Support pure CTC decoding requiring neither a lexicion nor an n-gram LM.

This commit is contained in:
Fangjun Kuang 2021-09-26 12:55:39 +08:00
parent cd7a36b0a2
commit be34a1feed
7 changed files with 104 additions and 28 deletions

View File

@ -23,6 +23,7 @@ from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
@ -77,6 +78,9 @@ def get_parser():
default="attention-decoder",
help="""Decoding method.
Supported values are:
- (0) ctc. Use CTC decoding. It uses a sentence piece
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
It needs neither a lexicon nor an n-gram LM.
- (1) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (2) nbest. Extract n paths from the decoding lattice; the path
@ -128,14 +132,26 @@ def get_parser():
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe",
help="The lang dir",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("conformer_ctc/exp"),
"lang_dir": Path("data/lang_bpe"),
"lm_dir": Path("data/lm"),
# parameters for conformer
"subsampling_factor": 4,
@ -159,13 +175,15 @@ def get_params() -> AttributeDict:
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
batch: dict,
word_table: k2.SymbolTable,
sos_id: int,
eos_id: int,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[int]]]:
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -190,7 +208,11 @@ def decode_one_batch(
model:
The neural model.
HLG:
The decoding graph.
The decoding graph. Used only when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.method is ctc-decoding.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
@ -209,7 +231,10 @@ def decode_one_batch(
Return the decoding result. See above description for the format of
the returned dict.
"""
if HLG is not None:
device = HLG.device
else:
device = H.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
@ -229,9 +254,17 @@ def decode_one_batch(
1,
).to(torch.int32)
if H is None:
assert HLG is not None
decoding_graph = HLG
else:
assert HLG is None
assert bpe_model is not None
decoding_graph = H
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=decoding_graph,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
@ -240,6 +273,24 @@ def decode_one_batch(
subsampling_factor=params.subsampling_factor,
)
if params.method == "ctc-decoding":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using H, not HLG here.
#
# token_ids is a lit-of-list of IDs
token_ids = get_texts(best_path)
# hyps is a list of str, e.g., [['xxx yyy zzz'], ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = f"ctc-decoding"
return {key: hyps}
if params.method == "nbest-oracle":
# Note: You can also pass rescored lattices to it.
# We choose the HLG decoded lattice for speed reasons
@ -340,12 +391,14 @@ def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
word_table: k2.SymbolTable,
sos_id: int,
eos_id: int,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
@ -356,7 +409,11 @@ def decode_dataset(
model:
The neural model.
HLG:
The decoding graph.
The decoding graph. Used only when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.method is ctc-decoding.
word_table:
It is the word symbol table.
sos_id:
@ -391,6 +448,8 @@ def decode_dataset(
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
batch=batch,
word_table=word_table,
G=G,
@ -469,6 +528,8 @@ def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
params = get_params()
params.update(vars(args))
@ -496,6 +557,18 @@ def main():
sos_id = graph_compiler.sos_id
eos_id = graph_compiler.eos_id
if params.method == "ctc-decoding":
HLG = None
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
else:
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
)
@ -593,6 +666,8 @@ def main():
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
word_table=lexicon.word_table,
G=G,
sos_id=sos_id,

View File

@ -301,7 +301,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -146,7 +146,7 @@ def decode_one_batch(
batch: dict,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[int]]]:
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -210,7 +210,7 @@ def decode_one_batch(
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
@ -272,7 +272,7 @@ def decode_dataset(
HLG: k2.Fsa,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:

View File

@ -232,7 +232,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -124,7 +124,7 @@ def decode_one_batch(
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -175,7 +175,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -66,7 +66,7 @@ def _intersect_device(
def get_lattice(
nnet_output: torch.Tensor,
HLG: k2.Fsa,
decoding_graph: k2.Fsa,
supervision_segments: torch.Tensor,
search_beam: float,
output_beam: float,
@ -79,8 +79,9 @@ def get_lattice(
Args:
nnet_output:
It is the output of a neural model of shape `(N, T, C)`.
HLG:
An Fsa, the decoding graph. See also `compile_HLG.py`.
decoding_graph:
An Fsa, the decoding graph. It can be either an HLG
(see `compile_HLG.py`) or an H (see `k2.ctc_topo`).
supervision_segments:
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
Each row contains information for a supervision segment. Column 0
@ -117,7 +118,7 @@ def get_lattice(
)
lattice = k2.intersect_dense_pruned(
HLG,
decoding_graph,
dense_fsa_vec,
search_beam=search_beam,
output_beam=output_beam,