mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge 0fb43289f477aa1a9f1d88215684f7808c1c0fd8 into abd9437e6d5419a497707748eb935e50976c3b7b
This commit is contained in:
commit
b5ae175e8e
10
egs/himia/wuw/README.md
Normal file
10
egs/himia/wuw/README.md
Normal file
@ -0,0 +1,10 @@
|
||||
# Pretrained models and related logs/results.
|
||||
|
||||
## ctc tdnn model with Number of model parameters: 1,502,169
|
||||
|
||||
AUC results for different epochs could be found at <https://huggingface.co/GuoLiyong/himia_ctc_tdnn_baseline/tree/main>
|
||||
|
||||
E.g. for epoch 15 and avg 1, result log file is: <https://huggingface.co/GuoLiyong/himia_ctc_tdnn_baseline/blob/main/exp_max_duration_100/post/epoch_15-avg_1/log/log-auc-himia_aishell-2023-03-16-17-42-14>
|
||||
|
||||
Corresponding ROC curve is: <https://huggingface.co/GuoLiyong/himia_ctc_tdnn_baseline/blob/main/exp_max_duration_100/post/epoch_15-avg_1/himia_aishell.png>
|
||||
|
16
egs/himia/wuw/RESULTS.md
Normal file
16
egs/himia/wuw/RESULTS.md
Normal file
@ -0,0 +1,16 @@
|
||||
## Results
|
||||
|
||||
### ctc tdnn model with Number of model parameters: 1,502,169
|
||||
|
||||
AUC results for different epochs could be found at <https://huggingface.co/GuoLiyong/himia_ctc_tdnn_baseline/tree/main>
|
||||
|
||||
Here is the result for epoch_15-avg_1(with the highest AUC).
|
||||
|
||||
| test set | HiMia-Aishell | HiMia-CW|
|
||||
| ---- | ---- | ----|
|
||||
| AUC | 0.9597 |0.9292|
|
||||
|
||||

|
||||
|
||||

|
||||
|
423
egs/himia/wuw/ctc_tdnn/asr_datamodule.py
Normal file
423
egs/himia/wuw/ctc_tdnn/asr_datamodule.py
Normal file
@ -0,0 +1,423 @@
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class HiMiaWuwDataModule:
|
||||
"""
|
||||
DataModule for Himia wake word experiments.
|
||||
|
||||
It contains common data pipeline modules e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="Data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
group.add_argument(
|
||||
"--train-channel",
|
||||
type=str,
|
||||
default="_7_01",
|
||||
help="""channel of HI_MIA train dataset.
|
||||
All channels are used if it is set "all".
|
||||
Please refer to stage 6 in prepare.sh for its meaning and other
|
||||
potential values. Currently, Only "_7_01" is verified.
|
||||
""",
|
||||
)
|
||||
group.add_argument(
|
||||
"--dev-channel",
|
||||
type=str,
|
||||
default="_7_01",
|
||||
help="""channel of HI_MIA dev dataset.
|
||||
All channels are used if it is set "all".
|
||||
Please refer to stage 6 in prepare.sh for its meaning and other
|
||||
potential values. Currently, Only "_7_01" is verified.
|
||||
""",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=10,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
num_buckets=2,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
train_cuts_file = (
|
||||
f"cuts_train_himia{self.args.train_channel}-aishell-shuf.jsonl.gz"
|
||||
)
|
||||
if "all" == self.args.train_channel:
|
||||
train_cuts_file = "cuts_train_himia-aishell-shuf.jsonl.gz"
|
||||
return load_manifest_lazy(self.args.manifest_dir / f"{train_cuts_file}")
|
||||
|
||||
@lru_cache()
|
||||
def aishell_test_cuts(self) -> CutSet:
|
||||
logging.info("About to get aishell test cuts")
|
||||
return load_manifest_lazy(self.args.manifest_dir / "aishell_cuts_test.jsonl.gz")
|
||||
|
||||
@lru_cache()
|
||||
def cw_test_cuts(self) -> CutSet:
|
||||
logging.info("About to get HI-MIA-CW test cuts")
|
||||
return load_manifest_lazy(self.args.manifest_dir / "cuts_cw_test.jsonl.gz")
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
dev_cuts_file = "cuts_dev.jsonl.gz"
|
||||
if "all" != self.args.dev_channel:
|
||||
dev_cuts_file = f"cuts_dev{self.args.dev_channel}.jsonl.gz"
|
||||
return load_manifest_lazy(self.args.manifest_dir / f"{dev_cuts_file}")
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
# 7_01 is short for microphone 7 and channel 1.
|
||||
return load_manifest_lazy(self.args.manifest_dir / "cuts_test_7_01.jsonl.gz")
|
316
egs/himia/wuw/ctc_tdnn/decode.py
Executable file
316
egs/himia/wuw/ctc_tdnn/decode.py
Executable file
@ -0,0 +1,316 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Weiji Zhuang,
|
||||
# Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from typing import Tuple
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from lhotse.features.io import NumpyHdf5Reader
|
||||
from tqdm import tqdm
|
||||
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
from train import get_params
|
||||
from graph import ctc_trivial_decoding_graph
|
||||
|
||||
|
||||
class Arc:
|
||||
def __init__(
|
||||
self, src_state: int, dst_state: int, ilabel: int, olabel: int
|
||||
) -> None:
|
||||
self.src_state = int(src_state)
|
||||
self.dst_state = int(dst_state)
|
||||
self.ilabel = int(ilabel)
|
||||
self.olabel = int(olabel)
|
||||
|
||||
def next_state(self) -> None:
|
||||
return self.dst_state
|
||||
|
||||
|
||||
class State:
|
||||
def __init__(self) -> None:
|
||||
self.arc_list = list()
|
||||
|
||||
def add_arc(self, arc: Arc) -> None:
|
||||
self.arc_list.append(arc)
|
||||
|
||||
|
||||
class FiniteStateTransducer:
|
||||
"""Represents a decoding graph for wake word detection."""
