mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
migrate from speech llm
This commit is contained in:
parent
64c5364085
commit
cca562d538
185
egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py
Executable file
185
egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py
Executable file
@ -0,0 +1,185 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from lhotse import (
|
||||||
|
CutSet,
|
||||||
|
LilcomChunkyWriter,
|
||||||
|
WhisperFbank,
|
||||||
|
WhisperFbankConfig,
|
||||||
|
)
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--whisper-fbank",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--resample-to-16kHz",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Resample audio to 16kHz. Default: False.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--out-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/fbank",
|
||||||
|
help="Output directory for the computed features",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--huggingface-dataset-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/Belle_1.4M-SLAM-Omni",
|
||||||
|
help="The path or name of the Huggingface dataset",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--audio-key",
|
||||||
|
type=str,
|
||||||
|
default="question_audio",
|
||||||
|
help="The key in the Huggingface dataset containing the audio data",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--text-key",
|
||||||
|
type=str,
|
||||||
|
default="answer",
|
||||||
|
help="The key in the Huggingface dataset containing the text data",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank(args):
|
||||||
|
in_out_dir = Path(args.out_dir)
|
||||||
|
in_out_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
# number of workers in dataloader
|
||||||
|
num_workers = 4
|
||||||
|
|
||||||
|
# number of seconds in a batch
|
||||||
|
batch_duration = 10
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
if args.whisper_fbank:
|
||||||
|
extractor = WhisperFbank(
|
||||||
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
start = 0
|
||||||
|
stop = 1601
|
||||||
|
num_digits = 5
|
||||||
|
for i in range(start, stop):
|
||||||
|
idx = f"{i}".zfill(num_digits)
|
||||||
|
# dataset = load_dataset(args.huggingface_dataset_path_or_name, streaming=True, split=partition)
|
||||||
|
parquet_files = [
|
||||||
|
f"data/train-{idx}-of-01601.parquet",
|
||||||
|
]
|
||||||
|
parquet_files = [f"{args.huggingface_dataset_path_or_name}/{f}" for f in parquet_files]
|
||||||
|
file_name = parquet_files[0]
|
||||||
|
logging.info(f"Loading dataset from {file_name}")
|
||||||
|
dataset = load_dataset('parquet', data_files=parquet_files, streaming=True, split='train')
|
||||||
|
|
||||||
|
cut_set = CutSet.from_huggingface_dataset(dataset, audio_key=args.audio_key, text_key=args.text_key)
|
||||||
|
|
||||||
|
logging.info("Splitting cuts into smaller chunks")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.resample_to_16kHz:
|
||||||
|
cut_set = cut_set.resample(16000)
|
||||||
|
if args.speed_perturb:
|
||||||
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
|
||||||
|
logging.info("Computing features")
|
||||||
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{in_out_dir}/feats_{idx}",
|
||||||
|
num_workers=num_workers,
|
||||||
|
batch_duration=batch_duration,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
overwrite=True,
|
||||||
|
)
|
||||||
|
cuts_path = f"{in_out_dir}/cuts_belle.{idx}.jsonl.gz"
|
||||||
|
logging.info(f"Saving to {cuts_path}")
|
||||||
|
# cut_set.to_file(cuts_path)
|
||||||
|
remove_recording_item(cut_set, cuts_path)
|
||||||
|
|
||||||
|
def remove_recording_item(
|
||||||
|
cuts,
|
||||||
|
output_cuts,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
don't store recording item
|
||||||
|
"""
|
||||||
|
with CutSet.open_writer(output_cuts) as writer:
|
||||||
|
for cut in cuts:
|
||||||
|
cut.recording.sources = None
|
||||||
|
writer.write(cut)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
compute_fbank(args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
45
egs/speech_llm/SPEECH2SPEECH/prepare.sh
Normal file
45
egs/speech_llm/SPEECH2SPEECH/prepare.sh
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/workspace/slam/icefall_omni
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=2
|
||||||
|
stop_stage=2
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "stage 0: "
|
||||||
|
|
||||||
|
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "stage 1: Download whisper-large-v2 multi-hans-zh fbank feature from huggingface"
|
||||||
|
|
||||||
|
python3 local/compute_whisper_fbank.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "stage 2: "
|
||||||
|
python3 ./slam_omni/decode.py \
|
||||||
|
--max-duration 80 \
|
||||||
|
--exp-dir slam_omni/exp_test_whisper_qwen2_1.5B \
|
||||||
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||||
|
--llm-path-or-name models/qwen \
|
||||||
|
--epoch 999 --avg 1 \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True
|
||||||
|
|
||||||
|
fi
|
437
egs/speech_llm/SPEECH2SPEECH/slam_omni/data_module.py
Normal file
437
egs/speech_llm/SPEECH2SPEECH/slam_omni/data_module.py
Normal file
@ -0,0 +1,437 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, WhisperFbank, WhisperFbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
from speech_dataset import K2SpeechRecognitionDataset
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=300.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
# group.add_argument(
|
||||||
|
# "--concatenate-cuts",
|
||||||
|
# type=str2bool,
|
||||||
|
# default=False,
|
||||||
|
# help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
# "to minimize the amount of padding.",
|
||||||
|
# )
|
||||||
|
# group.add_argument(
|
||||||
|
# "--duration-factor",
|
||||||
|
# type=float,
|
||||||
|
# default=1.0,
|
||||||
|
# help="Determines the maximum duration of a concatenated cut "
|
||||||
|
# "relative to the duration of the longest cut in a batch.",
|
||||||
|
# )
|
||||||
|
# group.add_argument(
|
||||||
|
# "--gap",
|
||||||
|
# type=float,
|
||||||
|
# default=1.0,
|
||||||
|
# help="The amount of padding (in seconds) inserted between "
|
||||||
|
# "concatenated cuts. This padding is filled with noise when "
|
||||||
|
# "noise augmentation is used.",
|
||||||
|
# )
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--huggingface-dataset-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/Belle_1.4M-SLAM-Omni",
|
||||||
|
help="The path or name of the Huggingface dataset",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--audio-key",
|
||||||
|
type=str,
|
||||||
|
default="question_audio",
|
||||||
|
help="The key in the Huggingface dataset containing the audio data",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--text-key",
|
||||||
|
type=str,
|
||||||
|
default="answer",
|
||||||
|
help="The key in the Huggingface dataset containing the text data",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--resample-to-16kHz",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Resample audio to 16kHz. Default: False.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
