diff --git a/egs/librispeech/ASR/distillation_with_hubert.sh b/egs/librispeech/ASR/distillation_with_hubert.sh new file mode 100644 index 000000000..91392c473 --- /dev/null +++ b/egs/librispeech/ASR/distillation_with_hubert.sh @@ -0,0 +1,95 @@ +stage=$1 +export CUDA_VISIBLE_DEVICES="2,3,4,5" + + +if [ $stage -eq 0 ]; then + # Preparation stage. + + # Install fairseq according to: + # https://github.com/pytorch/fairseq + # when testing this code: + # commit 806855bf660ea748ed7ffb42fe8dcc881ca3aca0 is used. + # + # Install quantization toolkit: + # pip install git+https://github.com/danpovey/quantization.git@master + # when testing this code: + # commit c17ffe67aa2e6ca6b6855c50fde812f2eed7870b is used. + + echo "Download hubert model." + # Parameters about model. + exp_dir=./pruned_transducer_stateless6/exp/ + model_id=hubert_xtralarge_ll60k_finetune_ls960 + hubert_model_dir=${exp_dir}/hubert_models + hubert_model=${hubert_model_dir}/${model_id}.pt + mkdir -p ${hubert_model_dir} + # For more models refer to: https://github.com/pytorch/fairseq/tree/main/examples/hubert + wget -c https://dl.fbaipublicfiles.com/hubert/${model_id} -P ${hubert_model_dir} + wget -c wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt -P ${hubert_model_dir} +fi + +if [ ! -d ./data/fbank ]; then + echo "This script assumes ./data/fbank is already generated by prepare.sh" + exit 0 +fi + +if [ $stage -eq 1 ]; then + # This stage is not directly used by codebook indexes extraction. + # It is a method to "prove" that the downloaed hubert model + # is inferenced in an correct way if WERs look like normal. + # Expect WERs: + # [test-clean-ctc_greedy_search] %WER 2.04% [1075 / 52576, 92 ins, 104 del, 879 sub ] + # [test-other-ctc_greedy_search] %WER 3.71% [1942 / 52343, 152 ins, 126 del, 1664 sub ] + ./pruned_transducer_stateless6/hubert_decode.py +fi + +if [ $stage -eq 2 ]; then + # Analysis of disk usage: + # With num_codebooks==8, each teacher embedding is quantized into + # a sequence of eight 8-bit integers, i.e. only eight bytes are needed. + # Training dataset including clean-100h with speed perturb 0.9 and 1.1 has 300 hours. + # The output frame rates of Hubert is 50 per second. + # Theoretically, 412M = 300 * 3600 * 50 * 8 / 1024 / 1024 is needed. + # The actual size of all "*.h5" files storaging codebook index is 450M. + # I think the extra "48M" usage is some meta information. + + # Time consumption analysis: + # For quantizer training data(teacher embedding) extraction, only 1000 utts from clean-100 are used. + # Together with quantizer training, no more than 20 minutes will be used. + # + # For codebook indexes extraction, + # with two pieces of NVIDIA A100 gpus, around three hours needed to process 300 hours training data, + # i.e. clean-100 with speed purteb 0.9 and 1.1. + + # GPU usage: + # During quantizer's training data(teacher embedding) and it's training, + # only the first ONE GPU is used. + # During codebook indexes extraction, ALL GPUs set by CUDA_VISIBLE_DEVICES are used. + ./pruned_transducer_stateless6/extract_codebook_index.py \ + --full-libri False +fi + +if [ $stage -eq 3 ]; then + # Example training script. + # Note: it's better to set spec-aug-time-warpi-factor=-1 + WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}') + ./pruned_transducer_stateless6/train.py \ + --manifest-dir ./data/vq_fbank \ + --master-port 12359 \ + --full-libri False \ + --spec-aug-time-warp-factor -1 \ + --max-duration 300 \ + --world-size ${WORLD_SIZE} \ + --num-epochs 20 +fi + +if [ $stage -eq 4 ]; then + # Results should be similar to: + # errs-test-clean-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 5.67 + # errs-test-other-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 15.60 + ./pruned_transducer_stateless6/decode.py \ + --decoding-method "modified_beam_search" \ + --epoch 20 \ + --avg 10 \ + --max-duration 200 \ + --exp-dir ./pruned_transducer_stateless6/exp +fi diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py index 840d847cb..a0781da1f 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py @@ -18,7 +18,7 @@ import copy import math import warnings -from typing import Optional, Tuple +from typing import List, Optional, Tuple import torch from encoder_interface import EncoderInterface @@ -61,6 +61,7 @@ class Conformer(EncoderInterface): dropout: float = 0.1, layer_dropout: float = 0.075, cnn_module_kernel: int = 31, + middle_output_layer: int = None, # 0-based layer index ) -> None: super(Conformer, self).