mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
commit
cf8d76293d
8
.flake8
Normal file
8
.flake8
Normal file
@ -0,0 +1,8 @@
|
||||
[flake8]
|
||||
show-source=true
|
||||
statistics=true
|
||||
max-line-length = 80
|
||||
|
||||
exclude =
|
||||
.git,
|
||||
**/data/**
|
62
.github/workflows/style_check.yml
vendored
Normal file
62
.github/workflows/style_check.yml
vendored
Normal file
@ -0,0 +1,62 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: style_check
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
style_check:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04, macos-10.15]
|
||||
python-version: [3.7, 3.9]
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip black flake8
|
||||
|
||||
- name: Run flake8
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
flake8 . --count --show-source --statistics
|
||||
flake8 .
|
||||
|
||||
- name: Run black
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
black --check --diff .
|
77
.github/workflows/test.yml
vendored
Normal file
77
.github/workflows/test.yml
vendored
Normal file
@ -0,0 +1,77 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: test
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04, macos-10.15]
|
||||
python-version: [3.6, 3.7, 3.8, 3.9]
|
||||
torch: ["1.8.1"]
|
||||
k2-version: ["1.2.dev20210724"]
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip pytest kaldialign
|
||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||
|
||||
# Don't use: pip install lhotse
|
||||
# since it installs a version of PyTorch that is not predictable
|
||||
git clone --depth 1 https://github.com/lhotse-speech/lhotse
|
||||
cd lhotse
|
||||
sed -i.bak "/torch/d" requirements.txt
|
||||
pip install -r ./requirements.txt
|
||||
|
||||
|
||||
- name: Run tests
|
||||
if: startsWith(matrix.os, 'ubuntu')
|
||||
run: |
|
||||
ls -lh
|
||||
export PYTHONPATH=$PWD:$PWD/lhotse:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
pytest ./test
|
||||
|
||||
- name: Run tests
|
||||
if: startsWith(matrix.os, 'macos')
|
||||
run: |
|
||||
ls -lh
|
||||
export PYTHONPATH=$PWD:$PWD/lhotse:$PYTHONPATH
|
||||
lib_path=$(python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())")
|
||||
echo "lib_path: $lib_path"
|
||||
export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH
|
||||
pytest ./test
|
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
data
|
||||
__pycache__
|
||||
path.sh
|
||||
exp
|
||||
exp*/
|
||||
*.pt
|
26
.pre-commit-config.yaml
Normal file
26
.pre-commit-config.yaml
Normal file
@ -0,0 +1,26 @@
|
||||
repos:
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 21.6b0
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--line-length=80]
|
||||
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 3.9.2
|
||||
hooks:
|
||||
- id: flake8
|
||||
args: [--max-line-length=80]
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.9.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args: [--profile=black, --line-length=80]
|
||||
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
hooks:
|
||||
- id: check-executables-have-shebangs
|
||||
- id: end-of-file-fixer
|
||||
- id: mixed-line-ending
|
||||
- id: trailing-whitespace
|
211
LICENSE
Normal file
211
LICENSE
Normal file
@ -0,0 +1,211 @@
|
||||
|
||||
Legal Notices
|
||||
|
||||
NOTE (this is not from the Apache License): The copyright model is that
|
||||
authors (or their employers, if noted in individual files) own their
|
||||
individual contributions. The authors' contributions can be discerned
|
||||
from the git history.
|
||||
|
||||
-------------------------------------------------------------------------
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
39
contributing.md
Normal file
39
contributing.md
Normal file
@ -0,0 +1,39 @@
|
||||
|
||||
## Pre-commit hooks
|
||||
|
||||
We use [git][git] [pre-commit][pre-commit] [hooks][hooks] to check that files
|
||||
going to be committed:
|
||||
|
||||
- contain no trailing spaces
|
||||
- are formatted with [black][black]
|
||||
- are compatible to [PEP8][PEP8] (checked by [flake8][flake8])
|
||||
- end in a newline and only a newline
|
||||
- contain sorted `imports` (checked by [isort][isort])
|
||||
|
||||
These hooks are disabled by default. Please use the following commands to enable them:
|
||||
|
||||
```bash
|
||||
pip install pre-commit # run it only once
|
||||
pre-commit install # run it only once, it will install all hooks
|
||||
|
||||
# modify some files
|
||||
git add <some files>
|
||||
git commit # It runs all hooks automatically.
|
||||
|
||||
# If all hooks run successfully, you can write the commit message now. Done!
|
||||
#
|
||||
# If any hook failed, your commit was not successful.
|
||||
# Please read the error messages and make changes accordingly.
|
||||
# And rerun
|
||||
|
||||
git add <some files>
|
||||
git commit
|
||||
```
|
||||
|
||||
[git]: https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
|
||||
[flake8]: https://github.com/PyCQA/flake8
|
||||
[PEP8]: https://www.python.org/dev/peps/pep-0008/
|
||||
[black]: https://github.com/psf/black
|
||||
[hooks]: https://github.com/pre-commit/pre-commit-hooks
|
||||
[pre-commit]: https://github.com/pre-commit/pre-commit
|
||||
[isort]: https://github.com/PyCQA/isort
|
121
egs/librispeech/ASR/README.md
Normal file
121
egs/librispeech/ASR/README.md
Normal file
@ -0,0 +1,121 @@
|
||||
|
||||
Run `./prepare.sh` to prepare the data.
|
||||
|
||||
Run `./xxx_train.py` (to be added) to train a model.
|
||||
|
||||
## Conformer-CTC
|
||||
Results of the pre-trained model from
|
||||
`<https://huggingface.co/GuoLiyong/snowfall_bpe_model/tree/main/exp-duration-200-feat_batchnorm-bpe-lrfactor5.0-conformer-512-8-noam>`
|
||||
are given below
|
||||
|
||||
### HLG - no LM rescoring
|
||||
|
||||
(output beam size is 8)
|
||||
|
||||
#### 1-best decoding
|
||||
|
||||
```
|
||||
[test-clean-no_rescore] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
||||
[test-other-no_rescore] %WER 7.03% [3682 / 52343, 220 ins, 1024 del, 2438 sub ]
|
||||
```
|
||||
|
||||
#### n-best decoding
|
||||
|
||||
For n=100,
|
||||
|
||||
```
|
||||
[test-clean-no_rescore-100] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
||||
[test-other-no_rescore-100] %WER 7.14% [3737 / 52343, 275 ins, 1020 del, 2442 sub ]
|
||||
```
|
||||
|
||||
For n=200,
|
||||
|
||||
```
|
||||
[test-clean-no_rescore-200] %WER 3.16% [1660 / 52576, 125 ins, 378 del, 1157 sub ]
|
||||
[test-other-no_rescore-200] %WER 7.04% [3684 / 52343, 228 ins, 1012 del, 2444 sub ]
|
||||
```
|
||||
|
||||
### HLG - with LM rescoring
|
||||
|
||||
#### Whole lattice rescoring
|
||||
|
||||
```
|
||||
[test-clean-lm_scale_0.8] %WER 2.77% [1456 / 52576, 150 ins, 210 del, 1096 sub ]
|
||||
[test-other-lm_scale_0.8] %WER 6.23% [3262 / 52343, 246 ins, 635 del, 2381 sub ]
|
||||
```
|
||||
|
||||
WERs of different LM scales are:
|
||||
|
||||
```
|
||||
For test-clean, WER of different settings are:
|
||||
lm_scale_0.8 2.77 best for test-clean
|
||||
lm_scale_0.9 2.87
|
||||
lm_scale_1.0 3.06
|
||||
lm_scale_1.1 3.34
|
||||
lm_scale_1.2 3.71
|
||||
lm_scale_1.3 4.18
|
||||
lm_scale_1.4 4.8
|
||||
lm_scale_1.5 5.48
|
||||
lm_scale_1.6 6.08
|
||||
lm_scale_1.7 6.79
|
||||
lm_scale_1.8 7.49
|
||||
lm_scale_1.9 8.14
|
||||
lm_scale_2.0 8.82
|
||||
|
||||
For test-other, WER of different settings are:
|
||||
lm_scale_0.8 6.23 best for test-other
|
||||
lm_scale_0.9 6.37
|
||||
lm_scale_1.0 6.62
|
||||
lm_scale_1.1 6.99
|
||||
lm_scale_1.2 7.46
|
||||
lm_scale_1.3 8.13
|
||||
lm_scale_1.4 8.84
|
||||
lm_scale_1.5 9.61
|
||||
lm_scale_1.6 10.32
|
||||
lm_scale_1.7 11.17
|
||||
lm_scale_1.8 12.12
|
||||
lm_scale_1.9 12.93
|
||||
lm_scale_2.0 13.77
|
||||
```
|
||||
|
||||
#### n-best LM rescoring
|
||||
|
||||
n = 100
|
||||
|
||||
```
|
||||
[test-clean-lm_scale_0.8] %WER 2.79% [1469 / 52576, 149 ins, 212 del, 1108 sub ]
|
||||
[test-other-lm_scale_0.8] %WER 6.36% [3329 / 52343, 259 ins, 666 del, 2404 sub ]
|
||||
```
|
||||
|
||||
WERs of different LM scales are:
|
||||
|
||||
```
|
||||
For test-clean, WER of different settings are:
|
||||
lm_scale_0.8 2.79 best for test-clean
|
||||
lm_scale_0.9 2.89
|
||||
lm_scale_1.0 3.03
|
||||
lm_scale_1.1 3.28
|
||||
lm_scale_1.2 3.52
|
||||
lm_scale_1.3 3.78
|
||||
lm_scale_1.4 4.04
|
||||
lm_scale_1.5 4.24
|
||||
lm_scale_1.6 4.45
|
||||
lm_scale_1.7 4.58
|
||||
lm_scale_1.8 4.7
|
||||
lm_scale_1.9 4.8
|
||||
lm_scale_2.0 4.92
|
||||
For test-other, WER of different settings are:
|
||||
lm_scale_0.8 6.36 best for test-other
|
||||
lm_scale_0.9 6.45
|
||||
lm_scale_1.0 6.64
|
||||
lm_scale_1.1 6.92
|
||||
lm_scale_1.2 7.25
|
||||
lm_scale_1.3 7.59
|
||||
lm_scale_1.4 7.88
|
||||
lm_scale_1.5 8.13
|
||||
lm_scale_1.6 8.36
|
||||
lm_scale_1.7 8.54
|
||||
lm_scale_1.8 8.71
|
||||
lm_scale_1.9 8.88
|
||||
lm_scale_2.0 9.02
|
||||
```
|
0
egs/librispeech/ASR/conformer_ctc/__init__.py
Normal file
0
egs/librispeech/ASR/conformer_ctc/__init__.py
Normal file
914
egs/librispeech/ASR/conformer_ctc/conformer.py
Normal file
914
egs/librispeech/ASR/conformer_ctc/conformer.py
Normal file
@ -0,0 +1,914 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
# Apache 2.0
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||
|
||||
|
||||
class Conformer(Transformer):
|
||||
"""
|
||||
Args:
|
||||
num_features (int): Number of input features
|
||||
num_classes (int): Number of output classes
|
||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||
d_model (int): attention dimension
|
||||
nhead (int): number of head
|
||||
dim_feedforward (int): feedforward dimention
|
||||
num_encoder_layers (int): number of encoder layers
|
||||
num_decoder_layers (int): number of decoder layers
|
||||
dropout (float): dropout rate
|
||||
cnn_module_kernel (int): Kernel size of convolution module
|
||||
normalize_before (bool): whether to use layer_norm before the first block.
|
||||
vgg_frontend (bool): whether to use vgg frontend.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
num_classes: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
num_decoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
is_espnet_structure: bool = False,
|
||||
mmi_loss: bool = True,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=subsampling_factor,
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
num_decoder_layers=num_decoder_layers,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
vgg_frontend=vgg_frontend,
|
||||
mmi_loss=mmi_loss,
|
||||
use_feat_batchnorm=use_feat_batchnorm,
|
||||
)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
cnn_module_kernel,
|
||||
normalize_before,
|
||||
is_espnet_structure,
|
||||
)
|
||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
self.normalize_before = normalize_before
|
||||
self.is_espnet_structure = is_espnet_structure
|
||||
if self.normalize_before and self.is_espnet_structure:
|
||||
self.after_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||
# and throws an error without this change.
|
||||
self.after_norm = identity
|
||||
|
||||
def encode(
|
||||
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
x: Tensor of dimension (batch_size, num_features, input_length).
|
||||
supervisions : Supervison in lhotse format, i.e., batch['supervisions']
|
||||
|
||||
Returns:
|
||||
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||
"""
|
||||
x = x.permute(0, 2, 1) # (B, F, T) -> (B, T, F)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||
if mask is not None:
|
||||
mask = mask.to(x.device)
|
||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||
|
||||
if self.normalize_before and self.is_espnet_structure:
|
||||
x = self.after_norm(x)
|
||||
|
||||
return x, mask
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
normalize_before: whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = encoder_layer(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
is_espnet_structure: bool = False,
|
||||
) -> None:
|
||||
super(ConformerEncoderLayer, self).__init__()
|
||||
self.self_attn = RelPositionMultiheadAttention(
|
||||
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
||||
)
|
||||
|
||||
self.feed_forward = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.feed_forward_macaron = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||
|
||||
self.norm_ff_macaron = nn.LayerNorm(
|
||||
d_model
|
||||
) # for the macaron style FNN module
|
||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||
|
||||
self.ff_scale = 0.5
|
||||
|
||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(
|
||||
d_model
|
||||
) # for the final output of the block
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, N is the batch size, E is the feature number
|
||||
"""
|
||||
|
||||
# macaron style feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
src = residual + self.ff_scale * self.dropout(
|
||||
self.feed_forward_macaron(src)
|
||||
)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
|
||||
# multi-headed self-attention module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout(src_att)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
|
||||
# convolution module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
src = residual + self.dropout(self.conv_module(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
|
||||
# feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
|
||||
if self.normalize_before:
|
||||
src = self.norm_final(src)
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class ConformerEncoder(nn.TransformerEncoder):
|
||||
r"""ConformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = conformer_encoder(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||
) -> None:
|
||||
super(ConformerEncoder, self).__init__(
|
||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||
|
||||
"""
|
||||
output = src
|
||||
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||
) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: Tensor) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||
x.device
|
||||
):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x.size(1)
|
||||
+ 1 : self.pe.size(1) // 2
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
is_espnet_structure: bool = False,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
self.is_espnet_structure = is_espnet_structure
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.weight,
|
||||
self.in_proj.bias,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
assert n == 2 * time1 - 1
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time1),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(
|
||||
query, in_proj_weight, in_proj_bias
|
||||
).chunk(3, dim=-1)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if not self.is_espnet_structure:
|
||||
q = q * scaling
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError(
|
||||
"The size of the 2D attn_mask is not correct."
|
||||
)
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError(
|
||||
"The size of the 3D attn_mask is not correct."
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(
|
||||
attn_mask.dim()
|
||||
)
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if (
|
||||
key_padding_mask is not None
|
||||
and key_padding_mask.dtype == torch.uint8
|
||||
):
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(
|
||||
q_with_bias_u, k
|
||||
) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(
|
||||
q_with_bias_v, p.transpose(-2, -1)
|
||||
) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
if not self.is_espnet_structure:
|
||||
attn_output_weights = (
|
||||
matrix_ac + matrix_bd
|
||||
) # (batch, head, time1, time2)
|
||||
else:
|
||||
attn_output_weights = (
|
||||
matrix_ac + matrix_bd
|
||||
) * scaling # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, -1
|
||||
)
|
||||
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1)
|
||||
.contiguous()
|
||||
.view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(
|
||||
attn_output, out_proj_weight, out_proj_bias
|
||||
)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model.
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernerl size of conv layers.
|
||||
bias (bool): Whether to use bias in conv layers (default=True).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, channels: int, kernel_size: int, bias: bool = True
|
||||
) -> None:
|
||||
"""Construct an ConvolutionModule object."""
|
||||
super(ConvolutionModule, self).__init__()
|
||||
# kernerl_size should be a odd number for 'SAME' padding
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = Swish()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Compute convolution module.
|
||||
|
||||
Args:
|
||||
x: Input tensor (#time, batch, channels).
