mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
add all mucs files
This commit is contained in:
parent
be00b3df2c
commit
3e4179bebb
0
egs/mucs/ASR/conformer_ctc/__init__.py
Normal file
0
egs/mucs/ASR/conformer_ctc/__init__.py
Normal file
395
egs/mucs/ASR/conformer_ctc/ali.py
Executable file
395
egs/mucs/ASR/conformer_ctc/ali.py
Executable file
@ -0,0 +1,395 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./conformer_ctc/ali.py \
|
||||
--exp-dir ./conformer_ctc/exp \
|
||||
--lang-dir ./data/lang_bpe_500 \
|
||||
--epoch 20 \
|
||||
--avg 10 \
|
||||
--max-duration 300 \
|
||||
--dataset train-clean-100 \
|
||||
--out-dir data/ali
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse import CutSet
|
||||
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
get_alignments,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Output directory.
|
||||
It contains 3 generated files:
|
||||
|
||||
- labels_xxx.h5
|
||||
- aux_labels_xxx.h5
|
||||
- librispeech_cuts_xxx.jsonl.gz
|
||||
|
||||
where xxx is the value of `--dataset`. For instance, if
|
||||
`--dataset` is `train-clean-100`, it will contain 3 files:
|
||||
|
||||
- `labels_train-clean-100.h5`
|
||||
- `aux_labels_train-clean-100.h5`
|
||||
- `librispeech_cuts_train-clean-100.jsonl.gz`
|
||||
|
||||
Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
|
||||
alignment. The difference is that labels_xxx.h5 contains repeats.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""The name of the dataset to compute alignments for.
|
||||
Possible values are:
|
||||
- test-clean.
|
||||
- test-other
|
||||
- train-clean-100
|
||||
- train-clean-360
|
||||
- train-other-500
|
||||
- dev-clean
|
||||
- dev-other
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
# Set it to 0 since attention decoder
|
||||
# is not used for computing alignments
|
||||
"num_decoder_layers": 0,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"output_beam": 10,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def compute_alignments(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
labels_writer: FeaturesWriter,
|
||||
aux_labels_writer: FeaturesWriter,
|
||||
params: AttributeDict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
) -> CutSet:
|
||||
"""Compute the framewise alignments of a dataset.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural network model.
|
||||
dl:
|
||||
Dataloader containing the dataset.
|
||||
params:
|
||||
Parameters for computing alignments.
|
||||
graph_compiler:
|
||||
It converts token IDs to decoding graphs.
|
||||
Returns:
|
||||
Return a CutSet. Each cut has two custom fields: labels_alignment
|
||||
and aux_labels_alignment, containing framewise alignments information.
|
||||
Both are of type `lhotse.array.TemporalArray`. The difference between
|
||||
the two alignments is that `labels_alignment` contain repeats.
|
||||
"""
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
num_cuts = 0
|
||||
|
||||
device = graph_compiler.device
|
||||
cuts = []
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
cut_list = supervisions["cut"]
|
||||
|
||||
for cut in cut_list:
|
||||
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
|
||||
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
# we need also to sort cut_ids as encode_supervisions()
|
||||
# reorders "texts".
|
||||
# In general, new2old is an identity map since lhotse sorts the returned
|
||||
# cuts by duration in descending order
|
||||
new2old = supervision_segments[:, 0].tolist()
|
||||
|
||||
cut_list = [cut_list[i] for i in new2old]
|
||||
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
lattice = k2.intersect_dense(
|
||||
decoding_graph,
|
||||
dense_fsa_vec,
|
||||
params.output_beam,
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
labels_ali = get_alignments(best_path, kind="labels")
|
||||
aux_labels_ali = get_alignments(best_path, kind="aux_labels")
|
||||
assert len(labels_ali) == len(aux_labels_ali) == len(cut_list)
|
||||
for cut, labels, aux_labels in zip(cut_list, labels_ali, aux_labels_ali):
|
||||
cut.labels_alignment = labels_writer.store_array(
|
||||
key=cut.id,
|
||||
value=np.asarray(labels, dtype=np.int32),
|
||||
# frame shift is 0.01s, subsampling_factor is 4
|
||||
frame_shift=0.04,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
cut.aux_labels_alignment = aux_labels_writer.store_array(
|
||||
key=cut.id,
|
||||
value=np.asarray(aux_labels, dtype=np.int32),
|
||||
# frame shift is 0.01s, subsampling_factor is 4
|
||||
frame_shift=0.04,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
|
||||
cuts += cut_list
|
||||
|
||||
num_cuts += len(cut_list)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
|
||||
return CutSet.from_cuts(cuts)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.enable_spec_aug = False
|
||||
args.enable_musan = False
|
||||
args.return_cuts = True
|
||||
args.concatenate_cuts = False
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ali")
|
||||
|
||||
logging.info(f"Computing alignments for {params.dataset} - started")
|
||||
logging.info(params)
|
||||
|
||||
out_dir = Path(params.out_dir)
|
||||
out_dir.mkdir(exist_ok=True)
|
||||
|
||||
out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5"
|
||||
out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5"
|
||||
out_manifest_filename = out_dir / f"librispeech_cuts_{params.dataset}.jsonl.gz"
|
||||
|
||||
for f in (
|
||||
out_labels_ali_filename,
|
||||
out_aux_labels_ali_filename,
|
||||
out_manifest_filename,
|
||||
):
|
||||
if f.exists():
|
||||
logging.info(f"{f} exists - skipping")
|
||||
return
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=False
|
||||
)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
if params.dataset == "test-clean":
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
elif params.dataset == "test-other":
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
elif params.dataset == "train-clean-100":
|
||||
train_clean_100_cuts = librispeech.train_clean_100_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_100_cuts)
|
||||
elif params.dataset == "train-clean-360":
|
||||
train_clean_360_cuts = librispeech.train_clean_360_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_360_cuts)
|
||||
elif params.dataset == "train-other-500":
|
||||
train_other_500_cuts = librispeech.train_other_500_cuts()
|
||||
dl = librispeech.train_dataloaders(train_other_500_cuts)
|
||||
elif params.dataset == "dev-clean":
|
||||
dev_clean_cuts = librispeech.dev_clean_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_clean_cuts)
|
||||
else:
|
||||
assert params.dataset == "dev-other", f"{params.dataset}"
|
||||
dev_other_cuts = librispeech.dev_other_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_other_cuts)
|
||||
|
||||
logging.info(f"Processing {params.dataset}")
|
||||
with NumpyHdf5Writer(out_labels_ali_filename) as labels_writer:
|
||||
with NumpyHdf5Writer(out_aux_labels_ali_filename) as aux_labels_writer:
|
||||
cut_set = compute_alignments(
|
||||
model=model,
|
||||
dl=dl,
|
||||
labels_writer=labels_writer,
|
||||
aux_labels_writer=aux_labels_writer,
|
||||
params=params,
|
||||
graph_compiler=graph_compiler,
|
||||
)
|
||||
|
||||
cut_set.to_file(out_manifest_filename)
|
||||
|
||||
logging.info(
|
||||
f"For dataset {params.dataset}, its alignments with repeats are "
|
||||
f"saved to {out_labels_ali_filename}, the alignments without repeats "
|
||||
f"are saved to {out_aux_labels_ali_filename}, and the cut manifest "
|
||||
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
473
egs/mucs/ASR/conformer_ctc/asr_datamodule.py
Normal file
473
egs/mucs/ASR/conformer_ctc/asr_datamodule.py
Normal file
@ -0,0 +1,473 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_100_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-100 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "mucs_cuts_train.jsonl.gz"
|
||||
)
|
||||
@lru_cache()
|
||||
def dev_mucs_cuts(self) -> CutSet:
|
||||
logging.info("About to get valid-mucs")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "mucs_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_mucs_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "mucs_cuts_test.jsonl.gz"
|
||||
)
|
||||
@lru_cache()
|
||||
def train_clean_mucs_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-mucs")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "mucs_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_360_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-360 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_other_500_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-other-500 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_all_shuf_cuts(self) -> CutSet:
|
||||
logging.info(
|
||||
"About to get the shuffled train-clean-100, \
|
||||
train-clean-360 and train-other-500 cuts"
|
||||
)
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||
)
|
||||
910
egs/mucs/ASR/conformer_ctc/conformer.py
Normal file
910
egs/mucs/ASR/conformer_ctc/conformer.py
Normal file
@ -0,0 +1,910 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||
|
||||
|
||||
class Conformer(Transformer):
|
||||
"""
|
||||
Args:
|
||||
num_features (int): Number of input features
|
||||
num_classes (int): Number of output classes
|
||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||
d_model (int): attention dimension
|
||||
nhead (int): number of head
|
||||
dim_feedforward (int): feedforward dimention
|
||||
num_encoder_layers (int): number of encoder layers
|
||||
num_decoder_layers (int): number of decoder layers
|
||||
dropout (float): dropout rate
|
||||
cnn_module_kernel (int): Kernel size of convolution module
|
||||
normalize_before (bool): whether to use layer_norm before the first block.