|
||||
|
||||
def __init__(self, graph: str) -> None:
|
||||
"""
|
||||
Construct a decoding graph in FST format given string format graph.
|
||||
|
||||
Args:
|
||||
graph: A string format fst. Each arc is separated by "\n".
|
||||
"""
|
||||
self.state_list = list()
|
||||
for arc_str in graph.split("\n"):
|
||||
arc = arc_str.strip().split()
|
||||
if len(arc) == 0:
|
||||
continue
|
||||
# An arc may contain 1, 2 or 4 elements, with format:
|
||||
# src_state [dst_state] [ilabel] [olabel]
|
||||
# 1 and 2 for final state
|
||||
# 4 for non-final state
|
||||
assert len(arc) in [1, 2, 4], f"{len(arc)} {arc_str}"
|
||||
arc = [int(element) for element in arc]
|
||||
src_state_id = arc[0]
|
||||
max_state_id = len(self.state_list) - 1
|
||||
if len(arc) == 4: # Non-final state
|
||||
assert max_state_id <= src_state_id, (
|
||||
f"Fsa must be sorted by src_state, "
|
||||
f"while {max_state_id} <= {src_state_id}. Check your graph."
|
||||
)
|
||||
if max_state_id < src_state_id:
|
||||
new_state = State()
|
||||
self.state_list.append(new_state)
|
||||
|
||||
self.state_list[src_state_id].add_arc(
|
||||
Arc(src_state_id, arc[1], arc[2], arc[3])
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
max_state_id == src_state_id
|
||||
), "Final state seems unreachable. Check your graph."
|
||||
self.final_state_id = src_state_id
|
||||
|
||||
def to_str(self) -> None:
|
||||
fst_str = ""
|
||||
number_states = len(self.state_list)
|
||||
if number_states == 0:
|
||||
return fst_str
|
||||
for state_idx in range(number_states):
|
||||
cur_state = self.state_list[state_idx]
|
||||
for arc_idx in range(len(cur_state.arc_list)):
|
||||
cur_arc = cur_state.arc_list[arc_idx]
|
||||
ilabel = cur_arc.ilabel
|
||||
olabel = cur_arc.olabel
|
||||
src_state = cur_arc.src_state
|
||||
dst_state = cur_arc.dst_state
|
||||
fst_str += f"{src_state} {dst_state} {ilabel} {olabel}\n"
|
||||
fst_str += f"{dst_state}\n"
|
||||
return fst_str
|
||||
|
||||
|
||||
class Token:
|
||||
def __init__(self) -> None:
|
||||
self.is_active = False
|
||||
self.total_score = -float("inf")
|
||||
self.keyword_frames = 0
|
||||
self.average_keyword_score = -float("inf")
|
||||
self.average_max_keyword_score = 0.0
|
||||
|
||||
def set_token(
|
||||
self,
|
||||
src_token, # Token conneted to current token.
|
||||
is_keyword_ilabel: bool,
|
||||
acoustic_score: float,
|
||||
) -> None:
|
||||
"""
|
||||
A dynamic programming process computing the highest score for a token
|
||||
from all possible paths which could reach this token.
|
||||
|
||||
Args:
|
||||
src_token: The source token connected to current token with an arc.
|
||||
is_keyword_ilabel: If true, the arc consumes an input label which is
|
||||
a part of wake word. Otherwhise, the input label is
|
||||
blank or unknown, i.e. current token is still not part of wake word.
|
||||
acoustic_score: acoustic score of this arc.
|
||||
"""
|
||||
|
||||
if (
|
||||
not self.is_active
|
||||
or self.total_score < src_token.total_score + acoustic_score
|
||||
):
|
||||
self.is_active = True
|
||||
self.total_score = src_token.total_score + acoustic_score
|
||||
|
||||
if is_keyword_ilabel:
|
||||
self.average_keyword_score = (
|
||||
acoustic_score
|
||||
+ src_token.average_keyword_score * src_token.keyword_frames
|
||||
) / (src_token.keyword_frames + 1)
|
||||
|
||||
self.keyword_frames = src_token.keyword_frames + 1
|
||||
else:
|
||||
self.average_keyword_score = 0.0
|
||||
|
||||
|
||||
class SingleDecodable:
|
||||
def __init__(
|
||||
self,
|
||||
model_output: np.array,
|
||||
keyword_ilabel_start: int,
|
||||
graph: FiniteStateTransducer,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
model_output: log_softmax(logit) with shape [T, C]
|
||||
keyword_ilabel_start: index of the first token of the wake word.
|
||||
In this recipe, tokens not for wake word has smaller token index,
|
||||
i.e. blank 0; unk 1.
|
||||
graph: decoding graph of the wake word.
