mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Get the randomized backprop for softmax in autocast mode working.
This commit is contained in:
parent
d75d646dc4
commit
d137118484
@ -219,30 +219,32 @@ class SoftmaxFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, dim: int):
|
||||
ans = x.softmax(dim=dim)
|
||||
# if x dtype is float16, x.softmax() returns a float32 because
|
||||
# (presumably) that op does not support float16, and autocast
|
||||
# is enabled.
|
||||
ctx.save_for_backward(ans)
|
||||
ctx.x_dtype = x.dtype
|
||||
ctx.dim = dim
|
||||
return ans
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, ans_grad: Tensor):
|
||||
ans, = ctx.saved_tensors
|
||||
|
||||
if ans.dtype == torch.float16 or ans_grad.dtype == torch.float16:
|
||||
# use a randomized approach to convert to float16
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
ans_grad = ans_grad.to(torch.float32)
|
||||
ans = ans.to(torch.float32)
|
||||
x_grad = ans_grad * ans
|
||||
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
|
||||
return random_cast_to_half(x_grad), None
|
||||
else:
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
ans_grad = ans_grad.to(torch.float32)
|
||||
ans = ans.to(torch.float32)
|
||||
x_grad = ans_grad * ans
|
||||
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
|
||||
if ctx.x_dtype == torch.float16:
|
||||
x_grad = random_cast_to_half(x_grad)
|
||||
|
||||
return x_grad, None
|
||||
|
||||
|
||||
|
||||
def softmax(x: Tensor,
|
||||
dim: int):
|
||||
logging.info(f"torch.is_autocast_enabled()={torch.is_autocast_enabled()}, x dtype={x.dtype}")
|
||||
return SoftmaxFunction.apply(x, dim)
|
||||
|
||||
|
||||
@ -867,7 +869,6 @@ class DoubleSwish(torch.nn.Module):
|
||||
|
||||
|
||||
def _test_max_eig():
|
||||
|
||||
for proportion in [0.1, 0.5, 10.0]:
|
||||
logging.info(f"proportion = {proportion}")
|
||||
x = torch.randn(100, 128)
|
||||
@ -891,7 +892,7 @@ def _test_max_eig():
|
||||
y.backward(gradient=y_grad)
|
||||
|
||||
if proportion < 0.2:
|
||||
assert torch.allclose(x.grad, y_grad)
|
||||
assert torch.allclose(x.grad, y_grad, atol=1.0e-02)
|
||||
elif proportion > 1.0:
|
||||
assert not torch.allclose(x.grad, y_grad)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user