|
||||
vgg_frontend (bool): whether to use vgg frontend.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
num_classes: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
num_decoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: Union[float, bool] = 0.1,
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=subsampling_factor,
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
num_decoder_layers=num_decoder_layers,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
vgg_frontend=vgg_frontend,
|
||||
use_feat_batchnorm=use_feat_batchnorm,
|
||||
)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
|
||||
use_conv_batchnorm = True
|
||||
if isinstance(use_feat_batchnorm, float):
|
||||
use_conv_batchnorm = False
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
cnn_module_kernel,
|
||||
normalize_before,
|
||||
use_conv_batchnorm,
|
||||
)
|
||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
self.normalize_before = normalize_before
|
||||
if self.normalize_before:
|
||||
self.after_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||
# and throws an error without this change.
|
||||
self.after_norm = identity
|
||||
|
||||
def run_encoder(
|
||||
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The model input. Its shape is (N, T, C).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling
|
||||
It is read directly from the batch, without any sorting. It is used
|
||||
to compute encoder padding mask, which is used as memory key padding
|
||||
mask for the decoder.
|
||||
|
||||
Returns:
|
||||
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||
"""
|
||||
x = self.encoder_embed(x)
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||
if mask is not None:
|
||||
mask = mask.to(x.device)
|
||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
|
||||
return x, mask
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
normalize_before: whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = encoder_layer(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
use_conv_batchnorm: bool = False,
|
||||
) -> None:
|
||||
super(ConformerEncoderLayer, self).__init__()
|
||||
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
|
||||
self.feed_forward = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.feed_forward_macaron = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.conv_module = ConvolutionModule(
|
||||
d_model, cnn_module_kernel, use_batchnorm=use_conv_batchnorm
|
||||
)
|
||||
|
||||
self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module
|
||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||
|
||||
self.ff_scale = 0.5
|
||||
|
||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(d_model) # for the final output of the block
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, N is the batch size, E is the feature number
|
||||
"""
|
||||
|
||||
# macaron style feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
|
||||
# multi-headed self-attention module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout(src_att)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
|
||||
# convolution module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
src = residual + self.dropout(
|
||||
self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
|
||||
)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
|
||||
# feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
|
||||
if self.normalize_before:
|
||||
src = self.norm_final(src)
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class ConformerEncoder(nn.TransformerEncoder):
|
||||
r"""ConformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = conformer_encoder(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||
) -> None:
|
||||
super(ConformerEncoder, self).__init__(
|
||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||
|
||||
"""
|
||||
output = src
|
||||
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: Tensor) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vector and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x.size(1)
|
||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.weight,
|
||||
self.in_proj.bias,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
assert n == 2 * time1 - 1
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time1),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||
3, dim=-1
|
||||
)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(
|
||||
q_with_bias_v, p.transpose(-2, -1)
|
||||
) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
attn_output_weights = (
|
||||
matrix_ac + matrix_bd
|
||||
) * scaling # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model.
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernerl size of conv layers.
|
||||
bias (bool): Whether to use bias in conv layers (default=True).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
kernel_size: int,
|
||||
bias: bool = True,
|
||||
use_batchnorm: bool = False,
|
||||
) -> None:
|
||||
"""Construct an ConvolutionModule object."""
|
||||
super(ConvolutionModule, self).__init__()
|
||||
# kernerl_size should be a odd number for 'SAME' padding
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
self.use_batchnorm = use_batchnorm
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
if self.use_batchnorm:
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = Swish()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
"""Compute convolution module.
|
||||
|
||||
Args:
|
||||
x: Input tensor (#time, batch, channels).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor (#time, batch, channels).
|
||||
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
if src_key_padding_mask is not None:
|
||||
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
||||
x = self.depthwise_conv(x)
|
||||
if self.use_batchnorm:
|
||||
x = self.norm(x)
|
||||
x = self.activation(x)
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
||||
return x.permute(2, 0, 1)
|
||||
|
||||
|
||||
class Swish(torch.nn.Module):
|
||||
"""Construct an Swish object."""
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return Swich activation function."""
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def identity(x):
|
||||
return x
|
||||
813
egs/mucs/ASR/conformer_ctc/decode.py
Executable file
813
egs/mucs/ASR/conformer_ctc/decode.py
Executable file
@ -0,0 +1,813 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
nbest_oracle,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_rnn_lm,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
load_averaged_model,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=77,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=55,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="attention-decoder",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||
It needs neither a lexicon nor an n-gram LM.
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||
lattice, the path with the highest score is the decoding result.
|
||||
- (6) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||
you have trained an RNN LM using ./rnn_lm/train.py
|
||||
- (7) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The n-gram LM dir.
|
||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"num_decoder_layers": 6,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
The token ID of the EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict. Note: If it decodes to nothing, then return None.
|
||||
"""
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // params.subsampling_factor,
|
||||
supervisions["num_frames"] // params.subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
if H is None:
|
||||
assert HLG is not None
|
||||
decoding_graph = HLG
|
||||
else:
|
||||
assert HLG is None
|
||||
assert bpe_model is not None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-decoding"
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "nbest-oracle":
|
||||
# Note: You can also pass rescored lattices to it.
|
||||
# We choose the HLG decoded lattice for speed reasons
|
||||
# as HLG decoding is faster and the oracle WER
|
||||
# is only slightly worse than that of rescored lattices.
|
||||
best_path = nbest_oracle(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
word_table=word_table,
|
||||
nbest_scale=params.nbest_scale,
|
||||
oov="<UNK>",
|
||||
)
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||
return {key: hyps}
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in [
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "rnn-lm":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_rnn_lm(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
blank_id=0,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
ans = dict()
|
||||
if best_path_dict is not None:
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
else:
|
||||
ans = None
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
if hyps_dict is not None:
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
else:
|
||||
assert len(results) > 0, "It should not decode to empty in the first batch!"
