mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 17:14:20 +00:00
distillation with hubert
This commit is contained in:
parent
1f37eb5d0c
commit
d8f68abff8
95
egs/librispeech/ASR/distillation_with_hubert.sh
Normal file
95
egs/librispeech/ASR/distillation_with_hubert.sh
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
stage=$1
|
||||||
|
export CUDA_VISIBLE_DEVICES="2,3,4,5"
|
||||||
|
|
||||||
|
|
||||||
|
if [ $stage -eq 0 ]; then
|
||||||
|
# Preparation stage.
|
||||||
|
|
||||||
|
# Install fairseq according to:
|
||||||
|
# https://github.com/pytorch/fairseq
|
||||||
|
# when testing this code:
|
||||||
|
# commit 806855bf660ea748ed7ffb42fe8dcc881ca3aca0 is used.
|
||||||
|
#
|
||||||
|
# Install quantization toolkit:
|
||||||
|
# pip install git+https://github.com/danpovey/quantization.git@master
|
||||||
|
# when testing this code:
|
||||||
|
# commit c17ffe67aa2e6ca6b6855c50fde812f2eed7870b is used.
|
||||||
|
|
||||||
|
echo "Download hubert model."
|
||||||
|
# Parameters about model.
|
||||||
|
exp_dir=./pruned_transducer_stateless6/exp/
|
||||||
|
model_id=hubert_xtralarge_ll60k_finetune_ls960
|
||||||
|
hubert_model_dir=${exp_dir}/hubert_models
|
||||||
|
hubert_model=${hubert_model_dir}/${model_id}.pt
|
||||||
|
mkdir -p ${hubert_model_dir}
|
||||||
|
# For more models refer to: https://github.com/pytorch/fairseq/tree/main/examples/hubert
|
||||||
|
wget -c https://dl.fbaipublicfiles.com/hubert/${model_id} -P ${hubert_model_dir}
|
||||||
|
wget -c wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt -P ${hubert_model_dir}
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d ./data/fbank ]; then
|
||||||
|
echo "This script assumes ./data/fbank is already generated by prepare.sh"
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -eq 1 ]; then
|
||||||
|
# This stage is not directly used by codebook indexes extraction.
|
||||||
|
# It is a method to "prove" that the downloaed hubert model
|
||||||
|
# is inferenced in an correct way if WERs look like normal.
|
||||||
|
# Expect WERs:
|
||||||
|
# [test-clean-ctc_greedy_search] %WER 2.04% [1075 / 52576, 92 ins, 104 del, 879 sub ]
|
||||||
|
# [test-other-ctc_greedy_search] %WER 3.71% [1942 / 52343, 152 ins, 126 del, 1664 sub ]
|
||||||
|
./pruned_transducer_stateless6/hubert_decode.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -eq 2 ]; then
|
||||||
|
# Analysis of disk usage:
|
||||||
|
# With num_codebooks==8, each teacher embedding is quantized into
|
||||||
|
# a sequence of eight 8-bit integers, i.e. only eight bytes are needed.
|
||||||
|
# Training dataset including clean-100h with speed perturb 0.9 and 1.1 has 300 hours.
|
||||||
|
# The output frame rates of Hubert is 50 per second.
|
||||||
|
# Theoretically, 412M = 300 * 3600 * 50 * 8 / 1024 / 1024 is needed.
|
||||||
|
# The actual size of all "*.h5" files storaging codebook index is 450M.
|
||||||
|
# I think the extra "48M" usage is some meta information.
|
||||||
|
|
||||||
|
# Time consumption analysis:
|
||||||
|
# For quantizer training data(teacher embedding) extraction, only 1000 utts from clean-100 are used.
|
||||||
|
# Together with quantizer training, no more than 20 minutes will be used.
|
||||||
|
#
|
||||||
|
# For codebook indexes extraction,
|
||||||
|
# with two pieces of NVIDIA A100 gpus, around three hours needed to process 300 hours training data,
|
||||||
|
# i.e. clean-100 with speed purteb 0.9 and 1.1.
|
||||||
|
|
||||||
|
# GPU usage:
|
||||||
|
# During quantizer's training data(teacher embedding) and it's training,
|
||||||
|
# only the first ONE GPU is used.
|
||||||
|
# During codebook indexes extraction, ALL GPUs set by CUDA_VISIBLE_DEVICES are used.
|
||||||
|
./pruned_transducer_stateless6/extract_codebook_index.py \
|
||||||
|
--full-libri False
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -eq 3 ]; then
|
||||||
|
# Example training script.
|
||||||
|
# Note: it's better to set spec-aug-time-warpi-factor=-1
|
||||||
|
WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}')
|
||||||
|
./pruned_transducer_stateless6/train.py \
|
||||||
|
--manifest-dir ./data/vq_fbank \
|
||||||
|
--master-port 12359 \
|
||||||
|
--full-libri False \
|
||||||
|
--spec-aug-time-warp-factor -1 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--world-size ${WORLD_SIZE} \
|
||||||
|
--num-epochs 20
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -eq 4 ]; then
|
||||||
|
# Results should be similar to:
|
||||||
|
# errs-test-clean-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 5.67
|
||||||
|
# errs-test-other-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 15.60
|
||||||
|
./pruned_transducer_stateless6/decode.py \
|
||||||
|
--decoding-method "modified_beam_search" \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10 \
|
||||||
|
--max-duration 200 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless6/exp
|
||||||
|
fi
|
@ -18,7 +18,7 @@
|
|||||||
import copy
|
import copy
|
||||||
import math
|
import math
|
||||||
import warnings
|
import warnings
|
||||||
from typing import Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from encoder_interface import EncoderInterface
|
from encoder_interface import EncoderInterface
|
||||||
@ -61,6 +61,7 @@ class Conformer(EncoderInterface):
|
|||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
layer_dropout: float = 0.075,
|
layer_dropout: float = 0.075,
|
||||||
cnn_module_kernel: int = 31,
|
cnn_module_kernel: int = 31,
|
||||||
|
middle_output_layer: int = None, # 0-based layer index
|
||||||
) -> None:
|
) -> None:
|
||||||
super(Conformer, self).__init__()
|
super(Conformer, self).__init__()
|
||||||
|
|
||||||
@ -86,11 +87,25 @@ class Conformer(EncoderInterface):
|
|||||||
layer_dropout,
|
layer_dropout,
|
||||||
cnn_module_kernel,
|
cnn_module_kernel,
|
||||||
)
|
)
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
||||||
|
output_layers = []
|
||||||
|
if middle_output_layer is not None:
|
||||||
|
assert (
|
||||||
|
middle_output_layer >= 0
|
||||||
|
and middle_output_layer < num_encoder_layers
|
||||||
|
)
|
||||||
|
output_layers.append(middle_output_layer)
