Add multidataset (#1010)

* Add Common Voice for multidataset

* Add prepare_multidataset.sh

* Add dataset mixing


* Update prepare_multidataset.sh

* Update prepare_giga_speech.sh

* update comments

* Add split and shuffle mechanism

* Add multi-dataset train

* Fix for deleting

* Fix for modifying

* Add comments

* Change type for perturb_speed

* Fix for style check

* Small fix

* Add filter

* Remove warning
This commit is contained in:
Yifan Yang 2023-04-21 18:09:41 +08:00 committed by GitHub
parent 57d6482a79
commit d67a49afe4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 624 additions and 38 deletions

View File

@ -35,7 +35,7 @@ from filter_cuts import filter_cuts
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -61,12 +61,20 @@ def get_args():
help="""Dataset parts to compute fbank. If None, we will use all""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=True,
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
)
return parser.parse_args()
def compute_fbank_librispeech(
bpe_model: Optional[str] = None,
dataset: Optional[str] = None,
perturb_speed: Optional[bool] = True,
):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
@ -125,8 +133,12 @@ def compute_fbank_librispeech(
if "train" in partition:
if bpe_model:
cut_set = filter_cuts(cut_set, sp)
if perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
@ -145,4 +157,8 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_librispeech(bpe_model=args.bpe_model, dataset=args.dataset)
compute_fbank_librispeech(
bpe_model=args.bpe_model,
dataset=args.dataset,
perturb_speed=args.perturb_speed,
)

View File

@ -0,0 +1,117 @@
#!/usr/bin/env bash
set -eou pipefail
nj=16
stage=-1
stop_stage=100
# Split data/${lang}set to this number of pieces
# This is to avoid OOM during feature extraction.
num_splits=1000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/$release/$lang
# This directory contains the following files downloaded from
# https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/${release}/${release}-${lang}.tar.gz
#
# - clips
# - dev.tsv
# - invalidated.tsv
# - other.tsv
# - reported.tsv
# - test.tsv
# - train.tsv
# - validated.tsv
dl_dir=$PWD/download
release=cv-corpus-13.0-2023-03-09
lang=en
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data/${lang}".
# You can safely remove "data/${lang}" and rerun this script to regenerate it.
mkdir -p data/${lang}
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/$release,
# you can create a symlink
#
# ln -sfv /path/to/$release $dl_dir/$release
#
if [ ! -d $dl_dir/$release/$lang/clips ]; then
lhotse download commonvoice --languages $lang --release $release $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare CommonVoice manifest"
# We assume that you have downloaded the CommonVoice corpus
# to $dl_dir/$release
mkdir -p data/${lang}/manifests
if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then
lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests
touch data/${lang}/manifests/.cv-${lang}.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Preprocess CommonVoice manifest"
if [ ! -e data/${lang}/fbank/.preprocess_complete ]; then
./local/preprocess_commonvoice.py --language $lang
touch data/${lang}/fbank/.preprocess_complete
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for dev and test subsets of CommonVoice"
mkdir -p data/${lang}/fbank
if [ ! -e data/${lang}/fbank/.cv-${lang}_dev_test.done ]; then
./local/compute_fbank_commonvoice_dev_test.py --language $lang
touch data/${lang}/fbank/.cv-${lang}_dev_test.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Split train subset into ${num_splits} pieces"
split_dir=data/${lang}/fbank/cv-${lang}_train_split_${num_splits}
if [ ! -e $split_dir/.cv-${lang}_train_split.done ]; then
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir
touch $split_dir/.cv-${lang}_train_split.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute features for train subset of CommonVoice"
if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then
./local/compute_fbank_commonvoice_splits.py \
--num-workers $nj \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits \
--language $lang
touch data/${lang}/fbank/.cv-${lang}_train.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Combine features for train"
if [ ! -f data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz ]; then
pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz")
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz
fi
fi