|
||||
this_batch = []
|
||||
hyp_words = []
|
||||
for ref_text in texts:
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
for lm_scale in results.keys():
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[int], List[int]]]],
|
||||
):
|
||||
if params.method in ("attention-decoder", "rnn-lm"):
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
else:
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
params.num_classes = num_classes
|
||||
params.sos_id = sos_id
|
||||
params.eos_id = eos_id
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
H = None
|
||||
bpe_model = None
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||
)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in (
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set G.properties to None
|
||||
G.__dict__["_properties"] = None
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
# Save a dummy value so that it can be loaded in C++.
|
||||
# See https://github.com/pytorch/pytorch/issues/67902
|
||||
# for why we need to do this.
|
||||
G.dummy = 1
|
||||
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
model = load_averaged_model(
|
||||
params.exp_dir, model, params.epoch, params.avg, device
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
rnn_lm_model = None
|
||||
if params.method == "rnn-lm":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.num_classes,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
if params.rnn_lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
else:
|
||||
rnn_lm_model = load_averaged_model(
|
||||
params.rnn_lm_exp_dir,
|
||||
rnn_lm_model,
|
||||
params.rnn_lm_epoch,
|
||||
params.rnn_lm_avg,
|
||||
device,
|
||||
)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_mucs_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
|
||||
test_sets = ["test"]
|
||||
test_dl = [test_clean_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
163
egs/mucs/ASR/conformer_ctc/export.py
Executable file
163
egs/mucs/ASR/conformer_ctc/export.py
Executable file
@ -0,0 +1,163 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="""It contains language related input files such as "lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"use_feat_batchnorm": True,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"num_decoder_layers": 6,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
109
egs/mucs/ASR/conformer_ctc/label_smoothing.py
Normal file
109
egs/mucs/ASR/conformer_ctc/label_smoothing.py
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class LabelSmoothingLoss(torch.nn.Module):
|
||||
"""
|
||||
Implement the LabelSmoothingLoss proposed in the following paper
|
||||
https://arxiv.org/pdf/1512.00567.pdf
|
||||
(Rethinking the Inception Architecture for Computer Vision)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ignore_index: int = -1,
|
||||
label_smoothing: float = 0.1,
|
||||
reduction: str = "sum",
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ignore_index:
|
||||
ignored class id
|
||||
label_smoothing:
|
||||
smoothing rate (0.0 means the conventional cross entropy loss)
|
||||
reduction:
|
||||
It has the same meaning as the reduction in
|
||||
`torch.nn.CrossEntropyLoss`. It can be one of the following three
|
||||
values: (1) "none": No reduction will be applied. (2) "mean": the
|
||||
mean of the output is taken. (3) "sum": the output will be summed.
|
||||
"""
|
||||
super().__init__()
|
||||
assert 0.0 <= label_smoothing < 1.0, f"{label_smoothing}"
|
||||
assert reduction in ("none", "sum", "mean"), reduction
|
||||
self.ignore_index = ignore_index
|
||||
self.label_smoothing = label_smoothing
|
||||
self.reduction = reduction
|
||||
|
||||
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute loss between x and target.
|
||||
|
||||
Args:
|
||||
x:
|
||||
prediction of dimension
|
||||
(batch_size, input_length, number_of_classes).
|
||||
target:
|
||||
target masked with self.ignore_index of
|
||||
dimension (batch_size, input_length).
|
||||
|
||||
Returns:
|
||||
A scalar tensor containing the loss without normalization.
|
||||
"""
|
||||
assert x.ndim == 3
|
||||
assert target.ndim == 2
|
||||
assert x.shape[:2] == target.shape
|
||||
num_classes = x.size(-1)
|
||||
x = x.reshape(-1, num_classes)
|
||||
# Now x is of shape (N*T, C)
|
||||
|
||||
# We don't want to change target in-place below,
|
||||
# so we make a copy of it here
|
||||
target = target.clone().reshape(-1)
|
||||
|
||||
ignored = target == self.ignore_index
|
||||
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use target[ignored] = 0 here
|
||||
target = torch.where(ignored, torch.zeros_like(target), target)
|
||||
|
||||
true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x)
|
||||
|
||||
true_dist = (
|
||||
true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes
|
||||
)
|
||||
|
||||
# Set the value of ignored indexes to 0
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use true_dist[ignored] = 0 here
|
||||
true_dist = torch.where(
|
||||
ignored.unsqueeze(1).repeat(1, true_dist.shape[1]),
|
||||
torch.zeros_like(true_dist),
|
||||
true_dist,
|
||||
)
|
||||
|
||||
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||
if self.reduction == "sum":
|
||||
return loss.sum()
|
||||
elif self.reduction == "mean":
|
||||
return loss.sum() / (~ignored).sum()
|
||||
else:
|
||||
return loss.sum(dim=-1)
|
||||
430
egs/mucs/ASR/conformer_ctc/pretrained.py
Executable file
430
egs/mucs/ASR/conformer_ctc/pretrained.py
Executable file
@ -0,0 +1,430 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torchaudio
|
||||
from conformer import Conformer
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
help="""Path to words.txt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG",
|
||||
type=str,
|
||||
help="""Path to HLG.pt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Possible values are:
|
||||
(0) ctc-decoding - Use CTC decoding. It uses a sentence
|
||||
piece model, i.e., lang_dir/bpe.model, to convert
|
||||
word pieces to words. It needs neither a lexicon
|
||||
nor an n-gram LM.
|
||||
(1) 1best - Use the best path as decoding output. Only
|
||||
the transformer encoder output is used for decoding.
|
||||
We call it HLG decoding.
|
||||
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||
decoding lattice and then use 1best to decode the
|
||||
rescored lattice.
|
||||
We call it HLG decoding + n-gram LM rescoring.
|
||||
(3) attention-decoder - Extract n paths from the rescored
|
||||
lattice and use the transformer attention decoder for
|
||||
rescoring.
|
||||
We call it HLG decoding + n-gram LM rescoring + attention
|
||||
decoder rescoring.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--G",
|
||||
type=str,
|
||||
help="""An LM for rescoring.
|
||||
Used only when method is
|
||||
whole-lattice-rescoring or attention-decoder.
|
||||
It's usually a 4-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the size of n-best list.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=1.3,
|
||||
help="""
|
||||
Used only when method is whole-lattice-rescoring and attention-decoder.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--attention-decoder-scale",
|
||||
type=float,
|
||||
default=1.2,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the scale for attention decoder scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the scale for lattice.scores when
|
||||
extracting n-best lists. A smaller value results in
|
||||
more unique number of paths with the risk of missing
|
||||
the best path.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies ID for the SOS token.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-classes",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""
|
||||
Vocab size in the BPE model.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies ID for the EOS token.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"num_decoder_layers": 6,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
if args.method != "attention-decoder":
|
||||
# to save memory as the attention decoder
|
||||
# will not be used
|
||||
params.num_decoder_layers = 0
|
||||
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=params.num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
# Note: We don't use key padding mask for attention during decoding
|
||||
with torch.no_grad():
|
||||
nnet_output, memory, memory_key_padding_mask = model(features)
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
logging.info("Use CTC decoding")
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(params.bpe_model)
|
||||
max_token_id = params.num_classes - 1
|
||||
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=params.num_classes > 500,
|
||||
device=device,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=H,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
token_ids = get_texts(best_path)
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
hyps = [s.split() for s in hyps]
|
||||
elif params.method in [
|
||||
"1best",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = G.to(device)
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G.lm_scores = G.scores.clone()
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
logging.info("Use HLG decoding + LM rescoring")
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=[params.ngram_lm_scale],
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
elif params.method == "attention-decoder":
|
||||
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||
)
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
ngram_lm_scale=params.ngram_lm_scale,
|
||||
attention_scale=params.attention_decoder_scale,
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
153
egs/mucs/ASR/conformer_ctc/subsampling.py
Normal file
153
egs/mucs/ASR/conformer_ctc/subsampling.py
Normal file
@ -0,0 +1,153 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Conv2dSubsampling(nn.Module):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Convert an input of shape (N, T, idim) to an output
|
||||
with shape (N, T', odim), where
|
||||
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||
|
||||
It is based on
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int) -> None:
|
||||
"""
|
||||
Args:
|
||||
idim:
|
||||
Input dim. The input shape is (N, T, idim).
|
||||
Caution: It requires: T >=7, idim >=7
|
||||
odim:
|
||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
assert idim >= 7
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, idim).