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor (#time, batch, channels).
|
||||
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
x = self.activation(self.norm(x))
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
||||
return x.permute(2, 0, 1)
|
||||
|
||||
|
||||
class Swish(torch.nn.Module):
|
||||
"""Construct an Swish object."""
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return Swich activation function."""
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def identity(x):
|
||||
return x
|
474
egs/librispeech/ASR/conformer_ctc/decode.py
Executable file
474
egs/librispeech/ASR/conformer_ctc/decode.py
Executable file
@ -0,0 +1,474 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||
|
||||
# (still working in progress)
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=9,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang/bpe"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"num_decoder_layers": 6,
|
||||
"vgg_frontend": False,
|
||||
"is_espnet_structure": True,
|
||||
"mmi_loss": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
# Possible values for method:
|
||||
# - 1best
|
||||
# - nbest
|
||||
# - nbest-rescoring
|
||||
# - whole-lattice-rescoring
|
||||
# - attention-decoder
|
||||
# "method": "whole-lattice-rescoring",
|
||||
"method": "1best",
|
||||
# num_paths is used when method is "nbest", "nbest-rescoring",
|
||||
# and attention-decoder
|
||||
"num_paths": 100,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is [N, T, C]
|
||||
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, C, T]
|
||||
|
||||
nnet_output = nnet_output.permute(0, 2, 1)
|
||||
# now nnet_output is [N, T, C]
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // params.subsampling_factor,
|
||||
supervisions["num_frames"] // params.subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
key = f"no_rescore-{params.num_paths}"
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in [
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
tot_num_cuts = len(dl.dataset.cuts)
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
logging.info(
|
||||
f"batch {batch_idx}, cuts processed until now is "
|
||||
f"{num_cuts}/{tot_num_cuts} "
|
||||
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(torch.load(f"{params.lm_dir}/HLG_bpe.pt"))
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
# HLG = k2.ctc_topo(4999).to(device)
|
||||
|
||||
if params.method in (
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
is_espnet_structure=params.is_espnet_structure,
|
||||
mmi_loss=params.mmi_loss,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
# it inside the for loop. That is, use
|
||||
#
|
||||
# if test_set == 'test-clean': continue
|
||||
#
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
679
egs/librispeech/ASR/conformer_ctc/train.py
Executable file
679
egs/librispeech/ASR/conformer_ctc/train.py
Executable file
@ -0,0 +1,679 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# This is just at the very beginning ...
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
# TODO: add extra arguments and support DDP training.
|
||||
# Currently, only single GPU training is implemented. Will add
|
||||
# DDP training once single GPU training is finished.
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- num_epochs: Number of epochs to train.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang/bpe"),
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 0.0,
|
||||
"subsampling_factor": 4,
|
||||
"start_epoch": 0,
|
||||
"num_epochs": 50,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"valid_interval": 3000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
#
|
||||
"accum_grad": 1,
|
||||
"att_rate": 0.7,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"num_decoder_layers": 6,
|
||||
"is_espnet_structure": True,
|
||||
"mmi_loss": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"lr_factor": 5.0,
|
||||
"warm_step": 80000,
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
):
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is [N, T, C]
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, C, T]
|
||||
nnet_output = nnet_output.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
ctc_loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
if params.att_rate != 0.0:
|
||||
with torch.set_grad_enabled(is_training):
|
||||
if hasattr(model, "module"):
|
||||
att_loss = model.module.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
else:
|
||||
att_loss = model.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
else:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
# train_frames and valid_frames are used for printing.
|
||||
if is_training:
|
||||
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||
else:
|
||||
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
return loss, ctc_loss.detach(), att_loss.detach()
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = 0.0
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
tot_frames = 0.0
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
assert ctc_loss.requires_grad is False
|
||||
assert att_loss.requires_grad is False
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
tot_loss += loss_cpu
|
||||
|
||||
tot_ctc_loss += ctc_loss.detach().cpu().item()
|
||||
tot_att_loss += att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.valid_frames
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor(
|
||||
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
|
||||
device=loss.device,
|
||||
)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_ctc_loss = s[1]
|
||||
tot_att_loss = s[2]
|
||||
tot_frames = s[3]
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
params.valid_ctc_loss = tot_ctc_loss / tot_frames
|
||||
params.valid_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = params.valid_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
ctc_loss_cpu = ctc_loss.detach().cpu().item()
|
||||
att_loss_cpu = att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.train_frames
|
||||
tot_loss += loss_cpu
|
||||
tot_ctc_loss += ctc_loss_cpu
|
||||
tot_att_loss += att_loss_cpu
|
||||
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
|
||||
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ctc_loss",
|
||||
ctc_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_att_loss",
|
||||
att_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_ctc_loss",
|
||||
tot_avg_ctc_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_att_loss",
|
||||
tot_avg_att_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"valid ctc loss {params.valid_ctc_loss:.4f},"
|
||||
f"valid att loss {params.valid_att_loss:.4f},"
|
||||
f"valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
|
||||
params.train_loss = tot_loss / tot_frames
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
is_espnet_structure=params.is_espnet_structure,
|
||||
mmi_loss=params.mmi_loss,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
train_dl = librispeech.train_dataloaders()
|
||||
valid_dl = librispeech.valid_dataloaders()
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1095
egs/librispeech/ASR/conformer_ctc/transformer.py
Normal file
1095
egs/librispeech/ASR/conformer_ctc/transformer.py
Normal file
File diff suppressed because it is too large
Load Diff
0
egs/librispeech/ASR/local/__init__.py
Normal file
0
egs/librispeech/ASR/local/__init__.py
Normal file
139
egs/librispeech/ASR/local/compile_hlg.py
Executable file
139
egs/librispeech/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,139 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This script compiles HLG from
|
||||
|
||||
- H, the ctc topology, built from tokens contained in lexicon.txt
|
||||
- L, the lexicon, built from L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||
|
||||
The generated HLG is saved in data/lm/HLG.pt (phone based)
|
||||
or data/lm/HLG_bpe.pt (BPE based)
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang or data/lang/bpe.
|
||||
|
||||
Return:
|
||||
An FSA representing HLG.
|
||||
"""
|
||||
lexicon = Lexicon(lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||
H = k2.ctc_topo(max_token_id)
|
||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||
|
||||
if Path("data/lm/G_3_gram.pt").is_file():
|
||||
logging.info("Loading pre-compiled G_3_gram")
|
||||
d = torch.load("data/lm/G_3_gram.pt")
|
||||
G = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info("Loading G_3_gram.fst.txt")
|
||||
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
torch.save(G.as_dict(), "G_3_gram.pt")
|
||||
|
||||
first_token_disambig_id = lexicon.token_table["#0"]
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
L = k2.arc_sort(L)
|
||||
G = k2.arc_sort(G)
|
||||
|
||||
logging.info("Intersecting L and G")
|
||||
LG = k2.compose(L, G)
|
||||
logging.info(f"LG shape: {LG.shape}")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||
|
||||
logging.info(type(LG.aux_labels))
|
||||
logging.info("Determinizing LG")
|
||||
|
||||
LG = k2.determinize(LG)
|
||||
logging.info(type(LG.aux_labels))
|
||||
|
||||
logging.info("Connecting LG after k2.determinize")
|
||||
LG = k2.connect(LG)
|
||||
|
||||
logging.info("Removing disambiguation symbols on LG")
|
||||
|
||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
|
||||
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
||||
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||
|
||||
LG = k2.connect(LG)
|
||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
LG = k2.arc_sort(LG)
|
||||
|
||||
logging.info("Composing H and LG")
|
||||
# CAUTION: The name of the inner_labels is fixed
|
||||
# to `tokens`. If you want to change it, please
|
||||
# also change other places in icefall that are using
|
||||
# it.
|
||||
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
HLG = k2.connect(HLG)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
HLG = k2.arc_sort(HLG)
|
||||
logging.info(f"HLG.shape: {HLG.shape}")
|
||||
|
||||
return HLG
|
||||
|
||||
|
||||
def phone_based_HLG():
|
||||
if Path("data/lm/HLG.pt").is_file():
|
||||
return
|
||||
|
||||
logging.info("Compiling phone based HLG")
|
||||
HLG = compile_HLG("data/lang")
|
||||
|
||||
logging.info("Saving HLG.pt to data/lm")
|
||||
torch.save(HLG.as_dict(), "data/lm/HLG.pt")
|
||||
|
||||
|
||||
def bpe_based_HLG():
|
||||
if Path("data/lm/HLG_bpe.pt").is_file():
|
||||
return
|
||||
|
||||
logging.info("Compiling BPE based HLG")
|
||||
HLG = compile_HLG("data/lang/bpe")
|
||||
logging.info("Saving HLG_bpe.pt to data/lm")
|
||||
torch.save(HLG.as_dict(), "data/lm/HLG_bpe.pt")
|
||||
|
||||
|
||||
def main():
|
||||
phone_based_HLG()
|
||||
bpe_based_HLG()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
68
egs/librispeech/ASR/local/compute_fbank_librispeech.py
Executable file
68
egs/librispeech/ASR/local/compute_fbank_librispeech.py
Executable file
@ -0,0 +1,68 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This file computes fbank features of the librispeech dataset.
|
||||
Its looks for manifests in the directory data/manifests
|
||||
and generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
|
||||
|
||||
def compute_fbank_librispeech():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
dataset_parts = (
|
||||
"dev-clean",
|
||||
"dev-other",
|
||||
"test-clean",
|
||||
"test-other",
|
||||
"train-clean-100",
|
||||
"train-clean-360",
|
||||
"train-other-500",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
||||
print(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
print("Processing", partition)
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition:
|
||||
cut_set = (
|
||||
cut_set
|
||||
+ cut_set.perturb_speed(0.9)
|
||||
+ cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
compute_fbank_librispeech()
|
66
egs/librispeech/ASR/local/compute_fbank_musan.py
Executable file
66
egs/librispeech/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,66 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This file computes fbank features of the musan dataset.
|
||||
Its looks for manifests in the directory data/manifests
|
||||
and generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
|
||||
|
||||
def compute_fbank_musan():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
dataset_parts = (
|
||||
"music",
|
||||
"speech",
|
||||
"noise",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
musan_cuts_path = output_dir / "cuts_musan.json.gz"
|
||||
|
||||
if musan_cuts_path.is_file():
|
||||
print(f"{musan_cuts_path} already exists - skipping")
|
||||
return
|
||||
|
||||
print("Extracting features for Musan")
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
# create chunks of Musan with duration 5 - 10 seconds
|
||||
musan_cuts = (
|
||||
CutSet.from_manifests(
|
||||
recordings=combine(
|
||||
part["recordings"] for part in manifests.values()
|
||||
)
|
||||
)
|
||||
.cut_into_windows(10.0)
|
||||
.filter(lambda c: c.duration > 5)
|
||||
.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_musan",
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
)
|
||||
musan_cuts.to_json(musan_cuts_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
compute_fbank_musan()
|
50
egs/librispeech/ASR/local/download_lm.py
Executable file
50
egs/librispeech/ASR/local/download_lm.py
Executable file
@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
"""
|
||||
This file downloads librispeech LM files to data/lm
|
||||
"""
|
||||
|
||||
import gzip
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse.utils import urlretrieve_progress
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def download_lm():
|
||||
url = "http://www.openslr.org/resources/11"
|
||||
target_dir = Path("data/lm")
|
||||
|
||||
files_to_download = (
|
||||
"3-gram.pruned.1e-7.arpa.gz",
|
||||
"4-gram.arpa.gz",
|
||||
"librispeech-vocab.txt",
|
||||
"librispeech-lexicon.txt",
|
||||
)
|
||||
|
||||
for f in tqdm(files_to_download, desc="Downloading LibriSpeech LM files"):
|
||||
filename = target_dir / f
|
||||
if filename.is_file() is False:
|
||||
urlretrieve_progress(
|
||||
f"{url}/{f}",
|
||||
filename=filename,
|
||||
desc=f"Downloading {filename}",
|
||||
)
|
||||
else:
|
||||
print(f"{filename} already exists - skipping")
|
||||
|
||||
if ".gz" in str(filename):
|
||||
unzip_file = Path(os.path.splitext(filename)[0])
|
||||
if unzip_file.is_file() is False:
|
||||
with gzip.open(filename, "rb") as f_in:
|
||||
with open(unzip_file, "wb") as f_out:
|
||||
shutil.copyfileobj(f_in, f_out)
|
||||
else:
|
||||
print(f"{unzip_file} already exist - skipping")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
download_lm()
|
97
egs/librispeech/ASR/local/parse_options.sh
Executable file
97
egs/librispeech/ASR/local/parse_options.sh
Executable file
@ -0,0 +1,97 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey);
|
||||
# Arnab Ghoshal, Karel Vesely
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
||||
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
||||
# MERCHANTABLITY OR NON-INFRINGEMENT.
|
||||
# See the Apache 2 License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# Parse command-line options.
|
||||
# To be sourced by another script (as in ". parse_options.sh").
|
||||
# Option format is: --option-name arg
|
||||
# and shell variable "option_name" gets set to value "arg."
|
||||
# The exception is --help, which takes no arguments, but prints the
|
||||
# $help_message variable (if defined).
|
||||
|
||||
|
||||
###
|
||||
### The --config file options have lower priority to command line
|
||||
### options, so we need to import them first...
|
||||
###
|
||||
|
||||
# Now import all the configs specified by command-line, in left-to-right order
|
||||
for ((argpos=1; argpos<$#; argpos++)); do
|
||||
if [ "${!argpos}" == "--config" ]; then
|
||||
argpos_plus1=$((argpos+1))
|
||||
config=${!argpos_plus1}
|
||||
[ ! -r $config ] && echo "$0: missing config '$config'" && exit 1
|
||||
. $config # source the config file.
|
||||
fi
|
||||
done
|
||||
|
||||
|
||||
###
|
||||
### Now we process the command line options
|
||||
###
|
||||
while true; do
|
||||
[ -z "${1:-}" ] && break; # break if there are no arguments
|
||||
case "$1" in
|
||||
# If the enclosing script is called with --help option, print the help
|
||||
# message and exit. Scripts should put help messages in $help_message
|
||||
--help|-h) if [ -z "$help_message" ]; then echo "No help found." 1>&2;
|
||||
else printf "$help_message\n" 1>&2 ; fi;
|
||||
exit 0 ;;
|
||||
--*=*) echo "$0: options to scripts must be of the form --name value, got '$1'"
|
||||
exit 1 ;;
|
||||
# If the first command-line argument begins with "--" (e.g. --foo-bar),
|
||||
# then work out the variable name as $name, which will equal "foo_bar".
|
||||
--*) name=`echo "$1" | sed s/^--// | sed s/-/_/g`;
|
||||
# Next we test whether the variable in question is undefned-- if so it's
|
||||
# an invalid option and we die. Note: $0 evaluates to the name of the
|
||||
# enclosing script.
|
||||
# The test [ -z ${foo_bar+xxx} ] will return true if the variable foo_bar
|
||||
# is undefined. We then have to wrap this test inside "eval" because
|
||||
# foo_bar is itself inside a variable ($name).
|
||||
eval '[ -z "${'$name'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
||||
|
||||
oldval="`eval echo \\$$name`";
|
||||
# Work out whether we seem to be expecting a Boolean argument.
|
||||
if [ "$oldval" == "true" ] || [ "$oldval" == "false" ]; then
|
||||
was_bool=true;
|
||||
else
|
||||
was_bool=false;
|
||||
fi
|
||||
|
||||
# Set the variable to the right value-- the escaped quotes make it work if
|
||||
# the option had spaces, like --cmd "queue.pl -sync y"
|
||||
eval $name=\"$2\";
|
||||
|
||||
# Check that Boolean-valued arguments are really Boolean.
|
||||
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
||||
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
||||
exit 1;
|
||||
fi
|
||||
shift 2;
|
||||
;;
|
||||
*) break;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
# Check for an empty argument to the --cmd option, which can easily occur as a
|
||||
# result of scripting errors.
|
||||
[ ! -z "${cmd+xxx}" ] && [ -z "$cmd" ] && echo "$0: empty argument to --cmd option" 1>&2 && exit 1;
|
||||
|
||||
|
||||
true; # so this script returns exit code 0.