|
||||
|
||||
"""
|
||||
self.init_token_list = [Token() for i in range(len(graph.state_list))]
|
||||
self.reset_token_list()
|
||||
self.model_output = model_output
|
||||
self.T = model_output.shape[0]
|
||||
self.utt_score = 0.0
|
||||
self.current_frame_index = 0
|
||||
self.keyword_ilabel_start = keyword_ilabel_start
|
||||
self.graph = graph
|
||||
self.number_tokens = len(self.cur_token_list)
|
||||
|
||||
def reset_token_list(self) -> None:
|
||||
"""
|
||||
Reset all tokens to a condition without consuming any acoustic frames.
|
||||
"""
|
||||
self.cur_token_list = copy.deepcopy(self.init_token_list)
|
||||
self.expand_token_list = copy.deepcopy(self.init_token_list)
|
||||
self.cur_token_list[0].is_active = True
|
||||
self.cur_token_list[0].total_score = 0
|
||||
self.cur_token_list[0].average_keyword_score = 0
|
||||
|
||||
def process_oneframe(self) -> None:
|
||||
"""
|
||||
Decode a frame and update all tokens.
|
||||
"""
|
||||
for state_id, cur_token in enumerate(self.cur_token_list):
|
||||
if cur_token.is_active:
|
||||
for arc_id in self.graph.state_list[state_id].arc_list:
|
||||
acoustic_score = self.model_output[self.current_frame_index][
|
||||
arc_id.ilabel
|
||||
]
|
||||
is_keyword_ilabel = arc_id.ilabel >= self.keyword_ilabel_start
|
||||
self.expand_token_list[arc_id.next_state()].set_token(
|
||||
cur_token,
|
||||
is_keyword_ilabel,
|
||||
acoustic_score,
|
||||
)
|
||||
# use best_score to keep total_score in a good range
|
||||
self.best_state_id = 0
|
||||
best_score = self.expand_token_list[0].total_score
|
||||
for state_id in range(self.number_tokens):
|
||||
if self.expand_token_list[state_id].is_active:
|
||||
if best_score < self.expand_token_list[state_id].total_score:
|
||||
best_score = self.expand_token_list[state_id].total_score
|
||||
self.best_state_id = state_id
|
||||
|
||||
self.cur_token_list = self.expand_token_list
|
||||
for state_id in range(self.number_tokens):
|
||||
self.cur_token_list[state_id].total_score -= best_score
|
||||
self.expand_token_list = copy.deepcopy(self.init_token_list)
|
||||
potential_score = np.exp(
|
||||
self.cur_token_list[self.graph.final_state_id].average_keyword_score
|
||||
)
|
||||
if potential_score > self.utt_score:
|
||||
self.utt_score = potential_score
|
||||
self.current_frame_index += 1
|
||||
|
||||
|
||||
def decode_utt(
|
||||
params: AttributeDict,
|
||||
utt_id: str,
|
||||
post_file: str,
|
||||
graph: FiniteStateTransducer,
|
||||
) -> Tuple[str, float]:
|
||||
"""
|
||||
Decode a single utterance.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
utt_id: utt_id to be decoded, used to fetch posterior matrix from post_file.
|
||||
post_file: file to save posterior for all test set.
|
||||
graph: decoding graph in FiniteStateTransducer format.
|
||||
|
||||
Returns:
|
||||
utt_id and its corresponding probability to be a wake word.
|
||||
"""
|
||||
reader = NumpyHdf5Reader(post_file)
|
||||
model_output = reader.read(utt_id)
|
||||
keyword_ilabel_start = params.wakeup_word_tokens[0]
|
||||
decodable = SingleDecodable(
|
||||
model_output=model_output,
|
||||
keyword_ilabel_start=keyword_ilabel_start,
|
||||
graph=graph,
|
||||
)
|
||||
for t in range(decodable.T):
|
||||
decodable.process_oneframe()
|
||||
return utt_id, decodable.utt_score
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="A simple FST decoder for the wake word detection\n"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--post-h5",
|
||||
type=str,
|
||||
help="model output in h5 format",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--score-file",
|
||||
type=str,
|
||||
help="file to save scores of each utterance",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
post_dir = Path(params.post_h5).parent
|
||||
test_set = Path(params.post_h5).stem
|
||||
setup_logger(f"{post_dir}/log/log-decode-{test_set}")
|
||||
|
||||
graph = FiniteStateTransducer(ctc_trivial_decoding_graph(params.wakeup_word_tokens))
|
||||
|
||||
logging.info(f"Graph used:\n{graph.to_str()}")
|
||||
|
||||
logging.info(f"About to load {test_set}.")
|
||||
keys = NumpyHdf5Reader(params.post_h5).hdf.keys()
|
||||
with ProcessPoolExecutor() as executor, open(
|
||||
params.score_file, "w", encoding="utf8"
|
||||
) as fout:
|
||||
futures = [
|
||||
executor.submit(decode_utt, params, key, params.post_h5, graph)
|
||||
for key in tqdm(keys)
|
||||
]
|
||||
logging.info(f"Decoding {test_set}.")