|
||||||
|
|
||||||
|
# The last layer is always needed.
|
||||||
|
output_layers.append(num_encoder_layers - 1)
|
||||||
|
|
||||||
|
self.encoder = ConformerEncoder(
|
||||||
|
encoder_layer, num_encoder_layers, output_layers=output_layers
|
||||||
|
)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
|
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[List[torch.Tensor], torch.Tensor]:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
@ -122,13 +137,11 @@ class Conformer(EncoderInterface):
|
|||||||
assert x.size(0) == lengths.max().item()
|
assert x.size(0) == lengths.max().item()
|
||||||
mask = make_pad_mask(lengths)
|
mask = make_pad_mask(lengths)
|
||||||
|
|
||||||
x = self.encoder(
|
layer_results = self.encoder(
|
||||||
x, pos_emb, src_key_padding_mask=mask, warmup=warmup
|
x, pos_emb, src_key_padding_mask=mask, warmup=warmup
|
||||||
) # (T, N, C)
|
) # (T, N, C)
|
||||||
|
|
||||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
return layer_results, lengths
|
||||||
|
|
||||||
return x, lengths
|
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoderLayer(nn.Module):
|
class ConformerEncoderLayer(nn.Module):
|
||||||
@ -279,12 +292,18 @@ class ConformerEncoder(nn.Module):
|
|||||||
>>> out = conformer_encoder(src, pos_emb)
|
>>> out = conformer_encoder(src, pos_emb)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder_layer: nn.Module,
|
||||||
|
num_layers: int,
|
||||||
|
output_layers: List[int],
|
||||||
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.layers = nn.ModuleList(
|
self.layers = nn.ModuleList(
|
||||||
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
||||||
)
|
)
|
||||||
self.num_layers = num_layers
|
self.num_layers = num_layers
|
||||||
|
self.output_layers = output_layers
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -293,7 +312,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
mask: Optional[Tensor] = None,
|
mask: Optional[Tensor] = None,
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
warmup: float = 1.0,
|
warmup: float = 1.0,
|
||||||
) -> Tensor:
|
) -> List[Tensor]:
|
||||||
r"""Pass the input through the encoder layers in turn.
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -312,6 +331,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
"""
|
"""
|
||||||
output = src
|
output = src
|
||||||
|
|
||||||
|
layer_results = []
|
||||||
for i, mod in enumerate(self.layers):
|
for i, mod in enumerate(self.layers):
|
||||||
output = mod(
|
output = mod(
|
||||||
output,
|
output,
|
||||||
@ -320,8 +340,11 @@ class ConformerEncoder(nn.Module):
|
|||||||
src_key_padding_mask=src_key_padding_mask,
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
warmup=warmup,
|
warmup=warmup,
|
||||||
)
|
)
|
||||||
|
if i in self.output_layers:
|
||||||
|
# (T, N, C) --> (N, T, C)
|
||||||
|
layer_results.append(output.permute(1, 0, 2))
|
||||||
|
|
||||||
return output
|
return layer_results
|
||||||
|
|
||||||
|
|
||||||
class RelPositionalEncoding(torch.nn.Module):
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
@ -19,36 +19,36 @@
|
|||||||
"""
|
"""
|
||||||
Usage:
|
Usage:
|
||||||
(1) greedy search
|
(1) greedy search
|
||||||
./pruned_transducer_stateless4/decode.py \
|
./pruned_transducer_stateless6/decode.py \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method greedy_search
|
--decoding-method greedy_search
|
||||||
|
|
||||||
(2) beam search (not recommended)
|
(2) beam search (not recommended)
|
||||||
./pruned_transducer_stateless4/decode.py \
|
./pruned_transducer_stateless6/decode.py \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method beam_search \
|
--decoding-method beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
(3) modified beam search
|
(3) modified beam search
|
||||||
./pruned_transducer_stateless4/decode.py \
|
./pruned_transducer_stateless6/decode.py \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method modified_beam_search \
|
--decoding-method modified_beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
(4) fast beam search
|
(4) fast beam search
|
||||||
./pruned_transducer_stateless4/decode.py \
|
./pruned_transducer_stateless6/decode.py \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search \
|
--decoding-method fast_beam_search \
|
||||||
--beam 4 \
|
--beam 4 \
|
||||||
@ -139,7 +139,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="pruned_transducer_stateless4/exp",
|
default="pruned_transducer_stateless6/exp",
|
||||||
help="The experiment dir",
|
help="The experiment dir",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -260,9 +260,10 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
layer_results, encoder_out_lens = model.encoder(
|
||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
|
encoder_out = layer_results[-1]
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
80
egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py
Executable file
80
egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py
Executable file
@ -0,0 +1,80 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from vq_utils import CodebookIndexExtractor
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from hubert_xlarge import HubertXlargeFineTuned
|
||||||
|
from icefall.utils import AttributeDict
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="pruned_transducer_stateless6/exp/",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_world_size():
|
||||||
|
warn_message = (
|
||||||
|
"It's better to use GPU to extrac codebook indices"
|
||||||
|
"Please set with commonds like: export CUDA_VISIBLE_DEVICES=0,1,2,3"
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
torch.cuda.is_available() and "CUDA_VISIBLE_DEVICES" in os.environ
|
||||||
|
), warn_message
|
||||||
|
world_size = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
|
||||||
|
assert world_size > 0, warn_message
|
||||||
|
return world_size
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
world_size = get_world_size()
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
HubertXlargeFineTuned.add_arguments(parser)
|
||||||
|
CodebookIndexExtractor.add_arguments(parser)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
params = AttributeDict()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
# reset some parameters needed by hubert.
|
||||||
|
params.update(HubertXlargeFineTuned.get_params())
|
||||||
|
params.device = torch.device("cuda", 0)
|
||||||
|
params.world_size = world_size
|
||||||
|
|
||||||
|
extractor = CodebookIndexExtractor(params=params)
|
||||||
|
extractor.extract_and_save_embedding()
|
||||||
|
extractor.train_quantizer()
|
||||||
|
extractor.extract_codebook_indexes()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
205
egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py
Executable file
205
egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py
Executable file
@ -0,0 +1,205 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from hubert_xlarge import HubertXlargeFineTuned
|
||||||
|
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="pruned_transducer_stateless6/exp/",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
hubert_model: HubertXlargeFineTuned,
|
||||||
|
params: AttributeDict,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||||
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
|
||||||
|
hyps = hubert_model.ctc_greedy_search(batch)
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
this_batch = []
|
||||||
|
|
||||||
|
for hyp_text, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
hyp_words = hyp_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results["ctc_greedy_search"].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % 20 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.res_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
"Wrote detailed error stats to {}".format(errs_filename)
|
||||||
|
)
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
HubertXlargeFineTuned.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = AttributeDict()
|
||||||
|
params.update(vars(args))