|
367
egs/librispeech/ASR/local/prepare_lang.py
Executable file
367
egs/librispeech/ASR/local/prepare_lang.py
Executable file
@ -0,0 +1,367 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as input a lexicon file "data/lang/lexicon.txt"
|
||||
consisting of words and tokens (i.e., phones) and does the following:
|
||||
|
||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||
|
||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||
|
||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||
|
||||
4. Generate L.pt, in k2 format. It can be loaded by
|
||||
|
||||
d = torch.load("L.pt")
|
||||
lexicon = k2.Fsa.from_dict(d)
|
||||
|
||||
5. Generate L_disambig.pt, in k2 format.
|
||||
"""
|
||||
import math
|
||||
import re
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import read_lexicon, write_lexicon
|
||||
|
||||
Lexicon = List[Tuple[str, List[str]]]
|
||||
|
||||
|
||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||
"""Write a symbol to ID mapping to a file.
|
||||
|
||||
Note:
|
||||
No need to implement `read_mapping` as it can be done
|
||||
through :func:`k2.SymbolTable.from_file`.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename to save the mapping.
|
||||
sym2id:
|
||||
A dict mapping symbols to IDs.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for sym, i in sym2id.items():
|
||||
f.write(f"{sym} {i}\n")
|
||||
|
||||
|
||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||
"""Get tokens from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique tokens.
|
||||
"""
|
||||
ans = set()
|
||||
for _, tokens in lexicon:
|
||||
ans.update(tokens)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def get_words(lexicon: Lexicon) -> List[str]:
|
||||
"""Get words from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique words.
|
||||
"""
|
||||
ans = set()
|
||||
for word, _ in lexicon:
|
||||
ans.add(word)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||
at the ends of tokens to ensure that all pronunciations are different,
|
||||
and that none is a prefix of another.
|
||||
|
||||
See also add_lex_disambig.pl from kaldi.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is returned by :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
|
||||
- The output lexicon with disambiguation symbols
|
||||
- The ID of the max disambiguation symbol that appears
|
||||
in the lexicon
|
||||
"""
|
||||
|
||||
# (1) Work out the count of each token-sequence in the
|
||||
# lexicon.
|
||||
count = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
count[" ".join(tokens)] += 1
|
||||
|
||||
# (2) For each left sub-sequence of each token-sequence, note down
|
||||
# that it exists (for identifying prefixes of longer strings).
|
||||
issubseq = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
tokens = tokens.copy()
|
||||
tokens.pop()
|
||||
while tokens:
|
||||
issubseq[" ".join(tokens)] = 1
|
||||
tokens.pop()
|
||||
|
||||
# (3) For each entry in the lexicon:
|
||||
# if the token sequence is unique and is not a
|
||||
# prefix of another word, no disambig symbol.
|
||||
# Else output #1, or #2, #3, ... if the same token-seq
|
||||
# has already been assigned a disambig symbol.
|
||||
ans = []
|
||||
|
||||
# We start with #1 since #0 has its own purpose
|
||||
first_allowed_disambig = 1
|
||||
max_disambig = first_allowed_disambig - 1
|
||||
last_used_disambig_symbol_of = defaultdict(int)
|
||||
|
||||
for word, tokens in lexicon:
|
||||
tokenseq = " ".join(tokens)
|
||||
assert tokenseq != ""
|
||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||
ans.append((word, tokens))
|
||||
continue
|
||||
|
||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||
if cur_disambig == 0:
|
||||
cur_disambig = first_allowed_disambig
|
||||
else:
|
||||
cur_disambig += 1
|
||||
|
||||
if cur_disambig > max_disambig:
|
||||
max_disambig = cur_disambig
|
||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||
tokenseq += f" #{cur_disambig}"
|
||||
ans.append((word, tokenseq.split()))
|
||||
return ans, max_disambig
|
||||
|
||||
|
||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||
|
||||
Args:
|
||||
symbols:
|
||||
A list of unique symbols.
|
||||
Returns:
|
||||
A dict containing the mapping between symbols and IDs.
|
||||
"""
|
||||
return {sym: i for i, sym in enumerate(symbols)}
|
||||
|
||||
|
||||
def add_self_loops(
|
||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||
) -> List[List[Any]]:
|
||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||
through it. They are added on each state with non-epsilon output symbols
|
||||
on at least one arc out of the state.
|
||||
|
||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||
This function uses k2 style FSTs and it does not need to add self-loops
|
||||
to the final state.
|
||||
|
||||
The input label of a self-loop is `disambig_token`, while the output
|
||||
label is `disambig_word`.
|
||||
|
||||
Args:
|
||||
arcs:
|
||||
A list-of-list. The sublist contains
|
||||
`[src_state, dest_state, label, aux_label, score]`
|
||||
disambig_token:
|
||||
It is the token ID of the symbol `#0`.
|
||||
disambig_word:
|
||||
It is the word ID of the symbol `#0`.
|
||||
|
||||
Return:
|
||||
Return new `arcs` containing self-loops.
|
||||
"""
|
||||
states_needs_self_loops = set()
|
||||
for arc in arcs:
|
||||
src, dst, ilabel, olabel, score = arc
|
||||
if olabel != 0:
|
||||
states_needs_self_loops.add(src)
|
||||
|
||||
ans = []
|
||||
for s in states_needs_self_loops:
|
||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||
|
||||
return arcs + ans
|
||||
|
||||
|
||||
def lexicon_to_fst(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
sil_token: str = "SIL",
|
||||
sil_prob: float = 0.5,
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||
the beginning and end of each word.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
sil_token:
|
||||
The silence token.
|
||||
sil_prob:
|
||||
The probability for adding a silence at the beginning and end
|
||||
of the word.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||
# CAUTION: we use score, i.e, negative cost.
|
||||
sil_score = math.log(sil_prob)
|
||||
no_sil_score = math.log(1.0 - sil_prob)
|
||||
|
||||
start_state = 0
|
||||
loop_state = 1 # words enter and leave from here
|
||||
sil_state = 2 # words terminate here when followed by silence; this state
|
||||
# has a silence transition to loop_state.
|
||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||
arcs = []
|
||||
|
||||
assert token2id["<eps>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
sil_token = token2id[sil_token]
|
||||
|
||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||
|
||||
for word, tokens in lexicon:
|
||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
tokens = [token2id[i] for i in tokens]
|
||||
|
||||
for i in range(len(tokens) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last token of this word
|
||||
# It has two out-going arcs, one to the loop state,
|
||||
# the other one to the sil_state.
|
||||
i = len(tokens) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs, disambig_token=disambig_token, disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def main():
|
||||
out_dir = Path("data/lang")
|
||||
lexicon_filename = out_dir / "lexicon.txt"
|
||||
sil_token = "SIL"
|
||||
sil_prob = 0.5
|
||||
|
||||
lexicon = read_lexicon(lexicon_filename)
|
||||
tokens = get_tokens(lexicon)
|
||||
words = get_words(lexicon)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in tokens
|
||||
tokens.append(f"#{i}")
|
||||
|
||||
assert "<eps>" not in tokens
|
||||
tokens = ["<eps>"] + tokens
|
||||
|
||||
assert "<eps>" not in words
|
||||
assert "#0" not in words
|
||||
assert "<s>" not in words
|
||||
assert "</s>" not in words
|
||||
|
||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||
|
||||
token2id = generate_id_map(tokens)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
write_mapping(out_dir / "tokens.txt", token2id)
|
||||
write_mapping(out_dir / "words.txt", word2id)
|
||||
write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst(
|
||||
lexicon,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst(
|
||||
lexicon_disambig,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), out_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), out_dir / "L_disambig.pt")
|
||||
|
||||
if False:
|
||||
# Just for debugging, will remove it
|
||||
L.labels_sym = k2.SymbolTable.from_file(out_dir / "tokens.txt")
|
||||
L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt")
|
||||
L_disambig.labels_sym = L.labels_sym
|
||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||
L.draw(out_dir / "L.png", title="L")
|
||||
L_disambig.draw(out_dir / "L_disambig.png", title="L_disambig")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
199
egs/librispeech/ASR/local/prepare_lang_bpe.py
Executable file
199
egs/librispeech/ASR/local/prepare_lang_bpe.py
Executable file
@ -0,0 +1,199 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as inputs the following two files:
|
||||
|
||||
- data/lang/bpe/bpe.model,
|
||||
- data/lang/bpe/words.txt
|
||||
|
||||
and generates the following files in the directory data/lang/bpe:
|
||||
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
- L.pt
|
||||
- L_disambig.pt
|
||||
- tokens.txt
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
add_disambig_symbols,
|
||||
add_self_loops,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
|
||||
def lexicon_to_fst_no_sil(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format).
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||
|
||||
arcs = []
|
||||
|
||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||
assert token2id["<blk>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
for word, pieces in lexicon:
|
||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
pieces = [token2id[i] for i in pieces]
|
||||
|
||||
for i in range(len(pieces) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last piece of this word
|
||||
i = len(pieces) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs, disambig_token=disambig_token, disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def generate_lexicon(
|
||||
model_file: str, words: List[str]
|
||||
) -> Tuple[Lexicon, Dict[str, int]]:
|
||||
"""Generate a lexicon from a BPE model.
|
||||
|
||||
Args:
|
||||
model_file:
|
||||
Path to a sentencepiece model.
|
||||
words:
|
||||
A list of strings representing words.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
- A dict whose keys are words and values are the corresponding
|
||||
word pieces.
|
||||
- A dict representing the token symbol, mapping from tokens to IDs.
|
||||
"""
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(model_file))
|
||||
|
||||
words_pieces: List[List[str]] = sp.encode(words, out_type=str)
|
||||
|
||||
lexicon = []
|
||||
for word, pieces in zip(words, words_pieces):
|
||||
lexicon.append((word, pieces))
|
||||
|
||||
# The OOV word is <UNK>
|
||||
lexicon.append(("<UNK>", [sp.id_to_piece(sp.unk_id())]))
|
||||
|
||||
token2id: Dict[str, int] = dict()
|
||||
for i in range(sp.vocab_size()):
|
||||
token2id[sp.id_to_piece(i)] = i
|
||||
|
||||
return lexicon, token2id
|
||||
|
||||
|
||||
def main():
|
||||
lang_dir = Path("data/lang/bpe")
|
||||
model_file = lang_dir / "bpe.model"
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
words = word_sym_table.symbols
|
||||
|
||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
||||
for w in excluded:
|
||||
if w in words:
|
||||
words.remove(w)
|
||||
|
||||
lexicon, token_sym_table = generate_lexicon(model_file, words)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
next_token_id = max(token_sym_table.values()) + 1
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in token_sym_table
|
||||
token_sym_table[disambig] = next_token_id
|
||||
next_token_id += 1
|
||||
|
||||
word_sym_table.add("#0")
|
||||
word_sym_table.add("<s>")
|
||||
word_sym_table.add("</s>")
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||
|
||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst_no_sil(
|
||||
lexicon, token2id=token_sym_table, word2id=word_sym_table,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst_no_sil(
|
||||
lexicon_disambig,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if False:
|
||||
# Just for debugging, will remove it
|
||||
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
L_disambig.labels_sym = L.labels_sym
|
||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||
L.draw(lang_dir / "L.svg", title="L")
|
||||
L_disambig.draw(lang_dir / "L_disambig.svg", title="L_disambig")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
90
egs/librispeech/ASR/local/test_prepare_lang.py
Executable file
90
egs/librispeech/ASR/local/test_prepare_lang.py
Executable file
@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import k2
|
||||
from prepare_lang import (
|
||||
add_disambig_symbols,
|
||||
generate_id_map,
|
||||
get_phones,
|
||||
get_words,
|
||||
lexicon_to_fst,
|
||||
read_lexicon,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
|
||||
def generate_lexicon_file() -> str:
|
||||
fd, filename = tempfile.mkstemp()
|
||||
os.close(fd)
|
||||
s = """
|
||||
!SIL SIL
|
||||
<SPOKEN_NOISE> SPN
|
||||
<UNK> SPN
|
||||
f f
|
||||
a a
|
||||
foo f o o
|
||||
bar b a r
|
||||
bark b a r k
|
||||
food f o o d
|
||||
food2 f o o d
|
||||
fo f o
|
||||
""".strip()
|
||||
with open(filename, "w") as f:
|
||||
f.write(s)
|
||||
return filename
|
||||
|
||||
|
||||
def test_read_lexicon(filename: str):
|
||||
lexicon = read_lexicon(filename)
|
||||
phones = get_phones(lexicon)
|
||||
words = get_words(lexicon)
|
||||
print(lexicon)
|
||||
print(phones)
|
||||
print(words)
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
print(lexicon_disambig)
|
||||
print("max disambig:", f"#{max_disambig}")
|
||||
|
||||
phones = ["<eps>", "SIL", "SPN"] + phones
|
||||
for i in range(max_disambig + 1):
|
||||
phones.append(f"#{i}")
|
||||
words = ["<eps>"] + words
|
||||
|
||||
phone2id = generate_id_map(phones)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
print(phone2id)
|
||||
print(word2id)
|
||||
|
||||
write_mapping("phones.txt", phone2id)
|
||||
write_mapping("words.txt", word2id)
|
||||
|
||||
write_lexicon("a.txt", lexicon)
|
||||
write_lexicon("a_disambig.txt", lexicon_disambig)
|
||||
|
||||
fsa = lexicon_to_fst(lexicon, phone2id=phone2id, word2id=word2id)
|
||||
fsa.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||
fsa.draw("L.pdf", title="L")
|
||||
|
||||
fsa_disambig = lexicon_to_fst(
|
||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
||||
)
|
||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||
|
||||
|
||||
def main():
|
||||
filename = generate_lexicon_file()
|
||||
test_read_lexicon(filename)
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
60
egs/librispeech/ASR/local/train_bpe_model.py
Executable file
60
egs/librispeech/ASR/local/train_bpe_model.py
Executable file
@ -0,0 +1,60 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This script takes as input "data/lang/bpe/train.txt"
|
||||
and generates "data/lang/bpe/bep.model".
|
||||
"""
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
#
|
||||
# Due to an issue reported in
|
||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||
#
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
import shutil
|
||||
|
||||
|
||||
def main():
|
||||
model_type = "unigram"
|
||||
vocab_size = 5000
|
||||
model_prefix = f"data/lang/bpe/{model_type}_{vocab_size}"
|
||||
train_text = "data/lang/bpe/train.txt"
|
||||
character_coverage = 1.0
|
||||
input_sentence_size = 100000000
|
||||
|
||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||
unk_id = len(user_defined_symbols)
|
||||
# Note: unk_id is fixed to 2.
|
||||
# If you change it, you should also change other
|
||||
# places that are using it.
|
||||
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if not model_file.is_file():
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
|
||||
sp = spm.SentencePieceProcessor(model_file=str(model_file))
|
||||
vocab_size = sp.vocab_size()
|
||||
|
||||
shutil.copyfile(model_file, "data/lang/bpe/bpe.model")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
150
egs/librispeech/ASR/prepare.sh
Executable file
150
egs/librispeech/ASR/prepare.sh
Executable file
@ -0,0 +1,150 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
. local/parse_options.sh || exit 1
|
||||
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "stage -1: Download LM"
|
||||
mkdir -p data/lm
|
||||
./local/download_lm.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/LibriSpeech,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/LibriSpeech data/
|
||||
#
|
||||
# The script checks that if
|
||||
#
|
||||
# data/LibriSpeech/test-clean/.completed exists,
|
||||
#
|
||||
# it will not re-download it.
|
||||
#
|
||||
# The same goes for dev-clean, dev-other, test-other, train-clean-100
|
||||
# train-clean-360, and train-other-500
|
||||
|
||||
mkdir -p data/LibriSpeech
|
||||
lhotse download librispeech --full data
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan data/
|
||||
#
|
||||
# and create a file data/.musan_completed
|
||||
# to avoid downloading it again
|
||||
if [ ! -f data/.musan_completed ]; then
|
||||
lhotse download musan data
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare librispeech manifest"
|
||||
# We assume that you have downloaded the librispeech corpus
|
||||
# to data/LibriSpeech
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare librispeech -j $nj data/LibriSpeech data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan data/musan data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Compute fbank for librispeech"
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_librispeech.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_musan.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Prepare phone based lang"
|
||||
# TODO: add BPE based lang
|
||||
mkdir -p data/lang
|
||||
|
||||
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||
cat - data/lm/librispeech-lexicon.txt |
|
||||
sort | uniq > data/lang/lexicon.txt
|
||||
|
||||
if [ ! -f data/lang/L_disambig.pt ]; then
|
||||
./local/prepare_lang.py
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "State 6: Prepare BPE based lang"
|
||||
mkdir -p data/lang/bpe
|
||||
cp data/lang/words.txt data/lang/bpe/
|
||||
|
||||
if [ ! -f data/lang/bpe/train.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
files=$(
|
||||
find "data/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
||||
find "data/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
||||
find "data/LibriSpeech/train-other-500" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > data/lang/bpe/train.txt
|
||||
fi
|
||||
|
||||
python3 ./local/train_bpe_model.py
|
||||
|
||||
if [ ! -f data/lang/bpe/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Prepare G"
|
||||
# We assume you have install kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
|
||||
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
data/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# It is used for LM rescoring
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=4 \
|
||||
data/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Compile HLG"
|
||||
python3 ./local/compile_hlg.py
|
||||
fi
|
22
egs/librispeech/ASR/tdnn_lstm_ctc/README.md
Normal file
22
egs/librispeech/ASR/tdnn_lstm_ctc/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
## (To be filled in)
|
||||
|
||||
It will contain:
|
||||
|
||||
- How to run
|
||||
- WERs
|
||||
|
||||
```bash
|
||||
cd $PWD/..