|
||||
for future in tqdm(futures):
|
||||
k, v = future.result()
|
||||
fout.write(str(k) + " " + str(v) + "\n")
|
||||
|
||||
logging.info(f"Finish decoding {test_set}.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
52
egs/himia/wuw/ctc_tdnn/graph.py
Normal file
52
egs/himia/wuw/ctc_tdnn/graph.py
Normal file
@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Weiji Zhuang,
|
||||
# Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
|
||||
def ctc_trivial_decoding_graph(wakeup_word_tokens: List[int]) -> str:
|
||||
"""
|
||||
A graph starts with blank/unknown and following by wakeup word.
|
||||
|
||||
Args:
|
||||
wakeup_word_tokens: A sequence of token ids corresponding wakeup_word.
|
||||
It should not contain 0 and 1.
|
||||
We assume 0 is for blank and 1 is for unknown.
|
||||
Returns:
|
||||
Returns a finite-state transducer in string format,
|
||||
used as a decoding graph.
|
||||
Arcs are separated with "\n".
|
||||
"""
|
||||
assert 0 not in wakeup_word_tokens
|
||||
assert 1 not in wakeup_word_tokens
|
||||
assert len(wakeup_word_tokens) >= 2
|
||||
keyword_ilabel_start = wakeup_word_tokens[0]
|
||||
fst_graph = ""
|
||||
for non_wake_word_token in range(keyword_ilabel_start):
|
||||
fst_graph += f"0 0 {non_wake_word_token} 0\n"
|
||||
cur_state = 1
|
||||
for token in wakeup_word_tokens[:-1]:
|
||||
fst_graph += f"{cur_state - 1} {cur_state} {token} 0\n"
|
||||
fst_graph += f"{cur_state} {cur_state} {token} 0\n"
|
||||
cur_state += 1
|
||||
|
||||
token = wakeup_word_tokens[-1]
|
||||
fst_graph += f"{cur_state - 1} {cur_state} {token} 1\n"
|
||||
fst_graph += f"{cur_state} {cur_state} {token} 0\n"
|
||||
fst_graph += f"{cur_state}\n"
|
||||
return fst_graph
|
206
egs/himia/wuw/ctc_tdnn/inference.py
Executable file
206
egs/himia/wuw/ctc_tdnn/inference.py
Executable file
@ -0,0 +1,206 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse.features.io import NumpyHdf5Writer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
from asr_datamodule import HiMiaWuwDataModule
|
||||
from tdnn import Tdnn
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=10,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 1.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="ctc_tdnn/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"env_info": get_env_info(),
|
||||
"feature_dim": 80,
|
||||
"num_class": 9,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def inference_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: torch.nn.Module,
|
||||
test_set: str,
|
||||
):
|
||||
"""Compute and save model output of each utterance.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
test_set:
|
||||
Name of test set.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
writer = NumpyHdf5Writer(f"{params.out_dir}/{test_set}")
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
device = params.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
supervisions = batch["supervisions"]
|
||||
start_frames = supervisions["start_frame"]
|
||||
end_frames = start_frames + supervisions["num_frames"]
|
||||
|
||||
feature = feature.to(device)
|
||||
# model_output is log_softmax(logit) with shape [N, T, C]
|
||||
model_output = model(feature)
|
||||
|
||||
for i in range(feature.size(0)):
|
||||
assert start_frames[i] == 0
|
||||
cut = batch["supervisions"]["cut"][i]
|
||||
cur_target = model_output[i][start_frames[i] : end_frames[i]]
|
||||
writer.store_array(key=cut.id, value=cur_target.cpu().numpy())
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
HiMiaWuwDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
out_dir = f"{params.exp_dir}/post/epoch_{params.epoch}-avg_{params.avg}/"
|
||||
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
||||
params.out_dir = out_dir
|
||||
setup_logger(f"{out_dir}/log/log-inference")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
model = Tdnn(params.feature_dim, params.num_class)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=True)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=True
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
params.device = device
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
himia = HiMiaWuwDataModule(args)
|
||||
|
||||
aishell_test_cuts = himia.aishell_test_cuts()
|
||||
test_cuts = himia.test_cuts()
|
||||
cw_test_cuts = himia.cw_test_cuts()
|
||||
|
||||
aishell_test_dl = himia.test_dataloaders(aishell_test_cuts)
|
||||
test_dl = himia.test_dataloaders(test_cuts)
|
||||
cw_test_dl = himia.test_dataloaders(cw_test_cuts)
|
||||
|
||||
test_sets = ["aishell_test", "test", "cw_test"]
|
||||
test_dls = [aishell_test_dl, test_dl, cw_test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
logging.info(f"About to inference {test_set}")
|
||||
inference_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
test_set=test_set,
|
||||
)
|
||||
|
||||
logging.info(f"finish inferencing {test_set}")
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
108
egs/himia/wuw/ctc_tdnn/tdnn.py
Normal file
108
egs/himia/wuw/ctc_tdnn/tdnn.py
Normal file
@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from torch import nn, Tensor
|
||||
|
||||
|
||||
class Tdnn(nn.Module):
|
||||
"""
|
||||
Args:
|
||||
num_features (int): Number of input features
|
||||
num_classes (int): Number of output classes
|
||||
"""
|
||||
|
||||
def __init__(self, num_features: int, num_classes: int) -> None:
|
||||
super().__init__()
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.tdnn = nn.Sequential(
|
||||
nn.Conv1d(
|
||||
in_channels=num_features,
|
||||
out_channels=240,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=3, stride=1, padding=1
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240, out_channels=240, kernel_size=1, stride=1, padding=0
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=240, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=240,
|
||||
out_channels=num_classes,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.LogSoftmax(1),
|
||||
)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
r"""
|
||||
Args:
|
||||
x (torch.Tensor): Tensor of dimension (N, T, C).