# if self.args.concatenate_cuts:
|
||||||
|
# logging.info(
|
||||||
|
# f"Using cut concatenation with duration factor "
|
||||||
|
# f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
# )
|
||||||
|
# # Cut concatenation should be the first transform in the list,
|
||||||
|
# # so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# # different utterances.
|
||||||
|
# transforms = [
|
||||||
|
# CutConcatenate(
|
||||||
|
# duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
# )
|
||||||
|
# ] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(WhisperFbank(WhisperFbankConfig(num_filters=80, device='cuda'))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
buffer_size=self.args.num_buckets * 2000,
|
||||||
|
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=True,
|
||||||
|
pin_memory=True,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
# if self.args.concatenate_cuts:
|
||||||
|
# transforms = [
|
||||||
|
# CutConcatenate(
|
||||||
|
# duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
# )
|
||||||
|
# ] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(WhisperFbank(WhisperFbankConfig(num_filters=80, device='cuda'))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(WhisperFbank(WhisperFbankConfig(num_filters=80, device='cuda')))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# dataset = load_dataset(args.huggingface_dataset_path_or_name, streaming=True, split=partition)
|
||||||
|
i, num_digits = 0, 5
|
||||||
|
idx = f"{i}".zfill(num_digits)
|
||||||
|
parquet_files = [
|
||||||
|
f"data/train-{idx}-of-01601.parquet",
|
||||||
|
]
|
||||||
|
parquet_files = [f"{args.huggingface_dataset_path_or_name}/{f}" for f in parquet_files]
|
||||||
|
file_name = parquet_files[0]
|
||||||
|
logging.info(f"Loading dataset from {file_name}")
|
||||||
|
dataset = load_dataset('parquet', data_files=parquet_files, streaming=True, split='train')
|
||||||
|
cut_set = CutSet.from_huggingface_dataset(dataset, audio_key=args.audio_key, text_key=args.text_key)
|
||||||
|
if args.resample_to_16kHz:
|
||||||
|
cut_set = cut_set.resample(16000)
|
||||||
|
return cut_set
|
||||||
|
else:
|
||||||
|
return load_manifest_lazy(self.args.manifest_dir / "cuts_belle.00000.jsonl.gz")
|
653
egs/speech_llm/SPEECH2SPEECH/slam_omni/decode.py
Executable file
653
egs/speech_llm/SPEECH2SPEECH/slam_omni/decode.py
Executable file
@ -0,0 +1,653 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
# 2024 Yuekai Zhang
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
# Command for decoding using fine-tuned models:
|
||||||
|
|
||||||
|
pip install huggingface_hub['cli']
|
||||||
|
mkdir -p models/whisper models/qwen models/checkpoint
|
||||||
|
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B
|
||||||
|
|
||||||
|
# For aishell fine-tuned whisper model
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
|
||||||
|
# For multi-hans fine-tuned whisper model
|
||||||
|
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||||||
|
|
||||||
|
huggingface-cli download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
|
||||||
|
|
||||||
|
mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
|
||||||
|
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt
|
||||||
|
|
||||||
|
python3 ./whisper_llm_zh/decode.py \
|
||||||
|
--max-duration 80 \
|
||||||
|
--exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
|
||||||
|
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
|
||||||
|
--llm-path-or-name models/qwen \
|
||||||
|
--epoch 999 --avg 1 \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --dataset aishell
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import whisper
|
||||||
|
from data_module import AsrDataModule
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from model import SPEECH_LLM, EncoderProjector
|
||||||
|
# from data_module import MultiDataset
|
||||||
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
||||||
|
from train import DEFAULT_SPEECH_TOKEN
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def average_checkpoints(
|
||||||
|
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||||
|
) -> dict:
|
||||||
|
"""Average a list of checkpoints.
|
||||||
|
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
Filenames of the checkpoints to be averaged. We assume all
|
||||||
|
checkpoints are saved by :func:`save_checkpoint`.
|
||||||
|
device:
|
||||||
|
Move checkpoints to this device before averaging.
|
||||||
|
Returns:
|
||||||
|
Return a dict (i.e., state_dict) which is the average of all
|
||||||
|
model state dicts contained in the checkpoints.
|
||||||
|
"""
|
||||||
|
n = len(filenames)
|
||||||
|
|
||||||
|
if "model" in torch.load(filenames[0], map_location=device):
|
||||||
|
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||||
|
else:
|
||||||
|
avg = torch.load(filenames[0], map_location=device)
|
||||||
|
|
||||||
|
# Identify shared parameters. Two parameters are said to be shared
|
||||||
|
# if they have the same data_ptr
|
||||||
|
uniqued: Dict[int, str] = dict()
|
||||||
|
|
||||||
|
for k, v in avg.items():
|
||||||
|
v_data_ptr = v.data_ptr()
|
||||||
|
if v_data_ptr in uniqued:
|
||||||
|
continue
|
||||||
|
uniqued[v_data_ptr] = k
|
||||||
|
|
||||||
|
uniqued_names = list(uniqued.values())
|
||||||
|
|
||||||
|
for i in range(1, n):
|
||||||
|
if "model" in torch.load(filenames[i], map_location=device):
|
||||||
|
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||||
|
else:
|
||||||
|
state_dict = torch.load(filenames[i], map_location=device)
|
||||||
|
for k in uniqued_names:
|
||||||
|
avg[k] += state_dict[k]
|
||||||
|
|
||||||
|
for k in uniqued_names:
|
||||||
|
if avg[k].is_floating_point():
|
||||||
|
avg[k] /= n
|
||||||
|
else:
|
||||||
|
avg[k] //= n
|
||||||
|
|
||||||
|
return avg
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||||
|
help="Path or name of the large language model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-encoder-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="whisper-large-v2",
|
||||||
|
help="Path or name of the speech encoder.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-projector-ds-rate",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Downsample rate for the encoder projector.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-flash-attn",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use flash attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-lora",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use lora fine-tuned llm checkpoint.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=-1,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="beam-search",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- beam-search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="beam size for beam search decoding",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--remove-whisper-encoder-input-length-restriction",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="replace whisper encoder forward method to remove input length restriction",
|
||||||
|
)
|
||||||
|
|
||||||
|
# parser.add_argument(
|
||||||
|
# "--dataset",
|
||||||
|
# type=str,
|
||||||
|
# default="aishell",
|
||||||
|
# choices=["aishell", "speechio", "wenetspeech_test_meeting", "multi_hans_zh"],
|
||||||
|
# help="The dataset to decode",
|
||||||
|
# )
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
batch: dict,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: "beam-search"
|
||||||
|
- value: A list of lists. Each sublist is a list of token IDs.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "beam-search".