|
||||
|
||||
./prepare.sh
|
||||
|
||||
./tdnn_lstm_ctc/train.py
|
||||
```
|
||||
|
||||
If you have 4 GPUs and want to use GPU 1 and GPU 3 for DDP training,
|
||||
you can do the following:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="1,3"
|
||||
./tdnn_lstm_ctc/train.py --world-size=2
|
||||
```
|
0
egs/librispeech/ASR/tdnn_lstm_ctc/__init__.py
Normal file
0
egs/librispeech/ASR/tdnn_lstm_ctc/__init__.py
Normal file
419
egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
Executable file
419
egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
Executable file
@ -0,0 +1,419 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from model import TdnnLstm
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
one_best_decoding,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=9,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp/"),
|
||||
"lang_dir": Path("data/lang"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 3,
|
||||
"search_beam": 20,
|
||||
"output_beam": 5,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
# Possible values for method:
|
||||
# - 1best
|
||||
# - nbest
|
||||
# - nbest-rescoring
|
||||
# - whole-lattice-rescoring
|
||||
"method": "1best",
|
||||
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
||||
"num_paths": 30,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is [N, T, C]
|
||||
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // params.subsampling_factor,
|
||||
supervisions["num_frames"] // params.subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
)
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
key = f"no_rescore-{params.num_paths}"
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||
|
||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
else:
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
||||
)
|
||||
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
tot_num_cuts = len(dl.dataset.cuts)
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
logging.info(
|
||||
f"batch {batch_idx}, cuts processed until now is "
|
||||
f"{num_cuts}/{tot_num_cuts} "
|
||||
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(torch.load("data/lm/HLG.pt"))
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]:
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.words["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
# it inside the for loop. That is, use
|
||||
#
|
||||
# if test_set == 'test-clean': continue
|
||||
#
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
86
egs/librispeech/ASR/tdnn_lstm_ctc/model.py
Normal file
86
egs/librispeech/ASR/tdnn_lstm_ctc/model.py
Normal file
@ -0,0 +1,86 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class TdnnLstm(nn.Module):
|
||||
def __init__(
|
||||
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
num_classes:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
It reduces the number of output frames by this factor.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.tdnn = nn.Sequential(
|
||||
nn.Conv1d(
|
||||
in_channels=num_features,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=self.subsampling_factor, # stride: subsampling_factor!
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
)
|
||||
self.lstms = nn.ModuleList(
|
||||
[
|
||||
nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
|
||||
for _ in range(5)
|
||||
]
|
||||
)
|
||||
self.lstm_bnorms = nn.ModuleList(
|
||||
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
||||
)
|
||||
self.dropout = nn.Dropout(0.2)
|
||||
self.linear = nn.Linear(in_features=500, out_features=self.num_classes)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, C, T]
|
||||
|
||||
Returns:
|
||||
The output tensor has shape [N, T, C]
|
||||
"""
|
||||
x = self.tdnn(x)
|
||||
x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it
|
||||
for lstm, bnorm in zip(self.lstms, self.lstm_bnorms):
|
||||
x_new, _ = lstm(x)
|
||||
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
|
||||
2, 0, 1
|
||||
) # (T, N, C) -> (N, C, T) -> (T, N, C)
|
||||
x_new = self.dropout(x_new)
|
||||
x = x_new + x # skip connections
|
||||
x = x.transpose(
|
||||
1, 0
|
||||
) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim
|
||||
x = self.linear(x)
|
||||
x = nn.functional.log_softmax(x, dim=-1)
|
||||
return x
|
568
egs/librispeech/ASR/tdnn_lstm_ctc/train.py
Executable file
568
egs/librispeech/ASR/tdnn_lstm_ctc/train.py
Executable file
@ -0,0 +1,568 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# This is just at the very beginning ...
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TdnnLstm
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_value_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
# TODO: add extra arguments and support DDP training.
|
||||
# Currently, only single GPU training is implemented. Will add
|
||||
# DDP training once single GPU training is finished.
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- num_epochs: Number of epochs to train.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp"),
|
||||
"lang_dir": Path("data/lang"),
|
||||
"lr": 1e-3,
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 5e-4,
|
||||
"subsampling_factor": 3,
|
||||
"start_epoch": 0,
|
||||
"num_epochs": 10,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"valid_interval": 1000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
):
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of TdnnLstm in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is [N, T, C]
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervisions = batch["supervisions"]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
decoding_graph = graph_compiler.compile(texts)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
# train_frames and valid_frames are used for printing.
|
||||
if is_training:
|
||||
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||
else:
|
||||
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = 0.0
|
||||
tot_frames = 0.0
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
tot_loss += loss_cpu
|
||||
tot_frames += params.valid_frames
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_frames = s[1]
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = params.valid_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_value_(model.parameters(), 5.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.train_frames
|
||||
tot_loss += loss_cpu
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
|
||||
params.train_loss = tot_loss / tot_frames
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
|
||||
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
train_dl = librispeech.train_dataloaders()
|
||||
valid_dl = librispeech.valid_dataloaders()
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
if epoch > params.start_epoch:
|
||||
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
0
icefall/__init__.py
Normal file
0
icefall/__init__.py
Normal file
74
icefall/bpe_graph_compiler.py
Normal file
74
icefall/bpe_graph_compiler.py
Normal file
@ -0,0 +1,74 @@
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
|
||||
|
||||
class BpeCtcTrainingGraphCompiler(object):
|
||||
def __init__(
|
||||
self,
|
||||
lang_dir: Path,
|
||||
device: Union[str, torch.device] = "cpu",
|
||||
sos_token: str = "<sos/eos>",
|
||||
eos_token: str = "<sos/eos>",
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
This directory is expected to contain the following files:
|
||||
|
||||
- bpe.model
|
||||
- words.txt
|
||||
device:
|
||||
It indicates CPU or CUDA.
|
||||
sos_token:
|
||||
The word piece that represents sos.
|
||||
eos_token:
|
||||
The word piece that represents eos.
|
||||
"""
|
||||
lang_dir = Path(lang_dir)
|
||||
model_file = lang_dir / "bpe.model"
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(model_file))
|
||||
self.sp = sp
|
||||
self.word_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
self.device = device
|
||||
|
||||
self.sos_id = self.sp.piece_to_id(sos_token)
|
||||
self.eos_id = self.sp.piece_to_id(eos_token)
|
||||
|
||||
assert self.sos_id != self.sp.unk_id()
|
||||
assert self.eos_id != self.sp.unk_id()
|
||||
|
||||
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
|
||||
"""Convert a list of texts to a list-of-list of piece IDs.
|
||||
|
||||
Args:
|
||||
texts:
|
||||
It is a list of strings. Each string consists of space(s)
|
||||
separated words. An example containing two strings is given below:
|
||||
|
||||
['HELLO ICEFALL', 'HELLO k2']
|
||||
Returns:
|
||||
Return a list-of-list of piece IDs.
|
||||
"""
|
||||
return self.sp.encode(texts, out_type=int)
|
||||
|
||||
def compile(
|
||||
self, piece_ids: List[List[int]], modified: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Build a ctc graph from a list-of-list piece IDs.
|
||||
|
||||
Args:
|
||||
piece_ids:
|
||||
It is a list-of-list integer IDs.
|
||||
modified:
|
||||
See :func:`k2.ctc_graph` for its meaning.
|
||||
Return:
|
||||
Return an FsaVec, which is the result of composing a
|
||||
CTC topology with linear FSAs constructed from the given
|
||||
piece IDs.
|
||||
"""
|
||||
return k2.ctc_graph(piece_ids, modified=modified, device=self.device)
|
131
icefall/checkpoint.py
Normal file
131
icefall/checkpoint.py
Normal file
@ -0,0 +1,131 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
filename: Path,
|
||||
model: Union[nn.Module, DDP],
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
scheduler: Optional[_LRScheduler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save training information to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
The checkpoint filename.
|
||||
model:
|
||||
The model to be saved. We only save its `state_dict()`.
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
optimizer:
|
||||
The optimizer to be saved. We only save its `state_dict()`.
|
||||
scheduler:
|
||||
The scheduler to be saved. We only save its `state_dict()`.
|
||||
scalar:
|
||||
The GradScaler to be saved. We only save its `state_dict()`.
|
||||
rank:
|
||||
Used in DDP. We save checkpoint only for the node whose rank is 0.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
|
||||
logging.info(f"Saving checkpoint to {filename}")
|
||||
|
||||
if isinstance(model, DDP):
|
||||
model = model.module
|
||||
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer": optimizer.state_dict() if optimizer is not None else None,
|
||||
"scheduler": scheduler.state_dict() if scheduler is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
}
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
assert k not in checkpoint
|
||||
checkpoint[k] = v
|
||||
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
filename: Path,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
scheduler: Optional[_LRScheduler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
TODO: document it
|
||||
"""
|
||||
logging.info(f"Loading checkpoint from {filename}")
|
||||
checkpoint = torch.load(filename, map_location="cpu")
|
||||
|
||||
if next(iter(checkpoint["model"])).startswith("module."):
|
||||
logging.info("Loading checkpoint saved by DDP")
|
||||
|
||||
dst_state_dict = model.state_dict()
|
||||
src_state_dict = checkpoint["model"]
|
||||
for key in dst_state_dict.keys():
|
||||
src_key = "{}.{}".format("module", key)
|
||||
dst_state_dict[key] = src_state_dict.pop(src_key)
|
||||
assert len(src_state_dict) == 0
|
||||
model.load_state_dict(dst_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
|
||||
checkpoint.pop("model")
|
||||
|
||||
def load(name, obj):
|
||||
s = checkpoint[name]
|
||||
if obj and s:
|
||||
obj.load_state_dict(s)
|
||||
checkpoint.pop(name)
|
||||
|
||||
load("optimizer", optimizer)
|
||||
load("scheduler", scheduler)
|
||||
load("grad_scaler", scaler)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def average_checkpoints(filenames: List[Path]) -> dict:
|
||||
"""Average a list of checkpoints.
|
||||
|
||||
Args:
|
||||
filenames:
|
||||
Filenames of the checkpoints to be averaged. We assume all
|
||||
checkpoints are saved by :func:`save_checkpoint`.
|
||||
Returns:
|
||||
Return a dict (i.e., state_dict) which is the average of all
|
||||
model state dicts contained in the checkpoints.
|
||||
"""
|
||||
n = len(filenames)
|
||||
|
||||
avg = torch.load(filenames[0], map_location="cpu")["model"]
|
||||
for i in range(1, n):
|
||||
state_dict = torch.load(filenames[i], map_location="cpu")["model"]
|
||||
for k in avg:
|
||||
avg[k] += state_dict[k]
|
||||
|
||||
for k in avg:
|
||||
if avg[k].is_floating_point():
|
||||
avg[k] /= n
|
||||
else:
|
||||
avg[k] //= n
|
||||
|
||||
return avg
|
0
icefall/dataset/__init__.py
Normal file
0
icefall/dataset/__init__.py
Normal file
248
icefall/dataset/asr_datamodule.py
Normal file
248
icefall/dataset/asr_datamodule.py
Normal file
@ -0,0 +1,248 @@
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class AsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for K2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=500.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = [
|
||||
SpecAugment(
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cuts_train,
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
cuts_train = cuts_train.drop_features()
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cuts=cuts_train,
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=True,
|
||||
num_buckets=self.args.num_buckets,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=True,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
)
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
cuts_valid = cuts_valid.drop_features()
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cuts_valid.drop_features(),
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(cuts_valid)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=True,
|
||||
)
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
cuts = self.test_cuts()
|
||||
is_list = isinstance(cuts, list)
|
||||
test_loaders = []
|
||||
if not is_list:
|
||||
cuts = [cuts]
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
cuts_test,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts_test, max_duration=self.args.max_duration
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test, batch_size=None, sampler=sampler, num_workers=1
|
||||
)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
43
icefall/dataset/datamodule.py
Normal file
43
icefall/dataset/datamodule.py
Normal file
@ -0,0 +1,43 @@
|
||||
import argparse
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import CutSet
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class DataModule:
|
||||
"""
|
||||
Contains dataset-related code. It is intended to read/construct Lhotse cuts,
|
||||
and create Dataset/Sampler/DataLoader out of them.
|
||||
|
||||
There is a separate method to create each of train/valid/test DataLoader.
|
||||
In principle, there might be multiple DataLoaders for each of
|
||||
train/valid/test
|
||||
(e.g. when a corpus has multiple test sets).
|
||||
The API of this class allows to return lists of CutSets/DataLoaders.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
pass
|
||||
|
||||
def train_cuts(self) -> Union[CutSet, List[CutSet]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def valid_cuts(self) -> Union[CutSet, List[CutSet]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def test_cuts(self) -> Union[CutSet, List[CutSet]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def train_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def valid_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
raise NotImplementedError()
|
68
icefall/dataset/librispeech.py
Normal file
68
icefall/dataset/librispeech.py
Normal file
@ -0,0 +1,68 @@
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
from icefall.dataset.asr_datamodule import AsrDataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule(AsrDataModule):
|
||||
"""
|
||||
LibriSpeech ASR data module. Can be used for 100h subset
|
||||
(``--full-libri false``) or full 960h set.
|
||||
The train and valid cuts for standard Libri splits are
|
||||
concatenated into a single CutSet/DataLoader.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(title="LibriSpeech specific options")
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech.",
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||
)
|
||||
if self.args.full_libri:
|
||||
cuts_train = (
|
||||
cuts_train
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||
)
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
712
icefall/decode.py
Normal file
712
icefall/decode.py
Normal file
@ -0,0 +1,712 @@
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def _intersect_device(
|
||||
a_fsas: k2.Fsa,
|
||||
b_fsas: k2.Fsa,
|
||||
b_to_a_map: torch.Tensor,
|
||||
sorted_match_a: bool,
|
||||
batch_size: int = 50,
|
||||
) -> k2.Fsa:
|
||||
"""This is a wrapper of k2.intersect_device and its purpose is to split
|
||||
b_fsas into several batches and process each batch separately to avoid
|
||||
CUDA OOM error.
|
||||
|
||||
The arguments and return value of this function are the same as
|
||||
k2.intersect_device.