|
||||
Returns:
|
||||
Tensor: Predictor tensor of dimension (N, T, C).
|
||||
"""
|
||||
|
||||
x = x.transpose(1, 2)
|
||||
x = self.tdnn(x)
|
||||
x = x.transpose(1, 2)
|
||||
return x
|
101
egs/himia/wuw/ctc_tdnn/tokenizer.py
Normal file
101
egs/himia/wuw/ctc_tdnn/tokenizer.py
Normal file
@ -0,0 +1,101 @@
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import itertools
|
||||
import torch
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
class WakeupWordTokenizer(object):
|
||||
def __init__(
|
||||
self,
|
||||
wakeup_word: str,
|
||||
wakeup_word_tokens: List[int],
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
wakeup_word: content of positive samples.
|
||||
A sample will be treated as a negative sample unless its content
|
||||
is exactly the same to key_words.
|
||||
wakeup_word_tokens: A list of int representing token ids of wakeup_word.
|
||||
For example: the pronunciation of "你好米雅" is
|
||||
"n i h ao m i y a".
|
||||
Suppose we are using following lexicon:
|
||||
blk 0
|
||||
unk 1
|
||||
n 2
|
||||
i 3
|
||||
h 4
|
||||
ao 5
|
||||
m 6
|
||||
y 7
|
||||
a 8
|
||||
Then wakeup_word_tokens for "你好米雅" is:
|
||||
n i h ao m i y a
|
||||
[2, 3, 4, 5, 6, 3, 7, 8]
|
||||
"""
|
||||
super().__init__()
|
||||
assert wakeup_word is not None
|
||||
assert wakeup_word_tokens is not None
|
||||
assert (
|
||||
0 not in wakeup_word_tokens
|
||||
), f"0 is kept for blank. Please Remove 0 from {wakeup_word_tokens}"
|
||||
assert 1 not in wakeup_word_tokens, (
|
||||
f"1 is kept for unknown and negative samples. "
|
||||
f" Please Remove 1 from {wakeup_word_tokens}"
|
||||
)
|
||||
self.wakeup_word = wakeup_word
|
||||
self.wakeup_word_tokens = wakeup_word_tokens
|
||||
self.positive_number_tokens = len(wakeup_word_tokens)
|
||||
self.negative_word_tokens = [1]
|
||||
self.negative_number_tokens = 1
|
||||
|
||||
def texts_to_token_ids(
|
||||
self, texts: List[str]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
||||
"""Convert a list of texts to parameters needed by CTC loss.
|
||||
|
||||
Args:
|
||||
texts:
|
||||
It is a list of strings,
|
||||
each element is a reference text for an audio.
|
||||
Returns:
|
||||
Return a tuple of 3 elements.
|
||||
The first one is torch.Tensor(List[List[int]]),
|
||||
each List[int] is tokens sequence for each reference text.
|
||||
|
||||
The second one is number of tokens for each sample,
|
||||
mainly used by CTC loss.
|
||||
|
||||
The last one is number_positive_samples,
|
||||
used to track proportion of positive samples in each batch.
|
||||
"""
|
||||
batch_token_ids = []
|
||||
target_lengths = []
|
||||
number_positive_samples = 0
|
||||
for utt_text in texts:
|
||||
if utt_text == self.wakeup_word:
|
||||
batch_token_ids.extend(self.wakeup_word_tokens)
|
||||
target_lengths.append(self.positive_number_tokens)
|
||||
number_positive_samples += 1
|
||||
else:
|
||||
batch_token_ids.extend(self.negative_word_tokens)
|
||||
target_lengths.append(self.negative_number_tokens)
|
||||
|
||||
target = torch.tensor(batch_token_ids)
|
||||
target_lengths = torch.tensor(target_lengths)
|
||||
return target, target_lengths, number_positive_samples
|
667
egs/himia/wuw/ctc_tdnn/train.py
Executable file
667
egs/himia/wuw/ctc_tdnn/train.py
Executable file
@ -0,0 +1,667 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
export CUDA_VISIBLE_DEVICES="0"
|
||||
./ctc_tdnn/train.py \
|
||||
--exp-dir ./ctc_tdnn/exp \
|
||||
--world-size 1 \
|
||||
--max-duration 100 \
|
||||
--num-epochs 20
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import HiMiaWuwDataModule
|
||||
from tdnn import Tdnn
|
||||
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from tokenizer import WakeupWordTokenizer
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
ctc_tdnn/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="ctc_tdnn/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="The lr_factor for optimizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- num_class: Number of classes. Each token will have a token id
|
||||
from [0, num_class).
|
||||
In this recipe, 0 is usually kept for blank,
|
||||
and 1 is usually kept for negative words.
|
||||
- wakeup_word: Text of wakeup word, i.e. positive samples.
|
||||
- wakeup_word_tokens: A sequence of token ids corresponding wakeup_word.