|
||||||
|
"""
|
||||||
|
|
||||||
|
def preprocess(
|
||||||
|
messages,
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer,
|
||||||
|
max_len: int = 128,
|
||||||
|
) -> Dict:
|
||||||
|
"""Preprocesses the data for supervised fine-tuning."""
|
||||||
|
texts = []
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
for i, msg in enumerate(messages):
|
||||||
|
texts.append(
|
||||||
|
tokenizer.apply_chat_template(
|
||||||
|
msg,
|
||||||
|
tokenize=True,
|
||||||
|
add_generation_prompt=False,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
padding="longest",
|
||||||
|
max_length=max_len,
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
max_len_texts = max([len(text) for text in texts])
|
||||||
|
if tokenizer.padding_side == "right":
|
||||||
|
texts = [
|
||||||
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
texts = [
|
||||||
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
|
||||||
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||||
|
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
return input_ids, attention_mask
|
||||||
|
|
||||||
|
dtype = torch.float32
|
||||||
|
device = model.llm.device
|
||||||
|
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||||
|
if not params.remove_whisper_encoder_input_length_restriction:
|
||||||
|
T = 3000
|
||||||
|
if feature.shape[2] < T:
|
||||||
|
feature = torch.cat(
|
||||||
|
[
|
||||||
|
feature,
|
||||||
|
torch.zeros(
|
||||||
|
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||||
|
).to(device, dtype=dtype),
|
||||||
|
],
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_len = supervisions["num_frames"]
|
||||||
|
feature_len = feature_len.to(device, dtype=dtype)
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
[
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}请转写音频为文字"},
|
||||||
|
{"role": "assistant", "content": ""},
|
||||||
|
]
|
||||||
|
] * len(feature)
|
||||||
|
|
||||||
|
input_ids, attention_mask = preprocess(messages, tokenizer, max_len=128)
|
||||||
|
|
||||||
|
generated_ids = model.decode(
|
||||||
|
feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||||||
|
)
|
||||||
|
hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||||
|
|
||||||
|
print(hyps)
|
||||||
|
print(supervisions)
|
||||||
|
|
||||||
|
return {"beam-search": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
The dataloader.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "beam-search".
|
||||||
|
"""
|
||||||
|
|
||||||
|
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||||||
|
"""
|
||||||
|
Text normalization similar to M2MeT challenge baseline.
|
||||||
|
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||||||
|
"""
|
||||||
|
if normalize == "none":
|
||||||
|
return text
|
||||||
|
elif normalize == "m2met":
|
||||||
|
import re
|
||||||
|
|
||||||
|
text = text.replace(" ", "")
|
||||||
|
text = text.replace("<sil>", "")
|
||||||
|
text = text.replace("<%>", "")
|
||||||
|
text = text.replace("<->", "")
|
||||||
|
text = text.replace("<$>", "")
|
||||||
|
text = text.replace("<#>", "")
|
||||||
|
text = text.replace("<_>", "")
|
||||||
|
text = text.replace("<space>", "")
|
||||||
|
text = text.replace("`", "")
|
||||||
|
text = text.replace("&", "")
|
||||||
|
text = text.replace(",", "")
|
||||||
|
if re.search("[a-zA-Z]", text):
|
||||||
|
text = text.upper()
|
||||||
|
text = text.replace("A", "A")
|
||||||
|
text = text.replace("a", "A")
|
||||||
|
text = text.replace("b", "B")
|
||||||
|
text = text.replace("c", "C")
|
||||||
|
text = text.replace("k", "K")
|
||||||
|
text = text.replace("t", "T")
|
||||||
|
text = text.replace(",", "")
|
||||||
|
text = text.replace("丶", "")
|
||||||
|
text = text.replace("。", "")
|
||||||
|
text = text.replace("、", "")
|
||||||
|
text = text.replace("?", "")
|
||||||
|
return text
|
||||||
|
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_text = normalize_text_alimeeting(ref_text)
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
print(f"ref: {ref_text}")
|
||||||
|
print(f"hyp: {''.join(hyp_words)}")
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
# we compute CER for aishell dataset.
|
||||||
|
results_char = []
|
||||||
|
for res in results:
|
||||||
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tCER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
setup_logger(
|
||||||
|
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
if params.remove_whisper_encoder_input_length_restriction:
|
||||||
|
replace_whisper_encoder_forward()
|
||||||
|
|
||||||
|
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||||
|
speech_encoder = whisper_model.encoder
|
||||||
|
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||||
|
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
# torch_dtype=torch.bfloat16 FIX ME
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "right"
|
||||||
|
|
||||||
|
llm = AutoModelForCausalLM.from_pretrained(
|
||||||
|
params.llm_path_or_name,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
if params.use_lora:
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
target_modules=[
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
"o_proj",
|
||||||
|
"up_proj",
|
||||||
|
"gate_proj",
|
||||||
|
"down_proj",
|
||||||
|
],
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
llm = get_peft_model(llm, lora_config)
|
||||||
|
llm.print_trainable_parameters()
|
||||||
|
|
||||||
|
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||||
|
tokenizer.add_special_tokens(special_tokens_dict)
|
||||||
|
llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
||||||
|
llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
||||||
|
llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
||||||
|
|
||||||
|
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_projector = EncoderProjector(
|
||||||
|
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
model = SPEECH_LLM(
|
||||||
|
speech_encoder,
|
||||||
|
llm,
|
||||||
|
encoder_projector,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg > 1:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
assert start >= 1, start
|
||||||
|
checkpoint = torch.load(
|
||||||
|
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||||
|
)
|
||||||
|
assert "model" not in checkpoint
|
||||||
|
# deepspeed converted checkpoint only contains model state_dict
|
||||||
|
filenames = [
|
||||||
|
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||||||
|
for epoch in range(start, params.epoch + 1)
|
||||||
|
]
|
||||||
|
avg_checkpoint = average_checkpoints(filenames)
|
||||||
|
model.load_state_dict(avg_checkpoint, strict=False)
|
||||||
|
|
||||||
|
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
torch.save(avg_checkpoint, filename)
|
||||||
|
else:
|
||||||
|
checkpoint = torch.load(
|
||||||
|
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||||
|
)
|
||||||
|
model.load_state_dict(checkpoint, strict=False)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
# data_module = MultiDataset(args.manifest_dir)
|
||||||
|
|
||||||
|
def remove_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration in 30 seconds
|
||||||
|
#
|
||||||
|
if c.duration > 30.0:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
# if params.dataset == "aishell":
|
||||||
|
# test_sets_cuts = data_module.aishell_test_cuts()
|
||||||
|
# elif params.dataset == "speechio":
|
||||||
|
# test_sets_cuts = data_module.speechio_test_cuts()
|
||||||
|
# elif params.dataset == "wenetspeech_test_meeting":
|
||||||
|
# test_sets_cuts = data_module.wenetspeech_test_meeting_cuts()
|
||||||
|
# else:
|
||||||
|
test_sets_cuts = data_module.test_cuts()
|
||||||
|
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_dls = [
|
||||||
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||||||
|
for cuts_name in test_sets
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/speech_llm/SPEECH2SPEECH/slam_omni/label_smoothing.py
Symbolic link
1
egs/speech_llm/SPEECH2SPEECH/slam_omni/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
285
egs/speech_llm/SPEECH2SPEECH/slam_omni/model.py
Normal file
285
egs/speech_llm/SPEECH2SPEECH/slam_omni/model.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from transformers.trainer_pt_utils import LabelSmoother
|
||||||
|
|
||||||
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderProjector(nn.Module):
|
||||||
|
"""
|
||||||
|
The encoder projector module. It is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
Modified from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py.