|
||||
"""
|
||||
num_fsas = b_fsas.shape[0]
|
||||
if num_fsas <= batch_size:
|
||||
return k2.intersect_device(
|
||||
a_fsas, b_fsas, b_to_a_map=b_to_a_map, sorted_match_a=sorted_match_a
|
||||
)
|
||||
|
||||
num_batches = (num_fsas + batch_size - 1) // batch_size
|
||||
splits = []
|
||||
for i in range(num_batches):
|
||||
start = i * batch_size
|
||||
end = min(start + batch_size, num_fsas)
|
||||
splits.append((start, end))
|
||||
|
||||
ans = []
|
||||
for start, end in splits:
|
||||
indexes = torch.arange(start, end).to(b_to_a_map)
|
||||
|
||||
fsas = k2.index(b_fsas, indexes)
|
||||
b_to_a = k2.index(b_to_a_map, indexes)
|
||||
path_lattice = k2.intersect_device(
|
||||
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
|
||||
)
|
||||
ans.append(path_lattice)
|
||||
|
||||
return k2.cat(ans)
|
||||
|
||||
|
||||
def get_lattice(
|
||||
nnet_output: torch.Tensor,
|
||||
HLG: k2.Fsa,
|
||||
supervision_segments: torch.Tensor,
|
||||
search_beam: float,
|
||||
output_beam: float,
|
||||
min_active_states: int,
|
||||
max_active_states: int,
|
||||
subsampling_factor: int = 1,
|
||||
) -> k2.Fsa:
|
||||
"""Get the decoding lattice from a decoding graph and neural
|
||||
network output.
|
||||
|
||||
Args:
|
||||
nnet_output:
|
||||
It is the output of a neural model of shape `[N, T, C]`.
|
||||
HLG:
|
||||
An Fsa, the decoding graph. See also `compile_HLG.py`.
|
||||
supervision_segments:
|
||||
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
|
||||
Each row contains information for a supervision segment. Column 0
|
||||
is the `sequence_index` indicating which sequence this segment
|
||||
comes from; column 1 specifies the `start_frame` of this segment
|
||||
within the sequence; column 2 contains the `duration` of this
|
||||
segment.
|
||||
search_beam:
|
||||
Decoding beam, e.g. 20. Smaller is faster, larger is more exact
|
||||
(less pruning). This is the default value; it may be modified by
|
||||
`min_active_states` and `max_active_states`.
|
||||
output_beam:
|
||||
Beam to prune output, similar to lattice-beam in Kaldi. Relative
|
||||
to best path of output.
|
||||
min_active_states:
|
||||
Minimum number of FSA states that are allowed to be active on any given
|
||||
frame for any given intersection/composition task. This is advisory,
|
||||
in that it will try not to have fewer than this number active.
|
||||
Set it to zero if there is no constraint.
|
||||
max_active_states:
|
||||
Maximum number of FSA states that are allowed to be active on any given
|
||||
frame for any given intersection/composition task. This is advisory,
|
||||
in that it will try not to exceed that but may not always succeed.
|
||||
You can use a very large number if no constraint is needed.
|
||||
subsampling_factor:
|
||||
The subsampling factor of the model.
|
||||
Returns:
|
||||
A lattice containing the decoding result.
|
||||
"""
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output, supervision_segments, allow_truncate=subsampling_factor - 1
|
||||
)
|
||||
|
||||
lattice = k2.intersect_dense_pruned(
|
||||
HLG,
|
||||
dense_fsa_vec,
|
||||
search_beam=search_beam,
|
||||
output_beam=output_beam,
|
||||
min_active_states=min_active_states,
|
||||
max_active_states=max_active_states,
|
||||
)
|
||||
|
||||
return lattice
|
||||
|
||||
|
||||
def one_best_decoding(
|
||||
lattice: k2.Fsa, use_double_scores: bool = True
|
||||
) -> k2.Fsa:
|
||||
"""Get the best path from a lattice.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
The decoding lattice returned by :func:`get_lattice`.
|
||||
use_double_scores:
|
||||
True to use double precision floating point in the computation.
|
||||
False to use single precision.
|
||||
Return:
|
||||
An FsaVec containing linear paths.
|
||||
"""
|
||||
best_path = k2.shortest_path(lattice, use_double_scores=use_double_scores)
|
||||
return best_path
|
||||
|
||||
|
||||
def nbest_decoding(
|
||||
lattice: k2.Fsa, num_paths: int, use_double_scores: bool = True
|
||||
) -> k2.Fsa:
|
||||
"""It implements something like CTC prefix beam search using n-best lists.
|
||||
|
||||
The basic idea is to first extra n-best paths from the given lattice,
|
||||
build a word seqs from these paths, and compute the total scores
|
||||
of these sequences in the log-semiring. The one with the max score
|
||||
is used as the decoding output.
|
||||
|
||||
Caution:
|
||||
Don't be confused by `best` in the name `n-best`. Paths are selected
|
||||
randomly, not by ranking their scores.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
The decoding lattice, returned by :func:`get_lattice`.
|
||||
num_paths:
|
||||
It specifies the size `n` in n-best. Note: Paths are selected randomly
|
||||
and those containing identical word sequences are remove dand only one
|
||||
of them is kept.
|
||||
use_double_scores:
|
||||
True to use double precision floating point in the computation.
|
||||
False to use single precision.
|
||||
Returns:
|
||||
An FsaVec containing linear FSAs.
|
||||
"""
|
||||
# First, extract `num_paths` paths for each sequence.
|
||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
||||
|
||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||
# The last entry in each sublist is -1.
|
||||
word_seq = k2.index(lattice.aux_labels, path)
|
||||
# Note: the above operation supports also the case when
|
||||
# lattice.aux_labels is a ragged tensor. In that case,
|
||||
# `remove_axis=True` is used inside the pybind11 binding code,
|
||||
# so the resulting `word_seq` still has 3 axes, like `path`.
|
||||
# The 3 axes are [seq][path][word_id]
|
||||
|
||||
# Remove 0 (epsilon) and -1 from word_seq
|
||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
||||
|
||||
# Remove sequences with identical word sequences.
|
||||
#
|
||||
# k2.ragged.unique_sequences will reorder paths within a seq.
|
||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||
# to the input path index.
|
||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
||||
unique_word_seq, _, new2old = k2.ragged.unique_sequences(
|
||||
word_seq, need_num_repeats=False, need_new2old_indexes=True
|
||||
)
|
||||
# Note: unique_word_seq still has the same axes as word_seq
|
||||
|
||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
||||
|
||||
# path_to_seq_map is a 1-D torch.Tensor.
|
||||
# path_to_seq_map[i] is the seq to which the i-th path belongs
|
||||
path_to_seq_map = seq_to_path_shape.row_ids(1)
|
||||
|
||||
# Remove the seq axis.
|
||||
# Now unique_word_seq has only two axes [path][word]
|
||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
||||
|
||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||
|
||||
# add epsilon self loops since we will use
|
||||
# k2.intersect_device, which treats epsilon as a normal symbol
|
||||
word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa)
|
||||
|
||||
# lattice has token IDs as labels and word IDs as aux_labels.
|
||||
# inv_lattice has word IDs as labels and token IDs as aux_labels
|
||||
inv_lattice = k2.invert(lattice)
|
||||
inv_lattice = k2.arc_sort(inv_lattice)
|
||||
|
||||
path_lattice = _intersect_device(
|
||||
inv_lattice,
|
||||
word_fsa_with_epsilon_loops,
|
||||
b_to_a_map=path_to_seq_map,
|
||||
sorted_match_a=True,
|
||||
)
|
||||
# path_lat has word IDs as labels and token IDs as aux_labels
|
||||
|
||||
path_lattice = k2.top_sort(k2.connect(path_lattice))
|
||||
|
||||
tot_scores = path_lattice.get_tot_scores(
|
||||
use_double_scores=use_double_scores, log_semiring=False
|
||||
)
|
||||
|
||||
# RaggedFloat currently supports float32 only.
|
||||
# If Ragged<double> is wrapped, we can use k2.RaggedDouble here
|
||||
ragged_tot_scores = k2.RaggedFloat(
|
||||
seq_to_path_shape, tot_scores.to(torch.float32)
|
||||
)
|
||||
|
||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
||||
|
||||
# Since we invoked `k2.ragged.unique_sequences`, which reorders
|
||||
# the index from `path`, we use `new2old` here to convert argmax_indexes
|
||||
# to the indexes into `path`.
|
||||
#
|
||||
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
||||
|
||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
||||
|
||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||
best_path = k2.index(path_2axes, best_path_indexes)
|
||||
|
||||
# labels is a k2.RaggedInt with 2 axes [path][token_id]
|
||||
# Note that it contains -1s.
|
||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
||||
|
||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
||||
|
||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
||||
|
||||
best_path_fsa = k2.linear_fsa(labels)
|
||||
best_path_fsa.aux_labels = aux_labels
|
||||
return best_path_fsa
|
||||
|
||||
|
||||
def compute_am_and_lm_scores(
|
||||
lattice: k2.Fsa,
|
||||
word_fsa_with_epsilon_loops: k2.Fsa,
|
||||
path_to_seq_map: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute AM scores of n-best lists (represented as word_fsas).
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
An FsaVec, e.g., the return value of :func:`get_lattice`
|
||||
It must have the attribute `lm_scores`.
|
||||
word_fsa_with_epsilon_loops:
|
||||
An FsaVec representing an n-best list. Note that it has been processed
|
||||
by `k2.add_epsilon_self_loops`.
|
||||
path_to_seq_map:
|
||||
A 1-D torch.Tensor with dtype torch.int32. path_to_seq_map[i] indicates
|
||||
which sequence the i-th Fsa in word_fsa_with_epsilon_loops belongs to.
|
||||
path_to_seq_map.numel() == word_fsas_with_epsilon_loops.arcs.dim0().
|
||||
Returns:
|
||||
Return a tuple containing two 1-D torch.Tensors: (am_scores, lm_scores).
|
||||
Each tensor's `numel()' equals to `word_fsas_with_epsilon_loops.shape[0]`
|
||||
"""
|
||||
assert len(lattice.shape) == 3
|
||||
assert hasattr(lattice, "lm_scores")
|
||||
|
||||
# k2.compose() currently does not support b_to_a_map. To void
|
||||
# replicating `lats`, we use k2.intersect_device here.
|
||||
#
|
||||
# lattice has token IDs as `labels` and word IDs as aux_labels, so we
|
||||
# need to invert it here.
|
||||
inv_lattice = k2.invert(lattice)
|
||||
|
||||
# Now the `labels` of inv_lattice are word IDs (a 1-D torch.Tensor)
|
||||
# and its `aux_labels` are token IDs ( a k2.RaggedInt with 2 axes)
|
||||
|
||||
# Remove its `aux_labels` since it is not needed in the
|
||||
# following computation
|
||||
del inv_lattice.aux_labels
|
||||
inv_lattice = k2.arc_sort(inv_lattice)
|
||||
|
||||
path_lattice = _intersect_device(
|
||||
inv_lattice,
|
||||
word_fsa_with_epsilon_loops,
|
||||
b_to_a_map=path_to_seq_map,
|
||||
sorted_match_a=True,
|
||||
)
|
||||
|
||||
path_lattice = k2.top_sort(k2.connect(path_lattice))
|
||||
|
||||
# The `scores` of every arc consists of `am_scores` and `lm_scores`
|
||||
path_lattice.scores = path_lattice.scores - path_lattice.lm_scores
|
||||
|
||||
am_scores = path_lattice.get_tot_scores(
|
||||
use_double_scores=True, log_semiring=False
|
||||
)
|
||||
|
||||
path_lattice.scores = path_lattice.lm_scores
|
||||
|
||||
lm_scores = path_lattice.get_tot_scores(
|
||||
use_double_scores=True, log_semiring=False
|
||||
)
|
||||
|
||||
return am_scores.to(torch.float32), lm_scores.to(torch.float32)
|
||||
|
||||
|
||||
def rescore_with_n_best_list(
|
||||
lattice: k2.Fsa, G: k2.Fsa, num_paths: int, lm_scale_list: List[float]
|
||||
) -> Dict[str, k2.Fsa]:
|
||||
"""Decode using n-best list with LM rescoring.
|
||||
|
||||
`lattice` is a decoding lattice with 3 axes. This function first
|
||||
extracts `num_paths` paths from `lattice` for each sequence using
|
||||
`k2.random_paths`. The `am_scores` of these paths are computed.
|
||||
For each path, its `lm_scores` is computed using `G` (which is an LM).
|
||||
The final `tot_scores` is the sum of `am_scores` and `lm_scores`.
|
||||
The path with the largest `tot_scores` within a sequence is used
|
||||
as the decoding output.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
An FsaVec. It can be the return value of :func:`get_lattice`.
|
||||
G:
|
||||
An FsaVec representing the language model (LM). Note that it
|
||||
is an FsaVec, but it contains only one Fsa.
|
||||
num_paths:
|
||||
It is the size `n` in `n-best` list.
|
||||
lm_scale_list:
|
||||
A list containing lm_scale values.
|
||||
Returns:
|
||||
A dict of FsaVec, whose key is an lm_scale and the value is the
|
||||
best decoding path for each sequence in the lattice.
|
||||
"""
|
||||
device = lattice.device
|
||||
|
||||
assert len(lattice.shape) == 3
|
||||
assert hasattr(lattice, "aux_labels")
|
||||
assert hasattr(lattice, "lm_scores")
|
||||
|
||||
assert G.shape == (1, None, None)
|
||||
assert G.device == device
|
||||
assert hasattr(G, "aux_labels") is False
|
||||
|
||||
# First, extract `num_paths` paths for each sequence.
|
||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
||||
|
||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||
# The last entry in each sublist is -1.
|
||||
word_seq = k2.index(lattice.aux_labels, path)
|
||||
|
||||
# Remove epsilons and -1 from word_seq
|
||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
||||
|
||||
# Remove paths that has identical word sequences.
|
||||
#
|
||||
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
|
||||
# except that there are no repeated paths with the same word_seq
|
||||
# within a sequence.
|
||||
#
|
||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
||||
# multiplicities of each path.
|
||||
# num_repeats.num_elements() == unique_word_seqs.num_elements()
|
||||
#
|
||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||
# to the input path index.
|
||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
||||
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
||||
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
||||
)
|
||||
|
||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
||||
|
||||
# path_to_seq_map is a 1-D torch.Tensor.
|
||||
# path_to_seq_map[i] is the seq to which the i-th path
|
||||
# belongs.
|
||||
path_to_seq_map = seq_to_path_shape.row_ids(1)
|
||||
|
||||
# Remove the seq axis.
|
||||
# Now unique_word_seq has only two axes [path][word]
|
||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
||||
|
||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||
|
||||
word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa)
|
||||
|
||||
am_scores, _ = compute_am_and_lm_scores(
|
||||
lattice, word_fsa_with_epsilon_loops, path_to_seq_map
|
||||
)
|
||||
|
||||
# Now compute lm_scores
|
||||
b_to_a_map = torch.zeros_like(path_to_seq_map)
|
||||
lm_path_lattice = _intersect_device(
|
||||
G,
|
||||
word_fsa_with_epsilon_loops,
|
||||
b_to_a_map=b_to_a_map,
|
||||
sorted_match_a=True,
|
||||
)
|
||||
lm_path_lattice = k2.top_sort(k2.connect(lm_path_lattice))
|
||||
lm_scores = lm_path_lattice.get_tot_scores(
|
||||
use_double_scores=True, log_semiring=False
|
||||
)
|
||||
|
||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
||||
|
||||
ans = dict()
|
||||
for lm_scale in lm_scale_list:
|
||||
tot_scores = am_scores / lm_scale + lm_scores
|
||||
|
||||
# Remember that we used `k2.ragged.unique_sequences` to remove repeated
|
||||
# paths to avoid redundant computation in `k2.intersect_device`.
|
||||
# Now we use `num_repeats` to correct the scores for each path.
|
||||
#
|
||||
# NOTE(fangjun): It is commented out as it leads to a worse WER
|
||||
# tot_scores = tot_scores * num_repeats.values()
|
||||
|
||||
ragged_tot_scores = k2.RaggedFloat(
|
||||
seq_to_path_shape, tot_scores.to(torch.float32)
|
||||
)
|
||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
||||
|
||||
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
||||
|
||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||
best_path = k2.index(path_2axes, best_path_indexes)
|
||||
|
||||
# labels is a k2.RaggedInt with 2 axes [path][phone_id]
|
||||
# Note that it contains -1s.
|
||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
||||
|
||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
||||
|
||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
||||
|
||||
best_path_fsa = k2.linear_fsa(labels)
|
||||
best_path_fsa.aux_labels = aux_labels
|
||||
|
||||
key = f"lm_scale_{lm_scale}"
|
||||
ans[key] = best_path_fsa
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def rescore_with_whole_lattice(
|
||||
lattice: k2.Fsa,
|
||||
G_with_epsilon_loops: k2.Fsa,
|
||||
lm_scale_list: Optional[List[float]] = None,
|
||||
) -> Union[k2.Fsa, Dict[str, k2.Fsa]]:
|
||||
"""Use whole lattice to rescore.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
An FsaVec It can be the return value of :func:`get_lattice`.