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 5,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000,
|
||||
# parameters for model
|
||||
"feature_dim": 80,
|
||||
"num_class": 9,
|
||||
# parameters for tokenizer
|
||||
"wakeup_word": "你好米雅",
|
||||
"wakeup_word_tokens": [2, 3, 4, 5, 6, 3, 7, 8],
|
||||
# parameters for Optimizer
|
||||
"weight_decay": 1e-6,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch > 1:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
tokenizer: WakeupWordTokenizer,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
tokenizer:
|
||||
For positive samples, map their texts to corresponding token index sequence.
|
||||
While for negative samples, map their texts to unknown no matter what they are.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
N, T, C = feature.shape
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
texts = supervisions["text"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
# model_output is log_softmax(logit) with shape [N, T, C]
|
||||
model_output = model(feature)
|
||||
|
||||
assert torch.all(supervisions["start_frame"] == 0)
|
||||
num_frames = supervisions["num_frames"].to(device)
|
||||
|
||||
target, target_lengths, number_positive_samples = tokenizer.texts_to_token_ids(
|
||||
texts
|
||||
) # noqa E501
|
||||
target = target.to(device)
|
||||
target_lengths = target_lengths.to(device)
|
||||
ctc_loss = nn.CTCLoss(reduction="sum")
|
||||
# [N, T, C] --> [T, N, C]
|
||||
model_output = model_output.transpose(0, 1)
|
||||
loss = ctc_loss(model_output, target, num_frames, target_lengths)
|
||||
loss /= num_frames.sum()
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = num_frames.sum().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item() * info["frames"]
|
||||
|
||||
# `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa
|
||||
info["utterances"] = feature.size(0)
|
||||
# averaged input duration in frames over utterances
|
||||
info["utt_duration"] = supervisions["num_frames"].sum().item()
|
||||
# averaged padding proportion over utterances
|
||||
info["utt_pad_proportion"] = (
|
||||
((feature.size(1) - supervisions["num_frames"]) / feature.size(1)).sum().item()
|
||||
)
|
||||
|
||||
info["number_positive_cuts_ratio"] = (number_positive_samples / N) * info["frames"]
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
tokenizer: WakeupWordTokenizer,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
tokenizer=tokenizer,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
tokenizer: WakeupWordTokenizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
tokenizer:
|
||||
For positive samples, map their texts to corresponding token index sequence.
|
||||
While for negative samples, map their texts to unknown no matter what they are.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
tokenizer=tokenizer,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
tokenizer = WakeupWordTokenizer(
|
||||
wakeup_word=params.wakeup_word,
|
||||
wakeup_word_tokens=params.wakeup_word_tokens,
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
|
||||
model = Tdnn(params.feature_dim, params.num_class)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr_factor,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
himia = HiMiaWuwDataModule(args)
|
||||
|
||||
train_cuts = himia.train_cuts()
|
||||
|
||||
train_dl = himia.train_dataloaders(train_cuts)
|
||||
|
||||
valid_cuts = himia.dev_cuts()
|
||||
valid_dl = himia.valid_dataloaders(valid_cuts)
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
tokenizer=tokenizer,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
# TODO: Support lr scheduler
|
||||
cur_lr = params.lr_factor
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
tokenizer=tokenizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
tokenizer: WakeupWordTokenizer,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
tokenizer=tokenizer,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
HiMiaWuwDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
131
egs/himia/wuw/local/auc.py
Executable file
131
egs/himia/wuw/local/auc.py
Executable file
@ -0,0 +1,131 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Weiji Zhuang,
|
||||
# Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from sklearn.metrics import roc_curve, auc
|
||||
|
||||
from icefall.utils import setup_logger
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--positive-score-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="score file of positive data",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--negative-score-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="score file of negative data",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--legend",
|
||||
type=str,
|
||||
required=True,
|
||||
help="legend of ROC curve picture.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_score(score_file: Path) -> Dict[str, float]:
|
||||
"""
|
||||
Args:
|
||||
score_file: Path to score file. Each line has two columns.
|
||||
The first column is utt-id, and the second one is score.
|
||||
This score could be viewed as probability of being wakeup word.
|
||||
|
||||
Returns:
|
||||
A dict with that key is utt-id and value is corresponding score.
|
||||
"""
|
||||
pos_dict = {}
|
||||
with open(score_file, "r", encoding="utf8") as fin:
|
||||
for line in fin:
|
||||
arr = line.strip().split()
|
||||
assert len(arr) == 2
|
||||
key = arr[0]
|
||||
score = float(arr[1])
|
||||
pos_dict[key] = score
|
||||
return pos_dict
|
||||
|
||||
|
||||
def get_roc_and_auc(
|
||||
pos_dict: Dict,
|
||||
neg_dict: Dict,
|
||||
) -> Tuple[np.array, np.array, float]:
|
||||
"""
|
||||
Args:
|
||||
pos_dict: scores of positive samples.
|
||||
neg_dict: scores of negative samples.
|
||||
Return:
|
||||
A tuple of three elements, which will be used to plot ROC curve.
|
||||
Refer to sklearn.metrics.roc_curve for meaning of the first and second elements.
|
||||
The third element is area under the ROC curve(AUC).
