mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
186 lines
5.6 KiB
Python
Executable File
186 lines
5.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from lhotse import (
|
|
CutSet,
|
|
LilcomChunkyWriter,
|
|
WhisperFbank,
|
|
WhisperFbankConfig,
|
|
)
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-mel-bins",
|
|
type=int,
|
|
default=80,
|
|
help="""The number of mel bins for Fbank""",
|
|
)
|
|
parser.add_argument(
|
|
"--whisper-fbank",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--resample-to-16kHz",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Resample audio to 16kHz. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--speed-perturb",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--out-dir",
|
|
type=str,
|
|
default="data/fbank",
|
|
help="Output directory for the computed features",
|
|
)
|
|
parser.add_argument(
|
|
"--huggingface-dataset-path-or-name",
|
|
type=str,
|
|
default="/workspace/Belle_1.4M-SLAM-Omni",
|
|
help="The path or name of the Huggingface dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--audio-key",
|
|
type=str,
|
|
default="question_audio",
|
|
help="The key in the Huggingface dataset containing the audio data",
|
|
)
|
|
parser.add_argument(
|
|
"--text-key",
|
|
type=str,
|
|
default="answer",
|
|
help="The key in the Huggingface dataset containing the text data",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def compute_fbank(args):
|
|
in_out_dir = Path(args.out_dir)
|
|
in_out_dir.mkdir(parents=True, exist_ok=True)
|
|
# number of workers in dataloader
|
|
num_workers = 4
|
|
|
|
# number of seconds in a batch
|
|
batch_duration = 10
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
if args.whisper_fbank:
|
|
extractor = WhisperFbank(
|
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
|
)
|
|
else:
|
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
start = 0
|
|
stop = 1601
|
|
num_digits = 5
|
|
for i in range(start, stop):
|
|
idx = f"{i}".zfill(num_digits)
|
|
# dataset = load_dataset(args.huggingface_dataset_path_or_name, streaming=True, split=partition)
|
|
parquet_files = [
|
|
f"data/train-{idx}-of-01601.parquet",
|
|
]
|
|
parquet_files = [f"{args.huggingface_dataset_path_or_name}/{f}" for f in parquet_files]
|
|
file_name = parquet_files[0]
|
|
logging.info(f"Loading dataset from {file_name}")
|
|
dataset = load_dataset('parquet', data_files=parquet_files, streaming=True, split='train')
|
|
|
|
cut_set = CutSet.from_huggingface_dataset(dataset, audio_key=args.audio_key, text_key=args.text_key)
|
|
|
|
logging.info("Splitting cuts into smaller chunks")
|
|
cut_set = cut_set.trim_to_supervisions(
|
|
keep_overlapping=False, min_duration=None
|
|
)
|
|
|
|
if args.resample_to_16kHz:
|
|
cut_set = cut_set.resample(16000)
|
|
if args.speed_perturb:
|
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
|
|
logging.info("Computing features")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{in_out_dir}/feats_{idx}",
|
|
num_workers=num_workers,
|
|
batch_duration=batch_duration,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
cuts_path = f"{in_out_dir}/cuts_belle.{idx}.jsonl.gz"
|
|
logging.info(f"Saving to {cuts_path}")
|
|
# cut_set.to_file(cuts_path)
|
|
remove_recording_item(cut_set, cuts_path)
|
|
|
|
def remove_recording_item(
|
|
cuts,
|
|
output_cuts,
|
|
):
|
|
"""
|
|
don't store recording item
|
|
"""
|
|
with CutSet.open_writer(output_cuts) as writer:
|
|
for cut in cuts:
|
|
cut.recording.sources = None
|
|
writer.write(cut)
|
|
|
|
def main():
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
|
|
compute_fbank(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|