|
||||
G_with_epsilon_loops:
|
||||
An FsaVec representing the language model (LM). Note that it
|
||||
is an FsaVec, but it contains only one Fsa.
|
||||
lm_scale_list:
|
||||
A list containing lm_scale values or None.
|
||||
Returns:
|
||||
If lm_scale_list is not None, return a dict of FsaVec, whose key
|
||||
is a lm_scale and the value represents the best decoding path for
|
||||
each sequence in the lattice.
|
||||
If lm_scale_list is not None, return a lattice that is rescored
|
||||
with the given LM.
|
||||
"""
|
||||
assert len(lattice.shape) == 3
|
||||
assert hasattr(lattice, "lm_scores")
|
||||
assert G_with_epsilon_loops.shape == (1, None, None)
|
||||
|
||||
device = lattice.device
|
||||
lattice.scores = lattice.scores - lattice.lm_scores
|
||||
# We will use lm_scores from G, so remove lats.lm_scores here
|
||||
del lattice.lm_scores
|
||||
assert hasattr(lattice, "lm_scores") is False
|
||||
|
||||
# Now, lattice.scores contains only am_scores
|
||||
|
||||
# inv_lattice has word IDs as labels.
|
||||
# Its aux_labels are token IDs, which is a ragged tensor k2.RaggedInt
|
||||
inv_lattice = k2.invert(lattice)
|
||||
num_seqs = lattice.shape[0]
|
||||
|
||||
b_to_a_map = torch.zeros(num_seqs, device=device, dtype=torch.int32)
|
||||
while True:
|
||||
try:
|
||||
rescoring_lattice = k2.intersect_device(
|
||||
G_with_epsilon_loops,
|
||||
inv_lattice,
|
||||
b_to_a_map,
|
||||
sorted_match_a=True,
|
||||
)
|
||||
rescoring_lattice = k2.top_sort(k2.connect(rescoring_lattice))
|
||||
break
|
||||
except RuntimeError as e:
|
||||
logging.info(f"Caught exception:\n{e}\n")
|
||||
logging.info(
|
||||
f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}"
|
||||
)
|
||||
|
||||
# NOTE(fangjun): The choice of the threshold 1e-7 is arbitrary here
|
||||
# to avoid OOM. We may need to fine tune it.
|
||||
inv_lattice = k2.prune_on_arc_post(inv_lattice, 1e-7, True)
|
||||
logging.info(
|
||||
f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}"
|
||||
)
|
||||
|
||||
# lat has token IDs as labels
|
||||
# and word IDs as aux_labels.
|
||||
lat = k2.invert(rescoring_lattice)
|
||||
|
||||
if lm_scale_list is None:
|
||||
return lat
|
||||
|
||||
ans = dict()
|
||||
#
|
||||
# The following implements
|
||||
# scores = (scores - lm_scores)/lm_scale + lm_scores
|
||||
# = scores/lm_scale + lm_scores*(1 - 1/lm_scale)
|
||||
#
|
||||
saved_am_scores = lat.scores - lat.lm_scores
|
||||
for lm_scale in lm_scale_list:
|
||||
am_scores = saved_am_scores / lm_scale
|
||||
lat.scores = am_scores + lat.lm_scores
|
||||
|
||||
best_path = k2.shortest_path(lat, use_double_scores=True)
|
||||
key = f"lm_scale_{lm_scale}"
|
||||
ans[key] = best_path
|
||||
return ans
|
||||
|
||||
|
||||
def rescore_with_attention_decoder(
|
||||
lattice: k2.Fsa,
|
||||
num_paths: int,
|
||||
model: nn.Module,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
) -> Dict[str, k2.Fsa]:
|
||||
"""This function extracts n paths from the given lattice and uses
|
||||
an attention decoder to rescore them. The path with the highest
|
||||
score is used as the decoding output.
|
||||
|
||||
lattice:
|
||||
An FsaVec. It can be the return value of :func:`get_lattice`.
|
||||
num_paths:
|
||||
Number of paths to extract from the given lattice for rescoring.
|
||||
model:
|
||||
A transformer model. See the class "Transformer" in
|
||||
conformer_ctc/transformer.py for its interface.
|
||||
memory:
|
||||
The encoder memory of the given model. It is the output of
|
||||
the last torch.nn.TransformerEncoder layer in the given model.
|
||||
Its shape is `[T, N, C]`.
|
||||
memory_key_padding_mask:
|
||||
The padding mask for memory with shape [N, T].
|
||||
Returns:
|
||||
A dict of FsaVec, whose key contains a string
|
||||
ngram_lm_scale_attention_scale and the value is the
|
||||
best decoding path for each sequence in the lattice.
|
||||
"""
|
||||
# First, extract `num_paths` paths for each sequence.
|
||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
||||
|
||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||
# The last entry in each sublist is -1.
|
||||
word_seq = k2.index(lattice.aux_labels, path)
|
||||
|
||||
# Remove epsilons and -1 from word_seq
|
||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
||||
|
||||
# Remove paths that has identical word sequences.
|
||||
#
|
||||
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
|
||||
# except that there are no repeated paths with the same word_seq
|
||||
# within a sequence.
|
||||
#
|
||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
||||
# multiplicities of each path.
|
||||
# num_repeats.num_elements() == unique_word_seqs.num_elements()
|
||||
#
|
||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||
# to the input path index.
|
||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
||||
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
||||
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
||||
)
|
||||
|
||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
||||
|
||||
# path_to_seq_map is a 1-D torch.Tensor.
|
||||
# path_to_seq_map[i] is the seq to which the i-th path
|
||||
# belongs.
|
||||
path_to_seq_map = seq_to_path_shape.row_ids(1)
|
||||
|
||||
# Remove the seq axis.
|
||||
# Now unique_word_seq has only two axes [path][word]
|
||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
||||
|
||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||
|
||||
word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa)
|
||||
|
||||
am_scores, ngram_lm_scores = compute_am_and_lm_scores(
|
||||
lattice, word_fsa_with_epsilon_loops, path_to_seq_map
|
||||
)
|
||||
# Now we use the attention decoder to compute another
|
||||
# score: attention_scores.
|
||||
#
|
||||
# To do that, we have to get the input and output for the attention
|
||||
# decoder.
|
||||
|
||||
# CAUTION: The "tokens" attribute is set in the file
|
||||
# local/compile_hlg.py
|
||||
token_seq = k2.index(lattice.tokens, path)
|
||||
|
||||
# Remove epsilons and -1 from token_seq
|
||||
token_seq = k2.ragged.remove_values_leq(token_seq, 0)
|
||||
|
||||
# Remove the seq axis.
|
||||
token_seq = k2.ragged.remove_axis(token_seq, 0)
|
||||
|
||||
token_seq, _ = k2.ragged.index(
|
||||
token_seq, indexes=new2old, axis=0, need_value_indexes=False
|
||||
)
|
||||
|
||||
# Now word in unique_word_seq has its corresponding token IDs.
|
||||
token_ids = k2.ragged.to_list(token_seq)
|
||||
|
||||
num_word_seqs = new2old.numel()
|
||||
|
||||
path_to_seq_map_long = path_to_seq_map.to(torch.long)
|
||||
expanded_memory = memory.index_select(1, path_to_seq_map_long)
|
||||
|
||||
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
|
||||
0, path_to_seq_map_long
|
||||
)
|
||||
|
||||
# TODO: pass the sos_token_id and eos_token_id via function arguments
|
||||
nll = model.decoder_nll(
|
||||
expanded_memory, expanded_memory_key_padding_mask, token_ids, 1, 1
|
||||
)
|
||||
assert nll.ndim == 2
|
||||
assert nll.shape[0] == num_word_seqs
|
||||
|
||||
attention_scores = -nll.sum(dim=1)
|
||||
assert attention_scores.ndim == 1
|
||||
assert attention_scores.numel() == num_word_seqs
|
||||
|
||||
ngram_lm_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||
ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||
|
||||
attention_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||
attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||
|
||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
||||
|
||||
ans = dict()
|
||||
for n_scale in ngram_lm_scale_list:
|
||||
for a_scale in attention_scale_list:
|
||||
tot_scores = (
|
||||
am_scores
|
||||
+ n_scale * ngram_lm_scores
|
||||
+ a_scale * attention_scores
|
||||
)
|
||||
ragged_tot_scores = k2.RaggedFloat(seq_to_path_shape, tot_scores)
|
||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
||||
|
||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
||||
|
||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||
best_path = k2.index(path_2axes, best_path_indexes)
|
||||
|
||||
# labels is a k2.RaggedInt with 2 axes [path][token_id]
|
||||
# Note that it contains -1s.
|
||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
||||
|
||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
||||
|
||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
||||
|
||||
best_path_fsa = k2.linear_fsa(labels)
|
||||
best_path_fsa.aux_labels = aux_labels
|
||||
|
||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
|
||||
ans[key] = best_path_fsa
|
||||
return ans
|
17
icefall/dist.py
Normal file
17
icefall/dist.py
Normal file
@ -0,0 +1,17 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def setup_dist(rank, world_size, master_port=None):
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = (
|
||||
"12354" if master_port is None else str(master_port)
|
||||
)
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
|
||||
def cleanup_dist():
|
||||
dist.destroy_process_group()
|
106
icefall/graph_compiler.py
Normal file
106
icefall/graph_compiler.py
Normal file
@ -0,0 +1,106 @@
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
class CtcTrainingGraphCompiler(object):
|
||||
def __init__(
|
||||
self, lexicon: Lexicon, device: torch.device, oov: str = "<UNK>",
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
lexicon:
|
||||
It is built from `data/lang/lexicon.txt`.
|
||||
device:
|
||||
The device to use for operations compiling transcripts to FSAs.
|
||||
oov:
|
||||
Out of vocabulary word. When a word in the transcript
|
||||
does not exist in the lexicon, it is replaced with `oov`.
|
||||
"""
|
||||
L_inv = lexicon.L_inv.to(device)
|
||||
assert L_inv.requires_grad is False
|
||||
|
||||
assert oov in lexicon.word_table
|
||||
|
||||
self.L_inv = k2.arc_sort(L_inv)
|
||||
self.oov_id = lexicon.word_table[oov]
|
||||
self.word_table = lexicon.word_table
|
||||
|
||||
max_token_id = max(lexicon.tokens)
|
||||
ctc_topo = k2.ctc_topo(max_token_id, modified=False)
|
||||
|
||||
self.ctc_topo = ctc_topo.to(device)
|
||||
self.device = device
|
||||
|
||||
def compile(self, texts: List[str]) -> k2.Fsa:
|
||||
"""Build decoding graphs by composing ctc_topo with
|
||||
given transcripts.
|
||||
|
||||
Args:
|
||||
texts:
|
||||
A list of strings. Each string contains a sentence for an utterance.
|
||||
A sentence consists of spaces separated words. An example `texts`
|
||||
looks like:
|
||||
|
||||
['hello icefall', 'CTC training with k2']
|
||||
|
||||
Returns:
|
||||
An FsaVec, the composition result of `self.ctc_topo` and the
|
||||
transcript FSA.
|
||||
"""
|
||||
transcript_fsa = self.convert_transcript_to_fsa(texts)
|
||||
|
||||
# NOTE: k2.compose runs on CUDA only when treat_epsilons_specially
|
||||
# is False, so we add epsilon self-loops here
|
||||
fsa_with_self_loops = k2.remove_epsilon_and_add_self_loops(
|
||||
transcript_fsa
|
||||
)
|
||||
|
||||
fsa_with_self_loops = k2.arc_sort(fsa_with_self_loops)
|
||||
|
||||
decoding_graph = k2.compose(
|
||||
self.ctc_topo, fsa_with_self_loops, treat_epsilons_specially=False
|
||||
)
|
||||
|
||||
assert decoding_graph.requires_grad is False
|
||||
|
||||
return decoding_graph
|
||||
|
||||
def convert_transcript_to_fsa(self, texts: List[str]) -> k2.Fsa:
|
||||
"""Convert a list of transcript texts to an FsaVec.
|
||||
|
||||
Args:
|
||||
texts:
|
||||
A list of strings. Each string contains a sentence for an utterance.
|
||||
A sentence consists of spaces separated words. An example `texts`
|
||||
looks like:
|
||||
|
||||
['hello icefall', 'CTC training with k2']
|
||||
|
||||
Returns:
|
||||
Return an FsaVec, whose `shape[0]` equals to `len(texts)`.
|
||||
"""
|
||||
word_ids_list = []
|
||||
for text in texts:
|
||||
word_ids = []
|
||||
for word in text.split(" "):
|
||||
if word in self.word_table:
|
||||
word_ids.append(self.word_table[word])
|
||||
else:
|
||||
word_ids.append(self.oov_id)
|
||||
word_ids_list.append(word_ids)
|
||||
|
||||
word_fsa = k2.linear_fsa(word_ids_list, self.device)
|
||||
|
||||
word_fsa_with_self_loops = k2.add_epsilon_self_loops(word_fsa)
|
||||
|
||||
fsa = k2.intersect(
|
||||
self.L_inv, word_fsa_with_self_loops, treat_epsilons_specially=False
|
||||
)
|
||||
# fsa has word ID as labels and token ID as aux_labels, so
|
||||
# we need to invert it
|
||||
ans_fsa = fsa.invert_()
|
||||
return k2.arc_sort(ans_fsa)
|
193
icefall/lexicon.py
Normal file
193
icefall/lexicon.py
Normal file
@ -0,0 +1,193 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
|
||||
def read_lexicon(filename: str) -> List[Tuple[str, List[str]]]:
|
||||
"""Read a lexicon from `filename`.
|
||||
|
||||
Each line in the lexicon contains "word p1 p2 p3 ...".
|
||||
That is, the first field is a word and the remaining
|
||||
fields are tokens. Fields are separated by space(s).