|
||||
"""
|
||||
pos_scores = np.fromiter(pos_dict.values(), dtype=float)
|
||||
neg_scores = np.fromiter(neg_dict.values(), dtype=float)
|
||||
|
||||
pos_y = np.ones_like(pos_scores, dtype=int)
|
||||
neg_y = np.zeros_like(neg_scores, dtype=int)
|
||||
|
||||
scores = np.concatenate([pos_scores, neg_scores])
|
||||
y = np.concatenate([pos_y, neg_y])
|
||||
|
||||
fpr, tpr, thresholds = roc_curve(y, scores, pos_label=1)
|
||||
roc_auc = auc(fpr, tpr)
|
||||
|
||||
return fpr, tpr, roc_auc
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
args = get_args()
|
||||
|
||||
score_dir = Path(args.positive_score_file).parent
|
||||
setup_logger(f"{score_dir}/log/log-auc-{args.legend}")
|
||||
logging.info(f"About to compute AUC of {args.legend}")
|
||||
|
||||
pos_dict = load_score(args.positive_score_file)
|
||||
neg_dict = load_score(args.negative_score_file)
|
||||
fpr, tpr, roc_auc = get_roc_and_auc(pos_dict, neg_dict)
|
||||
|
||||
plt.figure(figsize=(16, 9))
|
||||
plt.plot(fpr, tpr, label=f"{args.legend}(AUC = %1.8f)" % roc_auc)
|
||||
|
||||
plt.xlim([0.0, 1.0])
|
||||
plt.ylim([0.0, 1.0])
|
||||
plt.xlabel("False Positive Rate")
|
||||
plt.ylabel("True Positive Rate")
|
||||
plt.title("Receiver operating characteristic(ROC)")
|
||||
plt.legend(loc="lower right")
|
||||
|
||||
output_path = Path(args.positive_score_file).parent
|
||||
logging.info(f"AUC of {args.legend} {output_path}: {roc_auc}")
|
||||
plt.savefig(f"{output_path}/{args.legend}.png", bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/himia/wuw/local/compute_fbank_aishell.py
Symbolic link
1
egs/himia/wuw/local/compute_fbank_aishell.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/compute_fbank_aishell.py
|
139
egs/himia/wuw/local/compute_fbank_himia.py
Executable file
139
egs/himia/wuw/local/compute_fbank_himia.py
Executable file
@ -0,0 +1,139 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the HI_MIA and HI_MIA_CW dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--train-set-channel",
|
||||
type=str,
|
||||
default="_7_01",
|
||||
help="""channel of HI_MIA dataset.
|
||||
All channels are used if it is set "all".
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--enable-speed-perturb",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""channel of training set.
|
||||
""",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_himia(
|
||||
train_set_channel: str = None,
|
||||
enable_speed_perturb: bool = True,
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(40, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
if "all" == train_set_channel:
|
||||
dataset_parts = (
|
||||
"train",
|
||||
"dev",
|
||||
"test",
|
||||
"cw_test",
|
||||
)
|
||||
else:
|
||||
dataset_parts = (
|
||||
f"train{train_set_channel}",
|
||||
f"dev{train_set_channel}",
|
||||
f"test{train_set_channel}",
|
||||
"cw_test",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, prefix="himia", output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and enable_speed_perturb:
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set = cut_set.resample(16000)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
output_file_name = f"cuts_{partition}.jsonl.gz"
|
||||
if "all" != train_set_channel:
|
||||
output_file_name = f"cuts_{partition}{train_set_channel}.jsonl.gz"
|
||||
|
||||
cut_set.to_file(output_dir / f"{output_file_name}")
|
||||
|
||||
|
||||
def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
args = get_args()
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_himia(
|
||||
train_set_channel=args.train_set_channel,
|
||||
enable_speed_perturb=args.enable_speed_perturb,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/himia/wuw/local/compute_fbank_musan.py
Symbolic link
1
egs/himia/wuw/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compute_fbank_musan.py