|
||||||
|
Args:
|
||||||
|
encoder_dim (:obj:`int`): The dimension of the encoder outputs.
|
||||||
|
llm_dim (:obj:`int`): The dimension of the language model.
|
||||||
|
downsample_rate (:obj:`int`, `optional`, defaults to 5): The downsample rate to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, encoder_dim, llm_dim, downsample_rate=5):
|
||||||
|
super().__init__()
|
||||||
|
self.downsample_rate = downsample_rate
|
||||||
|
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
|
||||||
|
batch_size, seq_len, feat_dim = x.size()
|
||||||
|
num_frames_to_discard = seq_len % self.downsample_rate
|
||||||
|
if num_frames_to_discard > 0:
|
||||||
|
x = x[:, :-num_frames_to_discard, :]
|
||||||
|
seq_len = x.size(1)
|
||||||
|
|
||||||
|
x = x.contiguous()
|
||||||
|
x = x.view(
|
||||||
|
batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
x = self.linear1(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.linear2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SPEECH_LLM(nn.Module):
|
||||||
|
"""
|
||||||
|
The Speech-to-Text model. It consists of an encoder, a language model and an encoder projector.
|
||||||
|
The encoder is used to extract speech features from the input speech signal.
|
||||||
|
The encoder projector is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
The language model is used to generate the text from the speech features.
|
||||||
|
Args:
|
||||||
|
encoder (:obj:`nn.Module`): The encoder module.
|
||||||
|
llm (:obj:`nn.Module`): The language model module.
|
||||||
|
encoder_projector (:obj:`nn.Module`): The encoder projector module.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: nn.Module,
|
||||||
|
llm: nn.Module,
|
||||||
|
encoder_projector: nn.Module,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.llm = llm
|
||||||
|
self.encoder_projector = encoder_projector
|
||||||
|
|
||||||
|
def _merge_input_ids_with_speech_features(
|
||||||
|
self, speech_features, inputs_embeds, input_ids, attention_mask, labels=None
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Merge the speech features with the input_ids and attention_mask. This is done by replacing the speech tokens
|
||||||
|
with the speech features and padding the input_ids to the maximum length of the speech features.
|
||||||
|
Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py#L277.
|
||||||
|
Args:
|
||||||
|
speech_features (:obj:`torch.Tensor`): The speech features to merge with the input_ids.
|
||||||
|
inputs_embeds (:obj:`torch.Tensor`): The embeddings of the input_ids.
|
||||||
|
input_ids (:obj:`torch.Tensor`): The input ids to merge.
|
||||||
|
attention_mask (:obj:`torch.Tensor`): The attention mask to merge.
|
||||||
|
labels (:obj:`torch.Tensor`, `optional`): The labels to merge.
|
||||||
|
Returns:
|
||||||
|
:obj:`Tuple(torch.Tensor)`: The merged embeddings, attention mask, labels and position ids.
|
||||||
|
"""
|
||||||
|
num_speechs, speech_len, embed_dim = speech_features.shape
|
||||||
|
batch_size, sequence_length = input_ids.shape
|
||||||
|
left_padding = not torch.sum(
|
||||||
|
input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id)
|
||||||
|
)
|
||||||
|
# 1. Create a mask to know where special speech tokens are
|
||||||
|
special_speech_token_mask = input_ids == self.llm.config.default_speech_token_id
|
||||||
|
num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1)
|
||||||
|
# Compute the maximum embed dimension
|
||||||
|
max_embed_dim = (
|
||||||
|
num_special_speech_tokens.max() * (speech_len - 1)
|
||||||
|
) + sequence_length
|
||||||
|
batch_indices, non_speech_indices = torch.where(
|
||||||
|
input_ids != self.llm.config.default_speech_token_id
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. Compute the positions where text should be written
|
||||||
|
# Calculate new positions for text tokens in merged speech-text sequence.
|
||||||
|
# `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens.
|
||||||
|
# `torch.cumsum` computes how each speech token shifts subsequent text token positions.
|
||||||
|
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
||||||
|
new_token_positions = (
|
||||||
|
torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1
|
||||||
|
)
|
||||||
|
nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
||||||
|
if left_padding:
|
||||||
|
new_token_positions += nb_speech_pad[:, None] # offset for left padding
|
||||||
|
text_to_overwrite = new_token_positions[batch_indices, non_speech_indices]
|
||||||
|
|
||||||
|
# 3. Create the full embedding, already padded to the maximum position
|
||||||
|
final_embedding = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
embed_dim,
|
||||||
|
dtype=inputs_embeds.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
final_attention_mask = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
dtype=attention_mask.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
if labels is not None:
|
||||||
|
final_labels = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
IGNORE_TOKEN_ID,
|
||||||
|
dtype=input_ids.dtype,
|
||||||
|
device=input_ids.device,
|
||||||
|
)
|
||||||
|
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
||||||
|
# set the corresponding tensors into their correct target device.
|
||||||
|
target_device = inputs_embeds.device
|
||||||
|
batch_indices, non_speech_indices, text_to_overwrite = (
|
||||||
|
batch_indices.to(target_device),
|
||||||
|
non_speech_indices.to(target_device),
|
||||||
|
text_to_overwrite.to(target_device),
|
||||||
|
)
|
||||||
|
attention_mask = attention_mask.to(target_device)
|
||||||
|
|
||||||
|
# 4. Fill the embeddings based on the mask. If we have ["hey" "<speech>", "how", "are"]
|
||||||
|
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features
|
||||||
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
if labels is not None:
|
||||||
|
final_labels[batch_indices, text_to_overwrite] = labels[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
|
||||||
|
# 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835)
|
||||||
|
speech_to_overwrite = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
True,
|
||||||
|
dtype=torch.bool,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
speech_to_overwrite[batch_indices, text_to_overwrite] = False
|
||||||
|
speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[
|
||||||
|
:, None
|
||||||
|
].to(target_device)
|
||||||
|
|
||||||
|
if speech_to_overwrite.sum() != speech_features.shape[:-1].numel():
|
||||||
|
raise ValueError(
|
||||||
|
f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while"
|
||||||
|
f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation."