View File

@ -95,6 +95,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare GigaSpeech manifest (may take 30 minutes)"
# We assume that you have downloaded the GigaSpeech corpus
# to $dl_dir/GigaSpeech
if [ ! -f data/manifests/.gigaspeech.done ]; then
mkdir -p data/manifests
lhotse prepare gigaspeech \
--subset XL \
@ -106,28 +107,33 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
--subset TEST \
-j $nj \
$dl_dir/GigaSpeech data/manifests
touch data/manifests/.gigaspeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Preprocess GigaSpeech manifest"
if [ ! -f data/fbank/.preprocess_complete ]; then
if [ ! -f data/fbank/.gigaspeech_preprocess.done ]; then
log "It may take 2 hours for this stage"
python3 ./local/preprocess_gigaspeech.py
touch data/fbank/.preprocess_complete
./local/preprocess_gigaspeech.py
touch data/fbank/.gigaspeech_preprocess.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute features for DEV and TEST subsets of GigaSpeech (may take 2 minutes)"
python3 ./local/compute_fbank_gigaspeech_dev_test.py
if [ ! -f data/fbank/.gigaspeech_dev_test.done ]; then
./local/compute_fbank_gigaspeech_dev_test.py
touch data/fbank/.gigaspeech_dev_test.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Split XL subset into ${num_splits} pieces"
split_dir=data/fbank/gigaspeech_XL_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
if [ ! -f $split_dir/.gigaspeech_XL_split.done ]; then
lhotse split-lazy ./data/fbank/gigaspeech_cuts_XL_raw.jsonl.gz $split_dir $chunk_size
touch $split_dir/.split_completed
touch $split_dir/.gigaspeech_XL_split.done
fi
fi
@ -135,8 +141,19 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute features for XL"
# Note: The script supports --start and --stop options.
# You can use several machines to compute the features in parallel.
python3 ./local/compute_fbank_gigaspeech_splits.py \
if [ ! -f data/fbank/.gigaspeech_XL.done ]; then
./local/compute_fbank_gigaspeech_splits.py \
--num-workers $nj \
--batch-duration 600 \
--num-splits $num_splits
touch data/fbank/.gigaspeech_XL.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Combine features for XL (may take 15 hours)"
if [ ! -f data/fbank/gigaspeech_cuts_XL.jsonl.gz ]; then
pieces=$(find data/fbank/gigaspeech_XL_split_${num_splits} -name "gigaspeech_cuts_XL.*.jsonl.gz")
lhotse combine $pieces data/fbank/gigaspeech_cuts_XL.jsonl.gz
fi
fi

View File

@ -0,0 +1,373 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=16
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/LibriSpeech
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
# - librispeech-lm-norm.txt.gz
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
# Split all dataset to this number of pieces and mix each dataset pieces
# into multidataset pieces with shuffling.
num_splits=1998
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# multidataset list.
# LibriSpeech and musan are required.
# The others are optional.
multidataset=(
"gigaspeech",
"commonvoice",
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
log "Dataset: LibriSpeech and musan"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
mkdir -p $dl_dir/lm
if [ ! -e $dl_dir/lm/.done ]; then
./local/download_lm.py --out-dir=$dl_dir/lm
touch $dl_dir/lm/.done
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
#
# ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech
#
if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then
lhotse download librispeech --full $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriSpeech manifest"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests
if [ ! -e data/manifests/.librispeech.done ]; then
lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests
touch data/manifests/.librispeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for librispeech"
mkdir -p data/fbank
if [ ! -e data/fbank/.librispeech.done ]; then
./local/compute_fbank_librispeech.py --perturb-speed False
touch data/fbank/.librispeech.done
fi
if [ ! -f data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz
fi
if [ ! -e data/fbank/.librispeech-validated.done ]; then
log "Validating data/fbank for LibriSpeech"
parts=(
train-clean-100
train-clean-360
train-other-500
test-clean
test-other
dev-clean
dev-other
)
for part in ${parts[@]}; do
python3 ./local/validate_manifest.py \
data/fbank/librispeech_cuts_${part}.jsonl.gz
done
touch data/fbank/.librispeech-validated.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/lm/librispeech-lexicon.txt |
sort | uniq > $lang_dir/lexicon.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/disambig_L.fst
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
files=$(
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile LG"
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Prepare the other datasets"
# GigaSpeech
if [[ "${multidataset[@]}" =~ "gigaspeech" ]]; then
log "Dataset: GigaSpeech"
./prepare_giga_speech.sh --stop_stage 5
fi
# CommonVoice
if [[ "${multidataset[@]}" =~ "commonvoice" ]]; then
log "Dataset: CommonVoice"
./prepare_common_voice.sh
fi
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Create multidataset"
split_dir=data/fbank/multidataset_split_${num_splits}
if [ ! -f data/fbank/multidataset_split/.multidataset.done ]; then
mkdir -p $split_dir/multidataset
log "Split LibriSpeech"
if [ ! -f $split_dir/.librispeech_split.done ]; then
lhotse split $num_splits ./data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz $split_dir
touch $split_dir/.librispeech_split.done
fi
if [[ "${multidataset[@]}" =~ "gigaspeech" ]]; then
log "Split GigaSpeech XL"
if [ ! -f $split_dir/.gigaspeech_XL_split.done ]; then
cd $split_dir
ln -sv ../gigaspeech_XL_split_2000/gigaspeech_cuts_XL.*.jsonl.gz .
cd ../../..
touch $split_dir/.gigaspeech_XL_split.done
fi
fi
if [[ "${multidataset[@]}" =~ "commonvoice" ]]; then
log "Split CommonVoice"
if [ ! -f $split_dir/.cv-en_train_split.done ]; then
lhotse split $num_splits ./data/en/fbank/cv-en_cuts_train.jsonl.gz $split_dir
touch $split_dir/.cv-en_train_split.done
fi
fi
if [ ! -f $split_dir/.multidataset_mix.done ]; then
log "Mix multidataset"
for ((seq=1; seq<=$num_splits; seq++)); do
fseq=$(printf "%04d" $seq)
gunzip -c $split_dir/*.*${fseq}.jsonl.gz | \
shuf | gzip -c > $split_dir/multidataset/multidataset_cuts_train.${fseq}.jsonl.gz
done
touch $split_dir/.multidataset_mix.done
fi
touch data/fbank/multidataset_split/.multidataset.done
fi
fi