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
# On entry, x is (N, T, idim)
|
||||
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
||||
x = self.conv(x)
|
||||
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||
return x
|
||||
|
||||
|
||||
class VggSubsampling(nn.Module):
|
||||
"""Trying to follow the setup described in the following paper:
|
||||
https://arxiv.org/pdf/1910.09799.pdf
|
||||
|
||||
This paper is not 100% explicit so I am guessing to some extent,
|
||||
and trying to compare with other VGG implementations.
|
||||
|
||||
Convert an input of shape (N, T, idim) to an output
|
||||
with shape (N, T', odim), where
|
||||
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||
"""
|
||||
|
||||
def __init__(self, idim: int, odim: int) -> None:
|
||||
"""Construct a VggSubsampling object.
|
||||
|
||||
This uses 2 VGG blocks with 2 Conv2d layers each,
|
||||
subsampling its input by a factor of 4 in the time dimensions.
|
||||
|
||||
Args:
|
||||
idim:
|
||||
Input dim. The input shape is (N, T, idim).
|
||||
Caution: It requires: T >=7, idim >=7
|
||||
odim:
|
||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
cur_channels = 1
|
||||
layers = []
|
||||
block_dims = [32, 64]
|
||||
|
||||
# The decision to use padding=1 for the 1st convolution, then padding=0
|
||||
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
||||
# a back-compatibility concern so that the number of frames at the
|
||||
# output would be equal to:
|
||||
# (((T-1)//2)-1)//2.
|
||||
# We can consider changing this by using padding=1 on the
|
||||
# 2nd convolution, so the num-frames at the output would be T//4.
|
||||
for block_dim in block_dims:
|
||||
layers.append(
|
||||
torch.nn.Conv2d(
|
||||
in_channels=cur_channels,
|
||||
out_channels=block_dim,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
)
|
||||
)
|
||||
layers.append(torch.nn.ReLU())
|
||||
layers.append(
|
||||
torch.nn.Conv2d(
|
||||
in_channels=block_dim,
|
||||
out_channels=block_dim,
|
||||
kernel_size=3,
|
||||
padding=0,
|
||||
stride=1,
|
||||
)
|
||||
)
|
||||
layers.append(
|
||||
torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
)
|
||||
cur_channels = block_dim
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, idim).
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
x = x.unsqueeze(1)
|
||||
x = self.layers(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
return x
|
||||
52
egs/mucs/ASR/conformer_ctc/test_label_smoothing.py
Executable file
52
egs/mucs/ASR/conformer_ctc/test_label_smoothing.py
Executable file
@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import torch
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
|
||||
torch_ver = LooseVersion(torch.__version__)
|
||||
|
||||
|
||||
def test_with_torch_label_smoothing_loss():
|
||||
if torch_ver < LooseVersion("1.10.0"):
|
||||
print(f"Current torch version: {torch_ver}")
|
||||
print("Please use torch >= 1.10 to run this test - skipping")
|
||||
return
|
||||
torch.manual_seed(20211105)
|
||||
x = torch.rand(20, 30, 5000)
|
||||
tgt = torch.randint(low=-1, high=x.size(-1), size=x.shape[:2])
|
||||
for reduction in ["none", "sum", "mean"]:
|
||||
custom_loss_func = LabelSmoothingLoss(
|
||||
ignore_index=-1, label_smoothing=0.1, reduction=reduction
|
||||
)
|
||||
custom_loss = custom_loss_func(x, tgt)
|
||||
|
||||
torch_loss_func = torch.nn.CrossEntropyLoss(
|
||||
ignore_index=-1, reduction=reduction, label_smoothing=0.1
|
||||
)
|
||||
torch_loss = torch_loss_func(x.reshape(-1, x.size(-1)), tgt.reshape(-1))
|
||||
assert torch.allclose(custom_loss, torch_loss)
|
||||
|
||||
|
||||
def main():
|
||||
test_with_torch_label_smoothing_loss()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
48
egs/mucs/ASR/conformer_ctc/test_subsampling.py
Executable file
48
egs/mucs/ASR/conformer_ctc/test_subsampling.py
Executable file
@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
|
||||
|
||||
def test_conv2d_subsampling():
|
||||
N = 3
|
||||
odim = 2
|
||||
|
||||
for T in range(7, 19):
|
||||
for idim in range(7, 20):
|
||||
model = Conv2dSubsampling(idim=idim, odim=odim)
|
||||
x = torch.empty(N, T, idim)
|
||||
y = model(x)
|
||||
assert y.shape[0] == N
|
||||
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||
assert y.shape[2] == odim
|
||||
|
||||
|
||||
def test_vgg_subsampling():
|
||||
N = 3
|
||||
odim = 2
|
||||
|
||||
for T in range(7, 19):
|
||||
for idim in range(7, 20):
|
||||
model = VggSubsampling(idim=idim, odim=odim)
|
||||
x = torch.empty(N, T, idim)
|
||||
y = model(x)
|
||||
assert y.shape[0] == N
|
||||
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||
assert y.shape[2] == odim
|
||||
104
egs/mucs/ASR/conformer_ctc/test_transformer.py
Normal file
104
egs/mucs/ASR/conformer_ctc/test_transformer.py
Normal file
@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from transformer import (
|
||||
Transformer,
|
||||
add_eos,
|
||||
add_sos,
|
||||
decoder_padding_mask,
|
||||
encoder_padding_mask,
|
||||
generate_square_subsequent_mask,
|
||||
)
|
||||
|
||||
|
||||
def test_encoder_padding_mask():
|
||||
supervisions = {
|
||||
"sequence_idx": torch.tensor([0, 1, 2]),
|
||||
"start_frame": torch.tensor([0, 0, 0]),
|
||||
"num_frames": torch.tensor([18, 7, 13]),
|
||||
}
|
||||
|
||||
max_len = ((18 - 1) // 2 - 1) // 2
|
||||
mask = encoder_padding_mask(max_len, supervisions)
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[False, False, False], # ((18 - 1)//2 - 1)//2 = 3,
|
||||
[False, True, True], # ((7 - 1)//2 - 1)//2 = 1,
|
||||
[False, False, True], # ((13 - 1)//2 - 1)//2 = 2,
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_transformer():
|
||||
num_features = 40
|
||||
num_classes = 87
|
||||
model = Transformer(num_features=num_features, num_classes=num_classes)
|
||||
|
||||
N = 31
|
||||
|
||||
for T in range(7, 30):
|
||||
x = torch.rand(N, T, num_features)
|
||||
y, _, _ = model(x)
|
||||
assert y.shape == (N, (((T - 1) // 2) - 1) // 2, num_classes)
|
||||
|
||||
|
||||
def test_generate_square_subsequent_mask():
|
||||
s = 5
|
||||
mask = generate_square_subsequent_mask(s)
|
||||
inf = float("inf")
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[0.0, -inf, -inf, -inf, -inf],
|
||||
[0.0, 0.0, -inf, -inf, -inf],
|
||||
[0.0, 0.0, 0.0, -inf, -inf],
|
||||
[0.0, 0.0, 0.0, 0.0, -inf],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_decoder_padding_mask():
|
||||
x = [torch.tensor([1, 2]), torch.tensor([3]), torch.tensor([2, 5, 8])]
|
||||
y = pad_sequence(x, batch_first=True, padding_value=-1)
|
||||
mask = decoder_padding_mask(y, ignore_id=-1)
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[False, False, True],
|
||||
[False, True, True],
|
||||
[False, False, False],
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_add_sos():
|
||||
x = [[1, 2], [3], [2, 5, 8]]
|
||||
y = add_sos(x, sos_id=0)
|
||||
expected_y = [[0, 1, 2], [0, 3], [0, 2, 5, 8]]
|
||||
assert y == expected_y
|
||||
|
||||
|
||||
def test_add_eos():
|
||||
x = [[1, 2], [3], [2, 5, 8]]
|
||||
y = add_eos(x, eos_id=0)
|
||||
expected_y = [[1, 2, 0], [3, 0], [2, 5, 8, 0]]
|
||||
assert y == expected_y
|
||||
824
egs/mucs/ASR/conformer_ctc/train.py
Executable file
824
egs/mucs/ASR/conformer_ctc/train.py
Executable file
@ -0,0 +1,824 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
./conformer_ctc/train.py \
|
||||
--exp-dir ./conformer_ctc/exp \
|
||||
--world-size 4 \
|
||||
--full-libri 1 \
|
||||
--max-duration 200 \
|
||||
--num-epochs 20
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=78,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--att-rate",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="""The attention rate.