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Path to the lexicon.txt
|
||||
|
||||
Returns:
|
||||
A list of tuples., e.g., [('w', ['p1', 'p2']), ('w1', ['p3, 'p4'])]
|
||||
"""
|
||||
ans = []
|
||||
|
||||
with open(filename, "r", encoding="utf-8") as f:
|
||||
whitespace = re.compile("[ \t]+")
|
||||
for line in f:
|
||||
a = whitespace.split(line.strip(" \t\r\n"))
|
||||
if len(a) == 0:
|
||||
continue
|
||||
|
||||
if len(a) < 2:
|
||||
print(f"Found bad line {line} in lexicon file {filename}")
|
||||
print("Every line is expected to contain at least 2 fields")
|
||||
sys.exit(1)
|
||||
word = a[0]
|
||||
if word == "<eps>":
|
||||
print(f"Found bad line {line} in lexicon file {filename}")
|
||||
print("<eps> should not be a valid word")
|
||||
sys.exit(1)
|
||||
|
||||
tokens = a[1:]
|
||||
ans.append((word, tokens))
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def write_lexicon(filename: str, lexicon: List[Tuple[str, List[str]]]) -> None:
|
||||
"""Write a lexicon to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Path to the lexicon file to be generated.
|
||||
lexicon:
|
||||
It can be the return value of :func:`read_lexicon`.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for word, tokens in lexicon:
|
||||
f.write(f"{word} {' '.join(tokens)}\n")
|
||||
|
||||
|
||||
class Lexicon(object):
|
||||
"""Phone based lexicon.
|
||||
|
||||
TODO: Add BpeLexicon for BPE models.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, lang_dir: Path, disambig_pattern: str = re.compile(r"^#\d+$"),
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
Path to the lang director. It is expected to contain the following
|
||||
files:
|
||||
- tokens.txt
|
||||
- words.txt
|
||||
- L.pt
|
||||
The above files are produced by the script `prepare.sh`. You
|
||||
should have run that before running the training code.
|
||||
disambig_pattern:
|
||||
It contains the pattern for disambiguation symbols.
|
||||
"""
|
||||
lang_dir = Path(lang_dir)
|
||||
self.token_table = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
self.word_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
if (lang_dir / "Linv.pt").exists():
|
||||
logging.info(f"Loading pre-compiled {lang_dir}/Linv.pt")
|
||||
L_inv = k2.Fsa.from_dict(torch.load(lang_dir / "Linv.pt"))
|
||||
else:
|
||||
logging.info("Converting L.pt to Linv.pt")
|
||||
L = k2.Fsa.from_dict(torch.load(lang_dir / "L.pt"))
|
||||
L_inv = k2.arc_sort(L.invert())
|
||||
torch.save(L_inv.as_dict(), lang_dir / "Linv.pt")
|
||||
|
||||
# We save L_inv instead of L because it will be used to intersect with
|
||||
# transcript, both of whose labels are word IDs.
|
||||
self.L_inv = L_inv
|
||||
self.disambig_pattern = disambig_pattern
|
||||
|
||||
@property
|
||||
def tokens(self) -> List[int]:
|
||||
"""Return a list of token IDs excluding those from
|
||||
disambiguation symbols.
|
||||
|
||||
Caution:
|
||||
0 is not a token ID so it is excluded from the return value.
|
||||
"""
|
||||
symbols = self.token_table.symbols
|
||||
ans = []
|
||||
for s in symbols:
|
||||
if not self.disambig_pattern.match(s):
|
||||
ans.append(self.token_table[s])
|
||||
if 0 in ans:
|
||||
ans.remove(0)
|
||||
ans.sort()
|
||||
return ans
|
||||
|
||||
|
||||
class BpeLexicon(Lexicon):
|
||||
def __init__(
|
||||
self, lang_dir: Path, disambig_pattern: str = re.compile(r"^#\d+$"),
|
||||
):
|
||||
"""
|
||||
Refer to the help information in Lexicon.__init__.
|
||||
"""
|
||||
super().__init__(lang_dir=lang_dir, disambig_pattern=disambig_pattern)
|
||||
|
||||
self.ragged_lexicon = self.convert_lexicon_to_ragged(
|
||||
lang_dir / "lexicon.txt"
|
||||
)
|
||||
|
||||
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
|
||||
"""Read a BPE lexicon from file and convert it to a
|
||||
k2 ragged tensor.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of the BPE lexicon, e.g., data/lang/bpe/lexicon.txt
|
||||
Returns:
|
||||
A k2 ragged tensor with two axes [word_id]
|
||||
"""
|
||||
disambig_id = self.word_table["#0"]
|
||||
# We reuse the same words.txt from the phone based lexicon
|
||||
# so that we can share the same G.fst. Here, we have to
|
||||
# exclude some words present only in the phone based lexicon.
|
||||
excluded_words = ["<eps>", "!SIL", "<SPOKEN_NOISE>"]
|
||||
|
||||
# epsilon is not a word, but it occupies on position
|
||||
#
|
||||
row_splits = [0]
|
||||
token_ids = []
|
||||
|
||||
lexicon = read_lexicon(filename)
|
||||
lexicon = dict(lexicon)
|
||||
|
||||
for i in range(disambig_id):
|
||||
w = self.word_table[i]
|
||||
if w in excluded_words:
|
||||
row_splits.append(row_splits[-1])
|
||||
continue
|
||||
pieces = lexicon[w]
|
||||
piece_ids = [self.token_table[k] for k in pieces]
|
||||
|
||||
row_splits.append(row_splits[-1] + len(piece_ids))
|
||||
token_ids.extend(piece_ids)
|
||||
|
||||
cached_tot_size = row_splits[-1]
|
||||
row_splits = torch.tensor(row_splits, dtype=torch.int32)
|
||||
|
||||
shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=cached_tot_size
|
||||
)
|
||||
values = torch.tensor(token_ids, dtype=torch.int32)
|
||||
|
||||
return k2.RaggedInt(shape, values)
|
||||
|
||||
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
|
||||
"""Convert a list of words to a ragged tensor contained
|
||||
word piece IDs.
|
||||
"""
|
||||
word_ids = [self.word_table[w] for w in words]
|
||||
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
||||
|
||||
ragged, _ = k2.ragged.index(
|
||||
self.ragged_lexicon,
|
||||
indexes=word_ids,
|
||||
need_value_indexes=False,
|
||||
axis=0,
|
||||
)
|
||||
return ragged
|
383
icefall/utils.py
Normal file
383
icefall/utils.py
Normal file
@ -0,0 +1,383 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
||||
|
||||
import k2
|
||||
import k2.ragged as k2r
|
||||
import kaldialign
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
Pathlike = Union[str, Path]
|
||||
|
||||
|
||||
@contextmanager
|
||||
def get_executor():
|
||||
# We'll either return a process pool or a distributed worker pool.
|
||||
# Note that this has to be a context manager because we might use multiple
|
||||
# context manager ("with" clauses) inside, and this way everything will
|
||||
# free up the resources at the right time.
|
||||
try:
|
||||
# If this is executed on the CLSP grid, we will try to use the
|
||||
# Grid Engine to distribute the tasks.
|
||||
# Other clusters can also benefit from that, provided a
|
||||
# cluster-specific wrapper.
|
||||
# (see https://github.com/pzelasko/plz for reference)
|
||||
#
|
||||
# The following must be installed:
|
||||
# $ pip install dask distributed
|
||||
# $ pip install git+https://github.com/pzelasko/plz
|
||||
name = subprocess.check_output("hostname -f", shell=True, text=True)
|
||||
if name.strip().endswith(".clsp.jhu.edu"):
|
||||
import plz
|
||||
from distributed import Client
|
||||
|
||||
with plz.setup_cluster() as cluster:
|
||||
cluster.scale(80)
|
||||
yield Client(cluster)
|
||||
return
|
||||
except Exception:
|
||||
pass
|
||||
# No need to return anything - compute_and_store_features
|
||||
# will just instantiate the pool itself.
|
||||
yield None
|
||||
|
||||
|
||||
def str2bool(v):
|
||||
"""Used in argparse.ArgumentParser.add_argument to indicate
|
||||
that a type is a bool type and user can enter
|
||||
|
||||
- yes, true, t, y, 1, to represent True
|
||||
- no, false, f, n, 0, to represent False
|
||||
|
||||
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa
|
||||
"""
|
||||
if isinstance(v, bool):
|
||||
return v
|
||||
if v.lower() in ("yes", "true", "t", "y", "1"):
|
||||
return True
|
||||
elif v.lower() in ("no", "false", "f", "n", "0"):
|
||||
return False
|
||||
else:
|
||||
raise argparse.ArgumentTypeError("Boolean value expected.")
|
||||
|
||||
|
||||
def setup_logger(
|
||||
log_filename: Pathlike, log_level: str = "info", use_console: bool = True
|
||||
) -> None:
|
||||
"""Setup log level.
|
||||
|
||||
Args:
|
||||
log_filename:
|
||||
The filename to save the log.
|
||||
log_level:
|
||||
The log level to use, e.g., "debug", "info", "warning", "error",
|
||||
"critical"
|
||||
"""
|
||||
now = datetime.now()
|
||||
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||
|
||||
if dist.is_available() and dist.is_initialized():
|
||||
world_size = dist.get_world_size()
|
||||
rank = dist.get_rank()
|
||||
formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s" # noqa
|
||||
log_filename = f"{log_filename}-{date_time}-{rank}"
|
||||
else:
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
log_filename = f"{log_filename}-{date_time}"
|
||||
|
||||
os.makedirs(os.path.dirname(log_filename), exist_ok=True)
|
||||
|
||||
level = logging.ERROR
|
||||
if log_level == "debug":
|
||||
level = logging.DEBUG
|
||||
elif log_level == "info":
|
||||
level = logging.INFO
|
||||
elif log_level == "warning":
|
||||
level = logging.WARNING
|
||||
elif log_level == "critical":
|
||||
level = logging.CRITICAL
|
||||
|
||||
logging.basicConfig(
|
||||
filename=log_filename, format=formatter, level=level, filemode="w"
|
||||
)
|
||||
if use_console:
|
||||
console = logging.StreamHandler()
|
||||
console.setLevel(level)
|
||||
console.setFormatter(logging.Formatter(formatter))
|
||||
logging.getLogger("").addHandler(console)
|
||||
|
||||
|
||||
def get_env_info():
|
||||
"""
|
||||
TODO:
|
||||
"""
|
||||
return {
|
||||
"k2-git-sha1": None,
|
||||
"k2-version": None,
|
||||
"lhotse-version": None,
|
||||
"torch-version": None,
|
||||
"icefall-sha1": None,
|
||||
"icefall-version": None,
|
||||
}
|
||||
|
||||
|
||||
# See
|
||||
# https://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute # noqa
|
||||
class AttributeDict(dict):
|
||||
__slots__ = ()
|
||||
__getattr__ = dict.__getitem__
|
||||
__setattr__ = dict.__setitem__
|
||||
|
||||
|
||||
def encode_supervisions(
|
||||
supervisions: dict, subsampling_factor: int
|
||||
) -> Tuple[torch.Tensor, List[str]]:
|
||||
"""
|
||||
Encodes Lhotse's ``batch["supervisions"]`` dict into a pair of torch Tensor,
|
||||
and a list of transcription strings.
|
||||
|
||||
The supervision tensor has shape ``(batch_size, 3)``.
|
||||
Its second dimension contains information about sequence index [0],
|
||||
start frames [1] and num frames [2].
|
||||
|
||||
The batch items might become re-ordered during this operation -- the
|
||||
returned tensor and list of strings are guaranteed to be consistent with
|
||||
each other.
|
||||
"""
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // subsampling_factor,
|
||||
supervisions["num_frames"] // subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
indices = torch.argsort(supervision_segments[:, 2], descending=True)
|
||||
supervision_segments = supervision_segments[indices]
|
||||
texts = supervisions["text"]
|
||||
texts = [texts[idx] for idx in indices]
|
||||
|
||||
return supervision_segments, texts
|
||||
|
||||
|
||||
def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
|
||||
"""Extract the texts (as word IDs) from the best-path FSAs.
|
||||
Args:
|
||||
best_paths:
|
||||
A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
|
||||
containing multiple FSAs, which is expected to be the result
|
||||
of k2.shortest_path (otherwise the returned values won't
|
||||
be meaningful).
|
||||
Returns:
|
||||
Returns a list of lists of int, containing the label sequences we
|
||||
decoded.
|
||||
"""
|
||||
if isinstance(best_paths.aux_labels, k2.RaggedInt):
|
||||
# remove 0's and -1's.
|
||||
aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0)
|
||||
aux_shape = k2r.compose_ragged_shapes(
|
||||
best_paths.arcs.shape(), aux_labels.shape()
|
||||
)
|
||||
|
||||
# remove the states and arcs axes.
|
||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
||||
aux_labels = k2.RaggedInt(aux_shape, aux_labels.values())
|
||||
else:
|
||||
# remove axis corresponding to states.
|
||||
aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1)
|
||||
aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels)
|
||||
# remove 0's and -1's.
|
||||
aux_labels = k2r.remove_values_leq(aux_labels, 0)
|
||||
|
||||
assert aux_labels.num_axes() == 2
|
||||
return k2r.to_list(aux_labels)
|
||||
|
||||
|
||||
def store_transcripts(
|
||||
filename: Pathlike, texts: Iterable[Tuple[str, str]]
|
||||
) -> None:
|
||||
"""Save predicted results and reference transcripts to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
File to save the results to.
|
||||
texts:
|
||||
An iterable of tuples. The first element is the reference transcript
|
||||
while the second element is the predicted result.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w") as f:
|
||||
for ref, hyp in texts:
|
||||
print(f"ref={ref}", file=f)
|
||||
print(f"hyp={hyp}", file=f)
|
||||
|
||||
|
||||
def write_error_stats(
|
||||
f: TextIO, test_set_name: str, results: List[Tuple[str, str]]
|
||||
) -> float:
|
||||
"""Write statistics based on predicted results and reference transcripts.
|
||||
|
||||
It will write the following to the given file:
|
||||
|
||||
- WER
|
||||
- number of insertions, deletions, substitutions, corrects and total
|
||||
reference words. For example::
|
||||
|
||||
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
|
||||
reference words (2337 correct)
|
||||
|
||||
- The difference between the reference transcript and predicted results.
|
||||
An instance is given below::
|
||||
|
||||
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
|
||||
|
||||
The above example shows that the reference word is `EDISON`, but it is
|
||||
predicted to `ADDISON` (a substitution error).
|
||||
|
||||
Another example is::
|
||||
|
||||
FOR THE FIRST DAY (SIR->*) I THINK
|
||||
|
||||
The reference word `SIR` is missing in the predicted
|
||||
results (a deletion error).
