    )
+
+    parser.add_argument(
+        "--joiner-dim",
+        type=int,
+        default=512,
+        help="""Dimension used in the joiner model.
+        Outputs from the encoder and decoder model are projected
+        to this dimension before adding.
+        """,
+    )
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=1,
+        help="""Resume training from this epoch. It should be positive.
+        If larger than 1, it will load checkpoint from
+        exp-dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--start-batch",
+        type=int,
+        default=0,
+        help="""If positive, --start-epoch is ignored and
+        it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="pruned_transducer_stateless7/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--bpe-model",
+        type=str,
+        default="data/lang_bpe_500/bpe.model",
+        help="Path to the BPE model",
+    )
+
+    parser.add_argument(
+        "--base-lr", type=float, default=0.05, help="The base learning rate."
+    )
+
+    parser.add_argument(
+        "--lr-batches",
+        type=float,
+        default=5000,
+        help="""Number of steps that affects how rapidly the learning rate
+        decreases. We suggest not to change this.""",
+    )
+
+    parser.add_argument(
+        "--lr-epochs",
+        type=float,
+        default=3.5,
+        help="""Number of epochs that affects how rapidly the learning rate decreases.
+        """,
+    )
+
+    parser.add_argument(
+        "--context-size",
+        type=int,
+        default=2,
+        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
+    )
+
+    parser.add_argument(
+        "--prune-range",
+        type=int,
+        default=5,
+        help="The prune range for rnnt loss, it means how many symbols(context)"
+        "we are using to compute the loss",
+    )
+
+    parser.add_argument(
+        "--lm-scale",
+        type=float,
+        default=0.25,
+        help="The scale to smooth the loss with lm "
+        "(output of prediction network) part.",
+    )
+
+    parser.add_argument(
+        "--am-scale",
+        type=float,
+        default=0.0,
+        help="The scale to smooth the loss with am (output of encoder network) part.",
+    )
+
+    parser.add_argument(
+        "--simple-loss-scale",
+        type=float,
+        default=0.5,
+        help="To get pruning ranges, we will calculate a simple version"
+        "loss(joiner is just addition), this simple loss also uses for"
+        "training (as a regularization item). We will scale the simple loss"
+        "with this parameter before adding to the final loss.",
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    parser.add_argument(
+        "--print-diagnostics",
+        type=str2bool,
+        default=False,
+        help="Accumulate stats on activations, print them and exit.",
+    )
+
+    parser.add_argument(
+        "--inf-check",
+        type=str2bool,
+        default=False,
+        help="Add hooks to check for infinite module outputs and gradients.",
+    )
+
+    parser.add_argument(
+        "--save-every-n",
+        type=int,
+        default=2000,
+        help="""Save checkpoint after processing this number of batches"
+        periodically. We save checkpoint to exp-dir/ whenever
+        params.batch_idx_train % save_every_n == 0. The checkpoint filename
+        has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
+        Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
+        end of each epoch where `xxx` is the epoch number counting from 0.
+        """,
+    )
+
+    parser.add_argument(
+        "--keep-last-k",
+        type=int,
+        default=30,
+        help="""Only keep this number of checkpoints on disk.
+        For instance, if it is 3, there are only 3 checkpoints
+        in the exp-dir with filenames `checkpoint-xxx.pt`.
+        It does not affect checkpoints with name `epoch-xxx.pt`.
+        """,
+    )
+
+    parser.add_argument(
+        "--average-period",
+        type=int,
+        default=200,
+        help="""Update the averaged model, namely `model_avg`, after processing
+        this number of batches. `model_avg` is a separate version of model,
+        in which each floating-point parameter is the average of all the
+        parameters from the start of training. Each time we take the average,
+        we do: `model_avg = model * (average_period / batch_idx_train) +
+            model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=False,
+        help="Whether to use half precision training.",
+    )
+
+    add_model_arguments(parser)
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters.
+
+    All training related parameters that are not passed from the commandline
+    are saved in the variable `params`.
+
+    Commandline options are merged into `params` after they are parsed, so
+    you can also access them via `params`.
+
+    Explanation of options saved in `params`:
+
+        - best_train_loss: Best training loss so far. It is used to select
+                           the model that has the lowest training loss. It is
+                           updated during the training.
+
+        - best_valid_loss: Best validation loss so far. It is used to select
+                           the model that has the lowest validation loss. It is
+                           updated during the training.
+
+        - best_train_epoch: It is the epoch that has the best training loss.
+
+        - best_valid_epoch: It is the epoch that has the best validation loss.
+
+        - batch_idx_train: Used to writing statistics to tensorboard. It
+                           contains number of batches trained so far across
+                           epochs.
+
+        - log_interval:  Print training loss if batch_idx % log_interval` is 0
+
+        - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+        - valid_interval:  Run validation if batch_idx % valid_interval is 0
+
+        - feature_dim: The model input dim. It has to match the one used
+                       in computing features.
+
+        - subsampling_factor:  The subsampling factor for the model.
+
+        - encoder_dim: Hidden dim for multi-head attention model.
+
+        - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+        - warm_step: The warmup period that dictates the decay of the
+              scale on "simple" (un-pruned) loss.
+    """
+    params = AttributeDict(
+        {
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 50,
+            "reset_interval": 200,
+            "valid_interval": 3000,  # For the 100h subset, use 800
+            # parameters for zipformer
+            "feature_dim": 80,
+            "subsampling_factor": 4,  # not passed in, this is fixed.
+            "warm_step": 2000,
+            "env_info": get_env_info(),
+        }
+    )
+
+    return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+    # TODO: We can add an option to switch between Zipformer and Transformer
+    def to_int_tuple(s: str):
+        return tuple(map(int, s.split(",")))
+
+    encoder = Zipformer(
+        num_features=params.feature_dim,
+        output_downsampling_factor=2,
+        zipformer_downsampling_factors=to_int_tuple(
+            params.zipformer_downsampling_factors
+        ),
+        encoder_dims=to_int_tuple(params.encoder_dims),
+        attention_dim=to_int_tuple(params.attention_dims),
+        encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims),
+        nhead=to_int_tuple(params.nhead),
+        feedforward_dim=to_int_tuple(params.feedforward_dims),
+        cnn_module_kernels=to_int_tuple(params.cnn_module_kernels),
+        num_encoder_layers=to_int_tuple(params.num_encoder_layers),
+    )
+    return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+    decoder = Decoder(
+        vocab_size=params.vocab_size,
+        decoder_dim=params.decoder_dim,
+        blank_id=params.blank_id,
+        context_size=params.context_size,
+    )
+    return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+    joiner = Joiner(
+        encoder_dim=int(params.encoder_dims.split(",")[-1]),
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+    encoder = get_encoder_model(params)
+    decoder = get_decoder_model(params)
+    joiner = get_joiner_model(params)
+
+    model = Transducer(
+        encoder=encoder,
+        decoder=decoder,
+        joiner=joiner,
+        encoder_dim=int(params.encoder_dims.split(",")[-1]),
+        decoder_dim=params.decoder_dim,
+        joiner_dim=params.joiner_dim,
+        vocab_size=params.vocab_size,
+    )
+    return model
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    model_avg: nn.Module = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+) -> Optional[Dict[str, Any]]:
+    """Load checkpoint from file.
+
+    If params.start_batch is positive, it will load the checkpoint from
+    `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
+    params.start_epoch is larger than 1, it will load the checkpoint from
+    `params.start_epoch - 1`.
+
+    Apart from loading state dict for `model` and `optimizer` it also updates
+    `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The scheduler that we are using.
+    Returns:
+      Return a dict containing previously saved training info.
+    """
+    if params.start_batch > 0:
+        filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
+    elif params.start_epoch > 1:
+        filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    else:
+        return None
+
+    assert filename.is_file(), f"{filename} does not exist!"
+
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        model_avg=model_avg,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    if params.start_batch > 0:
+        if "cur_epoch" in saved_params:
+            params["start_epoch"] = saved_params["cur_epoch"]
+
+        if "cur_batch_idx" in saved_params:
+            params["cur_batch_idx"] = saved_params["cur_batch_idx"]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    model_avg: Optional[nn.Module] = None,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[LRSchedulerType] = None,
+    sampler: Optional[CutSampler] = None,
+    scaler: Optional[GradScaler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+      model_avg:
+        The stored model averaged from the start of training.
+      optimizer:
+        The optimizer used in the training.
+      sampler:
+       The sampler for the training dataset.
+      scaler:
+        The scaler used for mix precision training.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        model_avg=model_avg,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        sampler=sampler,
+        scaler=scaler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    batch: dict,
+    is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+    """
+    Compute transducer loss given the model and its inputs.
+
+    Args:
+      params:
+        Parameters for training. See :func:`get_params`.
+      model:
+        The model for training. It is an instance of Zipformer in our case.
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      is_training:
+        True for training. False for validation. When it is True, this
+        function enables autograd during computation; when it is False, it
+        disables autograd.
+     warmup: a floating point value which increases throughout training;
+        values >= 1.0 are fully warmed up and have all modules present.
+    """
+    device = model.device if isinstance(model, DDP) else next(model.parameters()).device
+    feature = batch["inputs"]
+    # at entry, feature is (N, T, C)
+    assert feature.ndim == 3
+    feature = feature.to(device)
+
+    supervisions = batch["supervisions"]
+    feature_lens = supervisions["num_frames"].to(device)
+
+    batch_idx_train = params.batch_idx_train
+    warm_step = params.warm_step
+
+    texts = batch["supervisions"]["text"]
+    y = sp.encode(texts, out_type=int)
+    y = k2.RaggedTensor(y).to(device)
+
+    with torch.set_grad_enabled(is_training):
+        simple_loss, pruned_loss = model(
+            x=feature,
+            x_lens=feature_lens,
+            y=y,
+            prune_range=params.prune_range,
+            am_scale=params.am_scale,
+            lm_scale=params.lm_scale,
+        )
+
+        s = params.simple_loss_scale
+        # take down the scale on the simple loss from 1.0 at the start
+        # to params.simple_loss scale by warm_step.
+        simple_loss_scale = (
+            s
+            if batch_idx_train >= warm_step
+            else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
+        )
+        pruned_loss_scale = (
+            1.0
+            if batch_idx_train >= warm_step
+            else 0.1 + 0.9 * (batch_idx_train / warm_step)
+        )
+
+        loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
+
+    assert loss.requires_grad == is_training
+
+    info = MetricsTracker()
+    with warnings.catch_warnings():
+        warnings.simplefilter("ignore")
+        info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+    # Note: We use reduction=sum while computing the loss.
+    info["loss"] = loss.detach().cpu().item()
+    info["simple_loss"] = simple_loss.detach().cpu().item()
+    info["pruned_loss"] = pruned_loss.detach().cpu().item()
+
+    return loss, info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    sp: spm.SentencePieceProcessor,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process."""
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(valid_dl):
+        loss, loss_info = compute_loss(
+            params=params,
+            model=model,
+            sp=sp,
+            batch=batch,
+            is_training=False,
+        )
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: Union[nn.Module, DDP],
+    optimizer: torch.optim.Optimizer,
+    scheduler: LRSchedulerType,
+    sp: spm.SentencePieceProcessor,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    scaler: GradScaler,
+    model_avg: Optional[nn.Module] = None,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+    rank: int = 0,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all frames is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      scheduler:
+        The learning rate scheduler, we call step() every step.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      scaler:
+        The scaler used for mix precision training.
+      model_avg:
+        The stored model averaged from the start of training.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+      rank:
+        The rank of the node in DDP training. If no DDP is used, it should
+        be set to 0.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    cur_batch_idx = params.get("cur_batch_idx", 0)
+
+    for batch_idx, batch in enumerate(train_dl):
+        if batch_idx < cur_batch_idx:
+            continue
+        cur_batch_idx = batch_idx
+
+        params.batch_idx_train += 1
+        batch_size = len(batch["supervisions"]["text"])
+
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, loss_info = compute_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    batch=batch,
+                    is_training=True,
+                )
+            # summary stats
+            tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+            # NOTE: We use reduction==sum and loss is computed over utterances
+            # in the batch and there is no normalization to it so far.
+            scaler.scale(loss).backward()
+            set_batch_count(model, params.batch_idx_train)
+            scheduler.step_batch(params.batch_idx_train)
+
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+        except:  # noqa
+            display_and_save_batch(batch, params=params, sp=sp)
+            raise
+
+        if params.print_diagnostics and batch_idx == 5:
+            return
+
+        if (
+            rank == 0
+            and params.batch_idx_train > 0
+            and params.batch_idx_train % params.average_period == 0
+        ):
+            update_averaged_model(
+                params=params,
+                model_cur=model,
+                model_avg=model_avg,
+            )
+
+        if (
+            params.batch_idx_train > 0
+            and params.batch_idx_train % params.save_every_n == 0
+        ):
+            params.cur_batch_idx = batch_idx
+            save_checkpoint_with_global_batch_idx(
+                out_dir=params.exp_dir,
+                global_batch_idx=params.batch_idx_train,
+                model=model,
+                model_avg=model_avg,
+                params=params,
+                optimizer=optimizer,
+                scheduler=scheduler,
+                sampler=train_dl.sampler,
+                scaler=scaler,
+                rank=rank,
+            )
+            del params.cur_batch_idx
+            remove_checkpoints(
+                out_dir=params.exp_dir,
+                topk=params.keep_last_k,
+                rank=rank,
+            )
+
+        if batch_idx % 100 == 0 and params.use_fp16:
+            # If the grad scale was less than 1, try increasing it.    The _growth_interval
+            # of the grad scaler is configurable, but we can't configure it to have different
+            # behavior depending on the current grad scale.
+            cur_grad_scale = scaler._scale.item()
+            if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
+                scaler.update(cur_grad_scale * 2.0)
+            if cur_grad_scale < 0.01:
+                logging.warning(f"Grad scale is small: {cur_grad_scale}")
+            if cur_grad_scale < 1.0e-05:
+                raise RuntimeError(
+                    f"grad_scale is too small, exiting: {cur_grad_scale}"
+                )
+
+        if batch_idx % params.log_interval == 0:
+            cur_lr = scheduler.get_last_lr()[0]
+            cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
+
+            logging.info(
+                f"Epoch {params.cur_epoch}, "
+                f"batch {batch_idx}, loss[{loss_info}], "
+                f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+                f"lr: {cur_lr:.2e}, "
+                + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
+            )
+
+            if tb_writer is not None:
+                tb_writer.add_scalar(
+                    "train/learning_rate", cur_lr, params.batch_idx_train
+                )
+
+                loss_info.write_summary(
+                    tb_writer, "train/current_", params.batch_idx_train
+                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
+                if params.use_fp16:
+                    tb_writer.add_scalar(
+                        "train/grad_scale",
+                        cur_grad_scale,
+                        params.batch_idx_train,
+                    )
+
+        if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
+            logging.info("Computing validation loss")
+            valid_info = compute_validation_loss(
+                params=params,
+                model=model,
+                sp=sp,
+                valid_dl=valid_dl,
+                world_size=world_size,
+            )
+            model.train()
+            logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+            logging.info(
+                f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
+            )
+            if tb_writer is not None:
+                valid_info.write_summary(
+                    tb_writer, "train/valid_", params.batch_idx_train
+                )
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+
+    fix_random_seed(params.seed)
+    if world_size > 1:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+    logging.info(f"Device: {device}")
+
+    sp = spm.SentencePieceProcessor()
+    sp.load(params.bpe_model)
+
+    #  is defined in local/train_bpe_model.py
+    params.blank_id = sp.piece_to_id("")
+    params.vocab_size = sp.get_piece_size()
+
+    logging.info(params)
+
+    logging.info("About to create model")
+    model = get_transducer_model(params)
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    assert params.save_every_n >= params.average_period
+    model_avg: Optional[nn.Module] = None
+    if rank == 0:
+        # model_avg is only used with rank 0
+        model_avg = copy.deepcopy(model).to(torch.float64)
+
+    assert params.start_epoch > 0, params.start_epoch
+    checkpoints = load_checkpoint_if_available(
+        params=params, model=model, model_avg=model_avg
+    )
+
+    model.to(device)
+    if world_size > 1:
+        logging.info("Using DDP")
+        model = DDP(model, device_ids=[rank], find_unused_parameters=True)
+
+    optimizer = ScaledAdam(model.parameters(), lr=params.base_lr, clipping_scale=2.0)
+
+    scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
+
+    if checkpoints and "optimizer" in checkpoints:
+        logging.info("Loading optimizer state dict")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    if (
+        checkpoints
+        and "scheduler" in checkpoints
+        and checkpoints["scheduler"] is not None
+    ):
+        logging.info("Loading scheduler state dict")
+        scheduler.load_state_dict(checkpoints["scheduler"])
+
+    if params.print_diagnostics:
+        opts = diagnostics.TensorDiagnosticOptions(
+            2**22
+        )  # allow 4 megabytes per sub-module
+        diagnostic = diagnostics.attach_diagnostics(model, opts)
+
+    if params.inf_check:
+        register_inf_check_hooks(model)
+
+    xbmu_amdo = Xbmu_AmdoAsrDataModule(args)
+
+    train_cuts = xbmu_amdo.train_cuts()
+
+    def remove_short_and_long_utt(c: Cut):
+        # Keep only utterances with duration between 1 second and 20 seconds
+        #
+        # Caution: There is a reason to select 20.0 here. Please see
+        # ../local/display_manifest_statistics.py
+        #
+        # You should use ../local/display_manifest_statistics.py to get
+        # an utterance duration distribution for your dataset to select
+        # the threshold
+        if c.duration < 1.0 or c.duration > 20.0:
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
+            )
+            return False
+
+        # In pruned RNN-T, we require that T >= S
+        # where T is the number of feature frames after subsampling
+        # and S is the number of tokens in the utterance
+
+        # In ./zipformer.py, the conv module uses the following expression
+        # for subsampling
+        T = ((c.num_frames - 7) // 2 + 1) // 2
+        tokens = sp.encode(c.supervisions[0].text, out_type=str)
+
+        if T < len(tokens):
+            logging.warning(
+                f"Exclude cut with ID {c.id} from training. "
+                f"Number of frames (before subsampling): {c.num_frames}. "
+                f"Number of frames (after subsampling): {T}. "
+                f"Text: {c.supervisions[0].text}. "
+                f"Tokens: {tokens}. "
+                f"Number of tokens: {len(tokens)}"
+            )
+            return False
+
+        return True
+
+    train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+    if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
+        # We only load the sampler's state dict when it loads a checkpoint
+        # saved in the middle of an epoch
+        sampler_state_dict = checkpoints["sampler"]
+    else:
+        sampler_state_dict = None
+
+    train_dl = xbmu_amdo.train_dataloaders(
+        train_cuts, sampler_state_dict=sampler_state_dict
+    )
+
+    valid_cuts = xbmu_amdo.valid_cuts()
+    valid_dl = xbmu_amdo.valid_dataloaders(valid_cuts)
+
+    if not params.print_diagnostics:
+        scan_pessimistic_batches_for_oom(
+            model=model,
+            train_dl=train_dl,
+            optimizer=optimizer,
+            sp=sp,
+            params=params,
+        )
+
+    scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
+    if checkpoints and "grad_scaler" in checkpoints:
+        logging.info("Loading grad scaler state dict")
+        scaler.load_state_dict(checkpoints["grad_scaler"])
+
+    for epoch in range(params.start_epoch, params.num_epochs + 1):
+        scheduler.step_epoch(epoch - 1)
+        fix_random_seed(params.seed + epoch - 1)
+        train_dl.sampler.set_epoch(epoch - 1)
+
+        if tb_writer is not None:
+            tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sp=sp,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            scaler=scaler,
+            tb_writer=tb_writer,
+            world_size=world_size,
+            rank=rank,
+        )
+
+        if params.print_diagnostics:
+            diagnostic.print_diagnostics()
+            break
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            model_avg=model_avg,
+            optimizer=optimizer,
+            scheduler=scheduler,
+            sampler=train_dl.sampler,
+            scaler=scaler,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if world_size > 1:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def display_and_save_batch(
+    batch: dict,
+    params: AttributeDict,
+    sp: spm.SentencePieceProcessor,
+) -> None:
+    """Display the batch statistics and save the batch into disk.
+
+    Args:
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      params:
+        Parameters for training. See :func:`get_params`.
+      sp:
+        The BPE model.
+    """
+    from lhotse.utils import uuid4
+
+    filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
+    logging.info(f"Saving batch to {filename}")
+    torch.save(batch, filename)
+
+    supervisions = batch["supervisions"]
+    features = batch["inputs"]
+
+    logging.info(f"features shape: {features.shape}")
+
+    y = sp.encode(supervisions["text"], out_type=int)
+    num_tokens = sum(len(i) for i in y)
+    logging.info(f"num tokens: {num_tokens}")
+
+
+def scan_pessimistic_batches_for_oom(
+    model: Union[nn.Module, DDP],
+    train_dl: torch.utils.data.DataLoader,
+    optimizer: torch.optim.Optimizer,
+    sp: spm.SentencePieceProcessor,
+    params: AttributeDict,
+):
+    from lhotse.dataset import find_pessimistic_batches
+
+    logging.info(
+        "Sanity check -- see if any of the batches in epoch 1 would cause OOM."