|
||||
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decoder-layers",
|
||||
type=int,
|
||||
default=6,
|
||||
help="""Number of decoder layer of transformer decoder.
|
||||
Setting this to 0 will not create the decoder at all (pure CTC model)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="The lr_factor for Noam optimizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- use_feat_batchnorm: Normalization for the input features, can be a
|
||||
boolean indicating whether to do batch
|
||||
normalization, or a float which means just scaling
|
||||
the input features with this float value.
|
||||
If given a float value, we will remove batchnorm
|
||||
layer in `ConvolutionModule` as well.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- head: Number of heads of multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"use_feat_batchnorm": True,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
# parameters for loss
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-6,
|
||||
"warm_step": 80000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
|
||||
if isinstance(graph_compiler, BpeCtcTrainingGraphCompiler):
|
||||
# Works with a BPE model
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
elif isinstance(graph_compiler, CtcTrainingGraphCompiler):
|
||||
# Works with a phone lexicon
|
||||
decoding_graph = graph_compiler.compile(texts)
|
||||
else:
|
||||
raise ValueError(f"Unsupported type of graph compiler: {type(graph_compiler)}")
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
ctc_loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
if params.att_rate != 0.0:
|
||||
with torch.set_grad_enabled(is_training):
|
||||
mmodel = model.module if hasattr(model, "module") else model
|
||||
# Note: We need to generate an unsorted version of token_ids
|
||||
# `encode_supervisions()` called above sorts text, but
|
||||
# encoder_memory and memory_mask are not sorted, so we
|
||||
# use an unsorted version `supervisions["text"]` to regenerate
|
||||
# the token_ids
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/97
|
||||
# for more details
|
||||
unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
|
||||
att_loss = mmodel.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=unsorted_token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
else:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
||||
if params.att_rate != 0.0:
|
||||
info["att_loss"] = att_loss.detach().cpu().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
# `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa
|
||||
info["utterances"] = feature.size(0)
|
||||
# averaged input duration in frames over utterances
|
||||
info["utt_duration"] = supervisions["num_frames"].sum().item()
|
||||
# averaged padding proportion over utterances
|
||||
info["utt_pad_proportion"] = (
|
||||
((feature.size(1) - supervisions["num_frames"]) / feature.size(1)).sum().item()
|
||||
)
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
# world_size = 2
|
||||
# params.master_port = 12355
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
if "lang_bpe" in str(params.lang_dir):
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
elif "lang_phone" in str(params.lang_dir):
|
||||
assert params.att_rate == 0, (
|
||||
"Attention decoder training does not support phone lang dirs "
|
||||
"at this time due to a missing <sos/eos> symbol. Set --att-rate=0 "
|
||||
"for pure CTC training when using a phone-based lang dir."
|
||||
)
|
||||
assert params.num_decoder_layers == 0, (
|
||||
"Attention decoder training does not support phone lang dirs "
|
||||
"at this time due to a missing <sos/eos> symbol. "
|
||||
"Set --num-decoder-layers=0 for pure CTC training when using "
|
||||
"a phone-based lang dir."
|
||||
)
|
||||
graph_compiler = CtcTrainingGraphCompiler(
|
||||
lexicon,
|
||||
device=device,
|
||||
)
|
||||
# Manually add the sos/eos ID with their default values
|
||||
# from the BPE recipe which we're adapting here.
|
||||
graph_compiler.sos_id = 1
|
||||
graph_compiler.eos_id = 1
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported type of lang dir (we expected it to have "
|
||||
f"'lang_bpe' or 'lang_phone' in its name): {params.lang_dir}"
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
# params.full_libri = False
|
||||
# if params.full_libri:
|
||||
# train_cuts = librispeech.train_all_shuf_cuts()
|
||||
# else:
|
||||
train_cuts = librispeech.train_clean_mucs_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
train_dl = librispeech.train_dataloaders(train_cuts)
|
||||
|
||||
valid_cuts = librispeech.dev_mucs_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
#TypeError: trim_to_supervisions() got an unexpected keyword argument 'ignore_channel'
|
||||
|
||||
#AssertionError: Trimmed cut has supervisions with different channels. Either set `ignore_channel=True` to keep original channels or `keep_overlapping=False` to retain only 1 supervision per trimmed cut.
|
||||
928
egs/mucs/ASR/conformer_ctc/transformer.py
Normal file
928
egs/mucs/ASR/conformer_ctc/transformer.py
Normal file
@ -0,0 +1,928 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||
Supervisions = Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
num_classes: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
num_decoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: Union[float, bool] = 0.1,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
num_classes:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
Must satisfy d_model // nhead == 0.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder/decoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
num_decoder_layers:
|
||||
Number of decoder layers.
|
||||
dropout:
|
||||
Dropout in encoder/decoder.
|
||||
normalize_before:
|
||||
If True, use pre-layer norm; False to use post-layer norm.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
use_feat_batchnorm:
|
||||
True to use batchnorm for the input layer.
|
||||
Float value to scale the input layer.
|
||||
False to do nothing.
|
||||
"""
|
||||
super().__init__()
|
||||
self.use_feat_batchnorm = use_feat_batchnorm
|
||||
assert isinstance(use_feat_batchnorm, (float, bool))
|
||||
if isinstance(use_feat_batchnorm, bool) and use_feat_batchnorm:
|
||||
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_classes)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_classes -> d_model
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
if normalize_before:
|
||||
encoder_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
encoder_norm = None
|
||||
|
||||
self.encoder = nn.TransformerEncoder(
|
||||
encoder_layer=encoder_layer,
|
||||
num_layers=num_encoder_layers,
|
||||
norm=encoder_norm,
|
||||
)
|
||||
|
||||
# TODO(fangjun): remove dropout
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, num_classes)
|
||||
)
|
||||
|
||||
if num_decoder_layers > 0:
|
||||
self.decoder_num_class = (
|
||||
self.num_classes
|
||||
) # bpe model already has sos/eos symbol
|
||||
|
||||
self.decoder_embed = nn.Embedding(
|
||||
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||
)
|
||||
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
||||
|
||||
decoder_layer = TransformerDecoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
if normalize_before:
|
||||
decoder_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
decoder_norm = None
|
||||
|
||||
self.decoder = nn.TransformerDecoder(
|
||||
decoder_layer=decoder_layer,
|
||||
num_layers=num_decoder_layers,
|
||||
norm=decoder_norm,
|
||||
)
|
||||
|
||||
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
||||
|
||||
self.decoder_criterion = LabelSmoothingLoss()
|
||||
else:
|
||||
self.decoder_criterion = None
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, supervision: Optional[Supervisions] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is (N, T, C).