|
||||||
|
)
|
||||||
|
|
||||||
|
final_embedding[speech_to_overwrite] = (
|
||||||
|
speech_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
||||||
|
)
|
||||||
|
final_attention_mask |= speech_to_overwrite
|
||||||
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
||||||
|
(final_attention_mask == 0), 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
||||||
|
batch_indices, pad_indices = torch.where(
|
||||||
|
input_ids == self.llm.config.pad_token_id
|
||||||
|
)
|
||||||
|
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
||||||
|
|
||||||
|
final_embedding[batch_indices, indices_to_mask] = 0
|
||||||
|
|
||||||
|
if labels is None:
|
||||||
|
final_labels = None
|
||||||
|
|
||||||
|
return final_embedding, final_attention_mask, final_labels, position_ids
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
labels: torch.LongTensor = None,
|
||||||
|
):
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
labels,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||||
|
)
|
||||||
|
|
||||||
|
model_outputs = self.llm(
|
||||||
|
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels
|
||||||
|
)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
preds = torch.argmax(model_outputs.logits, -1)
|
||||||
|
acc = compute_accuracy(
|
||||||
|
preds.detach()[:, :-1],
|
||||||
|
labels.detach()[:, 1:],
|
||||||
|
ignore_label=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
return model_outputs, acc
|
||||||
|
|
||||||
|
def decode(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
speech_features = speech_features.to(torch.float16)
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
_,
|
||||||
|
position_ids,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask
|
||||||
|
)
|
||||||
|
generated_ids = self.llm.generate(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
max_new_tokens=kwargs.get("max_new_tokens", 200),
|
||||||
|
num_beams=kwargs.get("num_beams", 1),
|
||||||
|
do_sample=kwargs.get("do_sample", False),
|
||||||
|
min_length=kwargs.get("min_length", 1),
|
||||||
|
top_p=kwargs.get("top_p", 1.0),
|
||||||
|
repetition_penalty=kwargs.get("repetition_penalty", 1.0),
|
||||||
|
length_penalty=kwargs.get("length_penalty", 1.0),
|
||||||
|
temperature=kwargs.get("temperature", 1.0),
|
||||||
|
bos_token_id=self.llm.config.bos_token_id,
|
||||||
|
eos_token_id=self.llm.config.eos_token_id,
|
||||||
|
pad_token_id=self.llm.config.pad_token_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
return generated_ids
|
||||||
|
|
||||||
|
|
||||||
|
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||||
|
"""Calculate accuracy.
|
||||||
|
Copied from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/utils/metric.py
|
||||||
|
Args:
|
||||||
|
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
||||||
|
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||||
|
ignore_label (int): Ignore label id.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: Accuracy value (0.0 - 1.0).
|
||||||
|
|
||||||
|
"""
|
||||||
|
mask = pad_targets != ignore_label
|
||||||
|
numerator = torch.sum(
|
||||||
|
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
||||||
|
)
|
||||||
|
denominator = torch.sum(mask)
|
||||||
|
return numerator.float() / denominator.float()
|
176
egs/speech_llm/SPEECH2SPEECH/slam_omni/speech_dataset.py
Normal file
176
egs/speech_llm/SPEECH2SPEECH/slam_omni/speech_dataset.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
from typing import Callable, Dict, List, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.utils.data.dataloader import DataLoader, default_collate
|
||||||
|
|
||||||
|
from lhotse import validate
|
||||||
|
from lhotse.cut import CutSet
|
||||||
|
from lhotse.dataset.input_strategies import BatchIO, PrecomputedFeatures
|
||||||
|
from lhotse.utils import compute_num_frames, ifnone
|
||||||
|
from lhotse.workarounds import Hdf5MemoryIssueFix
|
||||||
|
|
||||||
|
|
||||||
|
class K2SpeechRecognitionDataset(torch.utils.data.Dataset):
|
||||||
|
"""
|
||||||
|
The PyTorch Dataset for the speech recognition task using k2 library.
|
||||||
|
|
||||||
|
This dataset expects to be queried with lists of cut IDs,
|
||||||
|
for which it loads features and automatically collates/batches them.
|
||||||
|
|
||||||
|
To use it with a PyTorch DataLoader, set ``batch_size=None``
|
||||||
|
and provide a :class:`SimpleCutSampler` sampler.
|
||||||
|
|
||||||
|
Each item in this dataset is a dict of:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
{
|
||||||
|
'inputs': float tensor with shape determined by :attr:`input_strategy`:
|
||||||
|
- single-channel:
|
||||||
|
- features: (B, T, F)
|
||||||
|
- audio: (B, T)
|
||||||
|
- multi-channel: currently not supported
|
||||||
|
'supervisions': [
|
||||||
|
{
|
||||||
|
'sequence_idx': Tensor[int] of shape (S,)
|
||||||
|
'text': List[str] of len S
|
||||||
|
|
||||||
|
# For feature input strategies
|
||||||
|
'start_frame': Tensor[int] of shape (S,)
|
||||||
|
'num_frames': Tensor[int] of shape (S,)
|
||||||
|
|
||||||
|
# For audio input strategies
|
||||||
|
'start_sample': Tensor[int] of shape (S,)
|
||||||
|
'num_samples': Tensor[int] of shape (S,)
|
||||||
|
|
||||||
|
# Optionally, when return_cuts=True
|
||||||
|
'cut': List[AnyCut] of len S
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
Dimension symbols legend:
|
||||||
|
* ``B`` - batch size (number of Cuts)
|
||||||
|
* ``S`` - number of supervision segments (greater or equal to B, as each Cut may have multiple supervisions)
|
||||||
|
* ``T`` - number of frames of the longest Cut
|
||||||
|
* ``F`` - number of features
|
||||||
|
|
||||||
|
The 'sequence_idx' field is the index of the Cut used to create the example in the Dataset.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
return_cuts: bool = False,
|
||||||
|
cut_transforms: List[Callable[[CutSet], CutSet]] = None,
|
||||||
|
input_transforms: List[Callable[[torch.Tensor], torch.Tensor]] = None,
|
||||||
|
input_strategy: BatchIO = PrecomputedFeatures(),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
k2 ASR IterableDataset constructor.