+    )
+    batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+    for criterion, cuts in batches.items():
+        batch = train_dl.dataset[cuts]
+        try:
+            with torch.cuda.amp.autocast(enabled=params.use_fp16):
+                loss, _ = compute_loss(
+                    params=params,
+                    model=model,
+                    sp=sp,
+                    batch=batch,
+                    is_training=True,
+                )
+            loss.backward()
+            optimizer.zero_grad()
+        except Exception as e:
+            if "CUDA out of memory" in str(e):
+                logging.error(
+                    "Your GPU ran out of memory with the current "
+                    "max_duration setting. We recommend decreasing "
+                    "max_duration and trying again.\n"
+                    f"Failing criterion: {criterion} "
+                    f"(={crit_values[criterion]}) ..."
+                )
+            display_and_save_batch(batch, params=params, sp=sp)
+            raise
+        logging.info(
+            f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
+        )
+
+
+def main():
+    parser = get_parser()
+    Xbmu_AmdoAsrDataModule.add_arguments(parser)
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/zipformer.py b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/zipformer.py
new file mode 120000
index 000000000..f2f66041e
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/pruned_transducer_stateless7/zipformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/pruned_transducer_stateless7/zipformer.py
\ No newline at end of file
diff --git a/egs/xbmu_amdo31/ASR/shared b/egs/xbmu_amdo31/ASR/shared
new file mode 120000
index 000000000..4c5e91438
--- /dev/null
+++ b/egs/xbmu_amdo31/ASR/shared
@@ -0,0 +1 @@
+../../../icefall/shared/
\ No newline at end of file
diff --git a/egs/yesno/ASR/README.md b/egs/yesno/ASR/README.md
index 7257bad9a..38b491fc6 100644
--- a/egs/yesno/ASR/README.md
+++ b/egs/yesno/ASR/README.md
@@ -10,5 +10,5 @@ get the following WER:
 ```
 
 Please refer to
-
+
 for detailed instructions.
diff --git a/egs/yesno/ASR/local/compile_hlg.py b/egs/yesno/ASR/local/compile_hlg.py
index f83be05cf..7234ca929 100755
--- a/egs/yesno/ASR/local/compile_hlg.py
+++ b/egs/yesno/ASR/local/compile_hlg.py
@@ -128,9 +128,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/yesno/ASR/local/compute_fbank_yesno.py b/egs/yesno/ASR/local/compute_fbank_yesno.py
index 9a4e8a36f..75d95df68 100755
--- a/egs/yesno/ASR/local/compute_fbank_yesno.py
+++ b/egs/yesno/ASR/local/compute_fbank_yesno.py
@@ -54,9 +54,7 @@ def compute_fbank_yesno():
         dataset_parts,
     )
 
-    extractor = Fbank(
-        FbankConfig(sampling_rate=8000, num_mel_bins=num_mel_bins)
-    )
+    extractor = Fbank(FbankConfig(sampling_rate=8000, num_mel_bins=num_mel_bins))
 
     with get_executor() as ex:  # Initialize the executor only once.
         for partition, m in manifests.items():
@@ -71,9 +69,7 @@ def compute_fbank_yesno():
             )
             if "train" in partition:
                 cut_set = (
-                    cut_set
-                    + cut_set.perturb_speed(0.9)
-                    + cut_set.perturb_speed(1.1)
+                    cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
                 )
             cut_set = cut_set.compute_and_store_features(
                 extractor=extractor,
@@ -87,9 +83,7 @@ def compute_fbank_yesno():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
 
diff --git a/egs/yesno/ASR/prepare.sh b/egs/yesno/ASR/prepare.sh
index 8fcee0290..d4ef8d601 100755
--- a/egs/yesno/ASR/prepare.sh
+++ b/egs/yesno/ASR/prepare.sh
@@ -1,5 +1,8 @@
 #!/usr/bin/env bash
 
+# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
+export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
+
 set -eou pipefail
 
 stage=-1
diff --git a/egs/yesno/ASR/tdnn/asr_datamodule.py b/egs/yesno/ASR/tdnn/asr_datamodule.py
index 85e5f1358..3c1682fa1 100644
--- a/egs/yesno/ASR/tdnn/asr_datamodule.py
+++ b/egs/yesno/ASR/tdnn/asr_datamodule.py
@@ -121,7 +121,7 @@ class YesNoAsrDataModule(DataModule):
         group.add_argument(
             "--shuffle",
             type=str2bool,
-            default=True,
+            default=False,
             help="When enabled (=default), the examples will be "
             "shuffled for each epoch.",
         )
diff --git a/egs/yesno/ASR/tdnn/decode.py b/egs/yesno/ASR/tdnn/decode.py
index 9d4ab4b61..d5efb41df 100755
--- a/egs/yesno/ASR/tdnn/decode.py
+++ b/egs/yesno/ASR/tdnn/decode.py
@@ -201,9 +201,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -274,9 +272,7 @@ def main():
 
     logging.info(f"device: {device}")
 
-    HLG = k2.Fsa.from_dict(
-        torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
-    )
+    HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu"))
     HLG = HLG.to(device)
     assert HLG.requires_grad is False
 
@@ -297,9 +293,7 @@ def main():
 
     if params.export:
         logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
-        torch.save(
-            {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
-        )
+        torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
         return
 
     model.to(device)
@@ -317,9 +311,7 @@ def main():
         word_table=lexicon.word_table,
     )
 
-    save_results(
-        exp_dir=params.exp_dir, test_set_name="test_set", results=results
-    )
+    save_results(exp_dir=params.exp_dir, test_set_name="test_set", results=results)
 
     logging.info("Done!")
 
diff --git a/egs/yesno/ASR/tdnn/pretrained.py b/egs/yesno/ASR/tdnn/pretrained.py
index 14220be19..65be77db1 100755
--- a/egs/yesno/ASR/tdnn/pretrained.py
+++ b/egs/yesno/ASR/tdnn/pretrained.py
@@ -53,9 +53,7 @@ def get_parser():
         help="Path to words.txt",
     )
 
-    parser.add_argument(
-        "--HLG", type=str, required=True, help="Path to HLG.pt."
-    )
+    parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
 
     parser.add_argument(
         "sound_files",
@@ -101,10 +99,9 @@ def read_sound_files(
     ans = []
     for f in filenames:
         wave, sample_rate = torchaudio.load(f)
-        assert sample_rate == expected_sample_rate, (
-            f"expected sample rate: {expected_sample_rate}. "
-            f"Given: {sample_rate}"
-        )
+        assert (
+            sample_rate == expected_sample_rate
+        ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
         # We use only the first channel
         ans.append(wave[0])
     return ans
@@ -159,9 +156,7 @@ def main():
     logging.info("Decoding started")
     features = fbank(waves)
 
-    features = pad_sequence(
-        features, batch_first=True, padding_value=math.log(1e-10)
-    )
+    features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
 
     # Note: We don't use key padding mask for attention during decoding
     with torch.no_grad():
@@ -201,9 +196,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/egs/yesno/ASR/tdnn/train.py b/egs/yesno/ASR/tdnn/train.py
index f32a27f35..335493491 100755
--- a/egs/yesno/ASR/tdnn/train.py
+++ b/egs/yesno/ASR/tdnn/train.py
@@ -430,9 +430,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             valid_info = compute_validation_loss(
diff --git a/egs/yesno/ASR/transducer/decode.py b/egs/yesno/ASR/transducer/decode.py
index 6714180db..7f13e417a 100755
--- a/egs/yesno/ASR/transducer/decode.py
+++ b/egs/yesno/ASR/transducer/decode.py
@@ -116,9 +116,7 @@ def decode_one_batch(
     # at entry, feature is (N, T, C)
     feature_lens = batch["supervisions"]["num_frames"].to(device)
 
-    encoder_out, encoder_out_lens = model.encoder(
-        x=feature, x_lens=feature_lens
-    )
+    encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
 
     hyps = []
     batch_size = encoder_out.size(0)
@@ -186,9 +184,7 @@ def decode_dataset(
         if batch_idx % 100 == 0:
             batch_str = f"{batch_idx}/{num_batches}"
 
-            logging.info(
-                f"batch {batch_str}, cuts processed until now is {num_cuts}"
-            )
+            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
     return results
 
 
@@ -303,9 +299,7 @@ def main():
         model=model,
     )
 
-    save_results(
-        exp_dir=params.exp_dir, test_set_name="test_set", results=results
-    )
+    save_results(exp_dir=params.exp_dir, test_set_name="test_set", results=results)
 
     logging.info("Done!")
 
diff --git a/egs/yesno/ASR/transducer/train.py b/egs/yesno/ASR/transducer/train.py
index deb92107d..88866ae81 100755
--- a/egs/yesno/ASR/transducer/train.py
+++ b/egs/yesno/ASR/transducer/train.py
@@ -430,9 +430,7 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             valid_info = compute_validation_loss(
diff --git a/icefall/__init__.py b/icefall/__init__.py
index 27ad74213..82d21706c 100644
--- a/icefall/__init__.py
+++ b/icefall/__init__.py
@@ -68,3 +68,5 @@ from .utils import (
 )
 
 from .ngram_lm import NgramLm, NgramLmStateCost
+
+from .lm_wrapper import LmScorer
diff --git a/icefall/bpe_graph_compiler.py b/icefall/bpe_graph_compiler.py
index e76b7ea32..d9659c2dd 100644
--- a/icefall/bpe_graph_compiler.py
+++ b/icefall/bpe_graph_compiler.py
@@ -83,11 +83,12 @@ class BpeCtcTrainingGraphCompiler(object):
         Args:
           piece_ids:
             It is a list-of-list integer IDs.
-         modified:
+          modified:
            See :func:`k2.ctc_graph` for its meaning.
         Return:
           Return an FsaVec, which is the result of composing a
           CTC topology with linear FSAs constructed from the given
           piece IDs.
         """
-        return k2.ctc_graph(piece_ids, modified=modified, device=self.device)
+        graph = k2.ctc_graph(piece_ids, modified=modified, device=self.device)
+        return graph
diff --git a/icefall/char_graph_compiler.py b/icefall/char_graph_compiler.py
index 235160e14..5f9571d42 100644
--- a/icefall/char_graph_compiler.py
+++ b/icefall/char_graph_compiler.py
@@ -71,9 +71,7 @@ class CharCtcTrainingGraphCompiler(object):
         for text in texts:
             text = re.sub(whitespace, "", text)
             sub_ids = [
-                self.token_table[txt]
-                if txt in self.token_table
-                else self.oov_id
+                self.token_table[txt] if txt in self.token_table else self.oov_id
                 for txt in text
             ]
             ids.append(sub_ids)
@@ -96,9 +94,7 @@ class CharCtcTrainingGraphCompiler(object):
         for text in texts:
             text = text.split("/")
             sub_ids = [
-                self.token_table[txt]
-                if txt in self.token_table
-                else self.oov_id
+                self.token_table[txt] if txt in self.token_table else self.oov_id
                 for txt in text
             ]
             ids.append(sub_ids)
@@ -121,4 +117,5 @@ class CharCtcTrainingGraphCompiler(object):
           CTC topology with linear FSAs constructed from the given
           piece IDs.
         """
-        return k2.ctc_graph(token_ids, modified=modified, device=self.device)
+        graph = k2.ctc_graph(token_ids, modified=modified, device=self.device)
+        return graph
diff --git a/icefall/checkpoint.py b/icefall/checkpoint.py
index 170586455..c83c56a53 100644
--- a/icefall/checkpoint.py
+++ b/icefall/checkpoint.py
@@ -86,7 +86,7 @@ def save_checkpoint(
     }
 
     if model_avg is not None:
-        checkpoint["model_avg"] = model_avg.state_dict()
+        checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
 
     if params:
         for k, v in params.items():
@@ -292,15 +292,19 @@ def find_checkpoints(out_dir: Path, iteration: int = 0) -> List[str]:
     """
     checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt"))
     pattern = re.compile(r"checkpoint-([0-9]+).pt")
-    iter_checkpoints = [
-        (int(pattern.search(c).group(1)), c) for c in checkpoints
-    ]
+    iter_checkpoints = []
+    for c in checkpoints:
+        result = pattern.search(c)
+        if not result:
+            logging.warn(f"Invalid checkpoint filename {c}")
+            continue
+
+        iter_checkpoints.append((int(result.group(1)), c))
+
     # iter_checkpoints is a list of tuples. Each tuple contains
     # two elements: (iteration_number, checkpoint-iteration_number.pt)
 
-    iter_checkpoints = sorted(
-        iter_checkpoints, reverse=True, key=lambda x: x[0]
-    )
+    iter_checkpoints = sorted(iter_checkpoints, reverse=True, key=lambda x: x[0])
     if iteration >= 0:
         ans = [ic[1] for ic in iter_checkpoints if ic[0] >= iteration]
     else:
@@ -466,8 +470,8 @@ def average_state_dict(
 
     uniqued_names = list(uniqued.values())
     for k in uniqued_names:
-        state_dict_1[k] *= weight_1
-        state_dict_1[k] += (
-            state_dict_2[k].to(device=state_dict_1[k].device) * weight_2
-        )
-        state_dict_1[k] *= scaling_factor
+        v = state_dict_1[k]
+        if torch.is_floating_point(v):
+            v *= weight_1
+            v += state_dict_2[k].to(device=state_dict_1[k].device) * weight_2
+            v *= scaling_factor
diff --git a/icefall/decode.py b/icefall/decode.py
index f04ee368c..23f9fb9b3 100644
--- a/icefall/decode.py
+++ b/icefall/decode.py
@@ -334,13 +334,9 @@ class Nbest(object):
         if hasattr(lattice, "aux_labels"):
             # delete token IDs as it is not needed
             del word_fsa.aux_labels
-            word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(
-                word_fsa
-            )
+            word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
         else:
-            word_fsa_with_epsilon_loops = k2.linear_fst_with_self_loops(
-                word_fsa
-            )
+            word_fsa_with_epsilon_loops = k2.linear_fst_with_self_loops(word_fsa)
 
         path_to_utt_map = self.shape.row_ids(1)
 
@@ -370,9 +366,7 @@ class Nbest(object):
         # path_lattice has word IDs as labels and token IDs as aux_labels
         path_lattice = k2.top_sort(k2.connect(path_lattice))
 
-        one_best = k2.shortest_path(
-            path_lattice, use_double_scores=use_double_scores
-        )
+        one_best = k2.shortest_path(path_lattice, use_double_scores=use_double_scores)
 
         one_best = k2.invert(one_best)
         # Now one_best has token IDs as labels and word IDs as aux_labels
@@ -442,9 +436,7 @@ class Nbest(object):
         scores_shape = self.fsa.arcs.shape().remove_axis(1)
         # scores_shape has axes [path][arc]
 
-        ragged_scores = k2.RaggedTensor(
-            scores_shape, self.fsa.scores.contiguous()
-        )
+        ragged_scores = k2.RaggedTensor(scores_shape, self.fsa.scores.contiguous())
 
         tot_scores = ragged_scores.sum()
 
@@ -459,7 +451,8 @@ class Nbest(object):
 def one_best_decoding(
     lattice: k2.Fsa,
     use_double_scores: bool = True,
-) -> k2.Fsa:
+    lm_scale_list: Optional[List[float]] = None,
+) -> Union[k2.Fsa, Dict[str, k2.Fsa]]:
     """Get the best path from a lattice.
 
     Args:
@@ -468,11 +461,24 @@ def one_best_decoding(
       use_double_scores:
         True to use double precision floating point in the computation.
         False to use single precision.
+      lm_scale_list:
+        A list of floats representing LM score scales.
     Return:
       An FsaVec containing linear paths.
     """
-    best_path = k2.shortest_path(lattice, use_double_scores=use_double_scores)
-    return best_path
+    if lm_scale_list is not None:
+        ans = dict()
+        saved_am_scores = lattice.scores - lattice.lm_scores
+        for lm_scale in lm_scale_list:
+            am_scores = saved_am_scores / lm_scale
+            lattice.scores = am_scores + lattice.lm_scores
+
+            best_path = k2.shortest_path(lattice, use_double_scores=use_double_scores)
+            key = f"lm_scale_{lm_scale}"
+            ans[key] = best_path
+        return ans
+
+    return k2.shortest_path(lattice, use_double_scores=use_double_scores)
 
 
 def nbest_decoding(
@@ -678,9 +684,7 @@ def rescore_with_n_best_list(
             logging.info(f"num_paths before decreasing: {num_paths}")
             num_paths = int(num_paths / 2)
             if loop_count >= max_loop_count or num_paths <= 0:
-                logging.info(
-                    "Return None as the resulting lattice is too large."
-                )
+                logging.info("Return None as the resulting lattice is too large.")
                 return None
             logging.info(
                 "This OOM is not an error. You can ignore it. "
@@ -711,6 +715,107 @@ def rescore_with_n_best_list(
     return ans
 
 
+def nbest_rescore_with_LM(
+    lattice: k2.Fsa,
+    LM: k2.Fsa,
+    num_paths: int,
+    lm_scale_list: List[float],
+    nbest_scale: float = 1.0,
+    use_double_scores: bool = True,
+) -> Dict[str, k2.Fsa]:
+    """Rescore an n-best list with an n-gram LM.
+    The path with the maximum score is used as the decoding output.
+
+    Args:
+      lattice:
+        An FsaVec with axes [utt][state][arc]. It must have the following
+        attributes: ``aux_labels`` and ``lm_scores``. They are both token
+        IDs.
+      LM:
+        An FsaVec containing only a single FSA. It is one of follows:
+        - LG, L is lexicon and G is word-level n-gram LM.
+        - G, token-level n-gram LM.
+      num_paths:
+        Size of nbest list.
+      lm_scale_list:
+        A list of floats representing LM score scales.
+      nbest_scale:
+        Scale to be applied to ``lattice.score`` when sampling paths
+        using ``k2.random_paths``.
+      use_double_scores:
+        True to use double precision during computation. False to use
+        single precision.
+    Returns:
+      A dict of FsaVec, whose key is an lm_scale and the value is the
+      best decoding path for each utterance in the lattice.
+    """
+    device = lattice.device
+
+    assert len(lattice.shape) == 3
+    assert hasattr(lattice, "aux_labels")
+    assert hasattr(lattice, "lm_scores")
+
+    assert LM.shape == (1, None, None)
+    assert LM.device == device
+
+    nbest = Nbest.from_lattice(
+        lattice=lattice,
+        num_paths=num_paths,
+        use_double_scores=use_double_scores,
+        nbest_scale=nbest_scale,
+    )
+    # nbest.fsa.scores contains 0s
+
+    nbest = nbest.intersect(lattice)
+
+    # Now nbest.fsa has its scores set
+    assert hasattr(nbest.fsa, "lm_scores")
+
+    # am scores + bi-gram scores
+    hp_scores = nbest.tot_scores()
+
+    # Now start to intersect nbest with LG or G
+    inv_fsa = k2.invert(nbest.fsa)
+    if hasattr(LM, "aux_labels"):
+        # LM is LG here
+        # delete token IDs as it is not needed
+        del inv_fsa.aux_labels
+    inv_fsa.scores.zero_()
+    inv_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(inv_fsa)
+    path_to_utt_map = nbest.shape.row_ids(1)
+
+    LM = k2.arc_sort(LM)
+    path_lattice = k2.intersect_device(
+        LM,
+        inv_fsa_with_epsilon_loops,
+        b_to_a_map=torch.zeros_like(path_to_utt_map),
+        sorted_match_a=True,
+    )
+
+    # Its labels are token IDs.
+    # If LM is G, its aux_labels are tokens IDs;
+    # If LM is LG, its aux_labels are words IDs.
+    path_lattice = k2.top_sort(k2.connect(path_lattice))
+    one_best = k2.shortest_path(path_lattice, use_double_scores=use_double_scores)
+
+    lm_scores = one_best.get_tot_scores(
+        use_double_scores=use_double_scores,
+        log_semiring=True,  # Note: we always use True
+    )
+    # If LM is LG, we might get empty paths
+    lm_scores[lm_scores == float("-inf")] = -1e9
+
+    ans = dict()
+    for lm_scale in lm_scale_list:
+        tot_scores = hp_scores.values / lm_scale + lm_scores
+        tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
+        max_indexes = tot_scores.argmax()
+        best_path = k2.index_fsa(nbest.fsa, max_indexes)
+        key = f"lm_scale_{lm_scale}"
+        ans[key] = best_path
+    return ans
+
+
 def rescore_with_whole_lattice(
     lattice: k2.Fsa,
     G_with_epsilon_loops: k2.Fsa,
@@ -787,13 +892,9 @@ def rescore_with_whole_lattice(
         except RuntimeError as e:
             logging.info(f"Caught exception:\n{e}\n")
             if loop_count >= max_loop_count:
-                logging.info(
-                    "Return None as the resulting lattice is too large."