|
193
egs/himia/wuw/prepare.sh
Executable file
193
egs/himia/wuw/prepare.sh
Executable file
@ -0,0 +1,193 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=0
|
||||
stop_stage=6
|
||||
|
||||
# HI_MIA and aishell dataset are used in this experiment.
|
||||
# musan dataset is used for data augmentation.
|
||||
#
|
||||
# For aishell dataset downloading and preparation,
|
||||
# refer to icefall/egs/aishell/ASR/prepare.sh.
|
||||
#
|
||||
# For HI_MIA and HI_MIA_CW dataset,
|
||||
# we assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
# Then these files will be extracted to $dl_dir/HiMia/
|
||||
#
|
||||
# - $dl_dir/train.tar.gz
|
||||
# Himia training dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/dev.tar.gz
|
||||
# Himia Devlopment dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/test_v2.tar.gz
|
||||
# Himia test dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/data.tgz
|
||||
# Himia confusion words(HI_MIA_CW) test dataset.
|
||||
# From https://www.openslr.org/120
|
||||
|
||||
# - $dl_dir/resource.tgz
|
||||
# Transcripts of (HI_MIA_CW) test dataset.
|
||||
# From https://www.openslr.org/120
|
||||
|
||||
dl_dir=$PWD/download
|
||||
train_set_channel=_7_01
|
||||
enable_speed_perturb=False
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded HI_MIA and HI_MIA_CW dataset to /path/to/himia/,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/himia $dl_dir/
|
||||
#
|
||||
if [ ! -f $dl_dir/train.tar.gz ]; then
|
||||
lhotse download himia $dl_dir/
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/aishell,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/aishell $dl_dir/aishell
|
||||
#
|
||||
# The directory structure is
|
||||
# aishell/
|
||||
# |-- data_aishell
|
||||
# | |-- transcript
|
||||
# | `-- wav
|
||||
# `-- resource_aishell
|
||||
# |-- lexicon.txt
|
||||
# `-- speaker.info
|
||||
|
||||
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
|
||||
lhotse download aishell $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare HI_MIA and HI_MIA_CW manifest"
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.himia.done ]; then
|
||||
lhotse prepare himia $dl_dir/HiMia data/manifests
|
||||
touch data/manifests/.himia.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.musan.done ]; then
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
touch data/manifests/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare aishell manifest"
|
||||
# We assume that you have downloaded the aishell corpus
|
||||
# to $dl_dir/aishell
|
||||
if [ ! -f data/manifests/.aishell_manifests.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare aishell $dl_dir/aishell data/manifests
|
||||
touch data/manifests/.aishell_manifests.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for aishell"
|
||||
if [ ! -f data/fbank/.aishell.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell.py \
|
||||
--enable-speed-perturb=${enable_speed_perturb}
|
||||
touch data/fbank/.aishell.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.musan.done ]; then
|
||||
./local/compute_fbank_musan.py
|
||||
touch data/fbank/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Compute fbank for HI_MIA and HI_MIA_CW dataset"
|
||||
# Format of train_set_channel is "micropohone position"_"channel"
|
||||
# Microphone 1 to 6 is an array with 16 channels.
|
||||
# Microphone 8 only has a single channel.
|
||||
# So valid examples of train_set_channel could be:
|
||||
# 1_01, ..., 1_16
|
||||
# 2_01, ..., 2_16
|
||||
# ...
|
||||
# 6_01, ..., 6_16
|
||||
# 7_01
|
||||
train_set_channel="_7_01"
|
||||
for subset in train dev test; do
|
||||
for file_type in recordings supervisions; do
|
||||
src=data/manifests/himia_${file_type}_${subset}.jsonl.gz
|
||||
dst=data/manifests/himia_${file_type}_${subset}${train_set_channel}.jsonl.gz
|
||||
cat <(gunzip -c ${src}) | \
|
||||
grep ${train_set_channel} | \
|
||||
gzip -c > ${dst}
|
||||
done
|
||||
done
|
||||
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.himia.done ]; then
|
||||
./local/compute_fbank_himia.py \
|
||||
--train-set-channel=${train_set_channel} \
|
||||
--enable-speed-perturb=${enable_speed_perturb}
|
||||
touch data/fbank/.himia.done
|
||||
fi
|
||||
|
||||
train_file=data/fbank/cuts_train_himia${train_set_channel}-aishell-shuf.jsonl.gz
|
||||
if [ ! -f ${train_file} ]; then
|
||||
# SingleCutSampler is preferred for this experiment
|
||||
# rather than DynamicBucketingSampler.
|
||||
# Since negative audios(Aishell) tends to be longer than positive ones(HiMia).
|
||||
# if DynamicBucketingSample is used, a batch may contain either all negative sample
|
||||
# or positive sample.
|
||||
# So `shuf` the training dataset here and use SingleCutSampler to load data.
|
||||
cat <(gunzip -c data/fbank/aishell_cuts_train.jsonl.gz) \
|
||||
<(gunzip -c data/fbank/cuts_train${train_set_channel}.jsonl.gz) | \
|
||||
grep -v _sp | \
|
||||
shuf |shuf | gzip -c > ${train_file}
|
||||
fi
|
||||
|
||||
fi
|
||||
|
57
egs/himia/wuw/run_ctc_tdnn.sh
Normal file
57
egs/himia/wuw/run_ctc_tdnn.sh
Normal file
@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
# You need to execute ./prepare.sh to prepare datasets.
|
||||
stage=0
|
||||
stop_stage=2
|
||||
|
||||
epoch=20
|
||||
avg=1
|
||||
max_duration=200
|
||||
exp_dir=./ctc_tdnn/exp_max_duration_${max_duration}/
|
||||
epoch_avg=epoch_${epoch}-avg_${avg}
|
||||
post_dir=${exp_dir}/post/${epoch_avg}
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Model training"
|
||||
python ./ctc_tdnn/train.py \
|
||||
--num-epochs $epoch \
|
||||
--exp-dir $exp_dir \
|
||||
--max-duration $max_duration
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Get posterior(log_softmax(logit)) of test sets"
|
||||
python ctc_tdnn/inference.py \
|
||||
--avg $avg \
|
||||
--epoch $epoch \
|
||||
--exp-dir $exp_dir
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Decode and compute area under curve(AUC)"
|
||||
for test_set in test aishell_test cw_test; do
|
||||
python ctc_tdnn/decode.py \
|
||||
--post-h5 ${post_dir}/${test_set}.h5 \
|
||||
--score-file ${post_dir}/fst_${test_set}_score.txt
|
||||
done
|
||||
python ./local/auc.py \
|
||||
--legend himia_cw \
|
||||
--positive-score-file ${post_dir}/fst_test_score.txt \
|
||||
--negative-score-file ${post_dir}/fst_cw_test_score.txt
|
||||
|
||||
python ./local/auc.py \
|
||||
--legend himia_aishell \
|
||||
--positive-score-file ${post_dir}/fst_test_score.txt \
|
||||
--negative-score-file ${post_dir}/fst_aishell_test_score.txt
|
||||
fi
|
1
egs/himia/wuw/shared
Symbolic link
1
egs/himia/wuw/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared
|
Loading…
x
Reference in New Issue
Block a user