|
||||||
|
# reset some parameters needed by hubert.
|
||||||
|
params.update(HubertXlargeFineTuned.get_params())
|
||||||
|
|
||||||
|
params.res_dir = (
|
||||||
|
params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
params.device = device
|
||||||
|
|
||||||
|
hubert_model = HubertXlargeFineTuned(params)
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(params)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
hubert_model=hubert_model,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,204 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from fairseq import (
|
||||||
|
checkpoint_utils,
|
||||||
|
tasks,
|
||||||
|
utils,
|
||||||
|
)
|
||||||
|
from fairseq.data.data_utils import post_process
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
|
from icefall.utils import AttributeDict
|
||||||
|
|
||||||
|
|
||||||
|
def _load_hubert_model(params: AttributeDict):
|
||||||
|
cfg_task = OmegaConf.create(
|
||||||
|
{
|
||||||
|
"_name": "hubert_pretraining",
|
||||||
|
"single_target": True,
|
||||||
|
"fine_tuning": True,
|
||||||
|
"data": str(params.hubert_model_dir),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
model_path = Path(params.hubert_model_dir) / (
|
||||||
|
params.teacher_model_id + ".pt"
|
||||||
|
)
|
||||||
|
task = tasks.setup_task(cfg_task)
|
||||||
|
processor = task.target_dictionary
|
||||||
|
models, saved_cfg = checkpoint_utils.load_model_ensemble(
|
||||||
|
utils.split_paths(str(model_path), separator="\\"),
|
||||||
|
arg_overrides={},
|
||||||
|
strict=True,
|
||||||
|
suffix="",
|
||||||
|
num_shards=1,
|
||||||
|
)
|
||||||
|
model = models[0]
|
||||||
|
model.to(params.device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
return model, processor
|
||||||
|
|
||||||
|
|
||||||
|
class HubertXlargeFineTuned:
|
||||||
|
"""
|
||||||
|
A wrapper of hubert extra larger finedtuned model.
|
||||||
|
|
||||||
|
A teacher model responsible for:
|
||||||
|
1. load teacher model
|
||||||
|
2. extracting embeddings to train quantizer.
|
||||||
|
3. extract codebook indices
|
||||||
|
4. verify it's performance with ctc_greedy_search method.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params: AttributeDict):
|
||||||
|
self.model, self.processor = _load_hubert_model(params)
|
||||||
|
self.w2v_model = self.model.w2v_encoder.w2v_model
|
||||||
|
self.params = params
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing parameters defined in other modules.
|
||||||
|
|
||||||
|
Their default value conflits to hubert's requirements so they are reset as following.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
# parameters defined in asr_datamodule.py
|
||||||
|
"input_strategy": "AudioSamples",
|
||||||
|
"enable_musan": False,
|
||||||
|
"enable_spec_aug": False,
|
||||||
|
"return_cuts": True,
|
||||||
|
"drop_last": False,
|
||||||
|
# parameters used by quantizer
|
||||||
|
"embedding_dim": 1280,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
# Options about model loading.
|
||||||
|
parser.add_argument(
|
||||||
|
"--hubert-model-dir",
|
||||||
|
type=Path,
|
||||||
|
default="./pruned_transducer_stateless6/exp/hubert_models/",
|
||||||
|
help="path to save downloaded hubert models.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--teacher-model-id",
|
||||||
|
type=str,
|
||||||
|
default="hubert_xtralarge_ll60k_finetune_ls960",
|
||||||
|
help="""could be one of:
|
||||||
|
[
|
||||||
|
"hubert_xtralarge_ll60k_finetune_ls960", # fintuned model.
|
||||||
|
"hubert_xtralarge_ll60k.pt", # pretrained model without fintuing.
|
||||||
|
]""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--total-layers",
|
||||||
|
type=int,
|
||||||
|
default=48,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Modified from HubertModel.forward to extract all middle layers output
|
||||||
|
def extract_layers_result(
|
||||||
|
self,
|
||||||
|
batch: Dict,
|
||||||
|
) -> Dict[str, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Extract activations from all layers.
|
||||||
|
"""
|
||||||
|
features = batch["inputs"]
|
||||||
|
|
||||||
|
# corresponding task.normalize in fairseq
|
||||||
|
features = torch.nn.functional.layer_norm(features, features.shape)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
num_samples = supervisions["num_samples"]
|
||||||
|
B, T = features.shape
|
||||||
|
padding_mask = torch.arange(0, T).expand(B, T) > num_samples.reshape(
|
||||||
|
[-1, 1]
|
||||||
|
)
|
||||||
|
|
||||||
|
padding_mask = padding_mask.to(self.params.device)
|
||||||
|
features = features.to(self.params.device)
|
||||||
|
|
||||||
|
features = self.w2v_model.forward_features(features)
|
||||||
|
|
||||||
|
features = features.transpose(1, 2)
|
||||||
|
features = self.w2v_model.layer_norm(features)
|
||||||
|
|
||||||
|
if padding_mask is not None:
|
||||||
|
padding_mask = self.w2v_model.forward_padding_mask(
|
||||||
|
features, padding_mask
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.w2v_model.post_extract_proj is not None:
|
||||||
|
features = self.w2v_model.post_extract_proj(features)
|
||||||
|
|
||||||
|
_, layer_results = self.w2v_model.encoder(
|
||||||
|
features,
|
||||||
|
padding_mask=padding_mask,
|
||||||
|
)
|
||||||
|
return layer_results
|
||||||
|
|
||||||
|
def extract_embedding(self, batch) -> Tuple[torch.tensor, List[int]]:
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
cut_list = supervisions["cut"]
|
||||||
|
assert all(c.start == 0 for c in cut_list)
|
||||||
|
layer_results = self.extract_layers_result(batch)
|
||||||
|
embeddings = layer_results[self.params.embedding_layer - 1][0]
|
||||||
|
encoder_embedding = embeddings.transpose(0, 1) # N, T, C
|
||||||
|
N = encoder_embedding.shape[0]
|
||||||
|
assert len(cut_list) == N
|
||||||
|
# 320 is from: 16,000 / 50 = sample_rate / hbuert output frame rate
|
||||||
|
num_frames = [
|
||||||
|
supervisions["num_samples"][i].item() // 320 for i in range(N)
|
||||||
|
]
|
||||||
|
return encoder_embedding, num_frames
|
||||||
|
|
||||||
|
def ctc_greedy_search(self, batch):
|
||||||
|
"""
|
||||||
|
Mainly used to verify hubert model is used correctly.