-                )
+                logging.info("Return None as the resulting lattice is too large.")
                 return None
-            logging.info(
-                f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}"
-            )
+            logging.info(f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}")
             logging.info(
                 "This OOM is not an error. You can ignore it. "
                 "If your model does not converge well, or --max-duration "
@@ -805,9 +906,7 @@ def rescore_with_whole_lattice(
                 prune_th_list[loop_count],
                 True,
             )
-            logging.info(
-                f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}"
-            )
+            logging.info(f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}")
         loop_count += 1
 
     # lat has token IDs as labels
@@ -894,9 +993,7 @@ def rescore_with_attention_decoder(
             logging.info(f"num_paths before decreasing: {num_paths}")
             num_paths = int(num_paths / 2)
             if loop_count >= max_loop_count or num_paths <= 0:
-                logging.info(
-                    "Return None as the resulting lattice is too large."
-                )
+                logging.info("Return None as the resulting lattice is too large.")
                 return None
             logging.info(
                 "This OOM is not an error. You can ignore it. "
diff --git a/icefall/diagnostics.py b/icefall/diagnostics.py
index 609e25626..6589579d1 100644
--- a/icefall/diagnostics.py
+++ b/icefall/diagnostics.py
@@ -19,7 +19,7 @@
 
 import random
 from dataclasses import dataclass
-from typing import Optional, Tuple
+from typing import List, Optional, Tuple
 
 import torch
 from torch import Tensor, nn
@@ -78,15 +78,22 @@ def get_tensor_stats(
     elif stats_type == "abs":
         x = x.abs()
     elif stats_type == "rms":
-        x = x ** 2
+        x = x**2
     elif stats_type == "positive":
         x = (x > 0).to(dtype=torch.float)
     else:
-        assert stats_type == "value"
+        assert stats_type in ["value", "max", "min"]
 
     sum_dims = [d for d in range(x.ndim) if d != dim]
     if len(sum_dims) > 0:
-        x = torch.sum(x, dim=sum_dims)
+        if stats_type == "max":
+            for dim in reversed(sum_dims):
+                x = torch.max(x, dim=dim)[0]
+        elif stats_type == "min":
+            for dim in reversed(sum_dims):
+                x = torch.min(x, dim=dim)[0]
+        else:
+            x = torch.sum(x, dim=sum_dims)
     x = x.flatten()
     return x, count
 
@@ -105,17 +112,21 @@ class TensorDiagnostic(object):
       opts:
         Options object.
       name:
-        The tensor name.
+        The name associated with this diagnostics object, will probably be {module_name}.X
+           where X is "output" or "grad", or {parameter_name}.Y where Y is param_value or param_grad.
     """
 
     def __init__(self, opts: TensorDiagnosticOptions, name: str):
-        self.name = name
         self.opts = opts
+        self.name = name
+        self.class_name = None  # will assign in accumulate()
 
-        self.stats = None  # we'll later assign a list to this data member.  It's a list of dict.
+        self.stats = (
+            None  # we'll later assign a list to this data member.  It's a list of dict.
+        )
 
         # the keys into self.stats[dim] are strings, whose values can be
-        # "abs", "value", "positive", "rms", "value".
+        # "abs", "max", "min" ,"value", "positive", "rms", "value".
         # The values e.g. self.stats[dim]["rms"] are lists of dataclass TensorAndCount,
         # containing a tensor and its associated count (which is the sum of the other dims
         # that we aggregated over, e.g. the number of frames and/or batch elements and/or
@@ -124,8 +135,12 @@ class TensorDiagnostic(object):
         # only adding a new element to the list if there was a different dim.
         # if the string in the key is "eigs", if we detect a length mismatch we put None as the value.
 
-    def accumulate(self, x):
-        """Accumulate tensors."""
+    def accumulate(self, x, class_name: Optional[str] = None):
+        """
+        Accumulate tensors.
+        """
+        if class_name is not None:
+            self.class_name = class_name
         if isinstance(x, Tuple):
             x = x[0]
         if not isinstance(x, Tensor):
@@ -142,11 +157,11 @@ class TensorDiagnostic(object):
         for dim in range(ndim):
             this_dim_stats = self.stats[dim]
             if ndim > 1:
-                stats_types = ["abs", "positive", "value", "rms"]
+                stats_types = ["abs", "max", "min", "positive", "value", "rms"]
                 if x.shape[dim] <= self.opts.max_eig_dim:
                     stats_types.append("eigs")
             else:
-                stats_types = ["value", "abs"]
+                stats_types = ["value", "abs", "max", "min"]
 
             for stats_type in stats_types:
                 stats, count = get_tensor_stats(x, dim, stats_type)
@@ -161,22 +176,22 @@ class TensorDiagnostic(object):
                     continue
                 for s in this_dim_stats[stats_type]:
                     if s.tensor.shape == stats.shape:
-                        s.tensor += stats
+                        if stats_type == "max":
+                            s.tensor = torch.maximum(s.tensor, stats)
+                        elif stats_type == "min":
+                            s.tensor = torch.minimum(s.tensor, stats)
+                        else:
+                            s.tensor += stats
                         s.count += count
                         done = True
                         break
                 if not done:
-                    if (
-                        this_dim_stats[stats_type] != []
-                        and stats_type == "eigs"
-                    ):
+                    if this_dim_stats[stats_type] != [] and stats_type == "eigs":
                         # >1 size encountered on this dim, e.g. it's a batch or time dimension,
                         # don't accumulat "eigs" stats type, it uses too much memory
                         this_dim_stats[stats_type] = None
                     else:
-                        this_dim_stats[stats_type].append(
-                            TensorAndCount(stats, count)
-                        )
+                        this_dim_stats[stats_type].append(TensorAndCount(stats, count))
 
     def print_diagnostics(self):
         """Print diagnostics for each dimension of the tensor."""
@@ -186,30 +201,33 @@ class TensorDiagnostic(object):
         for dim, this_dim_stats in enumerate(self.stats):
             for stats_type, stats_list in this_dim_stats.items():
                 # stats_type could be "rms", "value", "abs", "eigs", "positive".
-                # "value" could be a list of TensorAndCount, or None
+                # "stats_list" could be a list of TensorAndCount (one list per distinct tensor
+                # shape of the stats), or None
                 if stats_list is None:
                     assert stats_type == "eigs"
                     continue
 
+                def get_count(count):
+                    return 1 if stats_type in ["max", "min"] else count
+
+                if len(stats_list) == 1:
+                    stats = stats_list[0].tensor / get_count(stats_list[0].count)
+                else:
+                    # a dimension that has variable size in different nnet
+                    # forwards, e.g. a time dimension in an ASR model.
+                    stats = torch.cat(
+                        [x.tensor / get_count(x.count) for x in stats_list], dim=0
+                    )
+
                 if stats_type == "eigs":
-                    assert len(stats_list) == 1
-                    stats = stats_list[0].tensor / stats_list[0].count
                     try:
                         eigs, _ = torch.symeig(stats)
                         stats = eigs.abs().sqrt()
                     except:  # noqa
-                        print(
-                            "Error getting eigenvalues, trying another method."
-                        )
-                        eigs = torch.linalg.eigvals(stats)
+                        print("Error getting eigenvalues, trying another method.")
+                        eigs, _ = torch.eig(stats)
                         stats = eigs.abs().sqrt()
                         # sqrt so it reflects data magnitude, like stddev- not variance
-                elif len(stats_list) == 1:
-                    stats = stats_list[0].tensor / stats_list[0].count
-                else:
-                    stats = torch.cat(
-                        [x.tensor / x.count for x in stats_list], dim=0
-                    )
 
                 if stats_type == "rms":
                     # we stored the square; after aggregation we need to take sqrt.
@@ -217,9 +235,9 @@ class TensorDiagnostic(object):
 
                 # if `summarize` we print percentiles of the stats; else,
                 # we print out individual elements.
-                summarize = (
-                    len(stats_list) > 1
-                ) or self.opts.dim_is_summarized(stats.numel())
+                summarize = (len(stats_list) > 1) or self.opts.dim_is_summarized(
+                    stats.numel()
+                )
                 if summarize:  # usually `summarize` will be true
                     # print out percentiles.
                     stats = stats.sort()[0]
@@ -236,15 +254,15 @@ class TensorDiagnostic(object):
                     ans = stats.tolist()
                     ans = ["%.2g" % x for x in ans]
                     ans = "[" + " ".join(ans) + "]"
-                if stats_type == "value":
+                if stats_type in ["value", "rms", "eigs"]:
                     # This norm is useful because it is strictly less than the largest
                     # sqrt(eigenvalue) of the variance, which we print out, and shows,
                     # speaking in an approximate way, how much of that largest eigenvalue
                     # can be attributed to the mean of the distribution.
-                    norm = (stats ** 2).sum().sqrt().item()
+                    norm = (stats**2).sum().sqrt().item()
                     ans += f", norm={norm:.2g}"
                 mean = stats.mean().item()
-                rms = (stats ** 2).mean().sqrt().item()
+                rms = (stats**2).mean().sqrt().item()
                 ans += f", mean={mean:.2g}, rms={rms:.2g}"
 
                 # OK, "ans" contains the actual stats, e.g.
@@ -252,12 +270,13 @@ class TensorDiagnostic(object):
 
                 sizes = [x.tensor.shape[0] for x in stats_list]
                 size_str = (
-                    f"{sizes[0]}"
-                    if len(sizes) == 1
-                    else f"{min(sizes)}..{max(sizes)}"
+                    f"{sizes[0]}" if len(sizes) == 1 else f"{min(sizes)}..{max(sizes)}"
+                )
+                maybe_class_name = (
+                    f" type={self.class_name}," if self.class_name is not None else ""
                 )
                 print(
-                    f"module={self.name}, dim={dim}, size={size_str}, {stats_type} {ans}"
+                    f"module={self.name},{maybe_class_name} dim={dim}, size={size_str}, {stats_type} {ans}"
                 )
 
 
@@ -318,23 +337,32 @@ def attach_diagnostics(
         # (matters for name, since the variable gets overwritten).
         # These closures don't really capture by value, only by
         # "the final value the variable got in the function" :-(
-        def forward_hook(
-            _module, _input, _output, _model_diagnostic=ans, _name=name
-        ):
-            if isinstance(_output, Tensor):
-                _model_diagnostic[f"{_name}.output"].accumulate(_output)
-            elif isinstance(_output, tuple):
-                for i, o in enumerate(_output):
-                    _model_diagnostic[f"{_name}.output[{i}]"].accumulate(o)
+        def forward_hook(_module, _input, _output, _model_diagnostic=ans, _name=name):
+            if isinstance(_output, tuple) and len(_output) == 1:
+                _output = _output[0]
 
-        def backward_hook(
-            _module, _input, _output, _model_diagnostic=ans, _name=name
-        ):
             if isinstance(_output, Tensor):
-                _model_diagnostic[f"{_name}.grad"].accumulate(_output)
+                _model_diagnostic[f"{_name}.output"].accumulate(
+                    _output, class_name=type(_module).__name__
+                )
             elif isinstance(_output, tuple):
                 for i, o in enumerate(_output):
-                    _model_diagnostic[f"{_name}.grad[{i}]"].accumulate(o)
+                    _model_diagnostic[f"{_name}.output[{i}]"].accumulate(
+                        o, class_name=type(_module).__name__
+                    )
+
+        def backward_hook(_module, _input, _output, _model_diagnostic=ans, _name=name):
+            if isinstance(_output, tuple) and len(_output) == 1:
+                _output = _output[0]
+            if isinstance(_output, Tensor):
+                _model_diagnostic[f"{_name}.grad"].accumulate(
+                    _output, class_name=type(_module).__name__
+                )
+            elif isinstance(_output, tuple):
+                for i, o in enumerate(_output):
+                    _model_diagnostic[f"{_name}.grad[{i}]"].accumulate(
+                        o, class_name=type(_module).__name__
+                    )
 
         module.register_forward_hook(forward_hook)
         module.register_backward_hook(backward_hook)
diff --git a/icefall/dist.py b/icefall/dist.py
index 7016beafb..922f31a2f 100644
--- a/icefall/dist.py
+++ b/icefall/dist.py
@@ -21,17 +21,19 @@ import torch
 from torch import distributed as dist
 
 
-def setup_dist(rank, world_size, master_port=None, use_ddp_launch=False):
+def setup_dist(
+    rank, world_size, master_port=None, use_ddp_launch=False, master_addr=None
+):
     """
     rank and world_size are used only if use_ddp_launch is False.
     """
     if "MASTER_ADDR" not in os.environ:
-        os.environ["MASTER_ADDR"] = "localhost"
+        os.environ["MASTER_ADDR"] = (
+            "localhost" if master_addr is None else str(master_addr)
+        )
 
     if "MASTER_PORT" not in os.environ:
-        os.environ["MASTER_PORT"] = (
-            "12354" if master_port is None else str(master_port)
-        )
+        os.environ["MASTER_PORT"] = "12354" if master_port is None else str(master_port)
 
     if use_ddp_launch is False:
         dist.init_process_group("nccl", rank=rank, world_size=world_size)
diff --git a/icefall/env.py b/icefall/env.py
index 8aeda6be2..373e9a9ff 100644
--- a/icefall/env.py
+++ b/icefall/env.py
@@ -53,9 +53,7 @@ def get_git_sha1():
             )
             > 0
         )
-        git_commit = (
-            git_commit + "-dirty" if dirty_commit else git_commit + "-clean"
-        )
+        git_commit = git_commit + "-dirty" if dirty_commit else git_commit + "-clean"
     except:  # noqa
         return None
 
diff --git a/icefall/graph_compiler.py b/icefall/graph_compiler.py
index 570ed7d7a..d26ddbbd1 100644
--- a/icefall/graph_compiler.py
+++ b/icefall/graph_compiler.py
@@ -29,6 +29,7 @@ class CtcTrainingGraphCompiler(object):
         lexicon: Lexicon,
         device: torch.device,
         oov: str = "",
+        need_repeat_flag: bool = False,
     ):
         """
         Args:
@@ -39,6 +40,13 @@ class CtcTrainingGraphCompiler(object):
           oov:
             Out of vocabulary word. When a word in the transcript
             does not exist in the lexicon, it is replaced with `oov`.
+          need_repeat_flag:
+            If True, will add an attribute named `_is_repeat_token_` to ctc_topo
+            indicating whether this token is a repeat token in ctc graph.
+            This attribute is needed to implement delay-penalty for phone-based
+            ctc loss. See https://github.com/k2-fsa/k2/pull/1086 for more
+            details. Note: The above change MUST be included in k2 to open this
+            flag.
         """
         L_inv = lexicon.L_inv.to(device)
         assert L_inv.requires_grad is False
@@ -53,6 +61,12 @@ class CtcTrainingGraphCompiler(object):
         ctc_topo = k2.ctc_topo(max_token_id, modified=False)
 
         self.ctc_topo = ctc_topo.to(device)
+
+        if need_repeat_flag:
+            self.ctc_topo._is_repeat_token_ = (
+                self.ctc_topo.labels != self.ctc_topo.aux_labels
+            )
+
         self.device = device
 
     def compile(self, texts: List[str]) -> k2.Fsa:
@@ -75,9 +89,7 @@ class CtcTrainingGraphCompiler(object):
 
         # NOTE: k2.compose runs on CUDA only when treat_epsilons_specially
         # is False, so we add epsilon self-loops here
-        fsa_with_self_loops = k2.remove_epsilon_and_add_self_loops(
-            transcript_fsa
-        )
+        fsa_with_self_loops = k2.remove_epsilon_and_add_self_loops(transcript_fsa)
 
         fsa_with_self_loops = k2.arc_sort(fsa_with_self_loops)
 
diff --git a/icefall/hooks.py b/icefall/hooks.py
new file mode 100644
index 000000000..398a5f689
--- /dev/null
+++ b/icefall/hooks.py
@@ -0,0 +1,95 @@
+# Copyright  2021-2022  Xiaomi Corporation  (authors: Zengwei Yao, Daniel Povey)
+#
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+import random
+
+import torch
+from torch import Tensor, nn
+
+
+def register_inf_check_hooks(model: nn.Module) -> None:
+    """Registering forward hook on each module, to check
+    whether its output tensors is not finite.
+
+    Args:
+      model:
+        the model to be analyzed.
+    """
+
+    for name, module in model.named_modules():
+        if name == "":
+            name = ""
+
+        # default param _name is a way to capture the current value of the variable "name".
+        def forward_hook(_module, _input, _output, _name=name):
+            if isinstance(_output, Tensor):
+                if not torch.isfinite(_output.to(torch.float32).sum()):
+                    raise ValueError(
+                        f"The sum of {_name}.output is not finite: {_output}"
+                    )
+            elif isinstance(_output, tuple):
+                for i, o in enumerate(_output):
+                    if isinstance(o, tuple):
+                        o = o[0]
+                    if not isinstance(o, Tensor):
+                        continue
+                    if not torch.isfinite(o.to(torch.float32).sum()):
+                        raise ValueError(
+                            f"The sum of {_name}.output[{i}] is not finite: {_output}"
+                        )
+
+        # default param _name is a way to capture the current value of the variable "name".