|
||||||
|
|
||||||
|
:param return_cuts: When ``True``, will additionally return a "cut" field in each batch with the Cut
|
||||||
|
objects used to create that batch.
|
||||||
|
:param cut_transforms: A list of transforms to be applied on each sampled batch,
|
||||||
|
before converting cuts to an input representation (audio/features).
|
||||||
|
Examples: cut concatenation, noise cuts mixing, etc.
|
||||||
|
:param input_transforms: A list of transforms to be applied on each sampled batch,
|
||||||
|
after the cuts are converted to audio/features.
|
||||||
|
Examples: normalization, SpecAugment, etc.
|
||||||
|
:param input_strategy: Converts cuts into a collated batch of audio/features.
|
||||||
|
By default, reads pre-computed features from disk.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
# Initialize the fields
|
||||||
|
self.return_cuts = return_cuts
|
||||||
|
self.cut_transforms = ifnone(cut_transforms, [])
|
||||||
|
self.input_transforms = ifnone(input_transforms, [])
|
||||||
|
self.input_strategy = input_strategy
|
||||||
|
|
||||||
|
# This attribute is a workaround to constantly growing HDF5 memory
|
||||||
|
# throughout the epoch. It regularly closes open file handles to
|
||||||
|
# reset the internal HDF5 caches.
|
||||||
|
self.hdf5_fix = Hdf5MemoryIssueFix(reset_interval=100)
|
||||||
|
|
||||||
|
def __getitem__(self, cuts: CutSet) -> Dict[str, Union[torch.Tensor, List[str]]]:
|
||||||
|
"""
|
||||||
|
Return a new batch, with the batch size automatically determined using the constraints
|
||||||
|
of max_duration and max_cuts.
|
||||||
|
"""
|
||||||
|
validate_for_asr(cuts)
|
||||||
|
|
||||||
|
self.hdf5_fix.update()
|
||||||
|
|
||||||
|
# Sort the cuts by duration so that the first one determines the batch time dimensions.
|
||||||
|
cuts = cuts.sort_by_duration(ascending=False)
|
||||||
|
|
||||||
|
# Optional CutSet transforms - e.g. padding, or speed perturbation that adjusts
|
||||||
|
# the supervision boundaries.
|
||||||
|
for tnfm in self.cut_transforms:
|
||||||
|
cuts = tnfm(cuts)
|
||||||
|
|
||||||
|
# Sort the cuts again after transforms
|
||||||
|
cuts = cuts.sort_by_duration(ascending=False)
|
||||||
|
|
||||||
|
# Get a tensor with batched feature matrices, shape (B, T, F)
|
||||||
|
# Collation performs auto-padding, if necessary.
|
||||||
|
input_tpl = self.input_strategy(cuts)
|
||||||
|
if len(input_tpl) == 3:
|
||||||
|
# An input strategy with fault tolerant audio reading mode.
|
||||||
|
# "cuts" may be a subset of the original "cuts" variable,
|
||||||
|
# that only has cuts for which we succesfully read the audio.
|
||||||
|
inputs, _, cuts = input_tpl
|
||||||
|
else:
|
||||||
|
inputs, _ = input_tpl
|
||||||
|
|
||||||
|
# Get a dict of tensors that encode the positional information about supervisions
|
||||||
|
# in the batch of feature matrices. The tensors are named "sequence_idx",
|
||||||
|
# "start_frame/sample" and "num_frames/samples".
|
||||||
|
supervision_intervals = self.input_strategy.supervision_intervals(cuts)
|
||||||
|
|
||||||
|
# Apply all available transforms on the inputs, i.e. either audio or features.
|
||||||
|
# This could be feature extraction, global MVN, SpecAugment, etc.
|
||||||
|
segments = torch.stack(list(supervision_intervals.values()), dim=1)
|
||||||
|
for tnfm in self.input_transforms:
|
||||||
|
inputs = tnfm(inputs, supervision_segments=segments)
|
||||||
|
|
||||||
|
batch = {
|
||||||
|
"inputs": inputs,
|
||||||
|
"supervisions": default_collate(
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"text": supervision.text,
|
||||||
|
}
|
||||||
|
for sequence_idx, cut in enumerate(cuts)
|
||||||
|
for supervision in cut.supervisions
|
||||||
|
]
|
||||||
|
),
|
||||||
|
}
|
||||||
|
# Update the 'supervisions' field with sequence_idx and start/num frames/samples
|
||||||
|
batch["supervisions"].update(supervision_intervals)
|
||||||
|
if self.return_cuts:
|
||||||
|
batch["supervisions"]["cut"] = [
|
||||||
|
cut for cut in cuts for sup in cut.supervisions
|
||||||
|
]
|
||||||
|
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
||||||
|
def validate_for_asr(cuts: CutSet) -> None:
|
||||||
|
validate(cuts)
|
||||||
|
tol = 2e-3 # 1ms
|
||||||
|
for cut in cuts:
|
||||||
|
for supervision in cut.supervisions:
|
||||||
|
assert supervision.start >= -tol, (
|
||||||
|
f"Supervisions starting before the cut are not supported for ASR"
|
||||||
|
f" (sup id: {supervision.id}, cut id: {cut.id})"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Supervision start time is relative to Cut ...