|
||||||
|
"""
|
||||||
|
layer_results = self.extract_layers_result(batch=batch)
|
||||||
|
encoder_out = self.w2v_model.encoder.layer_norm(
|
||||||
|
layer_results[self.params.total_layers - 1][0]
|
||||||
|
)
|
||||||
|
encoder_out = self.model.w2v_encoder.proj(encoder_out.transpose(0, 1))
|
||||||
|
|
||||||
|
toks = encoder_out.argmax(dim=-1)
|
||||||
|
blank = 0
|
||||||
|
toks = [tok.unique_consecutive() for tok in toks]
|
||||||
|
hyps = [
|
||||||
|
self.processor.string(tok[tok != blank].int().cpu()) for tok in toks
|
||||||
|
]
|
||||||
|
hyps = [post_process(hyp, "letter") for hyp in hyps]
|
||||||
|
|
||||||
|
return hyps
|
@ -23,6 +23,8 @@ from scaling import ScaledLinear
|
|||||||
|
|
||||||
from icefall.utils import add_sos
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
from quantization.prediction import JointCodebookLoss
|
||||||
|
|
||||||
|
|
||||||
class Transducer(nn.Module):
|
class Transducer(nn.Module):
|
||||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
@ -38,6 +40,7 @@ class Transducer(nn.Module):
|
|||||||
decoder_dim: int,
|
decoder_dim: int,
|
||||||
joiner_dim: int,
|
joiner_dim: int,
|
||||||
vocab_size: int,
|
vocab_size: int,
|
||||||
|
num_codebooks: int = 0,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -55,6 +58,8 @@ class Transducer(nn.Module):
|
|||||||
(N, U, decoder_dim).
|
(N, U, decoder_dim).
|
||||||
Its output shape is (N, T, U, vocab_size). Note that its output
|
Its output shape is (N, T, U, vocab_size). Note that its output
|
||||||
contains unnormalized probs, i.e., not processed by log-softmax.
|
contains unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
num_codebooks:
|
||||||
|
Used by distillation loss.
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
@ -68,6 +73,10 @@ class Transducer(nn.Module):
|
|||||||
encoder_dim, vocab_size, initial_speed=0.5
|
encoder_dim, vocab_size, initial_speed=0.5
|
||||||
)
|
)
|
||||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
if num_codebooks > 0:
|
||||||
|
self.codebook_loss_net = JointCodebookLoss(
|
||||||
|
predictor_channels=encoder_dim, num_codebooks=num_codebooks
|
||||||
|
)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -78,6 +87,7 @@ class Transducer(nn.Module):
|
|||||||
am_scale: float = 0.0,
|
am_scale: float = 0.0,
|
||||||
lm_scale: float = 0.0,
|
lm_scale: float = 0.0,
|
||||||
warmup: float = 1.0,
|
warmup: float = 1.0,
|
||||||
|
codebook_indexes: torch.Tensor = None,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -101,6 +111,8 @@ class Transducer(nn.Module):
|
|||||||
warmup:
|
warmup:
|
||||||
A value warmup >= 0 that determines which modules are active, values
|
A value warmup >= 0 that determines which modules are active, values
|
||||||
warmup > 1 "are fully warmed up" and all modules will be active.
|
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||||
|
codebook_indexes:
|
||||||
|
codebook_indexes extracted from a teacher model.
|
||||||
Returns:
|
Returns:
|
||||||
Return the transducer loss.
|
Return the transducer loss.
|
||||||
|
|
||||||
@ -116,7 +128,22 @@ class Transducer(nn.Module):
|
|||||||
|
|
||||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
layer_results, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
|
encoder_out = layer_results[-1]
|
||||||
|
middle_layer_output = layer_results[0]
|
||||||
|
if self.training and codebook_indexes is not None:
|
||||||
|
assert hasattr(self, "codebook_loss_net")
|
||||||
|
if codebook_indexes.shape[1] != middle_layer_output.shape[1]:
|
||||||
|
codebook_indexes = self.concat_sucessive_codebook_indexes(
|
||||||
|
middle_layer_output, codebook_indexes
|
||||||
|
)
|
||||||
|
codebook_loss = self.codebook_loss_net(
|
||||||
|
middle_layer_output, codebook_indexes
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# when codebook index is not available.
|
||||||
|
codebook_loss = None
|
||||||
|
|
||||||
assert torch.all(x_lens > 0)
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
# Now for the decoder, i.e., the prediction network
|
# Now for the decoder, i.e., the prediction network
|
||||||
@ -191,4 +218,32 @@ class Transducer(nn.Module):
|
|||||||
reduction="sum",
|
reduction="sum",
|
||||||
)
|
)
|
||||||
|
|
||||||
return (simple_loss, pruned_loss)
|
return (simple_loss, pruned_loss, codebook_loss)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def concat_sucessive_codebook_indexes(
|
||||||
|
middle_layer_output, codebook_indexes
|
||||||
|
):
|
||||||
|
# Output rate of hubert is 50 frames per second,
|
||||||
|
# while that of current encoder is 25.
|
||||||
|
# Following code handling two issues:
|
||||||
|
# 1.
|
||||||
|
# Roughly speaking, to generate another frame output,
|
||||||
|
# hubert needes extra two frames,
|
||||||
|
# while current encoder needs extra four frames.
|
||||||
|
# Suppose there are only extra three frames provided,
|
||||||
|
# hubert will generate another frame while current encoder does nothing.
|
||||||
|
# 2.
|
||||||
|
# codebook loss is a frame-wise loss, to enalbe 25 frames studnet output
|
||||||
|
# learns from 50 frames teacher output, two successive frames of teacher model
|
||||||
|
# output is concatenated together.
|
||||||
|
t_expected = middle_layer_output.shape[1]
|
||||||
|
N, T, C = codebook_indexes.shape
|
||||||
|
|
||||||
|
# Handling issue 1.
|
||||||
|
if T >= t_expected * 2:
|
||||||
|
codebook_indexes = codebook_indexes[:, : t_expected * 2, :]
