icefall/egs/librispeech/ASR/prepare.sh
2021-07-29 20:23:52 +08:00

151 lines
3.9 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=-1
stop_stage=100
. local/parse_options.sh || exit 1
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
mkdir -p data/lm
./local/download_lm.py
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
#
# ln -sfv /path/to/LibriSpeech data/
#
# The script checks that if
#
# data/LibriSpeech/test-clean/.completed exists,
#
# it will not re-download it.
#
# The same goes for dev-clean, dev-other, test-other, train-clean-100
# train-clean-360, and train-other-500
mkdir -p data/LibriSpeech
lhotse download librispeech --full data
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan data/
#
# and create a file data/.musan_completed
# to avoid downloading it again
if [ ! -f data/.musan_completed ]; then
lhotse download musan data
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare librispeech manifest"
# We assume that you have downloaded the librispeech corpus
# to data/LibriSpeech
mkdir -p data/manifests
lhotse prepare librispeech -j $nj data/LibriSpeech data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan data/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for librispeech"
mkdir -p data/fbank
./local/compute_fbank_librispeech.py
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
# TODO: add BPE based lang
mkdir -p data/lang
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - data/lm/librispeech-lexicon.txt |
sort | uniq > data/lang/lexicon.txt
if [ ! -f data/lang/L_disambig.pt ]; then
./local/prepare_lang.py
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "State 6: Prepare BPE based lang"
mkdir -p data/lang/bpe
cp data/lang/words.txt data/lang/bpe/
if [ ! -f data/lang/bpe/train.txt ]; then
log "Generate data for BPE training"
files=$(
find "data/LibriSpeech/train-clean-100" -name "*.trans.txt"
find "data/LibriSpeech/train-clean-360" -name "*.trans.txt"
find "data/LibriSpeech/train-other-500" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > data/lang/bpe/train.txt
fi
python3 ./local/train_bpe_model.py
if [ ! -f data/lang/bpe/L_disambig.pt ]; then
./local/prepare_lang_bpe.py
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
data/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compile HLG"
python3 ./local/compile_hlg.py
fi