|
||||||
|
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
|
||||||
|
#
|
||||||
|
# 'supervision.end' is end of supervision inside the Cut
|
||||||
|
assert supervision.end <= cut.duration + tol, (
|
||||||
|
f"Supervisions ending after the cut "
|
||||||
|
f"are not supported for ASR"
|
||||||
|
f" (sup id: {supervision.id}, cut id: {cut.id})"
|
||||||
|
)
|
872
egs/speech_llm/SPEECH2SPEECH/slam_omni/train.py
Executable file
872
egs/speech_llm/SPEECH2SPEECH/slam_omni/train.py
Executable file
@ -0,0 +1,872 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||||
|
# 2024 Yuekai Zhang
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
# fine-tuning with whisper and Qwen2
|
||||||
|
pip install huggingface_hub['cli']
|
||||||
|
mkdir -p models/whisper models/qwen
|
||||||
|
|
||||||
|
# For aishell fine-tuned whisper model
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
|
||||||
|
# For multi-hans fine-tuned whisper model
|
||||||
|
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||||||
|
|
||||||
|
# huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
|
||||||
|
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-1.5B-Instruct
|
||||||
|
|
||||||
|
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
|
||||||
|
--max-duration 200 \
|
||||||
|
--exp-dir ./whisper_llm_zh/exp_test \
|
||||||
|
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --unfreeze-llm True
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import deepspeed
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import whisper
|
||||||
|
from data_module import AsrDataModule
|
||||||
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||||
|
from label_smoothing import LabelSmoothingLoss
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.dataset.sampling.base import CutSampler
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import IGNORE_TOKEN_ID, SPEECH_LLM, EncoderProjector
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||||
|
|
||||||
|
from icefall import diagnostics
|
||||||
|
from icefall.dist import get_rank, get_world_size
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
MetricsTracker,
|
||||||
|
filter_uneven_sized_batch,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
DEFAULT_SPEECH_TOKEN = "<speech>"
|
||||||
|
|
||||||
|
|
||||||
|
def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
||||||
|
for module in model.modules():
|
||||||
|
if hasattr(module, "batch_count"):
|
||||||
|
module.batch_count = batch_count
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||||
|
help="Path or name of the large language model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-encoder-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="whisper-large-v2",
|
||||||
|
help="Path or name of the speech encoder.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-projector-ds-rate",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Downsample rate for the encoder projector.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-flash-attn",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use flash attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-lora",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use lora to fine-tune llm.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--unfreeze-llm",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to unfreeze llm during training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Resume training from this epoch. It should be positive.
|
||||||
|
If larger than 1, it will load checkpoint from
|
||||||
|
exp-dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper_qwen/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--pretrained-model-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the pretrained model if it is not None. Training will
|
||||||
|
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampler-state-dict-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the sampler state dict if it is not None. Training will start from this sampler state dict.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-aishell",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to only use aishell1 dataset for training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- frame_shift_ms: The frame shift in milliseconds.
|
||||||
|
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||||
|
- best_train_loss: The best training loss so far.
|
||||||
|
- best_valid_loss: The best validation loss so far.
|
||||||
|
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||||
|
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||||
|
- batch_idx_train: The batch index of the current batch.
|
||||||
|
- log_interval: Log training stats every `log_interval` batches.
|
||||||
|
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||||
|
- valid_interval: Run validation every `valid_interval` batches.
|
||||||
|
- env_info: The environment information.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"allowed_excess_duration_ratio": 0.1,
|
||||||
|
"subsampling_factor": 2,
|
||||||
|
"frame_shift_ms": 10,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 50,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 5000,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute the loss for the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
tokenizer:
|
||||||
|
The tokenizer used to encode the text.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
Whether it is training.
|
||||||
|
Returns:
|
||||||
|
Return a tuple of two elements. The first element is the loss tensor.
|
||||||
|
"""
|
||||||
|
# For the uneven-sized batch, the total duration after padding would possibly
|
||||||
|
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||||||
|
# we simply drop the last few shortest samples, so that the retained total frames
|
||||||
|
# (after padding) would not exceed `allowed_max_frames`:
|
||||||
|
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||||||
|
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||||||
|
# We set allowed_excess_duration_ratio=0.1.
|
||||||
|
|
||||||
|
def preprocess(
|
||||||
|
messages,
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer,
|
||||||
|
max_len: int,
|
||||||
|
) -> Dict:
|
||||||
|
"""Preprocesses the data for supervised fine-tuning."""
|
||||||
|
texts = []
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
for i, msg in enumerate(messages):
|
||||||
|
texts.append(
|
||||||
|
tokenizer.apply_chat_template(
|
||||||
|
msg,
|
||||||
|
tokenize=True,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
add_generation_prompt=False,
|
||||||
|
padding="longest", # FIX me change padding to longest
|
||||||
|
max_length=max_len,
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# padding texts to the same length, texts is a list of list, padding with tokenzier.pad_token_id
|
||||||
|
max_len_texts = max([len(text) for text in texts])
|
||||||
|
if tokenizer.padding_side == "right":
|
||||||
|
texts = [
|
||||||
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
texts = [
|
||||||
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||||
|
# response = tokenizer.batch_decode(input_ids, skip_special_tokens=True)[0]
|
||||||
|
target_ids = input_ids.clone()
|
||||||
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||||
|
# mask all tokens before token_id 151646 with IGNORE_TOKEN_ID
|
||||||
|
# first get the indices of the tokens
|
||||||
|
mask_prompt = True
|
||||||
|
if mask_prompt:
|
||||||
|
mask_indices = torch.where(
|
||||||
|
input_ids == tokenizer.convert_tokens_to_ids("assistant")
|
||||||
|
)
|
||||||
|
for i in range(mask_indices[0].size(0)):
|
||||||
|
row = mask_indices[0][i]
|
||||||
|
col = mask_indices[1][i]
|
||||||
|
# + 2 to skip: 'assistant', '\n'
|
||||||
|
target_ids[row, : col + 2] = IGNORE_TOKEN_ID
|
||||||
|
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
return input_ids, attention_mask, target_ids
|
||||||
|
|
||||||
|
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||||||
|
"""
|
||||||
|
Text normalization similar to M2MeT challenge baseline.