|
||||||
|
# Handling issue 2.
|
||||||
|
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * 2)
|
||||||
|
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
|
||||||
|
return codebook_indexes
|
||||||
|
@ -20,7 +20,7 @@
|
|||||||
To run this file, do:
|
To run this file, do:
|
||||||
|
|
||||||
cd icefall/egs/librispeech/ASR
|
cd icefall/egs/librispeech/ASR
|
||||||
python ./pruned_transducer_stateless4/test_model.py
|
python ./pruned_transducer_stateless6/test_model.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
@ -33,6 +33,7 @@ def test_model():
|
|||||||
params.blank_id = 0
|
params.blank_id = 0
|
||||||
params.context_size = 2
|
params.context_size = 2
|
||||||
params.unk_id = 2
|
params.unk_id = 2
|
||||||
|
params.enable_distiallation = False
|
||||||
|
|
||||||
model = get_transducer_model(params)
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
@ -22,25 +22,36 @@ Usage:
|
|||||||
|
|
||||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
./pruned_transducer_stateless4/train.py \
|
./pruned_transducer_stateless6/train.py \
|
||||||
--world-size 4 \
|
--world-size 4 \
|
||||||
--num-epochs 30 \
|
--num-epochs 30 \
|
||||||
--start-epoch 1 \
|
--start-epoch 1 \
|
||||||
--exp-dir pruned_transducer_stateless2/exp \
|
--exp-dir pruned_transducer_stateless6/exp \
|
||||||
--full-libri 1 \
|
--full-libri 1 \
|
||||||
--max-duration 300
|
--max-duration 300
|
||||||
|
|
||||||
# For mix precision training:
|
# For mix precision training:
|
||||||
|
|
||||||
./pruned_transducer_stateless4/train.py \
|
./pruned_transducer_stateless6/train.py \
|
||||||
--world-size 4 \
|
--world-size 4 \
|
||||||
--num-epochs 30 \
|
--num-epochs 30 \
|
||||||
--start-epoch 1 \
|
--start-epoch 1 \
|
||||||
--use-fp16 1 \
|
--use-fp16 1 \
|
||||||
--exp-dir pruned_transducer_stateless2/exp \
|
--exp-dir pruned_transducer_stateless6/exp \
|
||||||
--full-libri 1 \
|
--full-libri 1 \
|
||||||
--max-duration 550
|
--max-duration 550
|
||||||
|
|
||||||
|
# For distiallation with codebook_indexes:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless6/train.py \
|
||||||
|
--manifest-dir ./data/vq_fbank \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless6/exp \
|
||||||
|
--full-libri 0 \
|
||||||
|
--max-duration 300
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
@ -62,9 +73,10 @@ from asr_datamodule import LibriSpeechAsrDataModule
|
|||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from joiner import Joiner
|
from joiner import Joiner
|
||||||
from lhotse.cut import Cut
|
from lhotse.cut import Cut, MonoCut
|
||||||
from lhotse.dataset.sampling.base import CutSampler
|
from lhotse.dataset.sampling.base import CutSampler
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
|
from lhotse.dataset.collation import collate_custom_field
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
from optim import Eden, Eve
|
from optim import Eden, Eve
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
@ -143,7 +155,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="pruned_transducer_stateless2/exp",
|
default="pruned_transducer_stateless6/exp",
|
||||||
help="""The experiment dir.
|
help="""The experiment dir.
|
||||||
It specifies the directory where all training related
|
It specifies the directory where all training related
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
@ -223,6 +235,13 @@ def get_parser():
|
|||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--codebook-loss-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.1,
|
||||||
|
help="The scale of codebook loss.",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--seed",
|
"--seed",
|
||||||
type=int,
|
type=int,
|
||||||
@ -352,6 +371,13 @@ def get_params() -> AttributeDict:
|
|||||||
# parameters for Noam
|
# parameters for Noam
|
||||||
"model_warm_step": 3000, # arg given to model, not for lrate
|
"model_warm_step": 3000, # arg given to model, not for lrate
|
||||||
"env_info": get_env_info(),
|
"env_info": get_env_info(),
|
||||||
|
# parameters for distillation with codebook indexes.
|
||||||
|
"enable_distiallation": True,
|
||||||
|
"distillation_layer": 5, # 0-based index
|
||||||
|
# Since output rate of hubert is 50, while that of encoder is 8,
|
||||||
|
# two successive codebook_index are concatenated together.
|
||||||
|
# Detailed in function Transducer::concat_sucessive_codebook_indexes.
|
||||||
|
"num_codebooks": 16, # used to construct distillation loss
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -367,6 +393,9 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
nhead=params.nhead,
|
nhead=params.nhead,
|
||||||
dim_feedforward=params.dim_feedforward,
|
dim_feedforward=params.dim_feedforward,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
middle_output_layer=params.distillation_layer
|
||||||
|
if params.enable_distiallation
|
||||||
|
else None,
|
||||||
)
|
)
|
||||||
return encoder
|
return encoder
|
||||||
|
|
||||||
@ -404,6 +433,9 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|||||||
decoder_dim=params.decoder_dim,
|
decoder_dim=params.decoder_dim,
|
||||||
joiner_dim=params.joiner_dim,
|
joiner_dim=params.joiner_dim,
|
||||||
vocab_size=params.vocab_size,
|
vocab_size=params.vocab_size,
|
||||||
|
num_codebooks=params.num_codebooks
|
||||||
|
if params.enable_distiallation
|
||||||
|
else 0,
|
||||||
)
|
)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@ -527,6 +559,18 @@ def save_checkpoint(
|
|||||||
copyfile(src=filename, dst=best_valid_filename)
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_codebook_indexes(batch):
|
||||||
|
cuts = batch["supervisions"]["cut"]