__init__() @@ -86,11 +87,25 @@ class Conformer(EncoderInterface): layer_dropout, cnn_module_kernel, ) - self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers) + + output_layers = [] + if middle_output_layer is not None: + assert ( + middle_output_layer >= 0 + and middle_output_layer < num_encoder_layers + ) + output_layers.append(middle_output_layer) + + # The last layer is always needed. + output_layers.append(num_encoder_layers - 1) + + self.encoder = ConformerEncoder( + encoder_layer, num_encoder_layers, output_layers=output_layers + ) def forward( self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0 - ) -> Tuple[torch.Tensor, torch.Tensor]: + ) -> Tuple[List[torch.Tensor], torch.Tensor]: """ Args: x: @@ -122,13 +137,11 @@ class Conformer(EncoderInterface): assert x.size(0) == lengths.max().item() mask = make_pad_mask(lengths) - x = self.encoder( + layer_results = self.encoder( x, pos_emb, src_key_padding_mask=mask, warmup=warmup ) # (T, N, C) - x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) - - return x, lengths + return layer_results, lengths class ConformerEncoderLayer(nn.Module): @@ -279,12 +292,18 @@ class ConformerEncoder(nn.Module): >>> out = conformer_encoder(src, pos_emb) """ - def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None: + def __init__( + self, + encoder_layer: nn.Module, + num_layers: int, + output_layers: List[int], + ) -> None: super().__init__() self.layers = nn.ModuleList( [copy.deepcopy(encoder_layer) for i in range(num_layers)] ) self.num_layers = num_layers + self.output_layers = output_layers def forward( self, @@ -293,7 +312,7 @@ class ConformerEncoder(nn.Module): mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, warmup: float = 1.0, - ) -> Tensor: + ) -> List[Tensor]: r"""Pass the input through the encoder layers in turn. Args: @@ -312,6 +331,7 @@ class ConformerEncoder(nn.Module): """ output = src + layer_results = [] for i, mod in enumerate(self.layers): output = mod( output, @@ -320,8 +340,11 @@ class ConformerEncoder(nn.Module): src_key_padding_mask=src_key_padding_mask, warmup=warmup, ) + if i in self.output_layers: + # (T, N, C) --> (N, T, C) + layer_results.append(output.permute(1, 0, 2)) - return output + return layer_results class RelPositionalEncoding(torch.nn.Module): diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py index d1af63aaa..4739a6526 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/decode.py @@ -19,36 +19,36 @@ """ Usage: (1) greedy search -./pruned_transducer_stateless4/decode.py \ +./pruned_transducer_stateless6/decode.py \ --epoch 30 \ --avg 15 \ - --exp-dir ./pruned_transducer_stateless4/exp \ + --exp-dir ./pruned_transducer_stateless6/exp \ --max-duration 600 \ --decoding-method greedy_search (2) beam search (not recommended) -./pruned_transducer_stateless4/decode.py \ +./pruned_transducer_stateless6/decode.py \ --epoch 30 \ --avg 15 \ - --exp-dir ./pruned_transducer_stateless4/exp \ + --exp-dir ./pruned_transducer_stateless6/exp \ --max-duration 600 \ --decoding-method beam_search \ --beam-size 4 (3) modified beam search -./pruned_transducer_stateless4/decode.py \ +./pruned_transducer_stateless6/decode.py \ --epoch 30 \ --avg 15 \ - --exp-dir ./pruned_transducer_stateless4/exp \ + --exp-dir ./pruned_transducer_stateless6/exp \ --max-duration 600 \ --decoding-method modified_beam_search \ --beam-size 4 (4) fast beam search -./pruned_transducer_stateless4/decode.py \ +./pruned_transducer_stateless6/decode.py \ --epoch 30 \ --avg 15 \ - --exp-dir ./pruned_transducer_stateless4/exp \ + --exp-dir ./pruned_transducer_stateless6/exp \ --max-duration 600 \ --decoding-method fast_beam_search \ --beam 4 \ @@ -139,7 +139,7 @@ def get_parser(): parser.add_argument( "--exp-dir", type=str, - default="pruned_transducer_stateless4/exp", + default="pruned_transducer_stateless6/exp", help="The experiment dir", ) @@ -260,9 +260,10 @@ def decode_one_batch( supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) - encoder_out, encoder_out_lens = model.encoder( + layer_results, encoder_out_lens = model.encoder( x=feature, x_lens=feature_lens ) + encoder_out = layer_results[-1] hyps = [] if params.decoding_method == "fast_beam_search": diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py b/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py new file mode 100755 index 000000000..c5c172ff2 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import os +from pathlib import Path + +import torch +from vq_utils import CodebookIndexExtractor +from asr_datamodule import LibriSpeechAsrDataModule +from hubert_xlarge import HubertXlargeFineTuned +from icefall.utils import AttributeDict + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + parser.add_argument( + "--exp-dir", + type=Path, + default="pruned_transducer_stateless6/exp/", + help="The experiment dir", + ) + + return parser + + +def get_world_size(): + warn_message = ( + "It's better to use GPU to extrac codebook indices" + "Please set with commonds like: export CUDA_VISIBLE_DEVICES=0,1,2,3" + ) + assert ( + torch.cuda.is_available() and "CUDA_VISIBLE_DEVICES" in os.environ + ), warn_message + world_size = len(os.environ["CUDA_VISIBLE_DEVICES"].split(",")) + assert world_size > 0, warn_message + return world_size + + +def main(): + world_size = get_world_size() + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + HubertXlargeFineTuned.add_arguments(parser) + CodebookIndexExtractor.add_arguments(parser) + + args = parser.parse_args() + params = AttributeDict() + params.update(vars(args)) + + # reset some parameters needed by hubert. + params.update(HubertXlargeFineTuned.get_params()) + params.device = torch.device("cuda", 0) + params.world_size = world_size + + extractor = CodebookIndexExtractor(params=params) + extractor.extract_and_save_embedding() + extractor.train_quantizer() + extractor.extract_codebook_indexes() + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py new file mode 100755 index 000000000..f38fec3aa --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py @@ -0,0 +1,205 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Tuple + +import torch + +from asr_datamodule import LibriSpeechAsrDataModule +from hubert_xlarge import HubertXlargeFineTuned + +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--exp-dir", + type=Path, + default="pruned_transducer_stateless6/exp/", + help="The experiment dir", + ) + + return parser + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + hubert_model: HubertXlargeFineTuned, + params: AttributeDict, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + model: + The neural model. + + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + + hyps = hubert_model.ctc_greedy_search(batch) + + texts = batch["supervisions"]["text"] + assert len(hyps) == len(texts) + this_batch = [] + + for hyp_text, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + hyp_words = hyp_text.split() + this_batch.append((ref_words, hyp_words)) + + results["ctc_greedy_search"].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % 20 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.res_dir / f"recogs-{test_set_name}-{key}.txt" + store_transcripts(filename=recog_path, texts=results) + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = params.res_dir / f"errs-{test_set_name}-{key}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info( + "Wrote detailed error stats to {}".format(errs_filename) + ) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt" + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + HubertXlargeFineTuned.add_arguments(parser) + args = parser.parse_args() + + params = AttributeDict() + params.update(vars(args)) + # reset some parameters needed by hubert. + params.update(HubertXlargeFineTuned.get_params()) + + params.res_dir = ( + params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}" + ) + + setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search") + logging.info("Decoding started") + logging.info(params) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + params.device = device + + hubert_model = HubertXlargeFineTuned(params) + + librispeech = LibriSpeechAsrDataModule(params) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + hubert_model=hubert_model, + params=params, + ) + + save_results( + params=params, test_set_name=test_set, results_dict=results_dict + ) + + logging.info("Done!") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py new file mode 100644 index 000000000..8ee8f6424 --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py @@ -0,0 +1,204 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from pathlib import Path +from typing import Dict, List, Tuple + +import torch +from fairseq import ( + checkpoint_utils, + tasks, + utils, +) +from fairseq.data.data_utils import post_process +from omegaconf import OmegaConf + +from icefall.utils import AttributeDict + + +def _load_hubert_model(params: AttributeDict): + cfg_task = OmegaConf.create( + { + "_name": "hubert_pretraining", + "single_target": True, + "fine_tuning": True, + "data": str(params.hubert_model_dir), + } + ) + model_path = Path(params.hubert_model_dir) / ( + params.teacher_model_id + ".pt" + ) + task = tasks.setup_task(cfg_task) + processor = task.target_dictionary + models, saved_cfg = checkpoint_utils.load_model_ensemble( + utils.split_paths(str(model_path), separator="\\"), + arg_overrides={}, + strict=True, + suffix="", + num_shards=1, + ) + model = models[0] + model.to(params.device) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + return model, processor + + +class HubertXlargeFineTuned: + """ + A wrapper of hubert extra larger finedtuned model. + + A teacher model responsible for: + 1. load teacher model + 2. extracting embeddings to train quantizer. + 3. extract codebook indices + 4. verify it's performance with ctc_greedy_search method. + """ + + def __init__(self, params: AttributeDict): + self.model, self.processor = _load_hubert_model(params) + self.w2v_model = self.model.w2v_encoder.w2v_model + self.params = params + + @staticmethod + def get_params() -> AttributeDict: + """Return a dict containing parameters defined in other modules. + + Their default value conflits to hubert's requirements so they are reset as following. + """ + params = AttributeDict( + { + # parameters defined in asr_datamodule.py + "input_strategy": "AudioSamples", + "enable_musan": False, + "enable_spec_aug": False, + "return_cuts": True, + "drop_last": False, + # parameters used by quantizer + "embedding_dim": 1280, + } + ) + return params + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + # Options about model loading. + parser.add_argument( + "--hubert-model-dir", + type=Path, + default="./pruned_transducer_stateless6/exp/hubert_models/", + help="path to save downloaded hubert models.", + ) + + parser.add_argument( + "--teacher-model-id", + type=str, + default="hubert_xtralarge_ll60k_finetune_ls960", + help="""could be one of: + [ + "hubert_xtralarge_ll60k_finetune_ls960", # fintuned model. + "hubert_xtralarge_ll60k.pt", # pretrained model without fintuing. + ]""", + ) + parser.add_argument( + "--total-layers", + type=int, + default=48, + ) + + # Modified from HubertModel.forward to extract all middle layers output + def extract_layers_result( + self, + batch: Dict, + ) -> Dict[str, torch.Tensor]: + """ + Extract activations from all layers. + """ + features = batch["inputs"] + + # corresponding task.normalize in fairseq + features = torch.nn.functional.layer_norm(features, features.shape) + + supervisions = batch["supervisions"] + num_samples = supervisions["num_samples"] + B, T = features.shape + padding_mask = torch.arange(0, T).expand(B, T) > num_samples.reshape( + [-1, 1] + ) + + padding_mask = padding_mask.to(self.params.device) + features = features.to(self.params.device) + + features = self.w2v_model.forward_features(features) + + features = features.transpose(1, 2) + features = self.w2v_model.layer_norm(features) + + if padding_mask is not None: + padding_mask = self.w2v_model.forward_padding_mask( + features, padding_mask + ) + + if self.w2v_model.post_extract_proj is not None: + features = self.w2v_model.post_extract_proj(features) + + _, layer_results = self.w2v_model.encoder( + features, + padding_mask=padding_mask, + ) + return layer_results + + def extract_embedding(self, batch) -> Tuple[torch.tensor, List[int]]: + supervisions = batch["supervisions"] + cut_list = supervisions["cut"] + assert all(c.start == 0 for c in cut_list) + layer_results = self.extract_layers_result(batch) + embeddings = layer_results[self.params.embedding_layer - 1][0] + encoder_embedding = embeddings.transpose(0, 1) # N, T, C + N = encoder_embedding.shape[0] + assert len(cut_list) == N + # 320 is from: 16,000 / 50 = sample_rate / hbuert output frame rate + num_frames = [ + supervisions["num_samples"][i].item() // 320 for i in range(N) + ] + return encoder_embedding, num_frames + + def ctc_greedy_search(self, batch): + """ + Mainly used to verify hubert model is used correctly. + """ + layer_results = self.extract_layers_result(batch=batch) + encoder_out = self.w2v_model.encoder.layer_norm( + layer_results[self.params.total_layers - 1][0] + ) + encoder_out = self.model.w2v_encoder.proj(encoder_out.transpose(0, 1)) + + toks = encoder_out.argmax(dim=-1) + blank = 0 + toks = [tok.unique_consecutive() for tok in toks] + hyps = [ + self.processor.string(tok[tok != blank].int().cpu()) for tok in toks + ] + hyps = [post_process(hyp, "letter") for hyp in hyps] + + return hyps diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/model.py b/egs/librispeech/ASR/pruned_transducer_stateless6/model.py index 2434fd41d..157a4a880 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/model.py @@ -23,6 +23,8 @@ from scaling import ScaledLinear from icefall.utils import add_sos +from quantization.prediction import JointCodebookLoss + class Transducer(nn.Module): """It implements https://arxiv.org/pdf/1211.3711.pdf @@ -38,6 +40,7 @@ class Transducer(nn.Module): decoder_dim: int, joiner_dim: int, vocab_size: int, + num_codebooks: int = 0, ): """ Args: @@ -55,6 +58,8 @@ class Transducer(nn.Module): (N, U, decoder_dim). Its output shape is (N, T, U, vocab_size). Note that its output contains unnormalized probs, i.e., not processed by log-softmax. + num_codebooks: + Used by distillation loss. """ super().__init__() assert isinstance(encoder, EncoderInterface), type(encoder) @@ -68,6 +73,10 @@ class Transducer(nn.Module): encoder_dim, vocab_size, initial_speed=0.5 ) self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size) + if num_codebooks > 0: + self.codebook_loss_net = JointCodebookLoss( + predictor_channels=encoder_dim, num_codebooks=num_codebooks + ) def forward( self, @@ -78,6 +87,7 @@ class Transducer(nn.Module): am_scale: float = 0.0, lm_scale: float = 0.0, warmup: float = 1.0, + codebook_indexes: torch.Tensor = None, ) -> torch.Tensor: """ Args: @@ -101,6 +111,8 @@ class Transducer(nn.Module): warmup: A value warmup >= 0 that determines which modules are active, values warmup > 1 "are fully warmed up" and all modules will be active. + codebook_indexes: + codebook_indexes extracted from a teacher model. Returns: Return the transducer loss. @@ -116,7 +128,22 @@ class Transducer(nn.Module): assert x.size(0) == x_lens.size(0) == y.dim0 - encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup) + layer_results, x_lens = self.encoder(x, x_lens, warmup=warmup) + encoder_out = layer_results[-1] + middle_layer_output = layer_results[0] + if self.training and codebook_indexes is not None: + assert hasattr(self, "codebook_loss_net") + if codebook_indexes.shape[1] != middle_layer_output.shape[1]: + codebook_indexes = self.concat_sucessive_codebook_indexes( + middle_layer_output, codebook_indexes + ) + codebook_loss = self.codebook_loss_net( + middle_layer_output, codebook_indexes + ) + else: + # when codebook index is not available. + codebook_loss = None + assert torch.all(x_lens > 0) # Now for the decoder, i.e., the prediction network @@ -191,4 +218,32 @@ class Transducer(nn.Module): reduction="sum", ) - return (simple_loss, pruned_loss) + return (simple_loss, pruned_loss, codebook_loss) + + @staticmethod + def concat_sucessive_codebook_indexes( + middle_layer_output, codebook_indexes + ): + # Output rate of hubert is 50 frames per second, + # while that of current encoder is 25. + # Following code handling two issues: + # 1. + # Roughly speaking, to generate another frame output, + # hubert needes extra two frames, + # while current encoder needs extra four frames. + # Suppose there are only extra three frames provided, + # hubert will generate another frame while current encoder does nothing. + # 2. + # codebook loss is a frame-wise loss, to enalbe 25 frames studnet output + # learns from 50 frames teacher output, two successive frames of teacher model + # output is concatenated together. + t_expected = middle_layer_output.shape[1] + N, T, C = codebook_indexes.shape + + # Handling issue 1. + if T >= t_expected * 2: + codebook_indexes = codebook_indexes[:, : t_expected * 2, :] + # Handling issue 2. + codebook_indexes = codebook_indexes.reshape(N, t_expected, C * 2) + assert middle_layer_output.shape[1] == codebook_indexes.shape[1] + return codebook_indexes diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py b/egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py index b1832d0ec..9bd75ba21 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py @@ -20,7 +20,7 @@ To run this file, do: cd icefall/egs/librispeech/ASR - python ./pruned_transducer_stateless4/test_model.py + python ./pruned_transducer_stateless6/test_model.py """ import torch @@ -33,6 +33,7 @@ def test_model(): params.blank_id = 0 params.context_size = 2 params.unk_id = 2 + params.enable_distiallation = False model = get_transducer_model(params) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/train.py b/egs/librispeech/ASR/pruned_transducer_stateless6/train.py index ca7207122..feb58f457 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless6/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/train.py @@ -22,25 +22,36 @@ Usage: export CUDA_VISIBLE_DEVICES="0,1,2,3" -./pruned_transducer_stateless4/train.py \ +./pruned_transducer_stateless6/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 1 \ - --exp-dir pruned_transducer_stateless2/exp \ + --exp-dir pruned_transducer_stateless6/exp \ --full-libri 1 \ --max-duration 300 # For mix precision training: -./pruned_transducer_stateless4/train.py \ +./pruned_transducer_stateless6/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 1 \ --use-fp16 1 \ - --exp-dir pruned_transducer_stateless2/exp \ + --exp-dir pruned_transducer_stateless6/exp \ --full-libri 1 \ --max-duration 550 +# For distiallation with codebook_indexes: + +./pruned_transducer_stateless6/train.py \ + --manifest-dir ./data/vq_fbank \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless6/exp \ + --full-libri 0 \ + --max-duration 300 + """ @@ -62,9 +73,10 @@ from asr_datamodule import LibriSpeechAsrDataModule from conformer import Conformer from decoder import Decoder from joiner import Joiner -from lhotse.cut import Cut +from lhotse.cut import Cut, MonoCut from lhotse.dataset.sampling.base import CutSampler from lhotse.utils import fix_random_seed +from lhotse.dataset.collation import collate_custom_field from model import Transducer from optim import Eden, Eve from torch import Tensor @@ -143,7 +155,7 @@ def get_parser(): parser.add_argument( "--exp-dir", type=str, - default="pruned_transducer_stateless2/exp", + default="pruned_transducer_stateless6/exp", help="""The experiment dir. It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved @@ -223,6 +235,13 @@ def get_parser(): "with this parameter before adding to the final loss.", ) + parser.add_argument( + "--codebook-loss-scale", + type=float, + default=0.1, + help="The scale of codebook loss.", + ) + parser.add_argument( "--seed", type=int, @@ -352,6 +371,13 @@ def get_params() -> AttributeDict: # parameters for Noam "model_warm_step": 3000, # arg given to model, not for lrate "env_info": get_env_info(), + # parameters for distillation with codebook indexes. + "enable_distiallation": True, + "distillation_layer": 5, # 0-based index + # Since output rate of hubert is 50, while that of encoder is 8, + # two successive codebook_index are concatenated together. + # Detailed in function Transducer::concat_sucessive_codebook_indexes. + "num_codebooks": 16, # used to construct distillation loss } ) @@ -367,6 +393,9 @@ def get_encoder_model(params: AttributeDict) -> nn.Module: nhead=params.nhead, dim_feedforward=params.dim_feedforward, num_encoder_layers=params.num_encoder_layers, + middle_output_layer=params.distillation_layer + if params.enable_distiallation + else None, ) return encoder @@ -404,6 +433,9 @@ def get_transducer_model(params: AttributeDict) -> nn.Module: decoder_dim=params.decoder_dim, joiner_dim=params.joiner_dim, vocab_size=params.vocab_size, + num_codebooks=params.num_codebooks + if params.enable_distiallation + else 0, ) return model @@ -527,6 +559,18 @@ def save_checkpoint( copyfile(src=filename, dst=best_valid_filename) +def extract_codebook_indexes(batch): + cuts = batch["supervisions"]["cut"] + # -100 