mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
207 lines
5.7 KiB
Python
Executable File
207 lines
5.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corporation (Author: Liyong Guo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from lhotse.features.io import NumpyHdf5Writer
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.env import get_env_info
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
)
|
|
|
|
from asr_datamodule import HiMiaWuwDataModule
|
|
from tdnn import Tdnn
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=10,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 1.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=1,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="ctc_tdnn/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"env_info": get_env_info(),
|
|
"feature_dim": 80,
|
|
"num_class": 9,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def inference_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: torch.nn.Module,
|
|
test_set: str,
|
|
):
|
|
"""Compute and save model output of each utterance.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
test_set:
|
|
Name of test set.
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
writer = NumpyHdf5Writer(f"{params.out_dir}/{test_set}")
|
|
for batch_idx, batch in enumerate(dl):
|
|
device = params.device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
supervisions = batch["supervisions"]
|
|
start_frames = supervisions["start_frame"]
|
|
end_frames = start_frames + supervisions["num_frames"]
|
|
|
|
feature = feature.to(device)
|
|
# model_output is log_softmax(logit) with shape [N, T, C]
|
|
model_output = model(feature)
|
|
|
|
for i in range(feature.size(0)):
|
|
assert start_frames[i] == 0
|
|
cut = batch["supervisions"]["cut"][i]
|
|
cur_target = model_output[i][start_frames[i] : end_frames[i]]
|
|
writer.store_array(key=cut.id, value=cur_target.cpu().numpy())
|
|
|
|
num_cuts += len(batch["supervisions"]["text"])
|
|
|
|
if batch_idx % 100 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
HiMiaWuwDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
out_dir = f"{params.exp_dir}/post/epoch_{params.epoch}-avg_{params.avg}/"
|
|
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
|
params.out_dir = out_dir
|
|
setup_logger(f"{out_dir}/log/log-inference")
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = Tdnn(params.feature_dim, params.num_class)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=True)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=True
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
params.device = device
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
himia = HiMiaWuwDataModule(args)
|
|
|
|
aishell_test_cuts = himia.aishell_test_cuts()
|
|
test_cuts = himia.test_cuts()
|
|
cw_test_cuts = himia.cw_test_cuts()
|
|
|
|
aishell_test_dl = himia.test_dataloaders(aishell_test_cuts)
|
|
test_dl = himia.test_dataloaders(test_cuts)
|
|
cw_test_dl = himia.test_dataloaders(cw_test_cuts)
|
|
|
|
test_sets = ["aishell_test", "test", "cw_test"]
|
|
test_dls = [aishell_test_dl, test_dl, cw_test_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dls):
|
|
logging.info(f"About to inference {test_set}")
|
|
inference_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
test_set=test_set,
|
|
)
|
|
|
|
logging.info(f"finish inferencing {test_set}")
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|