View File

@ -30,7 +30,7 @@ class GigaSpeech:
"""
Args:
manifest_dir:
It is expected to contain the following files::
It is expected to contain the following files:
- gigaspeech_XL_split_2000/gigaspeech_cuts_XL.*.jsonl.gz
- gigaspeech_cuts_L_raw.jsonl.gz

View File

@ -0,0 +1,53 @@
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import re
from pathlib import Path
import lhotse
from lhotse import CutSet, load_manifest_lazy
class MultiDataset:
def __init__(self, manifest_dir: str):
"""
Args:
manifest_dir:
It is expected to contain the following files:
- multidataset_split_1998/multidataset/multidataset_cuts_train.*.jsonl.gz
"""
self.manifest_dir = Path(manifest_dir)
def train_cuts(self) -> CutSet:
logging.info("About to get multidataset train cuts")
filenames = glob.glob(
f"{self.manifest_dir}/multidataset_split_1998/multidataset/multidataset_cuts_train.*.jsonl.gz"
)
pattern = re.compile(r"multidataset_cuts_train.([0-9]+).jsonl.gz")
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
sorted_filenames = [f[1] for f in idx_filenames]
logging.info(f"Loading {len(sorted_filenames)} splits")
return lhotse.combine(lhotse.load_manifest_lazy(p) for p in sorted_filenames)

View File

@ -1,8 +1,9 @@
#!/usr/bin/env python3
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,)
# Zengwei Yao)
# Mingshuang Luo,
# Zengwei Yao,
# Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -59,6 +60,7 @@ import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from multidataset import MultiDataset
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
@ -374,6 +376,13 @@ def get_parser():
help="Whether to use half precision training.",
)
parser.add_argument(
"--use-multidataset",
type=str2bool,
default=False,
help="Whether to use multidataset to train.",
)
add_model_arguments(parser)
return parser
@ -1043,6 +1052,10 @@ def run(rank, world_size, args):
librispeech = LibriSpeechAsrDataModule(args)
if params.use_multidataset:
multidataset = MultiDataset(params.manifest_dir)
train_cuts = multidataset.train_cuts()
else:
if params.full_libri:
train_cuts = librispeech.train_all_shuf_cuts()
else:
@ -1058,9 +1071,6 @@ def run(rank, world_size, args):
# an utterance duration distribution for your dataset to select
# the threshold
if c.duration < 1.0 or c.duration > 20.0:
logging.warning(
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
)
return False
# In pruned RNN-T, we require that T >= S
@ -1102,7 +1112,7 @@ def run(rank, world_size, args):
valid_cuts += librispeech.dev_other_cuts()
valid_dl = librispeech.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
if not params.use_multidataset and not params.print_diagnostics:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,