|
||||
supervision:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
(CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling)
|
||||
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- CTC output for ctc decoding. Its shape is (N, T, C)
|
||||
- Encoder output with shape (T, N, C). It can be used as key and
|
||||
value for the decoder.
|
||||
- Encoder output padding mask. It can be used as
|
||||
memory_key_padding_mask for the decoder. Its shape is (N, T).
|
||||
It is None if `supervision` is None.
|
||||
"""
|
||||
if isinstance(self.use_feat_batchnorm, bool) and self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
if isinstance(self.use_feat_batchnorm, float):
|
||||
x *= self.use_feat_batchnorm
|
||||
encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision)
|
||||
x = self.ctc_output(encoder_memory)
|
||||
return x, encoder_memory, memory_key_padding_mask
|
||||
|
||||
def run_encoder(
|
||||
self, x: torch.Tensor, supervisions: Optional[Supervisions] = None
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Run the transformer encoder.
|
||||
|
||||
Args:
|
||||
x:
|
||||
The model input. Its shape is (N, T, C).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling
|
||||
It is read directly from the batch, without any sorting. It is used
|
||||
to compute the encoder padding mask, which is used as memory key
|
||||
padding mask for the decoder.
|
||||
Returns:
|
||||
Return a tuple with two tensors:
|
||||
- The encoder output, with shape (T, N, C)
|
||||
- encoder padding mask, with shape (N, T).
|
||||
The mask is None if `supervisions` is None.
|
||||
It is used as memory key padding mask in the decoder.
|
||||
"""
|
||||
x = self.encoder_embed(x)
|
||||
x = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||
mask = mask.to(x.device) if mask is not None else None
|
||||
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
||||
|
||||
return x, mask
|
||||
|
||||
def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The output tensor from the transformer encoder.
|
||||
Its shape is (T, N, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor that can be used for CTC decoding.
|
||||
Its shape is (N, T, C)
|
||||
"""
|
||||
x = self.encoder_output_layer(x)
|
||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
|
||||
return x
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_forward(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
token_ids: List[List[int]],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
||||
The IDs can be either phone IDs or word piece IDs.
|
||||
sos_id:
|
||||
sos token id
|
||||
eos_id:
|
||||
eos token id
|
||||
|
||||
Returns:
|
||||
A scalar, the **sum** of label smoothing loss over utterances
|
||||
in the batch without any normalization.
|
||||
"""
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device)
|
||||
ys_out_pad = ys_out_pad.to(device)
|
||||
|
||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||
|
||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||
# TODO: Use length information to create the decoder padding mask
|
||||
# We set the first column to False since the first column in ys_in_pad
|
||||
# contains sos_id, which is the same as eos_id in our current setting.
|
||||
tgt_key_padding_mask[:, 0] = False
|
||||
|
||||
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||
tgt = self.decoder_pos(tgt)
|
||||
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
pred_pad = self.decoder(
|
||||
tgt=tgt,
|
||||
memory=memory,
|
||||
tgt_mask=tgt_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
) # (T, N, C)
|
||||
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
||||
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
||||
|
||||
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
||||
|
||||
return decoder_loss
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_nll(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
token_ids: List[torch.Tensor],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
A list-of-list IDs (e.g., word piece IDs).
|
||||
Each sublist represents an utterance.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
Returns:
|
||||
A 2-D tensor of shape (len(token_ids), max_token_length)
|
||||
representing the cross entropy loss (i.e., negative log-likelihood).
|
||||
"""
|
||||
# The common part between this function and decoder_forward could be
|
||||
# extracted as a separate function.
|
||||
if isinstance(token_ids[0], torch.Tensor):
|
||||
# This branch is executed by torchscript in C++.
|
||||
# See https://github.com/k2-fsa/k2/pull/870
|
||||
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
||||
token_ids = [tolist(t) for t in token_ids]
|
||||
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||
|
||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||
|
||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||
# TODO: Use length information to create the decoder padding mask
|
||||
# We set the first column to False since the first column in ys_in_pad
|
||||
# contains sos_id, which is the same as eos_id in our current setting.
|
||||
tgt_key_padding_mask[:, 0] = False
|
||||
|
||||
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||
tgt = self.decoder_pos(tgt)
|
||||
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||
pred_pad = self.decoder(
|
||||
tgt=tgt,
|
||||
memory=memory,
|
||||
tgt_mask=tgt_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
) # (T, B, F)
|
||||
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
||||
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
||||
# nll: negative log-likelihood
|
||||
nll = torch.nn.functional.cross_entropy(
|
||||
pred_pad.view(-1, self.decoder_num_class),
|
||||
ys_out_pad.view(-1),
|
||||
ignore_index=-1,
|
||||
reduction="none",
|
||||
)
|
||||
|
||||
nll = nll.view(pred_pad.shape[0], -1)
|
||||
|
||||
return nll
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
Modified from torch.nn.TransformerEncoderLayer.
|
||||
Add support of normalize_before,
|
||||
i.e., use layer_norm before the first block.
|
||||
|
||||
Args:
|
||||
d_model:
|
||||
the number of expected features in the input (required).
|
||||
nhead:
|
||||
the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward:
|
||||
the dimension of the feedforward network model (default=2048).
|
||||
dropout:
|
||||
the dropout value (default=0.1).
|
||||
activation:
|
||||
the activation function of intermediate layer, relu or
|
||||
gelu (default=relu).
|
||||
normalize_before:
|
||||
whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = encoder_layer(src)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: str = "relu",
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def __setstate__(self, state):
|
||||
if "activation" not in state:
|
||||
state["activation"] = nn.functional.relu
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: Optional[torch.Tensor] = None,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length,
|
||||
N is the batch size, E is the feature number
|
||||
"""
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
src2 = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout1(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
src = residual + self.dropout2(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Modified from torch.nn.TransformerDecoderLayer.
|
||||
Add support of normalize_before,
|
||||
i.e., use layer_norm before the first block.
|
||||
|
||||
Args:
|
||||
d_model:
|
||||
the number of expected features in the input (required).
|
||||
nhead:
|
||||
the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward:
|
||||
the dimension of the feedforward network model (default=2048).
|
||||
dropout:
|
||||
the dropout value (default=0.1).
|
||||
activation:
|
||||
the activation function of intermediate layer, relu or
|
||||
gelu (default=relu).
|
||||
|
||||
Examples::
|
||||
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
||||
>>> memory = torch.rand(10, 32, 512)
|
||||
>>> tgt = torch.rand(20, 32, 512)
|
||||
>>> out = decoder_layer(tgt, memory)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: str = "relu",
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(TransformerDecoderLayer, self).__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def __setstate__(self, state):
|
||||
if "activation" not in state:
|
||||
state["activation"] = nn.functional.relu
|
||||
super(TransformerDecoderLayer, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
tgt_mask: Optional[torch.Tensor] = None,
|
||||
memory_mask: Optional[torch.Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""Pass the inputs (and mask) through the decoder layer.