+        def backward_hook(_module, _input, _output, _name=name):
+            if isinstance(_output, Tensor):
+                if not torch.isfinite(_output.to(torch.float32).sum()):
+                    logging.warning(
+                        f"The sum of {_name}.grad is not finite"  # ": {_output}"
+                    )
+            elif isinstance(_output, tuple):
+                for i, o in enumerate(_output):
+                    if isinstance(o, tuple):
+                        o = o[0]
+                    if not isinstance(o, Tensor):
+                        continue
+                    if not torch.isfinite(o.to(torch.float32).sum()):
+                        logging.warning(f"The sum of {_name}.grad[{i}] is not finite")
+
+        module.register_forward_hook(forward_hook)
+        module.register_backward_hook(backward_hook)
+
+    for name, parameter in model.named_parameters():
+
+        def param_backward_hook(grad, _name=name):
+            if not torch.isfinite(grad.to(torch.float32).sum()):
+                logging.warning(f"The sum of {_name}.param_grad is not finite")
+
+        parameter.register_hook(param_backward_hook)
+
+
+def _test_inf_check_hooks():
+    model = nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 80))
+
+    register_inf_check_hooks(model)
+    for _ in range(10):
+        T = random.randint(200, 300)
+        x = torch.randn(T, 100) + float("inf") * (T % 2)
+        y = model(x)
+        y.sum().backward()
+
+
+if __name__ == "__main__":
+    _test_inf_check_hooks()
diff --git a/icefall/lexicon.py b/icefall/lexicon.py
index 80bd7c1ee..22e1b78bb 100644
--- a/icefall/lexicon.py
+++ b/icefall/lexicon.py
@@ -49,18 +49,12 @@ def read_lexicon(filename: str) -> List[Tuple[str, List[str]]]:
                 continue
 
             if len(a) < 2:
-                logging.info(
-                    f"Found bad line {line} in lexicon file {filename}"
-                )
-                logging.info(
-                    "Every line is expected to contain at least 2 fields"
-                )
+                logging.info(f"Found bad line {line} in lexicon file {filename}")
+                logging.info("Every line is expected to contain at least 2 fields")
                 sys.exit(1)
             word = a[0]
             if word == "":
-                logging.info(
-                    f"Found bad line {line} in lexicon file {filename}"
-                )
+                logging.info(f"Found bad line {line} in lexicon file {filename}")
                 logging.info(" should not be a valid word")
                 sys.exit(1)
 
@@ -119,9 +113,7 @@ def convert_lexicon_to_ragged(
     lexicon_tmp = read_lexicon(filename)
     lexicon = dict(lexicon_tmp)
     if len(lexicon_tmp) != len(lexicon):
-        raise RuntimeError(
-            "It's assumed that each word has a unique pronunciation"
-        )
+        raise RuntimeError("It's assumed that each word has a unique pronunciation")
 
     for i in range(disambig_id):
         w = word_table[i]
diff --git a/icefall/lm_wrapper.py b/icefall/lm_wrapper.py
new file mode 100644
index 000000000..0468befd0
--- /dev/null
+++ b/icefall/lm_wrapper.py
@@ -0,0 +1,254 @@
+# Copyright (c)  2022  Xiaomi Corporation (authors: Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import logging
+
+import torch
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.rnn_lm.model import RnnLmModel
+from icefall.transformer_lm.model import TransformerLM
+from icefall.utils import AttributeDict, str2bool
+
+
+class LmScorer(torch.nn.Module):
+    """This is a wrapper for NN LMs
+    The language models supported include:
+        RNN,
+        Transformer
+    """
+
+    def __init__(
+        self,
+        lm_type: str,
+        params: AttributeDict,
+        device,
+        lm_scale: float = 0.3,
+    ):
+        super(LmScorer, self).__init__()
+        assert lm_type in ["rnn", "transformer"], f"{lm_type} is not supported"
+        self.lm_type = lm_type
+        self.lm = self.get_lm(lm_type, device, params)
+        self.lm_scale = lm_scale
+        self.params = params
+
+    @classmethod
+    def add_arguments(cls, parser):
+        # LM general arguments
+        parser.add_argument(
+            "--vocab-size",
+            type=int,
+            default=500,
+        )
+
+        parser.add_argument(
+            "--lm-epoch",
+            type=int,
+            default=7,
+            help="""Which epoch to be used
+            """,
+        )
+
+        parser.add_argument(
+            "--lm-avg",
+            type=int,
+            default=1,
+            help="""Number of checkpoints to be averaged
+            """,
+        )
+
+        parser.add_argument("--lm-exp-dir", type=str, help="Path to LM experiments")
+
+        # Now RNNLM related arguments
+        parser.add_argument(
+            "--rnn-lm-embedding-dim",
+            type=int,
+            default=2048,
+            help="Embedding dim of the model",
+        )
+
+        parser.add_argument(
+            "--rnn-lm-hidden-dim",
+            type=int,
+            default=2048,
+            help="Hidden dim of the model",
+        )
+
+        parser.add_argument(
+            "--rnn-lm-num-layers",
+            type=int,
+            default=3,
+            help="Number of RNN layers the model",
+        )
+
+        parser.add_argument(
+            "--rnn-lm-tie-weights",
+            type=str2bool,
+            default=True,
+            help="""True to share the weights between the input embedding layer and the
+            last output linear layer
+            """,
+        )
+
+        # Now transformers
+        parser.add_argument(
+            "--transformer-lm-exp-dir", type=str, help="Directory of transformer LM exp"
+        )
+
+        parser.add_argument(
+            "--transformer-lm-dim-feedforward",
+            type=int,
+            default=2048,
+            help="Dimension of FFW module in transformer",
+        )
+
+        parser.add_argument(
+            "--transformer-lm-encoder-dim",
+            type=int,
+            default=768,
+            help="Encoder dimension of transformer",
+        )
+
+        parser.add_argument(
+            "--transformer-lm-embedding-dim",
+            type=int,
+            default=768,
+            help="Input embedding dimension of transformer",
+        )
+
+        parser.add_argument(
+            "--transformer-lm-nhead",
+            type=int,
+            default=8,
+            help="Number of attention heads in transformer",
+        )
+
+        parser.add_argument(
+            "--transformer-lm-num-layers",
+            type=int,
+            default=16,
+            help="Number of encoder layers in transformer",
+        )
+
+        parser.add_argument(
+            "--transformer-lm-tie-weights",
+            type=str2bool,
+            default=True,
+            help="If tie weights in transformer LM",
+        )
+
+    def get_lm(self, lm_type: str, device, params: AttributeDict) -> torch.nn.Module:
+        """Return the neural network LM
+
+        Args:
+            lm_type (str): Type name of NN LM
+        """
+        if lm_type == "rnn":
+            model = RnnLmModel(
+                vocab_size=params.vocab_size,
+                embedding_dim=params.rnn_lm_embedding_dim,
+                hidden_dim=params.rnn_lm_hidden_dim,
+                num_layers=params.rnn_lm_num_layers,
+                tie_weights=params.rnn_lm_tie_weights,
+            )
+
+            if params.lm_avg == 1:
+                load_checkpoint(
+                    f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
+                )
+                model.to(device)
+            else:
+                start = params.lm_epoch - params.lm_avg + 1
+                filenames = []
+                for i in range(start, params.lm_epoch + 1):
+                    if start >= 0:
+                        filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
+                logging.info(f"averaging {filenames}")
+                model.to(device)
+                model.load_state_dict(average_checkpoints(filenames, device=device))
+
+        elif lm_type == "transformer":
+            model = TransformerLM(
+                vocab_size=params.vocab_size,
+                d_model=params.transformer_lm_encoder_dim,
+                embedding_dim=params.transformer_lm_embedding_dim,
+                dim_feedforward=params.transformer_lm_dim_feedforward,
+                nhead=params.transformer_lm_nhead,
+                num_layers=params.transformer_lm_num_layers,
+                tie_weights=params.transformer_lm_tie_weights,
+                params=params,
+            )
+
+            if params.lm_avg == 1:
+                load_checkpoint(
+                    f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
+                )
+                model.to(device)
+            else:
+                start = params.lm_epoch - params.lm_avg + 1
+                filenames = []
+                for i in range(start, params.lm_epoch + 1):
+                    if start >= 0:
+                        filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
+                logging.info(f"averaging {filenames}")
+                model.to(device)
+                model.load_state_dict(average_checkpoints(filenames, device=device))
+        else:
+            raise NotImplementedError()
+
+        return model
+
+    def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
+        """Score the input and return the prediction
+        This requires the lm to have the method `score_token`
+        Args:
+            x (torch.Tensor): Input tokens
+            x_lens (torch.Tensor): Length of the input tokens
+            state (optional): LM states
+
+        """
+        return self.lm.score_token(x, x_lens, state)
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+    LmScorer.add_arguments(parser)
+    args = parser.parse_args()
+
+    params = AttributeDict()
+    params.update(vars(args))
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    Scorer = LmScorer(params=params, device=device)
+    Scorer.eval()
+
+    x = (
+        torch.tensor([[1, 4, 19, 256, 77], [1, 4, 19, 256, 77]])
+        .to(device)
+        .to(torch.int64)
+    )
+    x_lens = torch.tensor([5, 5]).to(device)
+
+    state = None
+
+    score, state = Scorer.score(x, x_lens)
+    print(score.shape)
+    print(score[0])
+    print(score[1])
diff --git a/icefall/mmi.py b/icefall/mmi.py
index 2c479fc2c..b7777b434 100644
--- a/icefall/mmi.py
+++ b/icefall/mmi.py
@@ -63,10 +63,7 @@ def _compute_mmi_loss_exact_optimized(
 
     # [0, num_fsas, 1, num_fsas, 2, num_fsas, ... ]
     num_den_graphs_indexes = (
-        torch.stack([num_graphs_indexes, den_graphs_indexes])
-        .t()
-        .reshape(-1)
-        .to(device)
+        torch.stack([num_graphs_indexes, den_graphs_indexes]).t().reshape(-1).to(device)
     )
 
     num_den_reordered_graphs = k2.index(num_den_graphs, num_den_graphs_indexes)
@@ -116,19 +113,15 @@ def _compute_mmi_loss_exact_non_optimized(
 
     # TODO: pass output_beam as function argument
     num_lats = k2.intersect_dense(
-        num_graphs, dense_fsa_vec, output_beam=beam_size
+        num_graphs, dense_fsa_vec, output_beam=beam_size, max_arcs=2147483600
     )
     den_lats = k2.intersect_dense(
-        den_graphs, dense_fsa_vec, output_beam=beam_size
+        den_graphs, dense_fsa_vec, output_beam=beam_size, max_arcs=2147483600
     )
 
-    num_tot_scores = num_lats.get_tot_scores(
-        log_semiring=True, use_double_scores=True
-    )
+    num_tot_scores = num_lats.get_tot_scores(log_semiring=True, use_double_scores=True)
 
-    den_tot_scores = den_lats.get_tot_scores(
-        log_semiring=True, use_double_scores=True
-    )
+    den_tot_scores = den_lats.get_tot_scores(log_semiring=True, use_double_scores=True)
 
     tot_scores = num_tot_scores - den_scale * den_tot_scores
 
@@ -155,7 +148,7 @@ def _compute_mmi_loss_pruned(
     """
     num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=False)
 
-    num_lats = k2.intersect_dense(num_graphs, dense_fsa_vec, output_beam=10.0)
+    num_lats = k2.intersect_dense(num_graphs, dense_fsa_vec, output_beam=8.0)
 
     # the values for search_beam/output_beam/min_active_states/max_active_states
     # are not tuned. You may want to tune them.
@@ -168,13 +161,9 @@ def _compute_mmi_loss_pruned(
         max_active_states=10000,
     )
 
-    num_tot_scores = num_lats.get_tot_scores(
-        log_semiring=True, use_double_scores=True
-    )
+    num_tot_scores = num_lats.get_tot_scores(log_semiring=True, use_double_scores=True)
 
-    den_tot_scores = den_lats.get_tot_scores(
-        log_semiring=True, use_double_scores=True
-    )
+    den_tot_scores = den_lats.get_tot_scores(log_semiring=True, use_double_scores=True)
 
     tot_scores = num_tot_scores - den_scale * den_tot_scores
 
diff --git a/icefall/mmi_graph_compiler.py b/icefall/mmi_graph_compiler.py
index 0d901227d..9f680f83d 100644
--- a/icefall/mmi_graph_compiler.py
+++ b/icefall/mmi_graph_compiler.py
@@ -137,9 +137,7 @@ class MmiTrainingGraphCompiler(object):
             transcript_fsa
         )
 
-        transcript_fsa_with_self_loops = k2.arc_sort(
-            transcript_fsa_with_self_loops
-        )
+        transcript_fsa_with_self_loops = k2.arc_sort(transcript_fsa_with_self_loops)
 
         num = k2.compose(
             self.ctc_topo_P,
@@ -155,9 +153,7 @@ class MmiTrainingGraphCompiler(object):
 
         ctc_topo_P_vec = k2.create_fsa_vec([self.ctc_topo_P])
         if replicate_den:
-            indexes = torch.zeros(
-                len(texts), dtype=torch.int32, device=self.device
-            )
+            indexes = torch.zeros(len(texts), dtype=torch.int32, device=self.device)
             den = k2.index_fsa(ctc_topo_P_vec, indexes)
         else:
             den = ctc_topo_P_vec
diff --git a/icefall/rnn_lm/compute_perplexity.py b/icefall/rnn_lm/compute_perplexity.py
index 550801a8f..f75a89590 100755
--- a/icefall/rnn_lm/compute_perplexity.py
+++ b/icefall/rnn_lm/compute_perplexity.py
@@ -20,7 +20,7 @@ Usage:
   ./rnn_lm/compute_perplexity.py \
     --epoch 4 \
     --avg 2 \
-    --lm-data ./data/bpe_500/sorted_lm_data-test.pt
+    --lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt
 
 """
 
diff --git a/icefall/rnn_lm/dataset.py b/icefall/rnn_lm/dataset.py
index 598e329c4..53be53f64 100644
--- a/icefall/rnn_lm/dataset.py
+++ b/icefall/rnn_lm/dataset.py
@@ -1,4 +1,4 @@
-# Copyright (c)  2021  Xiaomi Corporation (authors: Fangjun Kuang)
+# Copyright (c)  2021  Xiaomi Corporation (authors: Daniel Povey, Fangjun Kuang)
 #
 # See ../../../../LICENSE for clarification regarding multiple authors
 #
@@ -155,12 +155,8 @@ class LmDatasetCollate:
         sentence_tokens_with_sos = add_sos(sentence_tokens, self.sos_id)
         sentence_tokens_with_eos = add_eos(sentence_tokens, self.eos_id)
 
-        x = sentence_tokens_with_sos.pad(
-            mode="constant", padding_value=self.blank_id
-        )
-        y = sentence_tokens_with_eos.pad(
-            mode="constant", padding_value=self.blank_id
-        )
+        x = sentence_tokens_with_sos.pad(mode="constant", padding_value=self.blank_id)
+        y = sentence_tokens_with_eos.pad(mode="constant", padding_value=self.blank_id)
         sentence_token_lengths += 1  # plus 1 since we added a SOS
 
         return x.to(torch.int64), y.to(torch.int64), sentence_token_lengths
@@ -198,7 +194,7 @@ def get_dataloader(
         batch_size=params.batch_size,
     )
     if is_distributed:
-        sampler = DistributedSampler(dataset, shuffle=True, drop_last=False)
+        sampler = DistributedSampler(dataset, shuffle=True, drop_last=True)
     else:
         sampler = None
 
diff --git a/icefall/rnn_lm/export.py b/icefall/rnn_lm/export.py
index 094035fce..2411cb1f0 100644
--- a/icefall/rnn_lm/export.py
+++ b/icefall/rnn_lm/export.py
@@ -159,9 +159,7 @@ def main():
 
 
 if __name__ == "__main__":
-    formatter = (
-        "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-    )
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
 
     logging.basicConfig(format=formatter, level=logging.INFO)
     main()
diff --git a/icefall/rnn_lm/model.py b/icefall/rnn_lm/model.py
index 88b2cc41f..08eb753b5 100644
--- a/icefall/rnn_lm/model.py
+++ b/icefall/rnn_lm/model.py
@@ -19,7 +19,7 @@ import logging
 import torch
 import torch.nn.functional as F
 
-from icefall.utils import make_pad_mask
+from icefall.utils import add_eos, add_sos, make_pad_mask
 
 
 class RnnLmModel(torch.nn.Module):
@@ -72,6 +72,8 @@ class RnnLmModel(torch.nn.Module):
         else:
             logging.info("Not tying weights")
 
+        self.cache = {}
+
     def forward(
         self, x: torch.Tensor, y: torch.Tensor, lengths: torch.Tensor
     ) -> torch.Tensor:
@@ -118,3 +120,102 @@ class RnnLmModel(torch.nn.Module):
         nll_loss = nll_loss.reshape(batch_size, -1)
 
         return nll_loss
+
+    def predict_batch(self, tokens, token_lens, sos_id, eos_id, blank_id):
+        device = next(self.parameters()).device
+        batch_size = len(token_lens)
+
+        sos_tokens = add_sos(tokens, sos_id)
+        tokens_eos = add_eos(tokens, eos_id)
+        sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
+
+        sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
+
+        x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
+        y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
+
+        x_tokens = x_tokens.to(torch.int64).to(device)
+        y_tokens = y_tokens.to(torch.int64).to(device)
+        sentence_lengths = sentence_lengths.to(torch.int64).to(device)
+
+        embedding = self.input_embedding(x_tokens)
+
+        # Note: We use batch_first==True
+        rnn_out, states = self.rnn(embedding)
+        logits = self.output_linear(rnn_out)
+        mask = torch.zeros(logits.shape).bool().to(device)
+        for i in range(batch_size):
+            mask[i, token_lens[i], :] = True
+        logits = logits[mask].reshape(batch_size, -1)
+
+        return logits[:, :].log_softmax(-1), states
+
+    def clean_cache(self):
+        self.cache = {}
+
+    def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
+        """Score a batch of tokens
+
+        Args:
+            x (torch.Tensor):
+                A batch of tokens
+            x_lens (torch.Tensor):
+                The length of tokens in the batch before padding
+            state (_type_, optional):
+                Either None or a tuple of two torch.Tensor. Each tensor has
+                the shape of (hidden_dim)
+
+
+        Returns:
+            _type_: _description_
+        """
+        device = next(self.parameters()).device
+        batch_size = x.size(0)
+        if state:
+            h, c = state
+        else:
+            h = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(
+                device
+            )
+            c = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(
+                device
+            )
+
+        embedding = self.input_embedding(x)
+        rnn_out, states = self.rnn(embedding, (h, c))
+        logits = self.output_linear(rnn_out)
+
+        return logits[:, 0].log_softmax(-1), states
+
+    def forward_with_state(
+        self, tokens, token_lens, sos_id, eos_id, blank_id, state=None
+    ):
+        batch_size = len(token_lens)
+        if state:
+            h, c = state
+        else:
+            h = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size)
+            c = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size)
+
+        device = next(self.parameters()).device
+
+        sos_tokens = add_sos(tokens, sos_id)
+        tokens_eos = add_eos(tokens, eos_id)
+        sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
+
+        sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
+
+        x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
+        y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
+
+        x_tokens = x_tokens.to(torch.int64).to(device)
+        y_tokens = y_tokens.to(torch.int64).to(device)
+        sentence_lengths = sentence_lengths.to(torch.int64).to(device)
+
+        embedding = self.input_embedding(x_tokens)
+
+        # Note: We use batch_first==True
+        rnn_out, states = self.rnn(embedding, (h, c))
+        logits = self.output_linear(rnn_out)
+
+        return logits, states
diff --git a/icefall/rnn_lm/train.py b/icefall/rnn_lm/train.py
index bb5f03fb9..f43e66cd2 100755
--- a/icefall/rnn_lm/train.py
+++ b/icefall/rnn_lm/train.py
@@ -24,7 +24,7 @@ Usage:
         --use-fp16 0 \
         --embedding-dim 800 \
         --hidden-dim 200 \
-        --num-layers 2\
+        --num-layers 2 \
         --batch-size 400
 
 """
@@ -83,7 +83,7 @@ def get_parser():
     parser.add_argument(
         "--num-epochs",
         type=int,
-        default=10,
+        default=30,
         help="Number of epochs to train.",
     )
 
@@ -110,14 +110,14 @@ def get_parser():
     parser.add_argument(
         "--use-fp16",
         type=str2bool,
-        default=False,
+        default=True,
         help="Whether to use half precision training.",
     )
 
     parser.add_argument(
         "--batch-size",
         type=int,
-        default=50,
+        default=400,
     )
 
     parser.add_argument(
@@ -165,7 +165,7 @@ def get_parser():
     parser.add_argument(
         "--tie-weights",
         type=str2bool,
-        default=False,
+        default=True,
         help="""True to share the weights between the input embedding layer and the
         last output linear layer
         """,
@@ -446,17 +446,13 @@ def train_one_epoch(
                 loss_info.write_summary(
                     tb_writer, "train/current_", params.batch_idx_train
                 )
-                tot_loss.write_summary(
-                    tb_writer, "train/tot_", params.batch_idx_train
-                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
 
                 tb_writer.add_scalar(
                     "train/current_ppl", this_batch_ppl, params.batch_idx_train
                 )
 
-                tb_writer.add_scalar(
-                    "train/tot_ppl", tot_ppl, params.batch_idx_train
-                )
+                tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
 
         if batch_idx > 0 and batch_idx % params.valid_interval == 0:
             logging.info("Computing validation loss")
@@ -535,6 +531,9 @@ def run(rank, world_size, args):
         tie_weights=params.tie_weights,
     )
 
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
     checkpoints = load_checkpoint_if_available(params=params, model=model)
 
     model.to(device)
diff --git a/icefall/shared/convert-k2-to-openfst.py b/icefall/shared/convert-k2-to-openfst.py
new file mode 100755
index 000000000..29a2cd7f7
--- /dev/null
+++ b/icefall/shared/convert-k2-to-openfst.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python3
+# Copyright    2022  Xiaomi Corp.        (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This script takes as input an FST in k2 format and convert it
+to an FST in OpenFST format.
+
+The generated FST is saved into a binary file and its type is
+StdVectorFst.
+
+Usage examples:
+(1) Convert an acceptor
+
+  ./convert-k2-to-openfst.py in.pt binary.fst
+
+(2) Convert a transducer
+
+  ./convert-k2-to-openfst.py --olabels aux_labels in.pt binary.fst
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import k2
+import kaldifst.utils
+import torch
+
+
+def get_args():
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "--olabels",
+        type=str,
+        default=None,
+        help="""If not empty, the input FST is assumed to be a transducer
+        and we use its attribute specified by "olabels" as the output labels.
+        """,
+    )
+    parser.add_argument(
+        "input_filename",
+        type=str,
+        help="Path to the input FST in k2 format",
+    )
+
+    parser.add_argument(
+        "output_filename",
+        type=str,
+        help="Path to the output FST in OpenFst format",
+    )
+
+    return parser.parse_args()
+
+
+def main():
+    args = get_args()
+    logging.info(f"{vars(args)}")
+
+    input_filename = args.input_filename
+    output_filename = args.output_filename
+    olabels = args.olabels
+
+    if Path(output_filename).is_file():
+        logging.info(f"{output_filename} already exists - skipping")
+        return
+
+    assert Path(input_filename).is_file(), f"{input_filename} does not exist"
+    logging.info(f"Loading {input_filename}")
+    k2_fst = k2.Fsa.from_dict(torch.load(input_filename))
+    if olabels:
+        assert hasattr(k2_fst, olabels), f"No such attribute: {olabels}"
+
+    p = Path(output_filename).parent
+    if not p.is_dir():
+        logging.info(f"Creating {p}")
+        p.mkdir(parents=True)
+
+    logging.info("Converting (May take some time if the input FST is large)")
+    fst = kaldifst.utils.k2_to_openfst(k2_fst, olabels=olabels)
+    logging.info(f"Saving to {output_filename}")
+    fst.write(output_filename)
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/icefall/shared/make_kn_lm.py b/icefall/shared/make_kn_lm.py
index c2edd823e..7150297d6 100755
--- a/icefall/shared/make_kn_lm.py
+++ b/icefall/shared/make_kn_lm.py
@@ -15,30 +15,43 @@
 # The data structure is based on: kaldi/egs/wsj/s5/utils/lang/make_phone_lm.py
 # The smoothing algorithm is based on: http://www.speech.sri.com/projects/srilm/manpages/ngram-discount.7.html
 
-import sys
-import os
-import re
+import argparse
 import io
 import math
-import argparse
+import os
+import re
+import sys
 from collections import Counter, defaultdict
 
-
-parser = argparse.ArgumentParser(description="""
+parser = argparse.ArgumentParser(
+    description="""
     Generate kneser-ney language model as arpa format. By default,
     it will read the corpus from standard input, and output to standard output.