is identical to ignore_value in CE loss computation. + cuts_pre_mixed = [ + c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts + ] + codebook_indexes, codebook_indexes_lens = collate_custom_field( + cuts_pre_mixed, "codebook_indexes", pad_value=-100 + ) + return codebook_indexes, codebook_indexes_lens + + def compute_loss( params: AttributeDict, model: Union[nn.Module, DDP], @@ -570,8 +614,15 @@ def compute_loss( y = sp.encode(texts, out_type=int) y = k2.RaggedTensor(y).to(device) + info = MetricsTracker() + if is_training and params.enable_distiallation: + codebook_indexes, _ = extract_codebook_indexes(batch) + codebook_indexes = codebook_indexes.to(device) + else: + codebook_indexes = None + with torch.set_grad_enabled(is_training): - simple_loss, pruned_loss = model( + simple_loss, pruned_loss, codebook_loss = model( x=feature, x_lens=feature_lens, y=y, @@ -579,6 +630,7 @@ def compute_loss( am_scale=params.am_scale, lm_scale=params.lm_scale, warmup=warmup, + codebook_indexes=codebook_indexes, ) # after the main warmup step, we keep pruned_loss_scale small # for the same amount of time (model_warm_step), to avoid @@ -593,10 +645,12 @@ def compute_loss( params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss ) + if is_training and params.enable_distiallation: + assert codebook_loss is not None + loss += params.codebook_loss_scale * codebook_loss assert loss.requires_grad == is_training - info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") info["frames"] = ( @@ -607,6 +661,8 @@ def compute_loss( info["loss"] = loss.detach().cpu().item() info["simple_loss"] = simple_loss.detach().cpu().item() info["pruned_loss"] = pruned_loss.detach().cpu().item() + if is_training and params.enable_distiallation: + info["codebook_loss"] = codebook_loss.detach().cpu().item() return loss, info diff --git a/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py b/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py new file mode 100644 index 000000000..11467032b --- /dev/null +++ b/egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py @@ -0,0 +1,393 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import copy +import glob +import logging +import os +from functools import cached_property +from pathlib import Path +from typing import List, Tuple + +import numpy as np +import torch +import torch.multiprocessing as mp +import quantization + +from asr_datamodule import LibriSpeechAsrDataModule +from hubert_xlarge import HubertXlargeFineTuned +from icefall.utils import ( + AttributeDict, + setup_logger, +) +from lhotse import CutSet, load_manifest +from lhotse.features.io import NumpyHdf5Writer + + +class CodebookIndexExtractor: + """ + A wrapper of quantiation.Quantizer. + + It's responsible for: + 1. extract and save activations from a teacher model. + 2. train quantizer from previous activations. + 3. extract codebook indexes for whole training set. + Normally this step needs multi GPUs. + """ + + def __init__(self, params: AttributeDict): + + self.params = params + params.subsets = ["clean-100"] + if self.params.full_libri: + self.params.subsets += ["clean-360", "other-500"] + + self.init_dirs() + setup_logger(f"{self.vq_dir}/log-vq_extraction") + + def init_dirs(self): + # vq_dir is the root dir for quantizer: + # training data/ quantizer / extracted codebook indexes + self.vq_dir = ( + self.params.exp_dir / f"vq/{self.params.teacher_model_id}/" + ) + self.vq_dir.mkdir(parents=True, exist_ok=True) + + # manifest_dir for : + # splited original manifests, + # extracted codebook indexes and their related manifests + self.manifest_dir = self.vq_dir / f"splits{self.params.world_size}" + self.manifest_dir.mkdir(parents=True, exist_ok=True) + + self.ori_manifest_dir = "./data/fbank/" + self.dst_manifest_dir = "./data/vq_fbank/" + + self.dst_manifest_dir.mkdir(parents=True, exist_ok=True) + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + # Options about teacher embeddings eatraction. + parser.add_argument( + "--embedding-layer", + type=int, + help="layer to extract teacher embeddings, 1-based.", + default=36, + ) + + parser.add_argument( + "--num-utts", + type=int, + default=1000, + help="num utts to train quantizer", + ) + + parser.add_argument( + "--num-codebooks", + type=int, + default=8, + help="""number of codebooks, + i.e. number of codebook indexes each teacher embedding is compressed. + """, + ) + + @property + def embedding_file_path(self): + """ + The saved embedding is used to train quantizer. + """ + embedding_file_id = ( + f"num_utts_{self.params.num_utts}" + + f"-layer_{self.params.embedding_layer}" + + "-embedding_embeddings.h5" + ) + + embedding_file_path = self.vq_dir / embedding_file_id + return embedding_file_path + + @torch.no_grad() + def extract_and_save_embedding(self): + """ + The extract embedding is used to train quantizer. + """ + if self.embedding_file_path.exists(): + warn_message = ( + f"{self.embedding_file_path} already exists." + + " Skip extracting embeddings from teacher model" + ) + logging.warn(warn_message) + return + + total_cuts = 0 + with NumpyHdf5Writer(self.embedding_file_path) as writer: + for