|
||||
|
||||
Args:
|
||||
tgt:
|
||||
the sequence to the decoder layer (required).
|
||||
memory:
|
||||
the sequence from the last layer of the encoder (required).
|
||||
tgt_mask:
|
||||
the mask for the tgt sequence (optional).
|
||||
memory_mask:
|
||||
the mask for the memory sequence (optional).
|
||||
tgt_key_padding_mask:
|
||||
the mask for the tgt keys per batch (optional).
|
||||
memory_key_padding_mask:
|
||||
the mask for the memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
tgt: (T, N, E).
|
||||
memory: (S, N, E).
|
||||
tgt_mask: (T, T).
|
||||
memory_mask: (T, S).
|
||||
tgt_key_padding_mask: (N, T).
|
||||
memory_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length,
|
||||
N is the batch size, E is the feature number
|
||||
"""
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.self_attn(
|
||||
tgt,
|
||||
tgt,
|
||||
tgt,
|
||||
attn_mask=tgt_mask,
|
||||
key_padding_mask=tgt_key_padding_mask,
|
||||
)[0]
|
||||
tgt = residual + self.dropout1(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm2(tgt)
|
||||
tgt2 = self.src_attn(
|
||||
tgt,
|
||||
memory,
|
||||
memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = residual + self.dropout2(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm2(tgt)
|
||||
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||
tgt = residual + self.dropout3(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
|
||||
def _get_activation_fn(activation: str):
|
||||
if activation == "relu":
|
||||
return nn.functional.relu
|
||||
elif activation == "gelu":
|
||||
return nn.functional.gelu
|
||||
|
||||
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
"""This class implements the positional encoding
|
||||
proposed in the following paper:
|
||||
|
||||
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||
|
||||
Note::
|
||||
|
||||
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||
= exp(-1* 2i / d_model * log(100000))
|
||||
= exp(2i * -(log(10000) / d_model))
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||
"""
|
||||
Args:
|
||||
d_model:
|
||||
Embedding dimension.
|
||||
dropout:
|
||||
Dropout probability to be applied to the output of this module.
|
||||
"""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
# not doing: self.pe = None because of errors thrown by torchscript
|
||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||
|
||||
def extend_pe(self, x: torch.Tensor) -> None:
|
||||
"""Extend the time t in the positional encoding if required.
|
||||
|
||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||
to (N, T, d_model). Otherwise, nothing is done.
|
||||
|
||||
Args:
|
||||
x:
|
||||
It is a tensor of shape (N, T, C).
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Add positional encoding.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, C)
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
def encoder_padding_mask(
|
||||
max_len: int, supervisions: Optional[Supervisions] = None
|
||||
) -> Optional[torch.Tensor]:
|
||||
"""Make mask tensor containing indexes of padded part.
|
||||
|
||||
TODO::
|
||||
This function **assumes** that the model uses
|
||||
a subsampling factor of 4. We should remove that
|
||||
assumption later.
|
||||
|
||||
Args:
|
||||
max_len:
|
||||
Maximum length of input features.
|
||||
CAUTION: It is the length after subsampling.
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
(CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling)
|
||||
|
||||
Returns:
|
||||
Tensor: Mask tensor of dimension (batch_size, input_length),
|
||||
True denote the masked indices.
|
||||
"""
|
||||
if supervisions is None:
|
||||
return None
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"],
|
||||
supervisions["num_frames"],
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
|
||||
for idx in range(supervision_segments.size(0)):
|
||||
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||
sequence_idx = supervision_segments[idx, 0].item()
|
||||
start_frame = supervision_segments[idx, 1].item()
|
||||
num_frames = supervision_segments[idx, 2].item()
|
||||
lengths[sequence_idx] = start_frame + num_frames
|
||||
|
||||
lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
|
||||
bs = int(len(lengths))
|
||||
seq_range = torch.arange(0, max_len, dtype=torch.int64)
|
||||
seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
|
||||
# Note: TorchScript doesn't implement Tensor.new()
|
||||
seq_length_expand = torch.tensor(
|
||||
lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
|
||||
).unsqueeze(-1)
|
||||
mask = seq_range_expand >= seq_length_expand
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
||||
"""Generate a length mask for input.
|
||||
|
||||
The masked position are filled with True,
|
||||
Unmasked positions are filled with False.
|
||||
|
||||
Args:
|
||||
ys_pad:
|
||||
padded tensor of dimension (batch_size, input_length).
|
||||
ignore_id:
|
||||
the ignored number (the padding number) in ys_pad
|
||||
|
||||
Returns:
|
||||
Tensor:
|
||||
a bool tensor of the same shape as the input tensor.
|
||||
"""
|
||||
ys_mask = ys_pad == ignore_id
|
||||
return ys_mask
|
||||
|
||||
|
||||
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
||||
"""Generate a square mask for the sequence. The masked positions are
|
||||
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
||||
The mask can be used for masked self-attention.
|
||||
|
||||
For instance, if sz is 3, it returns::
|
||||
|
||||
tensor([[0., -inf, -inf],
|
||||
[0., 0., -inf],
|
||||
[0., 0., 0]])
|
||||
|
||||
Args:
|
||||
sz: mask size
|
||||
|
||||
Returns:
|
||||
A square mask of dimension (sz, sz)
|
||||
"""
|
||||
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
||||
mask = (
|
||||
mask.float()
|
||||
.masked_fill(mask == 0, float("-inf"))
|
||||
.masked_fill(mask == 1, float(0.0))
|
||||
)
|
||||
return mask
|
||||
|
||||
|
||||
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||
"""Prepend sos_id to each utterance.
|
||||
|
||||
Args:
|
||||
token_ids:
|
||||
A list-of-list of token IDs. Each sublist contains
|
||||
token IDs (e.g., word piece IDs) of an utterance.
|
||||
sos_id:
|
||||
The ID of the SOS token.
|
||||
|
||||
Return:
|
||||
Return a new list-of-list, where each sublist starts
|
||||
with SOS ID.
|
||||
"""
|
||||
return [[sos_id] + utt for utt in token_ids]
|
||||
|
||||
|
||||
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||
"""Append eos_id to each utterance.
|
||||
|
||||
Args:
|
||||
token_ids:
|
||||
A list-of-list of token IDs. Each sublist contains
|
||||
token IDs (e.g., word piece IDs) of an utterance.
|
||||
eos_id:
|
||||
The ID of the EOS token.
|
||||
|
||||
Return:
|
||||
Return a new list-of-list, where each sublist ends
|
||||
with EOS ID.