-    """)
-parser.add_argument("-ngram-order", type=int, default=4, choices=[2, 3, 4, 5, 6, 7], help="Order of n-gram")
+    """
+)
+parser.add_argument(
+    "-ngram-order",
+    type=int,
+    default=4,
+    choices=[2, 3, 4, 5, 6, 7],
+    help="Order of n-gram",
+)
 parser.add_argument("-text", type=str, default=None, help="Path to the corpus file")
-parser.add_argument("-lm", type=str, default=None, help="Path to output arpa file for language models")
-parser.add_argument("-verbose", type=int, default=0, choices=[0, 1, 2, 3, 4, 5], help="Verbose level")
+parser.add_argument(
+    "-lm", type=str, default=None, help="Path to output arpa file for language models"
+)
+parser.add_argument(
+    "-verbose", type=int, default=0, choices=[0, 1, 2, 3, 4, 5], help="Verbose level"
+)
 args = parser.parse_args()
 
-default_encoding = "latin-1"  # For encoding-agnostic scripts, we assume byte stream as input.
-                              # Need to be very careful about the use of strip() and split()
-                              # in this case, because there is a latin-1 whitespace character
-                              # (nbsp) which is part of the unicode encoding range.
-                              # Ref: kaldi/egs/wsj/s5/utils/lang/bpe/prepend_words.py @ 69cd717
+# For encoding-agnostic scripts, we assume byte stream as input.
+# Need to be very careful about the use of strip() and split()
+# in this case, because there is a latin-1 whitespace character
+# (nbsp) which is part of the unicode encoding range.
+# Ref: kaldi/egs/wsj/s5/utils/lang/bpe/prepend_words.py @ 69cd717
+default_encoding = "latin-1"
+
 strip_chars = " \t\r\n"
 whitespace = re.compile("[ \t]+")
 
@@ -52,7 +65,8 @@ class CountsForHistory:
         # The 'lambda: defaultdict(float)' is an anonymous function taking no
         # arguments that returns a new defaultdict(float).
         self.word_to_count = defaultdict(int)
-        self.word_to_context = defaultdict(set)  # using a set to count the number of unique contexts
+        # using a set to count the number of unique contexts
+        self.word_to_context = defaultdict(set)
         self.word_to_f = dict()  # discounted probability
         self.word_to_bow = dict()  # back-off weight
         self.total_count = 0
@@ -62,10 +76,15 @@ class CountsForHistory:
 
     def __str__(self):
         # e.g. returns ' total=12: 3->4, 4->6, -1->2'
-        return ' total={0}: {1}'.format(
+        return " total={0}: {1}".format(
             str(self.total_count),
-            ', '.join(['{0} -> {1}'.format(word, count)
-                      for word, count in self.word_to_count.items()]))
+            ", ".join(
+                [
+                    "{0} -> {1}".format(word, count)
+                    for word, count in self.word_to_count.items()
+                ]
+            ),
+        )
 
     def add_count(self, predicted_word, context_word, count):
         assert count >= 0
@@ -85,7 +104,7 @@ class NgramCounts:
     # accumulating the 4-gram count for the '8' in the sequence '5 6 7 8', we'd
     # do as follows: self.counts[3][[5,6,7]][8] += 1.0 where the [3] indexes an
     # array, the [[5,6,7]] indexes a dict, and the [8] indexes a dict.
-    def __init__(self, ngram_order, bos_symbol='', eos_symbol=''):
+    def __init__(self, ngram_order, bos_symbol="", eos_symbol=""):
         assert ngram_order >= 2
 
         self.ngram_order = ngram_order
@@ -103,39 +122,47 @@ class NgramCounts:
     # would be (6,7,8) and 'predicted_word' would be 9; 'count' would be
     # 1.
     def add_count(self, history, predicted_word, context_word, count):
-        self.counts[len(history)][history].add_count(predicted_word, context_word, count)
+        self.counts[len(history)][history].add_count(
+            predicted_word, context_word, count
+        )
 
     # 'line' is a string containing a sequence of integer word-ids.
     # This function adds the un-smoothed counts from this line of text.
     def add_raw_counts_from_line(self, line):
-        if line == '':
+        if line == "":
             words = [self.bos_symbol, self.eos_symbol]
         else:
             words = [self.bos_symbol] + whitespace.split(line) + [self.eos_symbol]
 
         for i in range(len(words)):
-            for n in range(1, self.ngram_order+1):
+            for n in range(1, self.ngram_order + 1):
                 if i + n > len(words):
                     break
-                ngram = words[i: i + n]
+                ngram = words[i : i + n]
                 predicted_word = ngram[-1]
-                history = tuple(ngram[: -1])
+                history = tuple(ngram[:-1])
                 if i == 0 or n == self.ngram_order:
                     context_word = None
                 else:
-                    context_word = words[i-1]
+                    context_word = words[i - 1]
 
                 self.add_count(history, predicted_word, context_word, 1)
 
     def add_raw_counts_from_standard_input(self):
         lines_processed = 0
-        infile = io.TextIOWrapper(sys.stdin.buffer, encoding=default_encoding)  # byte stream as input
+        # byte stream as input
+        infile = io.TextIOWrapper(sys.stdin.buffer, encoding=default_encoding)
         for line in infile:
             line = line.strip(strip_chars)
             self.add_raw_counts_from_line(line)
             lines_processed += 1
         if lines_processed == 0 or args.verbose > 0:
-            print("make_phone_lm.py: processed {0} lines of input".format(lines_processed), file=sys.stderr)
+            print(
+                "make_phone_lm.py: processed {0} lines of input".format(
+                    lines_processed
+                ),
+                file=sys.stderr,
+            )
 
     def add_raw_counts_from_file(self, filename):
         lines_processed = 0
@@ -145,7 +172,12 @@ class NgramCounts:
                 self.add_raw_counts_from_line(line)
                 lines_processed += 1
         if lines_processed == 0 or args.verbose > 0:
-            print("make_phone_lm.py: processed {0} lines of input".format(lines_processed), file=sys.stderr)
+            print(
+                "make_phone_lm.py: processed {0} lines of input".format(
+                    lines_processed
+                ),
+                file=sys.stderr,
+            )
 
     def cal_discounting_constants(self):
         # For each order N of N-grams, we calculate discounting constant D_N = n1_N / (n1_N + 2 * n2_N),
@@ -153,9 +185,10 @@ class NgramCounts:
         # This constant is used similarly to absolute discounting.
         # Return value: d is a list of floats, where d[N+1] = D_N
 
-        self.d = [0]  # for the lowest order, i.e., 1-gram, we do not need to discount, thus the constant is 0
-                      # This is a special case: as we currently assumed having seen all vocabularies in the dictionary,
-                      # but perhaps this is not the case for some other scenarios.
+        # for the lowest order, i.e., 1-gram, we do not need to discount, thus the constant is 0
+        # This is a special case: as we currently assumed having seen all vocabularies in the dictionary,
+        # but perhaps this is not the case for some other scenarios.
+        self.d = [0]
         for n in range(1, self.ngram_order):
             this_order_counts = self.counts[n]
             n1 = 0
@@ -165,9 +198,11 @@ class NgramCounts:
                 n1 += stat[1]
                 n2 += stat[2]
             assert n1 + 2 * n2 > 0
-            self.d.append(max(0.1, n1 * 1.0) / (n1 + 2 * n2))   # We are doing this max(0.001, xxx) to avoid zero discounting constant D due to n1=0, 
-                                                                # which could happen if the number of symbols is small.
-                                                                # Otherwise, zero discounting constant can cause division by zero in computing BOW.
+
+            # We are doing this max(0.001, xxx) to avoid zero discounting constant D due to n1=0,
+            # which could happen if the number of symbols is small.
+            # Otherwise, zero discounting constant can cause division by zero in computing BOW.
+            self.d.append(max(0.1, n1 * 1.0) / (n1 + 2 * n2))
 
     def cal_f(self):
         # f(a_z) is a probability distribution of word sequence a_z.
@@ -182,7 +217,9 @@ class NgramCounts:
         this_order_counts = self.counts[n]
         for hist, counts_for_hist in this_order_counts.items():
             for w, c in counts_for_hist.word_to_count.items():
-                counts_for_hist.word_to_f[w] = max((c - self.d[n]), 0) * 1.0 / counts_for_hist.total_count
+                counts_for_hist.word_to_f[w] = (
+                    max((c - self.d[n]), 0) * 1.0 / counts_for_hist.total_count
+                )
 
         # lower order N-grams
         for n in range(0, self.ngram_order - 1):
@@ -196,11 +233,17 @@ class NgramCounts:
                 if n_star_star != 0:
                     for w in counts_for_hist.word_to_count.keys():
                         n_star_z = len(counts_for_hist.word_to_context[w])
-                        counts_for_hist.word_to_f[w] = max((n_star_z - self.d[n]), 0) * 1.0 / n_star_star
+                        counts_for_hist.word_to_f[w] = (
+                            max((n_star_z - self.d[n]), 0) * 1.0 / n_star_star
+                        )
                 else:  # patterns begin with , they do not have "modified count", so use raw count instead
                     for w in counts_for_hist.word_to_count.keys():
                         n_star_z = counts_for_hist.word_to_count[w]
-                        counts_for_hist.word_to_f[w] = max((n_star_z - self.d[n]), 0) * 1.0 / counts_for_hist.total_count
+                        counts_for_hist.word_to_f[w] = (
+                            max((n_star_z - self.d[n]), 0)
+                            * 1.0
+                            / counts_for_hist.total_count
+                        )
 
     def cal_bow(self):
         # Backoff weights are only necessary for ngrams which form a prefix of a longer ngram.
@@ -240,12 +283,15 @@ class NgramCounts:
                         sum_z1_f_z = 0
                         _ = a_[1:]
                         _counts_for_hist = self.counts[len(_)][_]
-                        for u in a_counts_for_hist.word_to_count.keys():  # Should be careful here: what is Z1
+                        # Should be careful here: what is Z1
+                        for u in a_counts_for_hist.word_to_count.keys():
                             sum_z1_f_z += _counts_for_hist.word_to_f[u]
 
                         if sum_z1_f_z < 1:
                             # assert sum_z1_f_a_z < 1
-                            counts_for_hist.word_to_bow[w] = (1.0 - sum_z1_f_a_z) / (1.0 - sum_z1_f_z)
+                            counts_for_hist.word_to_bow[w] = (1.0 - sum_z1_f_a_z) / (
+                                1.0 - sum_z1_f_z
+                            )
                         else:
                             counts_for_hist.word_to_bow[w] = None
 
@@ -259,7 +305,9 @@ class NgramCounts:
                     ngram = " ".join(hist) + " " + w
                     ngram = ngram.strip(strip_chars)
 
-                    res.append("{0}\t{1}".format(ngram, counts_for_hist.word_to_count[w]))
+                    res.append(
+                        "{0}\t{1}".format(ngram, counts_for_hist.word_to_count[w])
+                    )
         res.sort(reverse=True)
         for r in res:
             print(r)
@@ -322,27 +370,40 @@ class NgramCounts:
                     if bow is None:
                         res.append("{1}\t{0}".format(ngram, math.log(f, 10)))
                     else:
-                        res.append("{1}\t{0}\t{2}".format(ngram, math.log(f, 10), math.log(bow, 10)))
+                        res.append(
+                            "{1}\t{0}\t{2}".format(
+                                ngram, math.log(f, 10), math.log(bow, 10)
+                            )
+                        )
         res.sort(reverse=True)
         for r in res:
             print(r)
 
-    def print_as_arpa(self, fout=io.TextIOWrapper(sys.stdout.buffer, encoding='latin-1')):
+    def print_as_arpa(
+        self, fout=io.TextIOWrapper(sys.stdout.buffer, encoding="latin-1")
+    ):
         # print as ARPA format.
 
-        print('\\data\\', file=fout)
+        print("\\data\\", file=fout)
         for hist_len in range(self.ngram_order):
             # print the number of n-grams.
-            print('ngram {0}={1}'.format(
-                hist_len + 1,
-                sum([len(counts_for_hist.word_to_f) for counts_for_hist in self.counts[hist_len].values()])),
-                file=fout
+            print(
+                "ngram {0}={1}".format(
+                    hist_len + 1,
+                    sum(
+                        [
+                            len(counts_for_hist.word_to_f)
+                            for counts_for_hist in self.counts[hist_len].values()
+                        ]
+                    ),
+                ),
+                file=fout,
             )
 
-        print('', file=fout)
+        print("", file=fout)
 
         for hist_len in range(self.ngram_order):
-            print('\\{0}-grams:'.format(hist_len + 1), file=fout)
+            print("\\{0}-grams:".format(hist_len + 1), file=fout)
 
             this_order_counts = self.counts[hist_len]
             for hist, counts_for_hist in this_order_counts.items():
@@ -354,12 +415,12 @@ class NgramCounts:
                     if prob == 0:  # f() is always 0
                         prob = 1e-99
 
-                    line = '{0}\t{1}'.format('%.7f' % math.log10(prob), ' '.join(ngram))
+                    line = "{0}\t{1}".format("%.7f" % math.log10(prob), " ".join(ngram))
                     if bow is not None:
-                        line += '\t{0}'.format('%.7f' % math.log10(bow))
+                        line += "\t{0}".format("%.7f" % math.log10(bow))
                     print(line, file=fout)
-            print('', file=fout)
-        print('\\end\\', file=fout)
+            print("", file=fout)
+        print("\\end\\", file=fout)
 
 
 if __name__ == "__main__":
@@ -379,5 +440,5 @@ if __name__ == "__main__":
     if args.lm is None:
         ngram_counts.print_as_arpa()
     else:
-        with open(args.lm, 'w', encoding=default_encoding) as f:
+        with open(args.lm, "w", encoding=default_encoding) as f:
             ngram_counts.print_as_arpa(fout=f)
diff --git a/icefall/transformer_lm/attention.py b/icefall/transformer_lm/attention.py
new file mode 100644
index 000000000..5ce83b15e
--- /dev/null
+++ b/icefall/transformer_lm/attention.py
@@ -0,0 +1,510 @@
+# Copyright (c)  2021  University of Chinese Academy of Sciences (author: Han Zhu)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import warnings
+from typing import List, Optional, Tuple
+
+import torch
+from torch import Tensor, nn
+
+from icefall.transformer_lm.scaling import (
+    ActivationBalancer,
+    BasicNorm,
+    DoubleSwish,
+    ScaledConv1d,
+    ScaledConv2d,
+    ScaledLinear,
+)
+from icefall.utils import is_jit_tracing
+
+
+class RelPositionMultiheadAttention(nn.Module):
+    r"""Multi-Head Attention layer with relative position encoding
+
+    See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
+
+    Args:
+        embed_dim: total dimension of the model.
+        num_heads: parallel attention heads.
+        dropout: a Dropout layer on attn_output_weights. Default: 0.0.
+
+    Examples::
+
+        >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
+        >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
+    """
+
+    def __init__(
+        self,
+        embed_dim: int,
+        num_heads: int,
+        dropout: float = 0.0,
+    ) -> None:
+        super(RelPositionMultiheadAttention, self).__init__()
+        self.embed_dim = embed_dim
+        self.num_heads = num_heads
+        self.dropout = dropout
+        self.head_dim = embed_dim // num_heads
+        assert (
+            self.head_dim * num_heads == self.embed_dim
+        ), "embed_dim must be divisible by num_heads"
+
+        self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
+        self.out_proj = ScaledLinear(
+            embed_dim, embed_dim, bias=True, initial_scale=0.25
+        )
+
+        # linear transformation for positional encoding.
+        self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
+        # these two learnable bias are used in matrix c and matrix d
+        # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+        self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+        self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+        self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
+        self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
+        self._reset_parameters()
+
+    def _pos_bias_u(self):
+        return self.pos_bias_u * self.pos_bias_u_scale.exp()
+
+    def _pos_bias_v(self):
+        return self.pos_bias_v * self.pos_bias_v_scale.exp()
+
+    def _reset_parameters(self) -> None:
+        nn.init.normal_(self.pos_bias_u, std=0.01)
+        nn.init.normal_(self.pos_bias_v, std=0.01)
+
+    def forward(
+        self,
+        query: Tensor,
+        key: Tensor,
+        value: Tensor,
+        pos_emb: Tensor,
+        key_padding_mask: Optional[Tensor] = None,
+        need_weights: bool = False,
+        attn_mask: Optional[Tensor] = None,
+        left_context: int = 0,
+    ) -> Tuple[Tensor, Optional[Tensor]]:
+        r"""
+        Args:
+            query, key, value: map a query and a set of key-value pairs to an output.
+            pos_emb: Positional embedding tensor
+            key_padding_mask: if provided, specified padding elements in the key will
+                be ignored by the attention. When given a binary mask and a value is True,
+                the corresponding value on the attention layer will be ignored. When given
+                a byte mask and a value is non-zero, the corresponding value on the attention
+                layer will be ignored
+            need_weights: output attn_output_weights.
+            attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+                the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+            left_context (int): left context (in frames) used during streaming decoding.
+                this is used only in real streaming decoding, in other circumstances,
+                it MUST be 0.
+
+        Shape:
+            - Inputs:
+            - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+            - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+            - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+            - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+            - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+            If a ByteTensor is provided, the non-zero positions will be ignored while the position
+            with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+            - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+            3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+            S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
+            positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+            while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+            is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+            is provided, it will be added to the attention weight.
+
+            - Outputs:
+            - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+            E is the embedding dimension.
+            - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+            L is the target sequence length, S is the source sequence length.
+        """
+        return self.multi_head_attention_forward(
+            query,
+            key,
+            value,
+            pos_emb,
+            self.embed_dim,
+            self.num_heads,
+            self.in_proj.get_weight(),
+            self.in_proj.get_bias(),
+            self.dropout,
+            self.out_proj.get_weight(),
+            self.out_proj.get_bias(),
+            training=self.training,
+            key_padding_mask=key_padding_mask,
+            need_weights=need_weights,
+            attn_mask=attn_mask,
+            left_context=left_context,
+        )
+
+    def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
+        """Compute relative positional encoding.
+
+        Args:
+            x: Input tensor (batch, head, time1, 2*time1-1+left_context).
+                time1 means the length of query vector.
+            left_context (int): left context (in frames) used during streaming decoding.
+                this is used only in real streaming decoding, in other circumstances,
+                it MUST be 0.
+
+        Returns:
+            Tensor: tensor of shape (batch, head, time1, time2)
+          (note: time2 has the same value as time1, but it is for
+          the key, while time1 is for the query).
+        """
+        (batch_size, num_heads, time1, n) = x.shape
+
+        time2 = time1 + left_context
+        if not is_jit_tracing():
+            assert (
+                n == left_context + 2 * time1 - 1
+            ), f"{n} == {left_context} + 2 * {time1} - 1"
+
+        if is_jit_tracing():
+            rows = torch.arange(start=time1 - 1, end=-1, step=-1)
+            cols = torch.arange(time2)
+            rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
+            indexes = rows + cols
+
+            x = x.reshape(-1, n)
+            x = torch.gather(x, dim=1, index=indexes)
+            x = x.reshape(batch_size, num_heads, time1, time2)
+            return x
+        else:
+            # Note: TorchScript requires explicit arg for stride()
+            batch_stride = x.stride(0)
+            head_stride = x.stride(1)
+            time1_stride = x.stride(2)
+            n_stride = x.stride(3)
+            return x.as_strided(
+                (batch_size, num_heads, time1, time2),
+                (batch_stride, head_stride, time1_stride - n_stride, n_stride),
+                storage_offset=n_stride * (time1 - 1),
+            )
+
+    def multi_head_attention_forward(
+        self,
+        query: Tensor,
+        key: Tensor,
+        value: Tensor,
+        pos_emb: Tensor,
+        embed_dim_to_check: int,
+        num_heads: int,
+        in_proj_weight: Tensor,
+        in_proj_bias: Tensor,
+        dropout_p: float,
+        out_proj_weight: Tensor,
+        out_proj_bias: Tensor,
+        training: bool = True,
+        key_padding_mask: Optional[Tensor] = None,
+        need_weights: bool = False,
+        attn_mask: Optional[Tensor] = None,
+        left_context: int = 0,
+    ) -> Tuple[Tensor, Optional[Tensor]]:
+        r"""
+        Args:
+            query, key, value: map a query and a set of key-value pairs to an output.
+            pos_emb: Positional embedding tensor
+            embed_dim_to_check: total dimension of the model.
+            num_heads: parallel attention heads.
+            in_proj_weight, in_proj_bias: input projection weight and bias.