batch_idx, batch in enumerate(self.quantizer_train_dl): + cut_list = batch["supervisions"]["cut"] + ( + encoder_embedding, + num_frames, + ) = self.teacher_model.extract_embedding(batch) + encoder_embedding = encoder_embedding.cpu().numpy() + for idx, cut in enumerate(cut_list): + cut.encoder_embedding = writer.store_array( + key=cut.id, + value=encoder_embedding[idx][: num_frames[idx]], + ) + total_cuts += len(cut_list) + logging.info( + f"Processed {total_cuts} output of {self.params.num_utts} cuts." + ) + + logging.info(f"Processed all {total_cuts} cuts.") + + @property + def quantizer_train_dl(self): + # used to train quantizer. + librispeech = LibriSpeechAsrDataModule(self.params) + quantizer_trian_cuts = librispeech.train_clean_100_cuts().subset( + first=self.params.num_utts + ) + return librispeech.train_dataloaders(quantizer_trian_cuts) + + @cached_property + def quantizer_file_path(self): + quantizer_file_id = ( + f"num_utts-{self.params.num_utts}" + + f"-layer-{self.params.embedding_layer}" + + f"-num_codebooks_{self.params.num_codebooks}" + + "-quantizer.pt" + ) + quantizer_file_path = Path(self.vq_dir) / quantizer_file_id + + return quantizer_file_path + + def train_quantizer(self): + if self.quantizer_file_path.exists(): + warn_message = ( + f"{self.quantizer_file_path} already exists." + + " Skip trainning quantizer." + ) + logging.warn(warn_message) + return + + assert self.embedding_file_path.exists() + trainer = quantization.QuantizerTrainer( + dim=self.params.embedding_dim, + bytes_per_frame=self.params.num_codebooks, + device=self.params.device, + ) + train, valid = quantization.read_hdf5_data(self.embedding_file_path) + B = 512 # Minibatch size, this is very arbitrary, it's close to what we used + # when we tuned this method. + + def minibatch_generator(data: torch.Tensor, repeat: bool): + assert 3 * B < data.shape[0] + cur_offset = 0 + while True if repeat else cur_offset + B <= data.shape[0]: + start = cur_offset % (data.shape[0] + 1 - B) + end = start + B + cur_offset += B + yield data[start:end, :].to(self.params.device).to( + dtype=torch.float + ) + + for x in minibatch_generator(train, repeat=True): + trainer.step(x) + if trainer.done(): + break + + quantizer = trainer.get_quantizer() + torch.save(quantizer.state_dict(), self.quantizer_file_path) + + def split_ori_manifests(self): + """ + When multi gpus are available, split original manifests + and extract codebook indexes in a prallel way. + """ + for subset in self.params.subsets: + logging.info(f"About to split {subset}.") + ori_manifest = f"./data/fbank/cuts_train-{subset}.json.gz" + split_cmd = f"lhotse split {self.params.world_size} {ori_manifest} {self.manifest_dir}" + os.system(f"{split_cmd}") + + def merge_vq_manifests(self): + """ + Merge generated vq included manfiests and storage to self.dst_manifest_dir. + """ + for subset in self.params.subsets: + vq_manifests = f"{self.manifest_dir}/with_codebook_indexes-cuts_train-{subset}*.json.gz" + dst_vq_manifest = ( + self.dst_manifest_dir / f"cuts_train-{subset}.json.gz" + ) + if 1 == self.params.world_size: + merge_cmd = f"cp {vq_manifests} {dst_vq_manifest}" + else: + merge_cmd = f"lhotse combine {vq_manifests} {dst_vq_manifest}" + os.system(f"{merge_cmd}") + + def reuse_manifests(self): + """ + Only train-* subsets are extracted codebook indexes from. + The reset subsets are just a link from ./data/fbank. + """ + + def is_train(manifest: str) -> bool: + for train_subset in ["clean-100", "clean-360", "other-500"]: + if train_subset in manifest: + return True + return False + + reusable_manifests = [ + manifest + for manifest in glob.glob(f"{self.ori_manifest_dir}/*.gz") + if not is_train(manifest) + ] + for manifest_path in reusable_manifests: + ori_manifest_path = Path(manifest_path).resolve() + dst_manifest_path = Path( + manifest_path.replace( + self.ori_manifest_dir, self.dst_manifest_dir + ) + ).resolve() + if not dst_manifest_path.exists(): + os.symlink(ori_manifest_path, dst_manifest_path) + + def create_vq_fbank(self): + self.reuse_manifests() + self.merge_vq_manifests() + + @cached_property + def teacher_model(self): + return HubertXlargeFineTuned(self.params) + + @cached_property + def quantizer(self): + assert self.quantizer_file_path.exists() + quantizer = quantization.Quantizer( + dim=self.params.embedding_dim, + num_codebooks=self.params.num_codebooks, + codebook_size=256, + ) + quantizer.load_state_dict(torch.load(self.quantizer_file_path)) + quantizer.to(self.params.device) + return quantizer + + def load_ori_dl(self, subset): + if self.params.world_size == 1: + ori_manifest_path = f"./data/fbank/cuts_train-{subset}.json.gz" + else: + ori_manifest_path = ( + self.manifest_dir + / f"cuts_train-{subset}.{self.params.manifest_index}.json.gz" + ) + + cuts = load_manifest(ori_manifest_path) + dl = LibriSpeechAsrDataModule(self.params).train_dataloaders(cuts) + return dl + + def _release_gpu_memory(self): + self.__dict__.pop("teacher_model", None) + self.