|
||||
results:
|
||||
An iterable of tuples. The first element is the reference transcript
|
||||
while the second element is the predicted result.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
subs: Dict[Tuple[str, str], int] = defaultdict(int)
|
||||
ins: Dict[str, int] = defaultdict(int)
|
||||
dels: Dict[str, int] = defaultdict(int)
|
||||
|
||||
# `words` stores counts per word, as follows:
|
||||
# corr, ref_sub, hyp_sub, ins, dels
|
||||
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
|
||||
num_corr = 0
|
||||
ERR = "*"
|
||||
for ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
for ref_word, hyp_word in ali:
|
||||
if ref_word == ERR:
|
||||
ins[hyp_word] += 1
|
||||
words[hyp_word][3] += 1
|
||||
elif hyp_word == ERR:
|
||||
dels[ref_word] += 1
|
||||
words[ref_word][4] += 1
|
||||
elif hyp_word != ref_word:
|
||||
subs[(ref_word, hyp_word)] += 1
|
||||
words[ref_word][1] += 1
|
||||
words[hyp_word][2] += 1
|
||||
else:
|
||||
words[ref_word][0] += 1
|
||||
num_corr += 1
|
||||
ref_len = sum([len(r) for r, _ in results])
|
||||
sub_errs = sum(subs.values())
|
||||
ins_errs = sum(ins.values())
|
||||
del_errs = sum(dels.values())
|
||||
tot_errs = sub_errs + ins_errs + del_errs
|
||||
tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len)
|
||||
|
||||
logging.info(
|
||||
f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} "
|
||||
f"[{tot_errs} / {ref_len}, {ins_errs} ins, "
|
||||
f"{del_errs} del, {sub_errs} sub ]"
|
||||
)
|
||||
|
||||
print(f"%WER = {tot_err_rate}", file=f)
|
||||
print(
|
||||
f"Errors: {ins_errs} insertions, {del_errs} deletions, "
|
||||
f"{sub_errs} substitutions, over {ref_len} reference "
|
||||
f"words ({num_corr} correct)",
|
||||
file=f,
|
||||
)
|
||||
print(
|
||||
"Search below for sections starting with PER-UTT DETAILS:, "
|
||||
"SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:",
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f)
|
||||
for ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
combine_successive_errors = True
|
||||
if combine_successive_errors:
|
||||
ali = [[[x], [y]] for x, y in ali]
|
||||
for i in range(len(ali) - 1):
|
||||
if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]:
|
||||
ali[i + 1][0] = ali[i][0] + ali[i + 1][0]
|
||||
ali[i + 1][1] = ali[i][1] + ali[i + 1][1]
|
||||
ali[i] = [[], []]
|
||||
ali = [
|
||||
[
|
||||
list(filter(lambda a: a != ERR, x)),
|
||||
list(filter(lambda a: a != ERR, y)),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
ali = list(filter(lambda x: x != [[], []], ali))
|
||||
ali = [
|
||||
[
|
||||
ERR if x == [] else " ".join(x),
|
||||
ERR if y == [] else " ".join(y),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
|
||||
print(
|
||||
" ".join(
|
||||
(
|
||||
ref_word
|
||||
if ref_word == hyp_word
|
||||
else f"({ref_word}->{hyp_word})"
|
||||
for ref_word, hyp_word in ali
|
||||
)
|
||||
),
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("SUBSTITUTIONS: count ref -> hyp", file=f)
|
||||
|
||||
for count, (ref, hyp) in sorted(
|
||||
[(v, k) for k, v in subs.items()], reverse=True
|
||||
):
|
||||
print(f"{count} {ref} -> {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("DELETIONS: count ref", file=f)
|
||||
for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True):
|
||||
print(f"{count} {ref}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("INSERTIONS: count hyp", file=f)
|
||||
for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True):
|
||||
print(f"{count} {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print(
|
||||
"PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f
|
||||
)
|
||||
for _, word, counts in sorted(
|
||||
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
|
||||
):
|
||||
(corr, ref_sub, hyp_sub, ins, dels) = counts
|
||||
tot_errs = ref_sub + hyp_sub + ins + dels
|
||||
ref_count = corr + ref_sub + dels
|
||||
hyp_count = corr + hyp_sub + ins
|
||||
|
||||
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
|
||||
return float(tot_err_rate)
|
11
pyproject.toml
Normal file
11
pyproject.toml
Normal file
@ -0,0 +1,11 @@
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
||||
[tool.black]
|
||||
line-length = 80
|
||||
exclude = '''
|
||||
/(
|
||||
\.git
|
||||
| \.github
|
||||
)/
|
||||
'''
|
3
requirements.txt
Normal file
3
requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
kaldilm
|
||||
kaldialign
|
||||
sentencepiece>=0.1.96
|
25
test/test_bpe_graph_compiler.py
Executable file
25
test/test_bpe_graph_compiler.py
Executable file
@ -0,0 +1,25 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.lexicon import BpeLexicon
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def test():
|
||||
lang_dir = Path("data/lang/bpe")
|
||||
if not lang_dir.is_dir():
|
||||
return
|
||||
# TODO: generate data for testing
|
||||
|
||||
compiler = BpeCtcTrainingGraphCompiler(lang_dir)
|
||||
ids = compiler.texts_to_ids(["HELLO", "WORLD ZZZ"])
|
||||
fsa = compiler.compile(ids)
|
||||
|
||||
lexicon = BpeLexicon(lang_dir)
|
||||
ids0 = lexicon.words_to_piece_ids(["HELLO"])
|
||||
assert ids[0] == ids0.values().tolist()
|
||||
|
||||
ids1 = lexicon.words_to_piece_ids(["WORLD", "ZZZ"])
|
||||
assert ids[1] == ids1.values().tolist()
|
51
test/test_checkpoint.py
Normal file
51
test/test_checkpoint.py
Normal file
@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
load_checkpoint,
|
||||
save_checkpoint,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def checkpoints1(tmp_path):
|
||||
f = tmp_path / "f.pt"
|
||||
m = nn.Module()
|
||||
m.p1 = nn.Parameter(torch.tensor([10.0, 20.0]), requires_grad=False)
|
||||
m.register_buffer("p2", torch.tensor([10, 100]))
|
||||
|
||||
params = {"a": 10, "b": 20}
|
||||
save_checkpoint(f, m, params=params)
|
||||
return f
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def checkpoints2(tmp_path):
|
||||
f = tmp_path / "f2.pt"
|
||||
m = nn.Module()
|
||||
m.p1 = nn.Parameter(torch.Tensor([50, 30.0]))
|
||||
m.register_buffer("p2", torch.tensor([1, 3]))
|
||||
params = {"a": 100, "b": 200}
|
||||
|
||||
save_checkpoint(f, m, params=params)
|
||||
return f
|
||||
|
||||
|
||||
def test_load_checkpoints(checkpoints1):
|
||||
m = nn.Module()
|
||||
m.p1 = nn.Parameter(torch.Tensor([0, 0.0]))
|
||||
m.p2 = nn.Parameter(torch.Tensor([0, 0]))
|
||||
params = load_checkpoint(checkpoints1, m)
|
||||
assert torch.allclose(m.p1, torch.Tensor([10.0, 20]))
|
||||
assert params["a"] == 10
|
||||
assert params["b"] == 20
|
||||
|
||||
|
||||
def test_average_checkpoints(checkpoints1, checkpoints2):
|
||||
state_dict = average_checkpoints([checkpoints1, checkpoints2])
|
||||
assert torch.allclose(state_dict["p1"], torch.Tensor([30, 25.0]))
|
||||
assert torch.allclose(state_dict["p2"], torch.tensor([5, 51]))
|
160
test/test_graph_compiler.py
Normal file
160
test/test_graph_compiler.py
Normal file
@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import re
|
||||
|
||||
import k2
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import get_texts
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lexicon():
|
||||
"""
|
||||
We use the following test data:
|
||||
|
||||
lexicon.txt
|
||||
|
||||
foo f o o
|
||||
bar b a r
|
||||
baz b a z
|
||||
<UNK> SPN
|
||||
|
||||
phones.txt
|
||||
|
||||
<eps> 0
|
||||
a 1
|
||||
b 2
|
||||
f 3
|
||||
o 4
|
||||
r 5
|
||||
z 6
|
||||
SPN 7
|
||||
|
||||
words.txt:
|
||||
|
||||
<eps> 0
|
||||
foo 1
|
||||
bar 2
|
||||
baz 3
|
||||
<UNK> 4
|
||||
"""
|
||||
L = k2.Fsa.from_str(
|
||||
"""
|
||||
0 0 7 4 0
|
||||
0 7 -1 -1 0
|
||||
0 1 3 1 0
|
||||
0 3 2 2 0
|
||||
0 5 2 3 0
|
||||
1 2 4 0 0
|
||||
2 0 4 0 0
|
||||
3 4 1 0 0
|
||||
4 0 5 0 0
|
||||
5 6 1 0 0
|
||||
6 0 6 0 0
|
||||
7
|
||||
""",
|
||||
num_aux_labels=1,
|
||||
)
|
||||
L.labels_sym = k2.SymbolTable.from_str(
|
||||
"""
|
||||
a 1
|
||||
b 2
|
||||
f 3
|
||||
o 4
|
||||
r 5
|
||||
z 6
|
||||
SPN 7
|
||||
"""
|
||||
)
|
||||
L.aux_labels_sym = k2.SymbolTable.from_str(
|
||||
"""
|
||||
foo 1
|
||||
bar 2
|
||||
baz 3
|
||||
<UNK> 4
|
||||
"""
|
||||
)
|
||||
ans = Lexicon.__new__(Lexicon)
|
||||
ans.token_table = L.labels_sym
|
||||
ans.word_table = L.aux_labels_sym
|
||||
ans.L_inv = k2.arc_sort(L.invert_())
|
||||
ans.disambig_pattern = re.compile(r"^#\d+$")
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def compiler(lexicon):
|
||||
return CtcTrainingGraphCompiler(lexicon, device=torch.device("cpu"))
|
||||
|
||||
|
||||
class TestCtcTrainingGraphCompiler(object):
|
||||
@staticmethod
|
||||
def test_convert_transcript_to_fsa(compiler, lexicon):
|
||||
texts = ["bar foo", "baz ok"]
|
||||
fsa = compiler.convert_transcript_to_fsa(texts)
|
||||
labels0 = fsa[0].labels[:-1].tolist()
|
||||
aux_labels0 = fsa[0].aux_labels[:-1]
|
||||
aux_labels0 = aux_labels0[aux_labels0 != 0].tolist()
|
||||
|
||||
labels1 = fsa[1].labels[:-1].tolist()
|
||||
aux_labels1 = fsa[1].aux_labels[:-1]
|
||||
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
||||
|
||||
labels0 = [lexicon.token_table[i] for i in labels0]
|
||||
labels1 = [lexicon.token_table[i] for i in labels1]
|
||||
|
||||
aux_labels0 = [lexicon.word_table[i] for i in aux_labels0]
|
||||
aux_labels1 = [lexicon.word_table[i] for i in aux_labels1]
|
||||
|
||||
assert labels0 == ["b", "a", "r", "f", "o", "o"]
|
||||
assert aux_labels0 == ["bar", "foo"]
|
||||
|
||||
assert labels1 == ["b", "a", "z", "SPN"]
|
||||
assert aux_labels1 == ["baz", "<UNK>"]
|
||||
|
||||
@staticmethod
|
||||
def test_compile(compiler, lexicon):
|
||||
texts = ["bar foo", "baz ok"]
|
||||
decoding_graph = compiler.compile(texts)
|
||||
input1 = ["b", "b", "<blk>", "<blk>", "a", "a", "r", "<blk>", "<blk>"]
|
||||
input1 += ["f", "f", "<blk>", "<blk>", "o", "o", "<blk>", "o", "o"]
|
||||
|
||||
input2 = ["b", "b", "a", "a", "a", "<blk>", "<blk>", "z", "z"]
|
||||
input2 += ["<blk>", "<blk>", "SPN", "SPN", "<blk>", "<blk>"]
|
||||
|
||||
lexicon.token_table._id2sym[0] == "<blk>"
|
||||
lexicon.token_table._sym2id["<blk>"] = 0
|
||||
|
||||
input1 = [lexicon.token_table[i] for i in input1]
|
||||
input2 = [lexicon.token_table[i] for i in input2]
|
||||
|
||||
fsa1 = k2.linear_fsa(input1)
|
||||
fsa2 = k2.linear_fsa(input2)
|
||||
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
||||
|
||||
decoding_graph = k2.arc_sort(decoding_graph)
|
||||
lattice = k2.intersect(
|
||||
decoding_graph, fsas, treat_epsilons_specially=False
|
||||
)
|
||||
lattice = k2.connect(lattice)
|
||||
|
||||
aux_labels0 = lattice[0].aux_labels[:-1]
|
||||
aux_labels0 = aux_labels0[aux_labels0 != 0].tolist()
|
||||
aux_labels0 = [lexicon.word_table[i] for i in aux_labels0]
|
||||
assert aux_labels0 == ["bar", "foo"]
|
||||
|
||||
aux_labels1 = lattice[1].aux_labels[:-1]
|
||||
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
||||
aux_labels1 = [lexicon.word_table[i] for i in aux_labels1]
|
||||
assert aux_labels1 == ["baz", "<UNK>"]
|
||||
|
||||
texts = get_texts(lattice)
|
||||
texts = [[lexicon.word_table[i] for i in words] for words in texts]
|
||||
assert texts == [["bar", "foo"], ["baz", "<UNK>"]]
|
77
test/test_lexicon.py
Normal file
77
test/test_lexicon.py
Normal file
@ -0,0 +1,77 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import BpeLexicon, Lexicon
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lang_dir(tmp_path):
|
||||
phone2id = """
|
||||
<eps> 0
|
||||
a 1
|
||||
b 2
|
||||
f 3
|
||||
o 4
|
||||
r 5
|
||||
z 6
|
||||
SPN 7
|
||||
#0 8
|
||||
"""
|
||||
word2id = """
|
||||
<eps> 0
|
||||
foo 1
|
||||
bar 2
|
||||
baz 3
|
||||
<UNK> 4
|
||||
#0 5
|
||||
"""
|
||||
|
||||
L = k2.Fsa.from_str(
|
||||
"""
|
||||
0 0 7 4 0
|
||||
0 7 -1 -1 0
|
||||
0 1 3 1 0
|
||||
0 3 2 2 0
|
||||
0 5 2 3 0
|
||||
1 2 4 0 0
|
||||
2 0 4 0 0
|
||||
3 4 1 0 0
|
||||
4 0 5 0 0
|
||||
5 6 1 0 0
|
||||
6 0 6 0 0
|
||||
7
|
||||
""",
|
||||
num_aux_labels=1,
|
||||
)
|
||||
|
||||
with open(tmp_path / "tokens.txt", "w") as f:
|
||||
f.write(phone2id)
|
||||
with open(tmp_path / "words.txt", "w") as f:
|
||||
f.write(word2id)
|
||||
|
||||
torch.save(L.as_dict(), tmp_path / "L.pt")
|
||||
|
||||
return tmp_path
|
||||
|
||||
|
||||
def test_lexicon(lang_dir):
|
||||
lexicon = Lexicon(lang_dir)
|
||||
assert lexicon.tokens == list(range(1, 8))
|
||||
|
||||
|
||||
def test_bpe_lexicon():
|
||||
lang_dir = Path("data/lang/bpe")
|
||||
if not lang_dir.is_dir():
|
||||
return
|
||||
# TODO: Generate test data for BpeLexicon
|
||||
|
||||
lexicon = BpeLexicon(lang_dir)
|
||||
words = ["<UNK>", "HELLO", "ZZZZ", "WORLD"]
|
||||
ids = lexicon.words_to_piece_ids(words)
|
||||
print(ids)
|
||||
print([lexicon.token_table[i] for i in ids.values().tolist()])
|
93
test/test_utils.py
Normal file
93
test/test_utils.py
Normal file
@ -0,0 +1,93 @@
|
||||
#!/usr/bin/env python3
|
||||
import k2
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from icefall.utils import AttributeDict, encode_supervisions, get_texts
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sup():
|
||||
sequence_idx = torch.tensor([0, 1, 2])
|
||||
start_frame = torch.tensor([1, 3, 9])
|
||||
num_frames = torch.tensor([20, 30, 10])
|
||||
text = ["one", "two", "three"]
|
||||
return {
|
||||
"sequence_idx": sequence_idx,
|
||||
"start_frame": start_frame,
|
||||
"num_frames": num_frames,
|
||||
"text": text,
|
||||
}
|
||||
|
||||
|
||||
def test_encode_supervisions(sup):
|
||||
supervision_segments, texts = encode_supervisions(sup, subsampling_factor=4)
|
||||
assert torch.all(
|
||||
torch.eq(
|
||||
supervision_segments,
|
||||
torch.tensor(
|
||||
[[1, 0, 30 // 4], [0, 0, 20 // 4], [2, 9 // 4, 10 // 4]]
|
||||
),
|
||||
)
|
||||
)
|
||||
assert texts == ["two", "one", "three"]
|
||||
|
||||
|
||||
def test_get_texts_ragged():
|
||||
fsa1 = k2.Fsa.from_str(
|
||||
"""
|
||||
0 1 1 10
|
||||
1 2 2 20
|
||||
2 3 3 30
|
||||
3 4 -1 0
|
||||
4
|
||||
"""
|
||||
)
|
||||
fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]")
|
||||
|
||||
fsa2 = k2.Fsa.from_str(
|
||||
"""
|
||||
0 1 1 1
|
||||
1 2 2 2
|
||||
2 3 -1 0
|
||||
3
|
||||
"""
|
||||
)
|
||||
fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]")
|
||||
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
||||
texts = get_texts(fsas)
|
||||
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]
|
||||
|
||||
|
||||
def test_get_texts_regular():
|
||||
fsa1 = k2.Fsa.from_str(
|
||||
"""
|
||||
0 1 1 3 10
|
||||
1 2 2 0 20
|
||||
2 3 3 2 30
|
||||
3 4 -1 -1 0
|
||||
4
|
||||
""",
|
||||
num_aux_labels=1,
|
||||
)
|
||||
|
||||
fsa2 = k2.Fsa.from_str(
|
||||
"""
|
||||
0 1 1 10 1
|
||||
1 2 2 5 2
|
||||
2 3 -1 -1 0
|
||||
3
|
||||
""",
|
||||
num_aux_labels=1,
|
||||
)
|
||||
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
||||
texts = get_texts(fsas)
|
||||
assert texts == [[3, 2], [10, 5]]
|
||||
|
||||
|
||||
def test_attribute_dict():
|
||||
s = AttributeDict({"a": 10, "b": 20})
|
||||
assert s.a == 10
|
||||
assert s["b"] == 20
|
||||
s.c = 100
|
||||
assert s["c"] == 100
|
Loading…
x
Reference in New Issue
Block a user