+            dropout_p: probability of an element to be zeroed.
+            out_proj_weight, out_proj_bias: the output projection weight and bias.
+            training: apply dropout if is ``True``.
+            key_padding_mask: if provided, specified padding elements in the key will
+                be ignored by the attention. This is an binary mask. When the value is True,
+                the corresponding value on the attention layer will be filled with -inf.
+            need_weights: output attn_output_weights.
+            attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+                the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+            left_context (int): left context (in frames) used during streaming decoding.
+                this is used only in real streaming decoding, in other circumstances,
+                it MUST be 0.
+
+        Shape:
+            Inputs:
+            - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+            the embedding dimension.
+            - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+            - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+            the embedding dimension.
+            - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
+            length, N is the batch size, E is the embedding dimension.
+            - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+            If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+            will be unchanged. If a BoolTensor is provided, the positions with the
+            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+            - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+            3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+            S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+            positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+            while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+            are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+            is provided, it will be added to the attention weight.
+
+            Outputs:
+            - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+            E is the embedding dimension.
+            - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+            L is the target sequence length, S is the source sequence length.
+        """
+
+        tgt_len, bsz, embed_dim = query.size()
+        if not is_jit_tracing():
+            assert embed_dim == embed_dim_to_check
+            assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+        head_dim = embed_dim // num_heads
+        if not is_jit_tracing():
+            assert (
+                head_dim * num_heads == embed_dim
+            ), "embed_dim must be divisible by num_heads"
+
+        scaling = float(head_dim) ** -0.5
+
+        if torch.equal(query, key) and torch.equal(key, value):
+            # self-attention
+            q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
+                3, dim=-1
+            )
+
+        elif torch.equal(key, value):
+            # encoder-decoder attention
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = nn.functional.linear(query, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim
+            _end = None
+            _w = in_proj_weight[_start:, :]
+            if _b is not None:
+                _b = _b[_start:]
+            k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
+
+        else:
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = nn.functional.linear(query, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim
+            _end = embed_dim * 2
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            k = nn.functional.linear(key, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim * 2
+            _end = None
+            _w = in_proj_weight[_start:, :]
+            if _b is not None:
+                _b = _b[_start:]
+            v = nn.functional.linear(value, _w, _b)
+
+        if attn_mask is not None:
+            assert (
+                attn_mask.dtype == torch.float32
+                or attn_mask.dtype == torch.float64
+                or attn_mask.dtype == torch.float16
+                or attn_mask.dtype == torch.uint8
+                or attn_mask.dtype == torch.bool
+            ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
+                attn_mask.dtype
+            )
+            if attn_mask.dtype == torch.uint8:
+                warnings.warn(
+                    "Byte tensor for attn_mask is deprecated. Use bool tensor instead."
+                )
+                attn_mask = attn_mask.to(torch.bool)
+
+            if attn_mask.dim() == 2:
+                attn_mask = attn_mask.unsqueeze(0)
+                if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
+            elif attn_mask.dim() == 3:
+                if list(attn_mask.size()) != [
+                    bsz * num_heads,
+                    query.size(0),
+                    key.size(0),
+                ]:
+                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
+            else:
+                raise RuntimeError(
+                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
+                )
+            # attn_mask's dim is 3 now.
+
+        # convert ByteTensor key_padding_mask to bool
+        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
+            warnings.warn(
+                "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
+            )
+            key_padding_mask = key_padding_mask.to(torch.bool)
+
+        q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
+        k = k.contiguous().view(-1, bsz, num_heads, head_dim)
+        v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+
+        src_len = k.size(0)
+
+        if key_padding_mask is not None and not is_jit_tracing():
+            assert key_padding_mask.size(0) == bsz, "{} == {}".format(
+                key_padding_mask.size(0), bsz
+            )
+            assert key_padding_mask.size(1) == src_len, "{} == {}".format(
+                key_padding_mask.size(1), src_len
+            )
+
+        q = q.transpose(0, 1)  # (batch, time1, head, d_k)
+
+        pos_emb_bsz = pos_emb.size(0)
+        if not is_jit_tracing():
+            assert pos_emb_bsz in (1, bsz)  # actually it is 1
+
+        p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
+        # (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
+        p = p.permute(0, 2, 3, 1)
+
+        q_with_bias_u = (q + self._pos_bias_u()).transpose(
+            1, 2
+        )  # (batch, head, time1, d_k)
+
+        q_with_bias_v = (q + self._pos_bias_v()).transpose(
+            1, 2
+        )  # (batch, head, time1, d_k)
+
+        # compute attention score
+        # first compute matrix a and matrix c
+        # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+        k = k.permute(1, 2, 3, 0)  # (batch, head, d_k, time2)
+        matrix_ac = torch.matmul(q_with_bias_u, k)  # (batch, head, time1, time2)
+
+        # compute matrix b and matrix d
+        matrix_bd = torch.matmul(q_with_bias_v, p)  # (batch, head, time1, 2*time1-1)
+        matrix_bd = self.rel_shift(matrix_bd, left_context)
+
+        attn_output_weights = matrix_ac + matrix_bd  # (batch, head, time1, time2)
+
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
+
+        if not is_jit_tracing():
+            assert list(attn_output_weights.size()) == [
+                bsz * num_heads,
+                tgt_len,
+                src_len,
+            ]
+
+        if attn_mask is not None:
+            if attn_mask.dtype == torch.bool:
+                attn_output_weights.masked_fill_(attn_mask, float("-inf"))
+            else:
+                attn_output_weights += attn_mask
+
+        if key_padding_mask is not None:
+            attn_output_weights = attn_output_weights.view(
+                bsz, num_heads, tgt_len, src_len
+            )
+            attn_output_weights = attn_output_weights.masked_fill(
+                key_padding_mask.unsqueeze(1).unsqueeze(2),
+                float("-inf"),
+            )
+            attn_output_weights = attn_output_weights.view(
+                bsz * num_heads, tgt_len, src_len
+            )
+
+        attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
+
+        # If we are using dynamic_chunk_training and setting a limited
+        # num_left_chunks, the attention may only see the padding values which
+        # will also be masked out by `key_padding_mask`, at this circumstances,
+        # the whole column of `attn_output_weights` will be `-inf`
+        # (i.e. be `nan` after softmax), so, we fill `0.0` at the masking
+        # positions to avoid invalid loss value below.
+        if (
+            attn_mask is not None
+            and attn_mask.dtype == torch.bool
+            and key_padding_mask is not None
+        ):
+            if attn_mask.size(0) != 1:
+                attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
+                combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
+            else:
+                # attn_mask.shape == (1, tgt_len, src_len)
+                combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
+                    1
+                ).unsqueeze(2)
+
+            attn_output_weights = attn_output_weights.view(
+                bsz, num_heads, tgt_len, src_len
+            )
+            attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
+            attn_output_weights = attn_output_weights.view(
+                bsz * num_heads, tgt_len, src_len
+            )
+
+        attn_output_weights = nn.functional.dropout(
+            attn_output_weights, p=dropout_p, training=training
+        )
+
+        attn_output = torch.bmm(attn_output_weights, v)
+
+        if not is_jit_tracing():
+            assert list(attn_output.size()) == [
+                bsz * num_heads,
+                tgt_len,
+                head_dim,
+            ]
+
+        attn_output = (
+            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+        )
+        attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
+
+        if need_weights:
+            # average attention weights over heads
+            attn_output_weights = attn_output_weights.view(
+                bsz, num_heads, tgt_len, src_len
+            )
+            return attn_output, attn_output_weights.sum(dim=1) / num_heads
+        else:
+            return attn_output, None
diff --git a/icefall/transformer_lm/compute_perplexity.py b/icefall/transformer_lm/compute_perplexity.py
new file mode 100644
index 000000000..72d7c477b
--- /dev/null
+++ b/icefall/transformer_lm/compute_perplexity.py
@@ -0,0 +1,195 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Fangjun Kuang
+#                                                  Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import logging
+import math
+from pathlib import Path
+
+import torch
+from dataset import get_dataloader
+from train import get_params
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.transformer_lm.model import TransformerLM
+from icefall.utils import AttributeDict, setup_logger, str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=7,
+        help="It specifies the checkpoint to use for decoding."
+        "Note: Epoch counts from 0.",
+    )
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=1,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch'. ",
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
+    )
+
+    parser.add_argument(
+        "--lm-data",
+        type=str,
+        help="Path to the LM test data for computing perplexity",
+        default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
+    )
+
+    parser.add_argument(
+        "--vocab-size",
+        type=int,
+        default=500,
+        help="Vocabulary size of the model",
+    )
+
+    parser.add_argument(
+        "--num-layers",
+        type=int,
+        default=16,
+        help="Number of RNN layers the model",
+    )
+
+    parser.add_argument(
+        "--tie-weights",
+        type=str2bool,
+        default=False,
+        help="""True to share the weights between the input embedding layer and the
+        last output linear layer
+        """,
+    )
+
+    parser.add_argument(
+        "--batch-size",
+        type=int,
+        default=50,
+        help="Number of RNN layers the model",
+    )
+
+    parser.add_argument(
+        "--max-sent-len",
+        type=int,
+        default=100,
+        help="Number of RNN layers the model",
+    )
+
+    return parser
+
+
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+    args.lm_data = Path(args.lm_data)
+
+    params = get_params()
+    params.update(vars(args))
+
+    setup_logger(f"{params.exp_dir}/log-ppl/")
+    logging.info("Computing perplexity started")
+    logging.info(params)
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"Device: {device}")
+
+    logging.info("About to create model")
+    model = TransformerLM(
+        vocab_size=params.vocab_size,
+        d_model=params.encoder_dim,
+        embedding_dim=params.embedding_dim,
+        dim_feedforward=params.dim_feedforward,
+        nhead=params.nhead,
+        num_layers=params.num_layers,
+        tie_weights=params.tie_weights,
+        params=params,
+    )
+
+    if params.avg == 1:
+        load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+        model.to(device)
+    else:
+        start = params.epoch - params.avg + 1
+        filenames = []
+        for i in range(start, params.epoch + 1):
+            if start >= 0:
+                filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+        logging.info(f"averaging {filenames}")
+        model.to(device)
+        model.load_state_dict(average_checkpoints(filenames, device=device))
+
+    model.eval()
+    num_param = sum([p.numel() for p in model.parameters()])
+    num_param_requires_grad = sum(
+        [p.numel() for p in model.parameters() if p.requires_grad]
+    )
+
+    logging.info(f"Number of model parameters: {num_param}")
+    logging.info(
+        f"Number of model parameters (requires_grad): "
+        f"{num_param_requires_grad} "
+        f"({num_param_requires_grad/num_param_requires_grad*100}%)"
+    )
+
+    logging.info(f"Loading LM test data from {params.lm_data}")
+    test_dl = get_dataloader(
+        filename=params.lm_data,
+        is_distributed=False,
+        params=params,
+    )
+
+    tot_loss = 0.0
+    num_tokens = 0
+    num_sentences = 0
+    for batch_idx, batch in enumerate(test_dl):
+        x, y, sentence_lengths = batch
+        x = x.to(device)
+        y = y.to(device)
+        sentence_lengths = sentence_lengths.to(device)
+
+        nll = model(x, y, sentence_lengths)
+        loss = nll.sum().cpu().item()
+
+        tot_loss += loss
+        num_tokens += sentence_lengths.sum().cpu().item()
+        num_sentences += x.size(0)
+
+    ppl = math.exp(tot_loss / num_tokens)
+    logging.info(
+        f"total nll: {tot_loss}, num tokens: {num_tokens}, "
+        f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
+    )
+
+
+if __name__ == "__main__":
+    main()
diff --git a/icefall/transformer_lm/dataset.py b/icefall/transformer_lm/dataset.py
new file mode 120000
index 000000000..5792a6cf0
--- /dev/null
+++ b/icefall/transformer_lm/dataset.py
@@ -0,0 +1 @@
+../rnn_lm/dataset.py
\ No newline at end of file
diff --git a/icefall/transformer_lm/encoder.py b/icefall/transformer_lm/encoder.py
new file mode 100644
index 000000000..4357b83d7
--- /dev/null
+++ b/icefall/transformer_lm/encoder.py
@@ -0,0 +1,329 @@
+# Copyright (c)  2021  Xiaomi Corporation (authors: Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import copy
+import math
+from typing import List, Optional, Tuple
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor, nn
+
+from icefall.transformer_lm.attention import RelPositionMultiheadAttention
+from icefall.transformer_lm.scaling import (
+    ActivationBalancer,
+    BasicNorm,
+    DoubleSwish,
+    ScaledConv1d,
+    ScaledConv2d,
+    ScaledLinear,
+)
+from icefall.utils import is_jit_tracing, make_pad_mask
+
+
+class Transformer(torch.nn.Module):
+    """_summary_
+
+    Args:
+        input_dim (int): Input feature dimension
+        d_mode (int): The dimension of the transformer
+        dim_feedforward (int ): The dimension of the ffw module
+        nhead (int): The number of attention heads
+        dropout_rate (float): dropout rate
+        att_dropout (float): dropout rate in attention module
+    """
+
+    def __init__(
+        self,
+        input_dim: int,
+        d_model: int,
+        dim_feedforward: int,
+        nhead: int = 4,
+        num_layers: int = 6,
+        dropout_rate: float = 0.1,
+        att_dropout: float = 0.0,
+    ):
+        super().__init__()
+
+        self.encoder_layers = num_layers
+        self.d_model = d_model
+
+        self.embed = ScaledLinear(input_dim, d_model)
+        self.norm_before = BasicNorm(d_model, learn_eps=False)
+
+        self.encoder_pos = RelPositionalEncoding(d_model, dropout_rate)
+
+        encoder_layer = TransformerEncoderLayer(
+            d_model=d_model,
+            dim_feedforward=dim_feedforward,
+            nhead=nhead,
+            dropout_rate=dropout_rate,
+        )
+
+        self.encoder = TransformerEncoder(encoder_layer, num_layers)
+
+    def _create_attention_mask(self, x_lens: torch.Tensor):
+        # create a 2D attention mask to mask out
+        # the upper right half of the attention matrix
+        max_len = max(x_lens)
+        ones = torch.ones(max_len, max_len, device=x_lens.device, dtype=torch.bool)
+        return torch.triu(ones, diagonal=1)
+
+    def forward(
+        self, x: torch.Tensor, x_lens: torch.Tensor
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """Transformer forward
+
+        Args:
+            x (torch.Tensor): Input tensor (B,T,input_dim)
+            x_lens (torch.Tensor): The length of input tensors before padding (B,)
+
+        Returns:
+            Return a tuple of 2 tensors:
+            - x: output feature of the transformer (B,T,d_model)
+            - x_lens: output feature lens of the transformer
+        """
+
+        attention_mask = self._create_attention_mask(x_lens)
+        src_key_padding_mask = make_pad_mask(x_lens)
+
+        x = self.norm_before(self.embed(x))
+
+        x, pos_emb = self.encoder_pos(x)
+        x = x.permute(1, 0, 2)
+
+        x = self.encoder(
+            x,
+            pos_emb,
+            mask=attention_mask,  # pass the attention mast
+            src_key_padding_mask=src_key_padding_mask,
+        )  # (T, N, C)
+
+        x = x.permute(1, 0, 2)  # (T, N, C) ->(N, T, C)
+        return x, x_lens
+
+
+class TransformerEncoder(torch.nn.Module):
+    def __init__(self, encoder_layer: torch.nn.Module, num_layers: int) -> None:
+        """TransformerEncoder is a stack of N encoder layers
+
+        Args:
+            encoder_layer (torch.nn.Module): an instance of the TransformerEncoderLayer()
+            num_layers (int): Number of layers to be stacked
+        """
+        super().__init__()
+        self.layers = nn.ModuleList(
+            [copy.deepcopy(encoder_layer) for i in range(num_layers)]
+        )
+        self.num_layers = num_layers
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        pos_emb: torch.Tensor,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        mask: Optional[torch.Tensor] = None,
+    ) -> torch.Tensor:
+        """_summary_
+
+        Args:
+            src: the sequence to the encoder (required).
+            pos_emb: Positional embedding tensor (required).
+            mask: the mask for the src sequence (optional).
+            src_key_padding_mask: the mask for the src keys per batch (optional).
+
+        Returns:
+            output: transformer encoded features
+        """
+        output = src
+
+        for layer_index, mod in enumerate(self.layers):
+            output = mod(
+                output,
+                pos_emb,
+                src_key_padding_mask=src_key_padding_mask,
+                src_mask=mask,
+            )
+
+        return output
+
+
+class TransformerEncoderLayer(torch.nn.Module):
+    def __init__(
+        self,
+        d_model: int,
+        dim_feedforward: int,
+        nhead: int,
+        dropout_rate: float,
+    ):
+        """TransformerEncoderLayer is made up of self-attn and feedforward module
+
+        Args:
+            d_model (int): The model size
+            dim_feedforward (int): Dimension of ffw module
+            nhead (int): Number of heads
+            dropout_rate (float): Dropout rate
+        """
+        super().__init__()
+
+        self.d_model = d_model
+
+        self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
+        self.feed_forward = nn.Sequential(
+            ScaledLinear(d_model, dim_feedforward),
+            ActivationBalancer(channel_dim=-1),
+            DoubleSwish(),
+            nn.Dropout(dropout_rate),
+            ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
+        )
+
+        self.norm_final = BasicNorm(d_model)
+
+        self.balancer = ActivationBalancer(
+            channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
+        )
+
+        self.dropout = nn.Dropout(dropout_rate)
+
+    def forward(
+        self,
+        src: torch.Tensor,
+        pos_emb: torch.Tensor,
+        src_key_padding_mask: Optional[torch.Tensor] = None,
+        src_mask: Optional[torch.Tensor] = None,
+        cache=None,
+    ):
+        """
+        Pass the input through the encoder layer.
+
+        Args:
+            src: the sequence to the encoder layer (required).
+            pos_emb: Positional embedding tensor (required).
+            src_key_padding_mask: the mask for the src keys per batch (optional).
+            src_mask: the mask for the src sequence (optional).
+        """
+        src_orig = src
+
+        src_att = self.self_attn(
+            src,
+            src,
+            src,
+            pos_emb=pos_emb,
+            attn_mask=src_mask,
+            key_padding_mask=src_key_padding_mask,
+        )[0]
+
+        src = src + self.dropout(src_att)
+
+        # feed forward module
+        src = src + self.dropout(self.feed_forward(src))
+
+        src = self.norm_final(self.balancer(src))
+
+        return src
+
+
+class RelPositionalEncoding(torch.nn.Module):
+    """Relative positional encoding module.
+
+    See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
+    Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
+
+    Args:
+        d_model: Embedding dimension.
+        dropout_rate: Dropout rate.
+        max_len: Maximum input length.
+
+    """
+
+    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
+        """Construct an PositionalEncoding object."""
+        super(RelPositionalEncoding, self).__init__()
+        if is_jit_tracing():
+            # 10k frames correspond to ~100k ms, e.g., 100 seconds, i.e.,
+            # It assumes that the maximum input won't have more than
+            # 10k frames.
+            #
+            # TODO(fangjun): Use torch.jit.script() for this module
+            max_len = 10000
+
+        self.d_model = d_model
+        self.dropout = torch.nn.Dropout(p=dropout_rate)
+        self.pe = None
+        self.extend_pe(torch.tensor(0.0).expand(1, max_len))
+
+    def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
+        """Reset the positional encodings."""
+        x_size_1 = x.size(1) + left_context
+        if self.pe is not None:
+            # self.pe contains both positive and negative parts
+            # the length of self.pe is 2 * input_len - 1
+            if self.pe.size(1) >= x_size_1 * 2 - 1:
+                # Note: TorchScript doesn't implement operator== for torch.Device
+                if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
+                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+                return
+        # Suppose `i` means to the position of query vector and `j` means the
+        # position of key vector. We use position relative positions when keys
+        # are to the left (i>j) and negative relative positions otherwise (i Tuple[torch.Tensor, torch.Tensor]:
+        """Add positional encoding.
+
+        Args:
+            x (torch.Tensor): Input tensor (batch, time, `*`).
+            left_context (int): left context (in frames) used during streaming decoding.
+                this is used only in real streaming decoding, in other circumstances,
+                it MUST be 0.
+
+        Returns:
+            torch.Tensor: Encoded tensor (batch, time, `*`).
+            torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
+
+        """
+        self.extend_pe(x, left_context)
+        x_size_1 = x.size(1) + left_context
+        pos_emb = self.pe[
+            :,
+            self.pe.size(1) // 2
+            - x_size_1
+            + 1 : self.pe.size(1) // 2  # noqa E203
+            + x.size(1),
+        ]
+        return self.dropout(x), self.dropout(pos_emb)
diff --git a/icefall/transformer_lm/export.py b/icefall/transformer_lm/export.py
new file mode 100644
index 000000000..c08982e37
--- /dev/null
+++ b/icefall/transformer_lm/export.py
@@ -0,0 +1,186 @@
+#!/usr/bin/env python3
+# Copyright (c)  2022  Xiaomi Corporation (authors: Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+
+import argparse
+import logging
+from pathlib import Path
+
+import torch
+from model import TransformerLM
+
+from icefall.checkpoint import load_checkpoint
+from icefall.utils import AttributeDict, load_averaged_model, str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--epoch",
+        type=int,
+        default=11,
+        help="It specifies the checkpoint to use for decoding."
