clean prepare.sh

This commit is contained in:
sathvik udupa 2023-05-01 17:32:00 +05:30
parent 3e4179bebb
commit c5115fc460

View File

@ -6,36 +6,15 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail set -eou pipefail
nj=60 nj=60
stage=-1 stage=6
stop_stage=9 stop_stage=9
# We assume dl_dir (download dir) contains the following # We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded # directories and files. If not, they will be downloaded
# by this script automatically. # by this script automatically.
# #
# - $dl_dir/LibriSpeech # - $dl_dir/hi-en
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
# You can download them from https://www.openslr.org/12
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
# - librispeech-lm-norm.txt.gz
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download dl_dir=$PWD/download
espnet_path=/home/wtc7/espnet/egs2/MUCS/asr1/data/hi-en/ espnet_path=/home/wtc7/espnet/egs2/MUCS/asr1/data/hi-en/
@ -43,13 +22,8 @@ espnet_path=/home/wtc7/espnet/egs2/MUCS/asr1/data/hi-en/
# vocab size for sentence piece models. # vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx, # It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy # data/lang_bpe_yyy
vocab_sizes=( vocab_size=400
# 5000
# 2000
# 1000
200
)
# All files generated by this script are saved in "data". # All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it. # You can safely remove "data" and rerun this script to regenerate it.
@ -68,7 +42,7 @@ if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
mkdir -p $dl_dir/lm mkdir -p $dl_dir/lm
if [ ! -e $dl_dir/lm/.done ]; then if [ ! -e $dl_dir/lm/.done ]; then
./local/prepare_lm_files.py --out-dir=$dl_dir/lm --data-path=$espnet_path --mode="train" ./local/prepare_lm_files.py --out-dir=$dl_dir/lm --data-path=$espnet_path --mode="train"
# touch $dl_dir/lm/.done touch $dl_dir/lm/.done
fi fi
fi fi
@ -78,11 +52,11 @@ fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare MUCS manifest" log "Stage 1: Prepare MUCS manifest"
# We assume that you have downloaded the LibriSpeech corpus # We assume that you have downloaded the MUCS corpus
# to $dl_dir/LibriSpeech # to $dl_dir/
mkdir -p data/manifests mkdir -p data/manifests
if [ ! -e data/manifests/.mucs.done ]; then if [ ! -e data/manifests/.mucs.done ]; then
# lhotse prepare mucs -j $nj $dl_dir/hi-en data/manifests # generate lhotse manifests from kaldi style files
./local/prepare_manifest.py "$espnet_path" $nj data/manifests ./local/prepare_manifest.py "$espnet_path" $nj data/manifests
touch data/manifests/.mucs.done touch data/manifests/.mucs.done
@ -94,7 +68,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
mkdir -p data/fbank mkdir -p data/fbank
if [ ! -e data/fbank/.mucs.done ]; then if [ ! -e data/fbank/.mucs.done ]; then
./local/compute_fbank_mucs.py ./local/compute_fbank_mucs.py
# touch data/fbank/.mucs.done touch data/fbank/.mucs.done
fi fi
# exit # exit
@ -110,7 +84,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
python3 ./local/validate_manifest.py \ python3 ./local/validate_manifest.py \
data/fbank/mucs_cuts_${part}.jsonl.gz data/fbank/mucs_cuts_${part}.jsonl.gz
done done
# touch data/fbank/.mucs-validated.done touch data/fbank/.mucs-validated.done
fi fi
fi fi
@ -150,7 +124,6 @@ fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang" log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size} lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon # We reuse words.txt from phone based lexicon
@ -193,23 +166,14 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
$lang_dir/L_disambig.pt \ $lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst $lang_dir/L_disambig.fst
fi fi
done
fi fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare bigram token-level P for MMI training" log "Stage 7: Train LM from training data"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size} lang_dir=data/lang_bpe_${vocab_size}
# if [ ! -f $lang_dir/transcript_tokens.txt ]; then
# ./local/convert_transcript_words_to_tokens.py \
# --lexicon $lang_dir/lexicon.txt \
# --transcript $lang_dir/transcript_words.txt \
# --oov "<UNK>" \
# > $lang_dir/transcript_tokens.txt
# fi
if [ ! -f $lang_dir/lm_3.arpa ]; then if [ ! -f $lang_dir/lm_3.arpa ]; then
./shared/make_kn_lm.py \ ./shared/make_kn_lm.py \
-ngram-order 3 \ -ngram-order 3 \
@ -224,14 +188,6 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
-lm $lang_dir/lm_4.arpa -lm $lang_dir/lm_4.arpa
fi fi
# if [ ! -f $lang_dir/P.fst.txt ]; then
# python3 -m kaldilm \
# --read-symbol-table="$lang_dir/tokens.txt" \
# --disambig-symbol='#0' \
# --max-order=2 \
# $lang_dir/P.arpa > $lang_dir/P.fst.txt
# fi
done
fi fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
@ -246,7 +202,7 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
--read-symbol-table="data/lang_phone/words.txt" \ --read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \ --disambig-symbol='#0' \
--max-order=3 \ --max-order=3 \
data/lang_bpe_200/lm_3.arpa > data/lm/G_3_gram.fst.txt data/lang_bpe_${vocab_size}/lm_3.arpa > data/lm/G_3_gram.fst.txt
fi fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then if [ ! -f data/lm/G_4_gram.fst.txt ]; then
@ -255,17 +211,9 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
--read-symbol-table="data/lang_phone/words.txt" \ --read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \ --disambig-symbol='#0' \
--max-order=3 \ --max-order=3 \
data/lang_bpe_200/lm_4.arpa > data/lm/G_4_gram.fst.txt data/lang_bpe_${vocab_size}/lm_4.arpa > data/lm/G_4_gram.fst.txt
fi fi
# if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# # It is used for LM rescoring
# python3 -m kaldilm \
# --read-symbol-table="data/lang_phone/words.txt" \
# --disambig-symbol='#0' \
# --max-order=4 \
# $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
# fi
fi fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
@ -277,120 +225,8 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
# #
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size} lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir ./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compile LG"
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Generate LM training data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
lang_dir=data/lang_bpe_${vocab_size}
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
--lm-archive $out_dir/lm_data.pt
done
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Generate LM validation data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/valid.txt ]; then
files=$(
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $out_dir/valid.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/valid.txt \
--lm-archive $out_dir/lm_data-valid.pt
done
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Generate LM test data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/test.txt ]; then
files=$(
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $out_dir/test.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/test.txt \
--lm-archive $out_dir/lm_data-test.pt
done
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of BPE tokens
# in a sentence.
for vocab_size in ${vocab_sizes[@]}; do
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
done
fi