|
||||
"""
|
||||
return [utt + [eos_id] for utt in token_ids]
|
||||
|
||||
|
||||
def tolist(t: torch.Tensor) -> List[int]:
|
||||
"""Used by jit"""
|
||||
return torch.jit.annotate(List[int], t.tolist())
|
||||
@ -81,8 +81,11 @@ def compute_fbank_mucs(
|
||||
dataset_parts = (
|
||||
"train",
|
||||
"test",
|
||||
"dev",
|
||||
)
|
||||
|
||||
# dataset_parts = (
|
||||
# "test",
|
||||
# )
|
||||
prefix = "mucs"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
@ -115,13 +118,18 @@ def compute_fbank_mucs(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
|
||||
if "train" in partition:
|
||||
if bpe_model:
|
||||
cut_set = filter_cuts(cut_set, sp)
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
# print(len(m["supervisions"]))
|
||||
# for s in m["supervisions"]:
|
||||
# # print(s)
|
||||
# if s.channel != 0:
|
||||
# print(s)
|
||||
# exit()
|
||||
# if "train" in partition:
|
||||
# if bpe_model:
|
||||
# cut_set = filter_cuts(cut_set, sp)
|
||||
# cut_set = (
|
||||
# cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
# )
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||
@ -131,7 +139,8 @@ def compute_fbank_mucs(
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
keep_overlapping=False, min_duration=None, keep_all_channels=False,
|
||||
|
||||
)
|
||||
cut_set.to_file(output_dir / cuts_filename)
|
||||
|
||||
|
||||
@ -20,15 +20,6 @@ from lhotse import (
|
||||
from lhotse.recipes.utils import manifests_exist, read_manifests_if_cached
|
||||
from lhotse.utils import Pathlike, safe_extract, urlretrieve_progress
|
||||
|
||||
LIBRITTS = (
|
||||
"dev-clean",
|
||||
"dev-other",
|
||||
"test-clean",
|
||||
"test-other",
|
||||
"train-clean-100",
|
||||
"train-clean-360",
|
||||
"train-other-500",
|
||||
)
|
||||
|
||||
def prepare_mucs(
|
||||
corpus_dir: Pathlike,
|
||||
@ -51,7 +42,7 @@ def prepare_mucs(
|
||||
corpus_dir = Path(corpus_dir)
|
||||
assert corpus_dir.is_dir(), f"No such directory: {corpus_dir}"
|
||||
|
||||
dataset_parts = ["train", "test"]
|
||||
dataset_parts = ["train", "test", "dev"]
|
||||
|
||||
manifests = {}
|
||||
|
||||
|
||||
@ -84,15 +84,16 @@ def main():
|
||||
logging.info(f"Validating {manifest}")
|
||||
|
||||
assert manifest.is_file(), f"{manifest} does not exist"
|
||||
print(manifest)
|
||||
# print(manifest)
|
||||
cut_set = load_manifest_lazy(manifest)
|
||||
print(cut_set)
|
||||
# print(cut_set)
|
||||
assert isinstance(cut_set, CutSet)
|
||||
|
||||
for c in cut_set:
|
||||
# print(len(c.supervisions))
|
||||
# validate_one_supervision_per_cut(c)
|
||||
# validate_supervision_and_cut_time_bounds(c)
|
||||
# print(c.supervisions)
|
||||
validate_one_supervision_per_cut(c)
|
||||
validate_supervision_and_cut_time_bounds(c)
|
||||
|
||||
# Validation from K2 training
|
||||
# - checks supervision start is 0
|
||||
|
||||
@ -6,8 +6,8 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
set -eou pipefail
|
||||
|
||||
nj=60
|
||||
stage=3
|
||||
stop_stage=3
|
||||
stage=-1
|
||||
stop_stage=9
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
@ -94,7 +94,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.mucs.done ]; then
|
||||
./local/compute_fbank_mucs.py
|
||||
touch data/fbank/.mucs.done
|
||||
# touch data/fbank/.mucs.done
|
||||
fi
|
||||
|
||||
# exit
|
||||
@ -102,14 +102,15 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
if [ ! -e data/fbank/.mucs-validated.done ]; then
|
||||
log "Validating data/fbank for mucs"
|
||||
parts=(
|
||||
train,
|
||||
train
|
||||
test
|
||||
dev
|
||||
)
|
||||
for part in ${parts[@]}; do
|
||||
python3 ./local/validate_manifest.py \
|
||||
data/fbank/mucs_cuts_${part}.jsonl.gz
|
||||
done
|
||||
touch data/fbank/.mucs-validated.done
|
||||
# touch data/fbank/.mucs-validated.done
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -201,28 +202,35 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
|
||||
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
|
||||
./local/convert_transcript_words_to_tokens.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--transcript $lang_dir/transcript_words.txt \
|
||||
--oov "<UNK>" \
|
||||
> $lang_dir/transcript_tokens.txt
|
||||
fi
|
||||
# if [ ! -f $lang_dir/transcript_tokens.txt ]; then
|
||||
# ./local/convert_transcript_words_to_tokens.py \
|
||||
# --lexicon $lang_dir/lexicon.txt \
|
||||
# --transcript $lang_dir/transcript_words.txt \
|
||||
# --oov "<UNK>" \
|
||||
# > $lang_dir/transcript_tokens.txt
|
||||
# fi
|
||||
|
||||
if [ ! -f $lang_dir/P.arpa ]; then
|
||||
if [ ! -f $lang_dir/lm_3.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order 2 \
|
||||
-text $lang_dir/transcript_tokens.txt \
|
||||
-lm $lang_dir/P.arpa
|
||||
-ngram-order 3 \
|
||||
-text $lang_dir/transcript_words.txt \
|
||||
-lm $lang_dir/lm_3.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/P.fst.txt ]; then
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_dir/tokens.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=2 \
|
||||
$lang_dir/P.arpa > $lang_dir/P.fst.txt
|
||||
if [ ! -f $lang_dir/lm_4.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order 4 \
|
||||
-text $lang_dir/transcript_words.txt \
|
||||
-lm $lang_dir/lm_4.arpa
|
||||
fi
|
||||
|
||||
# if [ ! -f $lang_dir/P.fst.txt ]; then
|
||||
# python3 -m kaldilm \
|
||||
# --read-symbol-table="$lang_dir/tokens.txt" \
|
||||
# --disambig-symbol='#0' \
|
||||
# --max-order=2 \
|
||||
# $lang_dir/P.arpa > $lang_dir/P.fst.txt
|
||||
# fi
|
||||
done
|
||||
fi
|
||||
|
||||
@ -238,22 +246,31 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
--read-symbol-table="data/lang_phone/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
|
||||
data/lang_bpe_200/lm_3.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# It is used for LM rescoring
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_phone/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=4 \
|
||||
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
--max-order=3 \
|
||||
data/lang_bpe_200/lm_4.arpa > data/lm/G_4_gram.fst.txt
|
||||
fi
|
||||
|
||||
# if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# # It is used for LM rescoring
|
||||
# python3 -m kaldilm \
|
||||
# --read-symbol-table="data/lang_phone/words.txt" \
|
||||
# --disambig-symbol='#0' \
|
||||
# --max-order=4 \
|
||||
# $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
# fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Compile HLG"
|
||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
# ./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
|
||||
# Note If ./local/compile_hlg.py throws OOM,
|
||||
# please switch to the following command
|
||||
|
||||
@ -3,14 +3,15 @@ export CUDA_VISIBLE_DEVICES="0"
|
||||
|
||||
./conformer_ctc/train.py \
|
||||
--num-epochs 60 \
|
||||
--max-duration 100 \
|
||||
--exp-dir ./conformer_ctc/exp \
|
||||
--max-duration 300 \
|
||||
--exp-dir ./conformer_ctc/exp_with_devset_split \
|
||||
--lang-dir data/lang_bpe_200 \
|
||||
--enable-musan False \
|
||||
|
||||
# ./conformer_ctc/decode.py \
|
||||
# --epoch 59 \
|
||||
# --avg 10 \
|
||||
# --exp-dir ./conformer_ctc/exp \
|
||||
# --max-duration 100 \
|
||||
# --lang-dir ./data/lang_bpe_2000
|
||||
|
||||
./conformer_ctc/decode.py \
|
||||
--epoch 59 \
|
||||
--avg 10 \
|
||||
--exp-dir ./conformer_ctc/exp_with_devset_split \
|
||||
--max-duration 100 \
|
||||
--lang-dir ./data/lang_bpe_200
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user