+        "Note: Epoch counts from 0.",
+    )
+
+    parser.add_argument(
+        "--avg",
+        type=int,
+        default=5,
+        help="Number of checkpoints to average. Automatically select "
+        "consecutive checkpoints before the checkpoint specified by "
+        "'--epoch'. ",
+    )
+
+    parser.add_argument(
+        "--vocab-size",
+        type=int,
+        default=500,
+        help="Vocabulary size of the model",
+    )
+
+    parser.add_argument(
+        "--embedding-dim",
+        type=int,
+        default=768,
+        help="Embedding dim of the model",
+    )
+
+    parser.add_argument(
+        "--encoder-dim",
+        type=int,
+        default=768,
+        help="Encoder dim of the model",
+    )
+
+    parser.add_argument(
+        "--dim_feedforward",
+        type=int,
+        default=2048,
+        help="Hidden dim of the model",
+    )
+
+    parser.add_argument(
+        "--nhead",
+        type=int,
+        default=8,
+        help="Number of attention heads",
+    )
+
+    parser.add_argument(
+        "--num-layers",
+        type=int,
+        default=16,
+        help="Number of Transformer layers",
+    )
+
+    parser.add_argument(
+        "--tie-weights",
+        type=str2bool,
+        default=True,
+        help="""True to share the weights between the input embedding layer and the
+        last output linear layer
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="rnn_lm/exp",
+        help="""It specifies the directory where all training related
+        files, e.g., checkpoints, log, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--jit",
+        type=str2bool,
+        default=True,
+        help="""True to save a model after applying torch.jit.script.
+        """,
+    )
+
+    return parser
+
+
+def main():
+    args = get_parser().parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    params = AttributeDict({})
+    params.update(vars(args))
+
+    logging.info(params)
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", 0)
+
+    logging.info(f"device: {device}")
+
+    logging.info("About to create model")
+    model = TransformerLM(
+        vocab_size=params.vocab_size,
+        d_model=params.encoder_dim,
+        embedding_dim=params.embedding_dim,
+        dim_feedforward=params.dim_feedforward,
+        nhead=params.nhead,
+        num_layers=params.num_layers,
+        tie_weights=params.tie_weights,
+        params=params,
+    )
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    model.to(device)
+
+    if params.avg == 1:
+        load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+    else:
+        model = load_averaged_model(
+            params.exp_dir, model, params.epoch, params.avg, device
+        )
+
+    model.to("cpu")
+    model.eval()
+
+    if params.jit:
+        logging.info("Using torch.jit.script")
+        model = torch.jit.script(model)
+        filename = params.exp_dir / "cpu_jit.pt"
+        model.save(str(filename))
+        logging.info(f"Saved to {filename}")
+    else:
+        logging.info("Not using torch.jit.script")
+        # Save it using a format so that it can be loaded
+        # by :func:`load_checkpoint`
+        filename = params.exp_dir / "pretrained.pt"
+        torch.save({"model": model.state_dict()}, str(filename))
+        logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+
+    logging.basicConfig(format=formatter, level=logging.INFO)
+    main()
diff --git a/icefall/transformer_lm/model.py b/icefall/transformer_lm/model.py
new file mode 100644
index 000000000..79dda3168
--- /dev/null
+++ b/icefall/transformer_lm/model.py
@@ -0,0 +1,115 @@
+# Copyright (c)  2022  Xiaomi Corporation (authors: Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from typing import Optional, Tuple
+
+import torch
+import torch.nn.functional as F
+
+from icefall.transformer_lm.encoder import Transformer
+from icefall.utils import AttributeDict, add_eos, add_sos, make_pad_mask
+
+
+class TransformerLM(torch.nn.Module):
+    def __init__(
+        self,
+        vocab_size: int,
+        embedding_dim: int,
+        d_model: int,
+        dim_feedforward: int,
+        nhead: int = 8,
+        num_layers: int = 16,
+        tie_weights: bool = True,
+        dropout: float = 0.1,
+        emb_dropout_rate: float = 0.0,
+        params: AttributeDict = None,
+    ):
+        super().__init__()
+
+        self.vocab_size = vocab_size
+        self.params = params
+
+        self.input_embedding = torch.nn.Embedding(
+            num_embeddings=vocab_size,
+            embedding_dim=embedding_dim,
+        )
+
+        self.encoder = Transformer(
+            input_dim=embedding_dim,
+            d_model=d_model,
+            dim_feedforward=dim_feedforward,
+            nhead=nhead,
+            num_layers=num_layers,
+            dropout_rate=dropout,
+        )
+
+        self.output_linear = torch.nn.Linear(
+            in_features=d_model, out_features=vocab_size
+        )
+        if tie_weights:
+            logging.info("Tying weights")
+            assert d_model == embedding_dim, (d_model, embedding_dim)
+            self.output_linear.weight = self.input_embedding.weight
+        else:
+            logging.info("Not tying weights")
+
+    def forward(
+        self,
+        x: torch.Tensor,
+        y: torch.Tensor,
+        x_lens: torch.Tensor,
+        return_logits: bool = False,
+    ):
+        """Forward transformer language model
+
+        Args:
+            x (torch.Tensor): Input tokens (B,L)
+            y (torch.Tensor): Output tokens (with EOS appended) (B,L)
+            x_lens (torch.Tensor): Length of input tokens before padding (B,)
+            return_logits (bool, optional): Return logits instead of NLL
+
+        """
+
+        x = self.input_embedding(x)
+
+        x, x_lens = self.encoder(x, x_lens)
+
+        logits = self.output_linear(x)
+
+        if return_logits:
+            return logits
+
+        nll_loss = F.cross_entropy(
+            logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
+        )
+
+        mask = make_pad_mask(x_lens).reshape(-1)
+        nll_loss.masked_fill_(mask, 0)
+
+        return nll_loss
+
+    def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
+
+        bs = x.size(0)
+
+        state = None
+        logits = self.forward(x, x, x_lens, return_logits=True)
+        index = torch.arange(bs)
+
+        last_logits = logits[index, x_lens - 1, :]
+
+        return last_logits.log_softmax(-1), state
diff --git a/icefall/transformer_lm/scaling.py b/icefall/transformer_lm/scaling.py
new file mode 120000
index 000000000..0876c0704
--- /dev/null
+++ b/icefall/transformer_lm/scaling.py
@@ -0,0 +1 @@
+../../egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py
\ No newline at end of file
diff --git a/icefall/transformer_lm/train.py b/icefall/transformer_lm/train.py
new file mode 100644
index 000000000..c36abfcdf
--- /dev/null
+++ b/icefall/transformer_lm/train.py
@@ -0,0 +1,609 @@
+#!/usr/bin/env python3
+# Copyright    2021  Xiaomi Corp.        (authors: Xiaoyu Yang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+Usage:
+    ./transformer_lm/train.py \
+        --start-epoch 0 \
+        --world-size 2 \
+        --num-epochs 1 \
+        --use-fp16 0 \
+        --num-layers 12 \
+        --batch-size 400
+
+"""
+
+import argparse
+import logging
+import math
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+import torch.optim as optim
+from dataset import get_dataloader
+from lhotse.utils import fix_random_seed
+from model import TransformerLM
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+
+def get_parser():
+    parser = argparse.ArgumentParser(
+        formatter_class=argparse.ArgumentDefaultsHelpFormatter
+    )
+
+    parser.add_argument(
+        "--world-size",
+        type=int,
+        default=1,
+        help="Number of GPUs for DDP training.",
+    )
+
+    parser.add_argument(
+        "--master-port",
+        type=int,
+        default=12354,
+        help="Master port to use for DDP training.",
+    )
+
+    parser.add_argument(
+        "--tensorboard",
+        type=str2bool,
+        default=True,
+        help="Should various information be logged in tensorboard.",
+    )
+
+    parser.add_argument(
+        "--num-epochs",
+        type=int,
+        default=30,
+        help="Number of epochs to train.",
+    )
+
+    parser.add_argument(
+        "--start-epoch",
+        type=int,
+        default=0,
+        help="""Resume training from from this epoch.
+        If it is positive, it will load checkpoint from
+        exp_dir/epoch-{start_epoch-1}.pt
+        """,
+    )
+
+    parser.add_argument(
+        "--exp-dir",
+        type=str,
+        default="transformer_lm/exp",
+        help="""The experiment dir.
+        It specifies the directory where all training related
+        files, e.g., checkpoints, logs, etc, are saved
+        """,
+    )
+
+    parser.add_argument(
+        "--use-fp16",
+        type=str2bool,
+        default=True,
+        help="Whether to use half precision training.",
+    )
+
+    parser.add_argument(
+        "--batch-size",
+        type=int,
+        default=400,
+    )
+
+    parser.add_argument(
+        "--lm-data",
+        type=str,
+        default="data/lm_training_bpe_500/sorted_lm_data.pt",
+        help="LM training data",
+    )
+
+    parser.add_argument(
+        "--lm-data-valid",
+        type=str,
+        default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
+        help="LM validation data",
+    )
+
+    parser.add_argument(
+        "--vocab-size",
+        type=int,
+        default=500,
+        help="Vocabulary size of the model",
+    )
+
+    parser.add_argument(
+        "--num-layers",
+        type=int,
+        default=12,
+        help="Number of Transformer layers in the model",
+    )
+
+    parser.add_argument(
+        "--tie-weights",
+        type=str2bool,
+        default=True,
+        help="""True to share the weights between the input embedding layer and the
+        last output linear layer
+        """,
+    )
+
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=42,
+        help="The seed for random generators intended for reproducibility",
+    )
+
+    return parser
+
+
+def get_params() -> AttributeDict:
+    """Return a dict containing training parameters."""
+
+    params = AttributeDict(
+        {
+            "max_sent_len": 200,
+            "sos_id": 1,
+            "eos_id": 1,
+            "blank_id": 0,
+            "lr": 1e-3,
+            "weight_decay": 1e-6,
+            "best_train_loss": float("inf"),
+            "best_valid_loss": float("inf"),
+            "best_train_epoch": -1,
+            "best_valid_epoch": -1,
+            "batch_idx_train": 0,
+            "log_interval": 200,
+            "reset_interval": 2000,
+            "valid_interval": 1000,
+            "nhead": 8,
+            "embedding_dim": 768,
+            "encoder_dim": 768,
+            "dim_feedforward": 2048,
+            "dropout": 0.1,
+            "env_info": get_env_info(),
+        }
+    )
+    return params
+
+
+def load_checkpoint_if_available(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+    """Load checkpoint from file.
+
+    If params.start_epoch is positive, it will load the checkpoint from
+    `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+    Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+    it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+    and `best_valid_loss` in `params`.
+
+    Args:
+      params:
+        The return value of :func:`get_params`.
+      model:
+        The training model.
+      optimizer:
+        The optimizer that we are using.
+      scheduler:
+        The learning rate scheduler we are using.
+    Returns:
+      Return None.
+    """
+    if params.start_epoch <= 0:
+        return
+
+    filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+    logging.info(f"Loading checkpoint: {filename}")
+    saved_params = load_checkpoint(
+        filename,
+        model=model,
+        optimizer=optimizer,
+        scheduler=scheduler,
+    )
+
+    keys = [
+        "best_train_epoch",
+        "best_valid_epoch",
+        "batch_idx_train",
+        "best_train_loss",
+        "best_valid_loss",
+    ]
+    for k in keys:
+        params[k] = saved_params[k]
+
+    return saved_params
+
+
+def save_checkpoint(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: Optional[torch.optim.Optimizer] = None,
+    scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+    rank: int = 0,
+) -> None:
+    """Save model, optimizer, scheduler and training stats to file.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The training model.
+    """
+    if rank != 0:
+        return
+    filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+    save_checkpoint_impl(
+        filename=filename,
+        model=model,
+        params=params,
+        optimizer=optimizer,
+        scheduler=scheduler,
+        rank=rank,
+    )
+
+    if params.best_train_epoch == params.cur_epoch:
+        best_train_filename = params.exp_dir / "best-train-loss.pt"
+        copyfile(src=filename, dst=best_train_filename)
+
+    if params.best_valid_epoch == params.cur_epoch:
+        best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+        copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+    model: nn.Module,
+    x: torch.Tensor,
+    y: torch.Tensor,
+    sentence_lengths: torch.Tensor,
+    is_training: bool,
+) -> Tuple[torch.Tensor, MetricsTracker]:
+    """Compute the negative log-likelihood loss given a model and its input.
+    Args:
+      model:
+        The NN model,
+      x:
+        A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
+        each row starts with SOS ID.
+      y:
+        A 2-D tensor. Each row is a shifted version of the corresponding row
+        in `x` but ends with an EOS ID (before padding).
+     sentence_lengths:
+       A 1-D tensor containing number of tokens of each sentence
+       before padding.
+     is_training:
+       True for training. False for validation.
+    """
+    with torch.set_grad_enabled(is_training):
+        device = model.device
+        x = x.to(device)
+        y = y.to(device)
+        sentence_lengths = sentence_lengths.to(device)
+
+        nll = model(x, y, sentence_lengths)
+        loss = nll.sum()
+
+        num_tokens = sentence_lengths.sum().item()
+
+        loss_info = MetricsTracker()
+        # Note: Due to how MetricsTracker() is designed,
+        # we use "frames" instead of "num_tokens" as a key here
+        loss_info["frames"] = num_tokens
+        loss_info["loss"] = loss.detach().item()
+    return loss, loss_info
+
+
+def compute_validation_loss(
+    params: AttributeDict,
+    model: nn.Module,
+    valid_dl: torch.utils.data.DataLoader,
+    world_size: int = 1,
+) -> MetricsTracker:
+    """Run the validation process. The validation loss
+    is saved in `params.valid_loss`.
+    """
+    model.eval()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(valid_dl):
+        x, y, sentence_lengths = batch
+        with torch.cuda.amp.autocast(enabled=params.use_fp16):
+            loss, loss_info = compute_loss(
+                model=model,
+                x=x,
+                y=y,
+                sentence_lengths=sentence_lengths,
+                is_training=False,
+            )
+
+        assert loss.requires_grad is False
+        tot_loss = tot_loss + loss_info
+
+    if world_size > 1:
+        tot_loss.reduce(loss.device)
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    if loss_value < params.best_valid_loss:
+        params.best_valid_epoch = params.cur_epoch
+        params.best_valid_loss = loss_value
+
+    return tot_loss
+
+
+def train_one_epoch(
+    params: AttributeDict,
+    model: nn.Module,
+    optimizer: torch.optim.Optimizer,
+    train_dl: torch.utils.data.DataLoader,
+    valid_dl: torch.utils.data.DataLoader,
+    tb_writer: Optional[SummaryWriter] = None,
+    world_size: int = 1,
+) -> None:
+    """Train the model for one epoch.
+
+    The training loss from the mean of all sentences is saved in
+    `params.train_loss`. It runs the validation process every
+    `params.valid_interval` batches.
+
+    Args:
+      params:
+        It is returned by :func:`get_params`.
+      model:
+        The model for training.
+      optimizer:
+        The optimizer we are using.
+      train_dl:
+        Dataloader for the training dataset.
+      valid_dl:
+        Dataloader for the validation dataset.
+      tb_writer:
+        Writer to write log messages to tensorboard.
+      world_size:
+        Number of nodes in DDP training. If it is 1, DDP is disabled.
+    """
+    model.train()
+
+    tot_loss = MetricsTracker()
+
+    for batch_idx, batch in enumerate(train_dl):
+        params.batch_idx_train += 1
+        x, y, sentence_lengths = batch
+        batch_size = x.size(0)
+        with torch.cuda.amp.autocast(enabled=params.use_fp16):
+            loss, loss_info = compute_loss(
+                model=model,
+                x=x,
+                y=y,
+                sentence_lengths=sentence_lengths,
+                is_training=True,
+            )
+
+        # summary stats
+        tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+        optimizer.zero_grad()
+        loss.backward()
+        clip_grad_norm_(model.parameters(), 5.0, 2.0)
+        optimizer.step()
+
+        if batch_idx % params.log_interval == 0:
+            # Note: "frames" here means "num_tokens"
+            this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
+            tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
+
+            logging.info(
+                f"Epoch {params.cur_epoch}, "
+                f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
+                f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
+                f"batch size: {batch_size}"
+            )
+
+            if tb_writer is not None:
+                loss_info.write_summary(
+                    tb_writer, "train/current_", params.batch_idx_train
+                )
+                tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
+
+                tb_writer.add_scalar(
+                    "train/current_ppl", this_batch_ppl, params.batch_idx_train
+                )
+
+                tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
+
+        if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+            logging.info("Computing validation loss")
+
+            valid_info = compute_validation_loss(
+                params=params,
+                model=model,
+                valid_dl=valid_dl,
+                world_size=world_size,
+            )
+            model.train()
+
+            valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
+            logging.info(
+                f"Epoch {params.cur_epoch}, validation: {valid_info}, "
+                f"ppl: {valid_ppl}"
+            )
+
+            if tb_writer is not None:
+                valid_info.write_summary(
+                    tb_writer, "train/valid_", params.batch_idx_train
+                )
+
+                tb_writer.add_scalar(
+                    "train/valid_ppl", valid_ppl, params.batch_idx_train
+                )
+
+    loss_value = tot_loss["loss"] / tot_loss["frames"]
+    params.train_loss = loss_value
+    if params.train_loss < params.best_train_loss:
+        params.best_train_epoch = params.cur_epoch
+        params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+    """
+    Args:
+      rank:
+        It is a value between 0 and `world_size-1`, which is
+        passed automatically by `mp.spawn()` in :func:`main`.
+        The node with rank 0 is responsible for saving checkpoint.
+      world_size:
+        Number of GPUs for DDP training.
+      args:
+        The return value of get_parser().parse_args()
+    """
+    params = get_params()
+    params.update(vars(args))
+    is_distributed = world_size > 1
+
+    fix_random_seed(params.seed)
+    if is_distributed:
+        setup_dist(rank, world_size, params.master_port)
+
+    setup_logger(f"{params.exp_dir}/log/log-train")
+    logging.info("Training started")
+    logging.info(params)
+
+    if args.tensorboard and rank == 0:
+        tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+    else:
+        tb_writer = None
+
+    device = torch.device("cpu")
+    if torch.cuda.is_available():
+        device = torch.device("cuda", rank)
+
+    logging.info(f"Device: {device}")
+
+    logging.info("About to create model")
+    model = TransformerLM(
+        vocab_size=params.vocab_size,
+        d_model=params.encoder_dim,
+        embedding_dim=params.embedding_dim,
+        dim_feedforward=params.dim_feedforward,
+        nhead=params.nhead,
+        num_layers=params.num_layers,
+        tie_weights=params.tie_weights,
+        params=params,
+    )
+
+    num_param = sum([p.numel() for p in model.parameters()])
+    logging.info(f"Number of model parameters: {num_param}")
+
+    checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+    model.to(device)
+    if is_distributed:
+        model = DDP(model, device_ids=[rank])
+
+    model.device = device
+
+    optimizer = optim.Adam(
+        model.parameters(),
+        lr=params.lr,
+        weight_decay=params.weight_decay,
+    )
+    if checkpoints:
+        logging.info("Load optimizer state_dict from checkpoint")
+        optimizer.load_state_dict(checkpoints["optimizer"])
+
+    logging.info(f"Loading LM training data from {params.lm_data}")
+    train_dl = get_dataloader(
+        filename=params.lm_data,
+        is_distributed=is_distributed,
+        params=params,
+    )
+
+    logging.info(f"Loading LM validation data from {params.lm_data_valid}")
+    valid_dl = get_dataloader(
+        filename=params.lm_data_valid,
+        is_distributed=is_distributed,
+        params=params,
+    )
+
+    # Note: No learning rate scheduler is used here
+    for epoch in range(params.start_epoch, params.num_epochs):
+        if is_distributed:
+            train_dl.sampler.set_epoch(epoch)
+
+        params.cur_epoch = epoch
+
+        train_one_epoch(
+            params=params,
+            model=model,
+            optimizer=optimizer,
+            train_dl=train_dl,
+            valid_dl=valid_dl,
+            tb_writer=tb_writer,
+            world_size=world_size,
+        )
+
+        save_checkpoint(
+            params=params,
+            model=model,
+            optimizer=optimizer,
+            rank=rank,
+        )
+
+    logging.info("Done!")