|
||||||
|
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||||||
|
"""
|
||||||
|
if normalize == "none":
|
||||||
|
return text
|
||||||
|
elif normalize == "m2met":
|
||||||
|
import re
|
||||||
|
|
||||||
|
text = text.replace(" ", "")
|
||||||
|
text = text.replace("<sil>", "")
|
||||||
|
text = text.replace("<%>", "")
|
||||||
|
text = text.replace("<->", "")
|
||||||
|
text = text.replace("<$>", "")
|
||||||
|
text = text.replace("<#>", "")
|
||||||
|
text = text.replace("<_>", "")
|
||||||
|
text = text.replace("<space>", "")
|
||||||
|
text = text.replace("`", "")
|
||||||
|
text = text.replace("&", "")
|
||||||
|
text = text.replace(",", "")
|
||||||
|
if re.search("[a-zA-Z]", text):
|
||||||
|
text = text.upper()
|
||||||
|
text = text.replace("A", "A")
|
||||||
|
text = text.replace("a", "A")
|
||||||
|
text = text.replace("b", "B")
|
||||||
|
text = text.replace("c", "C")
|
||||||
|
text = text.replace("k", "K")
|
||||||
|
text = text.replace("t", "T")
|
||||||
|
text = text.replace(",", "")
|
||||||
|
text = text.replace("丶", "")
|
||||||
|
text = text.replace("。", "")
|
||||||
|
text = text.replace("、", "")
|
||||||
|
text = text.replace("?", "")
|
||||||
|
return text
|
||||||
|
|
||||||
|
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||||
|
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||||
|
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||||
|
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
feature = feature.transpose(1, 2) # (N, C, T)
|
||||||
|
|
||||||
|
batch_idx_train = params.batch_idx_train
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
# remove spaces in texts
|
||||||
|
texts = [normalize_text_alimeeting(text) for text in texts]
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
for i, text in enumerate(texts):
|
||||||
|
message = [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}请转写音频为文字"},
|
||||||
|
{"role": "assistant", "content": text},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
|
||||||
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer, max_len=128)
|
||||||
|
|
||||||
|
target_ids = target_ids.type(torch.LongTensor)
|
||||||
|
input_ids = input_ids.type(torch.LongTensor)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
model_outputs, acc = model(
|
||||||
|
fbank=feature,
|
||||||
|
input_ids=input_ids.to(device),
|
||||||
|
attention_mask=attention_mask.to(device),
|
||||||
|
labels=target_ids.to(device),
|
||||||
|
)
|
||||||
|
loss = model_outputs.loss
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
feature_lens = supervisions["num_frames"]
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["acc"] = (
|
||||||
|
acc * info["frames"]
|
||||||
|
) # WAR: to avoid normalization by the number of frames
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: whisper.tokenizer.Tokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler, we call step() every step.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
model_avg:
|
||||||
|
The stored model averaged from the start of training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
rank:
|
||||||
|
The rank of the node in DDP training. If no DDP is used, it should
|
||||||
|
be set to 0.
|
||||||
|
"""
|
||||||
|
model.encoder_projector.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
logging.info(
|
||||||
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
if batch_idx != 0:
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}-sampler.pt",
|
||||||
|
)
|
||||||
|
os.system(
|
||||||
|
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
# deepspeed's backward() is different from torch's backward()
|
||||||
|
# in that it does not accept a loss tensor as input.
|
||||||
|
# It computes the loss internally.
|
||||||
|
model.backward(loss)
|
||||||
|
model.step()
|
||||||
|
|
||||||
|
except: # noqa
|
||||||
|
display_and_save_batch(batch, params=params)
|
||||||
|
raise
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
try:
|
||||||
|
cur_lr = scheduler.get_last_lr()[0]
|
||||||
|
except: # noqa
|
||||||
|
cur_lr = 0.0
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
|
f"lr: {cur_lr:.2e}, "
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
|
||||||
|
replace_whisper_encoder_forward()
|
||||||
|
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||||
|
speech_encoder = whisper_model.encoder
|
||||||
|
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||||
|
for name, param in speech_encoder.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
speech_encoder.eval()
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
# torch_dtype=torch.bfloat16 FIX ME
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "right"
|
||||||
|
|
||||||
|
llm = AutoModelForCausalLM.from_pretrained(
|
||||||
|
params.llm_path_or_name,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not params.unfreeze_llm:
|
||||||
|
for name, param in llm.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
llm.eval()
|
||||||
|
else:
|
||||||
|
if params.use_lora:
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
target_modules=[
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
"o_proj",
|
||||||
|
"up_proj",
|
||||||
|
"gate_proj",
|
||||||
|
"down_proj",
|
||||||
|
],
|
||||||
|
lora_dropout=0.05,
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
llm = get_peft_model(llm, lora_config)
|
||||||
|
llm.print_trainable_parameters()
|
||||||
|
|
||||||
|
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||||
|
tokenizer.add_special_tokens(special_tokens_dict)
|
||||||
|
llm.config.pad_token_id = tokenizer.pad_token_id
|
||||||
|
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_projector = EncoderProjector(
|
||||||
|
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
model = SPEECH_LLM(
|
||||||
|
speech_encoder,
|
||||||
|
llm,
|
||||||
|
encoder_projector,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.pretrained_model_path:
|
||||||
|
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
||||||
|
missing_keys, unexpected_keys = model.load_state_dict(checkpoint, strict=False)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
logging.info("Trainable parameters (excluding model.eval modules):")
|
||||||
|
for name, param in model.named_parameters():
|
||||||
|
if param.requires_grad:
|
||||||
|
logging.info(f"{name}: {param.shape}")
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
assert params.deepspeed and world_size > 1
|
||||||
|
logging.info("Using DeepSpeed")
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=params, model=model, model_parameters=model.parameters()
|
||||||
|
)
|
||||||
|
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args.manifest_dir)
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 20.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
if c.duration < 1.0 or c.duration > 20.0:
|
||||||
|
# logging.warning(
|
||||||
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
# )
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
if params.use_aishell:
|
||||||
|
train_cuts = multi_dataset.aishell_train_cuts()
|
||||||
|
else:
|
||||||
|
train_cuts = multi_dataset.train_cuts()
|
||||||
|
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
sampler_state_dict = None
|
||||||
|
if params.sampler_state_dict_path:
|
||||||
|
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
||||||
|
sampler_state_dict["max_duration"] = params.max_duration
|
||||||
|
# TODO: load sampler state dict
|
||||||
|
train_dl = data_module.train_dataloaders(
|
||||||
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.use_aishell:
|
||||||
|
valid_cuts = multi_dataset.aishell_dev_cuts()
|
||||||
|
else:
|
||||||
|
valid_cuts = multi_dataset.dev_cuts()
|
||||||
|
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
logging.info(f"start training from epoch {params.start_epoch}")
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||||
|
|
||||||
|
fix_random_seed(params.seed + epoch - 1)
|
||||||
|
train_dl.sampler.set_epoch(epoch - 1)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"epoch-{params.cur_epoch}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||||||
|
tag=f"epoch-{params.cur_epoch}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-sampler.pt",
|
||||||
|
)
|
||||||
|
|
||||||
|
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
def display_and_save_batch(
|
||||||
|
batch: dict,
|
||||||
|
params: AttributeDict,
|
||||||
|
) -> None:
|
||||||
|
"""Display the batch statistics and save the batch into disk.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
"""
|
||||||
|
from lhotse.utils import uuid4
|
||||||
|
|
||||||
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||||
|
logging.info(f"Saving batch to {filename}")
|
||||||
|
torch.save(batch, filename)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
features = batch["inputs"]
|
||||||
|
|
||||||
|
logging.info(f"features shape: {features.shape}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = get_world_size()
|
||||||
|
rank = get_rank()
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
run(rank=rank, world_size=world_size, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py
|
Loading…
x
Reference in New Issue
Block a user