mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Merge branch 'scaled_adam_exp147' into scaled_adam_exp149
This commit is contained in:
commit
d75d646dc4
@ -19,12 +19,10 @@ import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import random_clamp
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
@ -142,12 +140,6 @@ class Transducer(nn.Module):
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
if self.training:
|
||||
lm = random_clamp(lm, min=-8.0, max=2.0, prob=0.5,
|
||||
reflect=0.1)
|
||||
am = random_clamp(am, min=-5.0, max=5.0, prob=0.5,
|
||||
reflect=0.1)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
@ -183,10 +175,6 @@ class Transducer(nn.Module):
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
|
||||
if self.training:
|
||||
logits = random_clamp(logits, -8.0, 2.0, prob=0.5,
|
||||
reflect=0.1)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
|
||||
@ -175,7 +175,6 @@ class RandomClampFunction(torch.autograd.Function):
|
||||
ctx.reflect = reflect
|
||||
if reflect != 0.0:
|
||||
ans = ans * (1.0 + reflect) - (x * reflect)
|
||||
|
||||
return ans
|
||||
|
||||
@staticmethod
|
||||
@ -185,7 +184,7 @@ class RandomClampFunction(torch.autograd.Function):
|
||||
reflect = ctx.reflect
|
||||
if reflect != 0.0:
|
||||
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect)
|
||||
return ans_grad * is_same.to(ans_grad.dtype), None, None, None, None
|
||||
return x_grad, None, None, None, None
|
||||
|
||||
def random_clamp(x: Tensor,
|
||||
min: Optional[float] = None,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user