+
+    if is_distributed:
+        torch.distributed.barrier()
+        cleanup_dist()
+
+
+def main():
+    parser = get_parser()
+    args = parser.parse_args()
+    args.exp_dir = Path(args.exp_dir)
+
+    world_size = args.world_size
+    assert world_size >= 1
+    if world_size > 1:
+        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+    else:
+        run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+    main()
diff --git a/icefall/utils.py b/icefall/utils.py
index 45a49fb5c..ba0b7fe43 100644
--- a/icefall/utils.py
+++ b/icefall/utils.py
@@ -130,9 +130,7 @@ def setup_logger(
         formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s"  # noqa
         log_filename = f"{log_filename}-{date_time}-{rank}"
     else:
-        formatter = (
-            "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
-        )
+        formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
         log_filename = f"{log_filename}-{date_time}"
 
     os.makedirs(os.path.dirname(log_filename), exist_ok=True)
@@ -177,11 +175,13 @@ class AttributeDict(dict):
 
 
 def encode_supervisions(
-    supervisions: dict, subsampling_factor: int
-) -> Tuple[torch.Tensor, List[str]]:
+    supervisions: dict,
+    subsampling_factor: int,
+    token_ids: Optional[List[List[int]]] = None,
+) -> Tuple[torch.Tensor, Union[List[str], List[List[int]]]]:
     """
     Encodes Lhotse's ``batch["supervisions"]`` dict into
-    a pair of torch Tensor, and a list of transcription strings.
+    a pair of torch Tensor, and a list of transcription strings or token indexes
 
     The supervision tensor has shape ``(batch_size, 3)``.
     Its second dimension contains information about sequence index [0],
@@ -194,18 +194,30 @@ def encode_supervisions(
     supervision_segments = torch.stack(
         (
             supervisions["sequence_idx"],
-            supervisions["start_frame"] // subsampling_factor,
-            supervisions["num_frames"] // subsampling_factor,
+            torch.div(
+                supervisions["start_frame"],
+                subsampling_factor,
+                rounding_mode="floor",
+            ),
+            torch.div(
+                supervisions["num_frames"],
+                subsampling_factor,
+                rounding_mode="floor",
+            ),
         ),
         1,
     ).to(torch.int32)
 
     indices = torch.argsort(supervision_segments[:, 2], descending=True)
     supervision_segments = supervision_segments[indices]
-    texts = supervisions["text"]
-    texts = [texts[idx] for idx in indices]
 
-    return supervision_segments, texts
+    if token_ids is None:
+        texts = supervisions["text"]
+        res = [texts[idx] for idx in indices]
+    else:
+        res = [token_ids[idx] for idx in indices]
+
+    return supervision_segments, res
 
 
 def get_texts(
@@ -251,33 +263,20 @@ def get_texts(
 
 @dataclass
 class DecodingResults:
-    # Decoded token IDs for each utterance in the batch
-    tokens: List[List[int]]
-
     # timestamps[i][k] contains the frame number on which tokens[i][k]
     # is decoded
     timestamps: List[List[int]]
 
-    # hyps[i] is the recognition results, i.e., word IDs
+    # hyps[i] is the recognition results, i.e., word IDs or token IDs
     # for the i-th utterance with fast_beam_search_nbest_LG.
-    hyps: Union[List[List[int]], k2.RaggedTensor] = None
-
-
-def get_tokens_and_timestamps(labels: List[int]) -> Tuple[List[int], List[int]]:
-    tokens = []
-    timestamps = []
-    for i, v in enumerate(labels):
-        if v != 0:
-            tokens.append(v)
-            timestamps.append(i)
-
-    return tokens, timestamps
+    hyps: Union[List[List[int]], k2.RaggedTensor]
 
 
 def get_texts_with_timestamp(
     best_paths: k2.Fsa, return_ragged: bool = False
 ) -> DecodingResults:
-    """Extract the texts (as word IDs) and timestamps from the best-path FSAs.
+    """Extract the texts (as word IDs) and timestamps (as frame indexes)
+    from the best-path FSAs.
     Args:
       best_paths:
         A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
@@ -292,11 +291,14 @@ def get_texts_with_timestamp(
       decoded.
     """
     if isinstance(best_paths.aux_labels, k2.RaggedTensor):
+        all_aux_shape = (
+            best_paths.arcs.shape().remove_axis(1).compose(best_paths.aux_labels.shape)
+        )
+        all_aux_labels = k2.RaggedTensor(all_aux_shape, best_paths.aux_labels.values)
         # remove 0's and -1's.
         aux_labels = best_paths.aux_labels.remove_values_leq(0)
         # TODO: change arcs.shape() to arcs.shape
         aux_shape = best_paths.arcs.shape().compose(aux_labels.shape)
-
         # remove the states and arcs axes.
         aux_shape = aux_shape.remove_axis(1)
         aux_shape = aux_shape.remove_axis(1)
@@ -304,26 +306,26 @@ def get_texts_with_timestamp(
     else:
         # remove axis corresponding to states.
         aux_shape = best_paths.arcs.shape().remove_axis(1)
-        aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
+        all_aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
         # remove 0's and -1's.
-        aux_labels = aux_labels.remove_values_leq(0)
+        aux_labels = all_aux_labels.remove_values_leq(0)
 
     assert aux_labels.num_axes == 2
 
-    labels_shape = best_paths.arcs.shape().remove_axis(1)
-    labels_list = k2.RaggedTensor(
-        labels_shape, best_paths.labels.contiguous()
-    ).tolist()
-
-    tokens = []
     timestamps = []
-    for labels in labels_list:
-        token, time = get_tokens_and_timestamps(labels[:-1])
-        tokens.append(token)
-        timestamps.append(time)
+    if isinstance(best_paths.aux_labels, k2.RaggedTensor):
+        for p in range(all_aux_labels.dim0):
+            time = []
+            for i, arc in enumerate(all_aux_labels[p].tolist()):
+                if len(arc) == 1 and arc[0] > 0:
+                    time.append(i)
+            timestamps.append(time)
+    else:
+        for labels in all_aux_labels.tolist():
+            time = [i for i, v in enumerate(labels) if v > 0]
+            timestamps.append(time)
 
     return DecodingResults(
-        tokens=tokens,
         timestamps=timestamps,
         hyps=aux_labels if return_ragged else aux_labels.tolist(),
     )
@@ -361,9 +363,7 @@ def get_alignments(best_paths: k2.Fsa, kind: str) -> List[List[int]]:
     # arc.shape() has axes [fsa][state][arc], we remove "state"-axis here
     token_shape = best_paths.arcs.shape().remove_axis(1)
     # token_shape has axes [fsa][arc]
-    tokens = k2.RaggedTensor(
-        token_shape, getattr(best_paths, kind).contiguous()
-    )
+    tokens = k2.RaggedTensor(token_shape, getattr(best_paths, kind).contiguous())
     tokens = tokens.remove_values_eq(-1)
     return tokens.tolist()
 
@@ -584,9 +584,7 @@ def write_error_stats(
             f"{cut_id}:\t"
             + " ".join(
                 (
-                    ref_word
-                    if ref_word == hyp_word
-                    else f"({ref_word}->{hyp_word})"
+                    ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})"
                     for ref_word, hyp_word in ali
                 )
             ),
@@ -596,9 +594,7 @@ def write_error_stats(
     print("", file=f)
     print("SUBSTITUTIONS: count ref -> hyp", file=f)
 
-    for count, (ref, hyp) in sorted(
-        [(v, k) for k, v in subs.items()], reverse=True
-    ):
+    for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True):
         print(f"{count}   {ref} -> {hyp}", file=f)
 
     print("", file=f)
@@ -612,9 +608,7 @@ def write_error_stats(
         print(f"{count}   {hyp}", file=f)
 
     print("", file=f)
-    print(
-        "PER-WORD STATS: word  corr tot_errs count_in_ref count_in_hyp", file=f
-    )
+    print("PER-WORD STATS: word  corr tot_errs count_in_ref count_in_hyp", file=f)
     for _, word, counts in sorted(
         [(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
     ):
@@ -682,8 +676,8 @@ def write_error_stats_with_timestamps(
     all_delay = []
     for cut_id, ref, hyp, time_ref, time_hyp in results:
         ali = kaldialign.align(ref, hyp, ERR)
-        has_time_ref = len(time_ref) > 0
-        if has_time_ref:
+        has_time = len(time_ref) > 0 and len(time_hyp) > 0
+        if has_time:
             # pointer to timestamp_hyp
             p_hyp = 0
             # pointer to timestamp_ref
@@ -692,28 +686,28 @@ def write_error_stats_with_timestamps(
             if ref_word == ERR:
                 ins[hyp_word] += 1
                 words[hyp_word][3] += 1
-                if has_time_ref:
+                if has_time:
                     p_hyp += 1
             elif hyp_word == ERR:
                 dels[ref_word] += 1
                 words[ref_word][4] += 1
-                if has_time_ref:
+                if has_time:
                     p_ref += 1
             elif hyp_word != ref_word:
                 subs[(ref_word, hyp_word)] += 1
                 words[ref_word][1] += 1
                 words[hyp_word][2] += 1
-                if has_time_ref:
+                if has_time:
                     p_hyp += 1
                     p_ref += 1
             else:
                 words[ref_word][0] += 1
                 num_corr += 1
-                if has_time_ref:
+                if has_time:
                     all_delay.append(time_hyp[p_hyp] - time_ref[p_ref])
                     p_hyp += 1
                     p_ref += 1
-        if has_time_ref:
+        if has_time:
             assert p_hyp == len(hyp), (p_hyp, len(hyp))
             assert p_ref == len(ref), (p_ref, len(ref))
 
@@ -789,9 +783,7 @@ def write_error_stats_with_timestamps(
             f"{cut_id}:\t"
             + " ".join(
                 (
-                    ref_word
-                    if ref_word == hyp_word
-                    else f"({ref_word}->{hyp_word})"
+                    ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})"
                     for ref_word, hyp_word in ali
                 )
             ),
@@ -801,9 +793,7 @@ def write_error_stats_with_timestamps(
     print("", file=f)
     print("SUBSTITUTIONS: count ref -> hyp", file=f)
 
-    for count, (ref, hyp) in sorted(
-        [(v, k) for k, v in subs.items()], reverse=True
-    ):
+    for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True):
         print(f"{count}   {ref} -> {hyp}", file=f)
 
     print("", file=f)
@@ -817,9 +807,7 @@ def write_error_stats_with_timestamps(
         print(f"{count}   {hyp}", file=f)
 
     print("", file=f)
-    print(
-        "PER-WORD STATS: word  corr tot_errs count_in_ref count_in_hyp", file=f
-    )
+    print("PER-WORD STATS: word  corr tot_errs count_in_ref count_in_hyp", file=f)
     for _, word, counts in sorted(
         [(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
     ):
@@ -889,9 +877,7 @@ class MetricsTracker(collections.defaultdict):
             if k == "frames" or k == "utterances":
                 continue
             norm_value = (
-                float(v) / num_frames
-                if "utt_" not in k
-                else float(v) / num_utterances
+                float(v) / num_frames if "utt_" not in k else float(v) / num_utterances
             )
             ans.append((k, norm_value))
         return ans
@@ -925,9 +911,7 @@ class MetricsTracker(collections.defaultdict):
             tb_writer.add_scalar(prefix + k, v, batch_idx)
 
 
-def concat(
-    ragged: k2.RaggedTensor, value: int, direction: str
-) -> k2.RaggedTensor:
+def concat(ragged: k2.RaggedTensor, value: int, direction: str) -> k2.RaggedTensor:
     """Prepend a value to the beginning of each sublist or append a value.
     to the end of each sublist.
 
@@ -1023,11 +1007,13 @@ def add_eos(ragged: k2.RaggedTensor, eos_id: int) -> k2.RaggedTensor:
     return concat(ragged, eos_id, direction="right")
 
 
-def make_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
+def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
     """
     Args:
       lengths:
         A 1-D tensor containing sentence lengths.
+      max_len:
+        The length of masks.
     Returns:
       Return a 2-D bool tensor, where masked positions
       are filled with `True` and non-masked positions are
@@ -1041,8 +1027,7 @@ def make_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
             [False, False, False, False, False]])
     """
     assert lengths.ndim == 1, lengths.ndim
-
-    max_len = lengths.max()
+    max_len = max(max_len, lengths.max())
     n = lengths.size(0)
 
     expaned_lengths = torch.arange(max_len).expand(n, max_len).to(lengths)
@@ -1098,9 +1083,7 @@ def linf_norm(x):
     return torch.max(torch.abs(x))
 
 
-def measure_weight_norms(
-    model: nn.Module, norm: str = "l2"
-) -> Dict[str, float]:
+def measure_weight_norms(model: nn.Module, norm: str = "l2") -> Dict[str, float]:
     """
     Compute the norms of the model's parameters.
 
@@ -1123,9 +1106,7 @@ def measure_weight_norms(
         return norms
 
 
-def measure_gradient_norms(
-    model: nn.Module, norm: str = "l1"
-) -> Dict[str, float]:
+def measure_gradient_norms(model: nn.Module, norm: str = "l1") -> Dict[str, float]:
     """
     Compute the norms of the gradients for each of model's parameters.
 
@@ -1352,10 +1333,9 @@ def parse_timestamp(tokens: List[str], timestamp: List[float]) -> List[float]:
 
 def parse_hyp_and_timestamp(
     res: DecodingResults,
-    decoding_method: str,
-    sp: spm.SentencePieceProcessor,
     subsampling_factor: int,
     frame_shift_ms: float = 10,
+    sp: Optional[spm.SentencePieceProcessor] = None,
     word_table: Optional[k2.SymbolTable] = None,
 ) -> Tuple[List[List[str]], List[List[float]]]:
     """Parse hypothesis and timestamp.
@@ -1363,58 +1343,39 @@ def parse_hyp_and_timestamp(
     Args:
       res:
         A DecodingResults object.
-      decoding_method:
-        Possible values are:
-          - greedy_search
-          - beam_search
-          - modified_beam_search
-          - fast_beam_search
-          - fast_beam_search_nbest
-          - fast_beam_search_nbest_oracle
-          - fast_beam_search_nbest_LG
-      sp:
-        The BPE model.
       subsampling_factor:
         The integer subsampling factor.
       frame_shift_ms:
         The float frame shift used for feature extraction.
+      sp:
+        The BPE model.
       word_table:
         The word symbol table.
 
     Returns:
        Return a list of hypothesis and timestamp.
     """
-    assert decoding_method in (
-        "greedy_search",
-        "beam_search",
-        "fast_beam_search",
-        "fast_beam_search_nbest",
-        "fast_beam_search_nbest_LG",
-        "fast_beam_search_nbest_oracle",
-        "modified_beam_search",
-    )
-
     hyps = []
     timestamps = []
 
-    N = len(res.tokens)
-    assert len(res.timestamps) == N
+    N = len(res.hyps)
+    assert len(res.timestamps) == N, (len(res.timestamps), N)
     use_word_table = False
-    if decoding_method == "fast_beam_search_nbest_LG":
-        assert word_table is not None
+    if word_table is not None:
+        assert sp is None
         use_word_table = True
+    else:
+        assert sp is not None and word_table is None
 
     for i in range(N):
-        tokens = sp.id_to_piece(res.tokens[i])
+        time = convert_timestamp(res.timestamps[i], subsampling_factor, frame_shift_ms)
         if use_word_table:
             words = [word_table[i] for i in res.hyps[i]]
         else:
+            tokens = sp.id_to_piece(res.hyps[i])
             words = sp.decode_pieces(tokens).split()
-        time = convert_timestamp(
-            res.timestamps[i], subsampling_factor, frame_shift_ms
-        )
-        time = parse_timestamp(tokens, time)
-        assert len(time) == len(words), (tokens, words)
+            time = parse_timestamp(tokens, time)
+        assert len(time) == len(words), (len(time), len(words))
 
         hyps.append(words)
         timestamps.append(time)
@@ -1434,3 +1395,39 @@ def is_module_available(*modules: str) -> bool:
     import importlib
 
     return all(importlib.util.find_spec(m) is not None for m in modules)
+
+
+def filter_uneven_sized_batch(batch: dict, allowed_max_frames: int):
+    """For the uneven-sized batch, the total duration after padding would possibly
+    cause OOM. Hence, for each batch, which is sorted descendingly by length,
+    we simply drop the last few shortest samples, so that the retained total frames
+    (after padding) would not exceed the given allow_max_frames.
+
+    Args:
+      batch:
+        A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+        for the content in it.
+      allowed_max_frames:
+        The allowed max number of frames in batch.
+    """
+    features = batch["inputs"]
+    supervisions = batch["supervisions"]
+
+    N, T, _ = features.size()
+    assert T == supervisions["num_frames"].max(), (T, supervisions["num_frames"].max())
+    keep_num_utt = allowed_max_frames // T
+
+    if keep_num_utt >= N:
+        return batch
+
+    # Note: we assume the samples in batch is sorted descendingly by length
+    logging.info(
+        f"Filtering uneven-sized batch, original batch size is {N}, "
+        f"retained batch size is {keep_num_utt}."
+    )
+    batch["inputs"] = features[:keep_num_utt]
+    for k, v in supervisions.items():
+        assert len(v) == N, (len(v), N)
+        batch["supervisions"][k] = v[:keep_num_utt]
+
+    return batch
diff --git a/pyproject.toml b/pyproject.toml
index b4f8c3377..3183055d4 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -3,7 +3,7 @@ profile = "black"
 skip = ["icefall/__init__.py"]
 
 [tool.black]
-line-length = 80
+line-length = 88
 exclude = '''
 /(
     \.git
diff --git a/requirements.txt b/requirements.txt
index 5e32af853..a07f6b7c7 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,3 +1,4 @@
+kaldifst
 kaldilm
 kaldialign
 sentencepiece>=0.1.96
diff --git a/setup.py b/setup.py
index 6c720e121..ccd2503ff 100644
--- a/setup.py
+++ b/setup.py
@@ -1,8 +1,9 @@
 #!/usr/bin/env python3
 
-from setuptools import find_packages, setup
 from pathlib import Path
 
+from setuptools import find_packages, setup
+
 icefall_dir = Path(__file__).parent
 install_requires = (icefall_dir / "requirements.txt").read_text().splitlines()
 
diff --git a/test/test_checkpoint.py b/test/test_checkpoint.py
index 511a11c23..34e829642 100644
--- a/test/test_checkpoint.py
+++ b/test/test_checkpoint.py
@@ -20,11 +20,7 @@ import pytest
 import torch
 import torch.nn as nn
 
-from icefall.checkpoint import (
-    average_checkpoints,
-    load_checkpoint,
-    save_checkpoint,
-)
+from icefall.checkpoint import average_checkpoints, load_checkpoint, save_checkpoint
 
 
 @pytest.fixture
diff --git a/test/test_decode.py b/test/test_decode.py
index 97964ac67..4c2e192a7 100644
--- a/test/test_decode.py
+++ b/test/test_decode.py
@@ -23,6 +23,7 @@ You can run this file in one of the two ways:
 """
 
 import k2
+
 from icefall.decode import Nbest
 
 
diff --git a/test/test_graph_compiler.py b/test/test_graph_compiler.py
index ccfb57d49..10443cf22 100644
--- a/test/test_graph_compiler.py
+++ b/test/test_graph_compiler.py
@@ -154,9 +154,7 @@ class TestCtcTrainingGraphCompiler(object):
         fsas = k2.Fsa.from_fsas([fsa1, fsa2])
 
         decoding_graph = k2.arc_sort(decoding_graph)
-        lattice = k2.intersect(
-            decoding_graph, fsas, treat_epsilons_specially=False
-        )
+        lattice = k2.intersect(decoding_graph, fsas, treat_epsilons_specially=False)
         lattice = k2.connect(lattice)
 
         aux_labels0 = lattice[0].aux_labels[:-1]
diff --git a/test/test_lexicon.py b/test/test_lexicon.py
index 69867efc7..b1beab3f6 100755
--- a/test/test_lexicon.py
+++ b/test/test_lexicon.py
@@ -112,7 +112,7 @@ def uniq_lexicon_test():
     # But there is no word "ca" in the lexicon, so our
     # implementation returns the id of ""
     print(token_ids, expected_token_ids)
-    assert token_ids.tolist() == [[sp.unk_id()]]
+    assert token_ids.tolist() == [[sp.piece_to_id("▁"), sp.unk_id()]]
 
     # case 3: With OOV
     texts = ["foo"]
diff --git a/test/test_utils.py b/test/test_utils.py
index 6a9ce7853..31f06bd51 100644
--- a/test/test_utils.py
+++ b/test/test_utils.py
@@ -50,9 +50,7 @@ def test_encode_supervisions(sup):
     assert torch.all(
         torch.eq(
             supervision_segments,
-            torch.tensor(
-                [[1, 0, 30 // 4], [0, 0, 20 // 4], [2, 9 // 4, 10 // 4]]
-            ),
+            torch.tensor([[1, 0, 30 // 4], [0, 0, 20 // 4], [2, 9 // 4, 10 // 4]]),
         )
     )
     assert texts == ["two", "one", "three"]