Rename lattice_score_scale to nbest_scale.

This commit is contained in:
Fangjun Kuang 2021-09-26 11:43:03 +08:00
parent 455693aede
commit cd7a36b0a2
7 changed files with 32 additions and 32 deletions

View File

@ -299,9 +299,9 @@ The commonly used options are:
.. code-block::
$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-scale 0.5
- ``--lattice-score-scale``
- ``--nbest-scale``
It is used to scale down lattice scores so that there are more unique
paths for rescoring.
@ -577,7 +577,7 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 1.3 \
--attention-decoder-scale 1.2 \
--lattice-score-scale 0.5 \
--nbest-scale 0.5 \
--num-paths 100 \
--sos-id 1 \
--eos-id 1 \

View File

@ -40,7 +40,7 @@ python conformer_ctc/train.py --bucketing-sampler True \
--full-libri True \
--world-size 4
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
python conformer_ctc/decode.py --nbest-scale 0.5 \
--epoch 34 \
--avg 20 \
--method attention-decoder \

View File

@ -106,7 +106,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""The scale to be applied to `lattice.scores`.
@ -250,12 +250,12 @@ def decode_one_batch(
num_paths=params.num_paths,
ref_texts=supervisions["text"],
word_table=word_table,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
oov="<UNK>",
)
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
key = f"oracle_{params.num_paths}_lattice_score_scale_{params.lattice_score_scale}" # noqa
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
return {key: hyps}
if params.method in ["1best", "nbest"]:
@ -269,9 +269,9 @@ def decode_one_batch(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
@ -293,7 +293,7 @@ def decode_one_batch(
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
elif params.method == "whole-lattice-rescoring":
best_path_dict = rescore_with_whole_lattice(
@ -319,7 +319,7 @@ def decode_one_batch(
memory_key_padding_mask=memory_key_padding_mask,
sos_id=sos_id,
eos_id=eos_id,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
else:
assert False, f"Unsupported decoding method: {params.method}"

View File

@ -125,7 +125,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""
@ -336,7 +336,7 @@ def main():
memory_key_padding_mask=memory_key_padding_mask,
sos_id=params.sos_id,
eos_id=params.eos_id,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
ngram_lm_scale=params.ngram_lm_scale,
attention_scale=params.attention_decoder_scale,
)

View File

@ -97,7 +97,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""The scale to be applied to `lattice.scores`.
@ -229,7 +229,7 @@ def decode_one_batch(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-{params.num_paths}"
hyps = get_texts(best_path)
@ -248,7 +248,7 @@ def decode_one_batch(
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
else:
best_path_dict = rescore_with_whole_lattice(

View File

@ -180,7 +180,7 @@ class Nbest(object):
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
lattice_score_scale: float = 0.5,
nbest_scale: float = 0.5,
) -> "Nbest":
"""Construct an Nbest object by **sampling** `num_paths` from a lattice.
@ -206,7 +206,7 @@ class Nbest(object):
Return an Nbest instance.
"""
saved_scores = lattice.scores.clone()
lattice.scores *= lattice_score_scale
lattice.scores *= nbest_scale
# path is a ragged tensor with dtype torch.int32.
# It has three axes [utt][path][arc_pos]
path = k2.random_paths(
@ -446,7 +446,7 @@ def nbest_decoding(
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
) -> k2.Fsa:
"""It implements something like CTC prefix beam search using n-best lists.
@ -474,7 +474,7 @@ def nbest_decoding(
use_double_scores:
True to use double precision floating point in the computation.
False to use single precision.
lattice_score_scale:
nbest_scale:
It's the scale applied to the `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
Returns:
@ -484,7 +484,7 @@ def nbest_decoding(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores contains 0s
@ -505,7 +505,7 @@ def nbest_oracle(
ref_texts: List[str],
word_table: k2.SymbolTable,
use_double_scores: bool = True,
lattice_score_scale: float = 0.5,
nbest_scale: float = 0.5,
oov: str = "<UNK>",
) -> Dict[str, List[List[int]]]:
"""Select the best hypothesis given a lattice and a reference transcript.
@ -517,7 +517,7 @@ def nbest_oracle(
The decoding result returned from this function is the best result that
we can obtain using n-best decoding with all kinds of rescoring techniques.
This function is useful to tune the value of `lattice_score_scale`.
This function is useful to tune the value of `nbest_scale`.
Args:
lattice:
@ -533,7 +533,7 @@ def nbest_oracle(
use_double_scores:
True to use double precision for computation. False to use
single precision.
lattice_score_scale:
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
oov:
@ -549,7 +549,7 @@ def nbest_oracle(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
hyps = nbest.build_levenshtein_graphs()
@ -590,7 +590,7 @@ def rescore_with_n_best_list(
G: k2.Fsa,
num_paths: int,
lm_scale_list: List[float],
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
use_double_scores: bool = True,
) -> Dict[str, k2.Fsa]:
"""Rescore an n-best list with an n-gram LM.
@ -607,7 +607,7 @@ def rescore_with_n_best_list(
Size of nbest list.
lm_scale_list:
A list of float representing LM score scales.
lattice_score_scale:
nbest_scale:
Scale to be applied to ``lattice.score`` when sampling paths
using ``k2.random_paths``.
use_double_scores:
@ -631,7 +631,7 @@ def rescore_with_n_best_list(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point
@ -769,7 +769,7 @@ def rescore_with_attention_decoder(
memory_key_padding_mask: Optional[torch.Tensor],
sos_id: int,
eos_id: int,
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
ngram_lm_scale: Optional[float] = None,
attention_scale: Optional[float] = None,
use_double_scores: bool = True,
@ -796,7 +796,7 @@ def rescore_with_attention_decoder(
The token ID for SOS.
eos_id:
The token ID for EOS.
lattice_score_scale:
nbest_scale:
It's the scale applied to `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
ngram_lm_scale:
@ -812,7 +812,7 @@ def rescore_with_attention_decoder(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point

View File

@ -43,7 +43,7 @@ def test_nbest_from_lattice():
lattice=lattice,
num_paths=10,
use_double_scores=True,
lattice_score_scale=0.5,
nbest_scale=0.5,
)
# each lattice has only 4 distinct paths that have different word sequences:
# 10->30