__dict__.pop("quantizer", None) + torch.cuda.empty_cache() + + def extract_codebook_indexes(self): + if self.params.world_size == 1: + self.extract_codebook_indexes_imp() + else: + # Since a new extractor will be created for each rank in + # compute_codebook_indexes_parallel, it's better to + # release the GPU memory occupied by current extractor. + self._release_gpu_memory() + + # Prepare split manifests for each job. + self.split_ori_manifests() + mp.spawn( + compute_codebook_indexes_parallel, + args=(self.params,), + nprocs=self.params.world_size, + join=True, + ) + self.create_vq_fbank() + + @torch.no_grad() + def extract_codebook_indexes_imp(self): + for subset in self.params.subsets: + num_cuts = 0 + cuts = [] + if self.params.world_size == 1: + manifest_file_id = f"{subset}" + else: + manifest_file_id = f"{subset}-{self.params.manifest_index}" + + manifest_file_path = self.manifest_dir / manifest_file_id + with NumpyHdf5Writer(manifest_file_path) as writer: + for batch_idx, batch in enumerate(self.load_ori_dl(subset)): + ( + encoder_embedding, + num_frames, + ) = self.teacher_model.extract_embedding(batch) + codebook_indexes = self.quantizer.encode(encoder_embedding) + # [N, T, C] + codebook_indexes = codebook_indexes.to("cpu").numpy() + assert np.min(codebook_indexes) >= 0 + assert np.max(codebook_indexes) < 256 + supervisions = batch["supervisions"] + cut_list = supervisions["cut"] + assert len(cut_list) == codebook_indexes.shape[0] + assert all(c.start == 0 for c in supervisions["cut"]) + + for idx, cut in enumerate(cut_list): + cut.codebook_indexes = writer.store_array( + key=cut.id, + value=codebook_indexes[idx][: num_frames[idx]], + frame_shift=0.02, + temporal_dim=0, + start=0, + ) + cuts += cut_list + num_cuts += len(cut_list) + message = f"Processed {num_cuts} cuts from {subset}" + if self.params.world_size > 1: + message += f" by job {self.params.manifest_index}" + logging.info(f"{message}.") + + json_file_path = ( + self.manifest_dir + / f"with_codebook_indexes-cuts_train-{manifest_file_id}.json.gz" + ) + CutSet.from_cuts(cuts).to_json(json_file_path) + + +@torch.no_grad() +def compute_codebook_indexes_parallel( + rank: int, + params, +) -> List[Tuple[str, List[int]]]: + """Create an extractor for each rank and extract codebook indexes parallelly. + + Normally, this function is called by torch.multiprocessing + when multi GPUs are available. + """ + params = copy.deepcopy(params) + device = torch.device("cuda", rank) + params.device = device + + # rank is 0-based while split manifests by "lhotse split" is 1-based. + params.manifest_index = rank + 1 + + extractor = CodebookIndexExtractor(params=params) + extractor.extract_codebook_indexes_imp() diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py index 8dd1459ca..e83009d4a 100644 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py @@ -25,7 +25,7 @@ from typing import Any, Dict, Optional import torch from lhotse import CutSet, Fbank, FbankConfig, load_manifest -from lhotse.dataset import ( +from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures BucketingSampler, CutConcatenate, CutMix, @@ -34,7 +34,10 @@ from lhotse.dataset import ( SingleCutSampler, SpecAugment, ) -from lhotse.dataset.input_strategies import OnTheFlyFeatures +from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples + AudioSamples, + OnTheFlyFeatures, +) from lhotse.utils import fix_random_seed from torch.utils.data import DataLoader @@ -150,6 +153,12 @@ class LibriSpeechAsrDataModule: help="When enabled (=default), the examples will be " "shuffled for each epoch.", ) + group.add_argument( + "--drop-last", + type=str2bool, + default=True, + help="Whether to drop last batch. Used by sampler.", + ) group.add_argument( "--return-cuts", type=str2bool, @@ -192,6 +201,13 @@ class LibriSpeechAsrDataModule: "with training dataset. ", ) + group.add_argument( + "--input-strategy", + type=str, + default="PrecomputedFeatures", + help="AudioSamples or PrecomputedFeatures", + ) + def train_dataloaders( self, cuts_train: CutSet, @@ -263,6 +279,7 @@ class LibriSpeechAsrDataModule: logging.info("About to create train dataset") train = K2SpeechRecognitionDataset( + input_strategy=eval(self.args.input_strategy)(), cut_transforms=transforms, input_transforms=input_transforms, return_cuts=self.args.return_cuts, @@ -296,7 +313,7 @@ class LibriSpeechAsrDataModule: shuffle=self.args.shuffle, num_buckets=self.args.num_buckets, bucket_method="equal_duration", - drop_last=True, + drop_last=self.args.drop_last, ) else: logging.info("Using SingleCutSampler.") @@ -371,7 +388,7 @@ class LibriSpeechAsrDataModule: test = K2SpeechRecognitionDataset( input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) if self.args.on_the_fly_feats - else PrecomputedFeatures(), + else eval(self.args.input_strategy)(), return_cuts=self.args.return_cuts, ) sampler = BucketingSampler( diff --git a/icefall/utils.py b/icefall/utils.py index daccd4346..c9045006d 100644 --- a/icefall/utils.py +++ b/icefall/utils.py @@ -127,7 +127,11 @@ def setup_logger( level = logging.CRITICAL logging.basicConfig( - filename=log_filename, format=formatter, level=level, filemode="w" + filename=log_filename, + format=formatter, + level=level, + filemode="w", + force=True, ) if use_console: console = logging.StreamHandler()