|
||||||
|
# -100 is identical to ignore_value in CE loss computation.
|
||||||
|
cuts_pre_mixed = [
|
||||||
|
c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts
|
||||||
|
]
|
||||||
|
codebook_indexes, codebook_indexes_lens = collate_custom_field(
|
||||||
|
cuts_pre_mixed, "codebook_indexes", pad_value=-100
|
||||||
|
)
|
||||||
|
return codebook_indexes, codebook_indexes_lens
|
||||||
|
|
||||||
|
|
||||||
def compute_loss(
|
def compute_loss(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: Union[nn.Module, DDP],
|
model: Union[nn.Module, DDP],
|
||||||
@ -570,8 +614,15 @@ def compute_loss(
|
|||||||
y = sp.encode(texts, out_type=int)
|
y = sp.encode(texts, out_type=int)
|
||||||
y = k2.RaggedTensor(y).to(device)
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
if is_training and params.enable_distiallation:
|
||||||
|
codebook_indexes, _ = extract_codebook_indexes(batch)
|
||||||
|
codebook_indexes = codebook_indexes.to(device)
|
||||||
|
else:
|
||||||
|
codebook_indexes = None
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
simple_loss, pruned_loss = model(
|
simple_loss, pruned_loss, codebook_loss = model(
|
||||||
x=feature,
|
x=feature,
|
||||||
x_lens=feature_lens,
|
x_lens=feature_lens,
|
||||||
y=y,
|
y=y,
|
||||||
@ -579,6 +630,7 @@ def compute_loss(
|
|||||||
am_scale=params.am_scale,
|
am_scale=params.am_scale,
|
||||||
lm_scale=params.lm_scale,
|
lm_scale=params.lm_scale,
|
||||||
warmup=warmup,
|
warmup=warmup,
|
||||||
|
codebook_indexes=codebook_indexes,
|
||||||
)
|
)
|
||||||
# after the main warmup step, we keep pruned_loss_scale small
|
# after the main warmup step, we keep pruned_loss_scale small
|
||||||
# for the same amount of time (model_warm_step), to avoid
|
# for the same amount of time (model_warm_step), to avoid
|
||||||
@ -593,10 +645,12 @@ def compute_loss(
|
|||||||
params.simple_loss_scale * simple_loss
|
params.simple_loss_scale * simple_loss
|
||||||
+ pruned_loss_scale * pruned_loss
|
+ pruned_loss_scale * pruned_loss
|
||||||
)
|
)
|
||||||
|
if is_training and params.enable_distiallation:
|
||||||
|
assert codebook_loss is not None
|
||||||
|
loss += params.codebook_loss_scale * codebook_loss
|
||||||
|
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (
|
||||||
@ -607,6 +661,8 @@ def compute_loss(
|
|||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
info["simple_loss"] = simple_loss.detach().cpu().item()
|
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||||
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||||
|
if is_training and params.enable_distiallation:
|
||||||
|
info["codebook_loss"] = codebook_loss.detach().cpu().item()
|
||||||
|
|
||||||
return loss, info
|
return loss, info
|
||||||
|
|
||||||
|
393
egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py
Normal file
393
egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py
Normal file
@ -0,0 +1,393 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from functools import cached_property
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import quantization
|
||||||
|
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from hubert_xlarge import HubertXlargeFineTuned
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
)
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.features.io import NumpyHdf5Writer
|
||||||
|
|
||||||
|
|
||||||
|
class CodebookIndexExtractor:
|
||||||
|
"""
|
||||||
|
A wrapper of quantiation.Quantizer.
|
||||||
|
|
||||||
|
It's responsible for:
|
||||||
|
1. extract and save activations from a teacher model.
|
||||||
|
2. train quantizer from previous activations.
|
||||||
|
3. extract codebook indexes for whole training set.
|
||||||
|
Normally this step needs multi GPUs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params: AttributeDict):
|
||||||
|
|
||||||
|
self.params = params
|
||||||
|
params.subsets = ["clean-100"]
|
||||||
|
if self.params.full_libri:
|
||||||
|
self.params.subsets += ["clean-360", "other-500"]
|
||||||
|
|
||||||
|
self.init_dirs()
|
||||||
|
setup_logger(f"{self.vq_dir}/log-vq_extraction")
|
||||||
|
|
||||||
|
def init_dirs(self):
|
||||||
|
# vq_dir is the root dir for quantizer:
|
||||||
|
# training data/ quantizer / extracted codebook indexes
|
||||||
|
self.vq_dir = (
|
||||||
|
self.params.exp_dir / f"vq/{self.params.teacher_model_id}/"
|
||||||
|
)
|
||||||
|
self.vq_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# manifest_dir for :
|
||||||
|
# splited original manifests,
|
||||||
|
# extracted codebook indexes and their related manifests
|
||||||
|
self.manifest_dir = self.vq_dir / f"splits{self.params.world_size}"
|
||||||
|
self.manifest_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
self.ori_manifest_dir = "./data/fbank/"
|
||||||
|
self.dst_manifest_dir = "./data/vq_fbank/"
|
||||||
|
|
||||||
|
self.dst_manifest_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
# Options about teacher embeddings eatraction.
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-layer",
|
||||||
|
type=int,
|
||||||
|
help="layer to extract teacher embeddings, 1-based.",
|
||||||
|
default=36,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-utts",
|
||||||
|
type=int,
|
||||||
|
default=1000,
|
||||||
|
help="num utts to train quantizer",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-codebooks",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""number of codebooks,
|
||||||
|
i.e. number of codebook indexes each teacher embedding is compressed.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embedding_file_path(self):
|
||||||
|
"""
|
||||||
|
The saved embedding is used to train quantizer.
|
||||||
|
"""
|
||||||
|
embedding_file_id = (
|
||||||
|
f"num_utts_{self.params.num_utts}"
|
||||||
|
+ f"-layer_{self.params.embedding_layer}"
|
||||||
|
+ "-embedding_embeddings.h5"
|
||||||
|
)
|
||||||
|
|
||||||
|
embedding_file_path = self.vq_dir / embedding_file_id
|
||||||
|
return embedding_file_path
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def extract_and_save_embedding(self):
|
||||||
|
"""
|
||||||
|
The extract embedding is used to train quantizer.
|
||||||
|
"""
|
||||||
|
if self.embedding_file_path.exists():
|
||||||
|
warn_message = (
|
||||||
|
f"{self.embedding_file_path} already exists."
|
||||||
|
+ " Skip extracting embeddings from teacher model"
|
||||||
|
)
|
||||||
|
logging.warn(warn_message)
|
||||||
|
return
|
||||||
|
|
||||||
|
total_cuts = 0
|
||||||
|
with NumpyHdf5Writer(self.embedding_file_path) as writer:
|
||||||
|
for batch_idx, batch in enumerate(self.quantizer_train_dl):
|
||||||
|
cut_list = batch["supervisions"]["cut"]
|
||||||
|
(
|
||||||
|
encoder_embedding,
|
||||||
|
num_frames,
|
||||||
|
) = self.teacher_model.extract_embedding(batch)
|
||||||
|
encoder_embedding = encoder_embedding.cpu().numpy()
|
||||||
|
for idx, cut in enumerate(cut_list):
|
||||||
|
cut.encoder_embedding = writer.store_array(
|
||||||
|
key=cut.id,
|
||||||
|
value=encoder_embedding[idx][: num_frames[idx]],
|
||||||
|
)
|
||||||
|
total_cuts += len(cut_list)
|
||||||
|
logging.info(
|
||||||
|
f"Processed {total_cuts} output of {self.params.num_utts} cuts."
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Processed all {total_cuts} cuts.")
|
||||||
|
|
||||||
|
@property
|
||||||
|
def quantizer_train_dl(self):
|
||||||
|
# used to train quantizer.
|
||||||
|
librispeech = LibriSpeechAsrDataModule(self.params)
|
||||||
|
quantizer_trian_cuts = librispeech.train_clean_100_cuts().subset(
|
||||||
|
first=self.params.num_utts
|
||||||
|
)
|
||||||
|
return librispeech.train_dataloaders(quantizer_trian_cuts)
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def quantizer_file_path(self):
|
||||||
|
quantizer_file_id = (
|
||||||
|
f"num_utts-{self.params.num_utts}"
|
||||||
|
+ f"-layer-{self.params.embedding_layer}"
|
||||||
|
+ f"-num_codebooks_{self.params.num_codebooks}"
|
||||||
|
+ "-quantizer.pt"
|
||||||
|
)
|
||||||
|
quantizer_file_path = Path(self.vq_dir) / quantizer_file_id
|
||||||
|
|
||||||
|
return quantizer_file_path
|
||||||
|
|
||||||
|
def train_quantizer(self):
|
||||||
|
if self.quantizer_file_path.exists():
|
||||||
|
warn_message = (
|
||||||
|
f"{self.quantizer_file_path} already exists."
|
||||||
|
+ " Skip trainning quantizer."
|
||||||
|
)
|
||||||
|
logging.warn(warn_message)
|
||||||
|
return
|
||||||
|
|
||||||
|
assert self.embedding_file_path.exists()
|
||||||
|
trainer = quantization.QuantizerTrainer(
|
||||||
|
dim=self.params.embedding_dim,
|
||||||
|
bytes_per_frame=self.params.num_codebooks,
|
||||||
|
device=self.params.device,
|
||||||
|
)
|
||||||
|
train, valid = quantization.read_hdf5_data(self.embedding_file_path)
|
||||||
|
B = 512 # Minibatch size, this is very arbitrary, it's close to what we used
|
||||||
|
# when we tuned this method.
|
||||||
|
|
||||||
|
def minibatch_generator(data: torch.Tensor, repeat: bool):
|
||||||
|
assert 3 * B < data.shape[0]
|
||||||
|
cur_offset = 0
|
||||||
|
while True if repeat else cur_offset + B <= data.shape[0]:
|
||||||
|
start = cur_offset % (data.shape[0] + 1 - B)
|
||||||
|
end = start + B
|
||||||
|
cur_offset += B
|
||||||
|
yield data[start:end, :].to(self.params.device).to(
|
||||||
|
dtype=torch.float
|
||||||
|
)
|
||||||
|
|
||||||
|
for x in minibatch_generator(train, repeat=True):
|
||||||
|
trainer.step(x)
|
||||||
|
if trainer.done():
|
||||||
|
break
|
||||||
|
|
||||||
|
quantizer = trainer.get_quantizer()
|
||||||
|
torch.save(quantizer.state_dict(), self.quantizer_file_path)
|
||||||
|
|
||||||
|
def split_ori_manifests(self):
|
||||||
|
"""
|
||||||
|
When multi gpus are available, split original manifests
|
||||||
|
and extract codebook indexes in a prallel way.
|
||||||
|
"""
|
||||||
|
for subset in self.params.subsets:
|
||||||
|
logging.info(f"About to split {subset}.")
|
||||||
|
ori_manifest = f"./data/fbank/cuts_train-{subset}.json.gz"
|
||||||
|
split_cmd = f"lhotse split {self.params.world_size} {ori_manifest} {self.manifest_dir}"
|
||||||
|
os.system(f"{split_cmd}")
|
||||||
|
|
||||||
|
def merge_vq_manifests(self):
|
||||||
|
"""
|
||||||
|
Merge generated vq included manfiests and storage to self.dst_manifest_dir.
|
||||||
|
"""
|
||||||
|
for subset in self.params.subsets:
|
||||||
|
vq_manifests = f"{self.manifest_dir}/with_codebook_indexes-cuts_train-{subset}*.json.gz"
|
||||||
|
dst_vq_manifest = (
|
||||||
|
self.dst_manifest_dir / f"cuts_train-{subset}.json.gz"
|
||||||
|
)
|
||||||
|
if 1 == self.params.world_size:
|
||||||
|
merge_cmd = f"cp {vq_manifests} {dst_vq_manifest}"
|
||||||
|
else:
|
||||||
|
merge_cmd = f"lhotse combine {vq_manifests} {dst_vq_manifest}"
|
||||||
|
os.system(f"{merge_cmd}")
|
||||||
|
|
||||||
|
def reuse_manifests(self):
|
||||||
|
"""
|
||||||
|
Only train-* subsets are extracted codebook indexes from.
|
||||||
|
The reset subsets are just a link from ./data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def is_train(manifest: str) -> bool:
|
||||||
|
for train_subset in ["clean-100", "clean-360", "other-500"]:
|
||||||
|
if train_subset in manifest:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
reusable_manifests = [
|
||||||
|
manifest
|
||||||
|
for manifest in glob.glob(f"{self.ori_manifest_dir}/*.gz")
|
||||||
|
if not is_train(manifest)
|
||||||
|
]
|
||||||
|
for manifest_path in reusable_manifests:
|
||||||
|
ori_manifest_path = Path(manifest_path).resolve()
|
||||||
|
dst_manifest_path = Path(
|
||||||
|
manifest_path.replace(
|
||||||
|
self.ori_manifest_dir, self.dst_manifest_dir
|
||||||
|
)
|
||||||
|
).resolve()
|
||||||
|
if not dst_manifest_path.exists():
|
||||||
|
os.symlink(ori_manifest_path, dst_manifest_path)
|
||||||
|
|
||||||
|
def create_vq_fbank(self):
|
||||||
|
self.reuse_manifests()
|
||||||
|
self.merge_vq_manifests()
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def teacher_model(self):
|
||||||
|
return HubertXlargeFineTuned(self.params)
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def quantizer(self):
|
||||||
|
assert self.quantizer_file_path.exists()
|
||||||
|
quantizer = quantization.Quantizer(
|
||||||
|
dim=self.params.embedding_dim,
|
||||||
|
num_codebooks=self.params.num_codebooks,
|
||||||
|
codebook_size=256,
|
||||||
|
)
|
||||||
|
quantizer.load_state_dict(torch.load(self.quantizer_file_path))
|
||||||
|
quantizer.to(self.params.device)
|
||||||
|
return quantizer
|
||||||
|
|
||||||
|
def load_ori_dl(self, subset):
|
||||||
|
if self.params.world_size == 1:
|
||||||
|
ori_manifest_path = f"./data/fbank/cuts_train-{subset}.json.gz"
|
||||||
|
else:
|
||||||
|
ori_manifest_path = (
|
||||||
|
self.manifest_dir
|
||||||
|
/ f"cuts_train-{subset}.{self.params.manifest_index}.json.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
cuts = load_manifest(ori_manifest_path)
|
||||||
|
dl = LibriSpeechAsrDataModule(self.params).train_dataloaders(cuts)
|
||||||
|
return dl
|
||||||
|
|
||||||
|
def _release_gpu_memory(self):
|
||||||
|
self.__dict__.pop("teacher_model", None)
|
||||||
|
self.__dict__.pop("quantizer", None)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
def extract_codebook_indexes(self):
|
||||||
|
if self.params.world_size == 1:
|
||||||
|
self.extract_codebook_indexes_imp()
|
||||||
|
else:
|
||||||
|
# Since a new extractor will be created for each rank in
|
||||||
|
# compute_codebook_indexes_parallel, it's better to
|
||||||
|
# release the GPU memory occupied by current extractor.
|
||||||
|
self._release_gpu_memory()
|
||||||
|
|
||||||
|
# Prepare split manifests for each job.
|
||||||
|
self.split_ori_manifests()
|
||||||
|
mp.spawn(
|
||||||
|
compute_codebook_indexes_parallel,
|
||||||
|
args=(self.params,),
|
||||||
|
nprocs=self.params.world_size,
|
||||||
|
join=True,
|
||||||
|
)
|
||||||
|
self.create_vq_fbank()
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def extract_codebook_indexes_imp(self):
|
||||||
|
for subset in self.params.subsets:
|
||||||
|
num_cuts = 0
|
||||||
|
cuts = []
|
||||||
|
if self.params.world_size == 1:
|
||||||
|
manifest_file_id = f"{subset}"
|
||||||
|
else:
|
||||||
|
manifest_file_id = f"{subset}-{self.params.manifest_index}"
|
||||||
|
|
||||||
|
manifest_file_path = self.manifest_dir / manifest_file_id
|
||||||
|
with NumpyHdf5Writer(manifest_file_path) as writer:
|
||||||
|
for batch_idx, batch in enumerate(self.load_ori_dl(subset)):
|
||||||
|
(
|
||||||
|
encoder_embedding,
|
||||||
|
num_frames,
|
||||||
|
) = self.teacher_model.extract_embedding(batch)
|
||||||
|
codebook_indexes = self.quantizer.encode(encoder_embedding)
|
||||||
|
# [N, T, C]
|
||||||
|
codebook_indexes = codebook_indexes.to("cpu").numpy()
|
||||||
|
assert np.min(codebook_indexes) >= 0
|
||||||
|
assert np.max(codebook_indexes) < 256
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
cut_list = supervisions["cut"]
|
||||||
|
assert len(cut_list) == codebook_indexes.shape[0]
|
||||||
|
assert all(c.start == 0 for c in supervisions["cut"])
|
||||||
|
|
||||||
|
for idx, cut in enumerate(cut_list):
|
||||||
|
cut.codebook_indexes = writer.store_array(
|
||||||
|
key=cut.id,
|
||||||
|
value=codebook_indexes[idx][: num_frames[idx]],
|
||||||
|
frame_shift=0.02,
|
||||||
|
temporal_dim=0,
|
||||||
|
start=0,
|
||||||
|
)
|
||||||
|
cuts += cut_list
|
||||||
|
num_cuts += len(cut_list)
|
||||||
|
message = f"Processed {num_cuts} cuts from {subset}"
|
||||||
|
if self.params.world_size > 1:
|
||||||
|
message += f" by job {self.params.manifest_index}"
|
||||||
|
logging.info(f"{message}.")
|
||||||
|
|
||||||
|
json_file_path = (
|
||||||
|
self.manifest_dir
|
||||||
|
/ f"with_codebook_indexes-cuts_train-{manifest_file_id}.json.gz"
|
||||||
|
)
|
||||||
|
CutSet.from_cuts(cuts).to_json(json_file_path)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def compute_codebook_indexes_parallel(
|
||||||
|
rank: int,
|
||||||
|
params,
|
||||||
|
) -> List[Tuple[str, List[int]]]:
|
||||||
|
"""Create an extractor for each rank and extract codebook indexes parallelly.
|
||||||
|
|
||||||
|
Normally, this function is called by torch.multiprocessing
|
||||||
|
when multi GPUs are available.
|
||||||
|
"""
|
||||||
|
params = copy.deepcopy(params)
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
params.device = device
|
||||||
|
|
||||||
|
# rank is 0-based while split manifests by "lhotse split" is 1-based.
|
||||||
|
params.manifest_index = rank + 1
|
||||||
|
|
||||||
|
extractor = CodebookIndexExtractor(params=params)
|
||||||
|
extractor.extract_codebook_indexes_imp()
|
@ -25,7 +25,7 @@ from typing import Any, Dict, Optional
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
BucketingSampler,
|
BucketingSampler,
|
||||||
CutConcatenate,
|
CutConcatenate,
|
||||||
CutMix,
|
CutMix,
|
||||||
@ -34,7 +34,10 @@ from lhotse.dataset import (
|
|||||||
SingleCutSampler,
|
SingleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
@ -150,6 +153,12 @@ class LibriSpeechAsrDataModule:
|
|||||||
help="When enabled (=default), the examples will be "
|
help="When enabled (=default), the examples will be "
|
||||||
"shuffled for each epoch.",
|
"shuffled for each epoch.",
|
||||||
)
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
@ -192,6 +201,13 @@ class LibriSpeechAsrDataModule:
|
|||||||
"with training dataset. ",
|
"with training dataset. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
def train_dataloaders(
|
def train_dataloaders(
|
||||||
self,
|
self,
|
||||||
cuts_train: CutSet,
|
cuts_train: CutSet,
|
||||||
@ -263,6 +279,7 @@ class LibriSpeechAsrDataModule:
|
|||||||
|
|
||||||
logging.info("About to create train dataset")
|
logging.info("About to create train dataset")
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
@ -296,7 +313,7 @@ class LibriSpeechAsrDataModule:
|
|||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
num_buckets=self.args.num_buckets,
|
num_buckets=self.args.num_buckets,
|
||||||
bucket_method="equal_duration",
|
bucket_method="equal_duration",
|
||||||
drop_last=True,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SingleCutSampler.")
|
||||||
@ -371,7 +388,7 @@ class LibriSpeechAsrDataModule:
|
|||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
if self.args.on_the_fly_feats
|
if self.args.on_the_fly_feats
|
||||||
else PrecomputedFeatures(),
|
else eval(self.args.input_strategy)(),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = BucketingSampler(
|
sampler = BucketingSampler(
|
||||||
|
@ -127,7 +127,11 @@ def setup_logger(
|
|||||||
level = logging.CRITICAL
|
level = logging.CRITICAL
|
||||||
|
|
||||||
logging.basicConfig(
|
logging.basicConfig(
|
||||||
filename=log_filename, format=formatter, level=level, filemode="w"
|
filename=log_filename,
|
||||||
|
format=formatter,
|
||||||
|
level=level,
|
||||||
|
filemode="w",
|
||||||
|
force=True,
|
||||||
)
|
)
|
||||||
if use_console:
|
if use_console:
|
||||||
console = logging.StreamHandler()
|
console = logging.StreamHandler()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user