Merge branch 'master' of github.com:marcoyang1998/icefall into add_lstm_transducer

This commit is contained in:
marcoyang 2023-02-13 12:47:34 +08:00
commit b3fa59d68a
4 changed files with 68 additions and 15 deletions

View File

@ -0,0 +1 @@
../lstm_transducer_stateless2/export-for-ncnn.py

View File

@ -121,6 +121,8 @@ class RNN(EncoderInterface):
Period of auxiliary layers used for random combiner during training.
If set to 0, will not use the random combiner (Default).
You can set a positive integer to use the random combiner, e.g., 3.
is_pnnx:
True to make this class exportable via PNNX.
"""
def __init__(
@ -135,6 +137,7 @@ class RNN(EncoderInterface):
dropout: float = 0.1,
layer_dropout: float = 0.075,
aux_layer_period: int = 0,
is_pnnx: bool = False,
) -> None:
super(RNN, self).__init__()
@ -148,7 +151,13 @@ class RNN(EncoderInterface):
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_features -> d_model
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
self.encoder_embed = Conv2dSubsampling(
num_features,
d_model,
is_pnnx=is_pnnx,
)
self.is_pnnx = is_pnnx
self.num_encoder_layers = num_encoder_layers
self.d_model = d_model
@ -216,7 +225,13 @@ class RNN(EncoderInterface):
# lengths = ((x_lens - 3) // 2 - 1) // 2 # issue an warning
#
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
if not self.is_pnnx:
lengths = (((x_lens - 3) >> 1) - 1) >> 1
else:
lengths1 = torch.floor((x_lens - 3) / 2)
lengths = torch.floor((lengths1 - 1) / 2)
lengths = lengths.to(x_lens)
if not torch.jit.is_tracing():
assert x.size(0) == lengths.max().item()
@ -377,7 +392,7 @@ class RNNEncoderLayer(nn.Module):
# for cell state
assert states[1].shape == (1, src.size(1), self.rnn_hidden_size)
src_lstm, new_states = self.lstm(src, states)
src = src + self.dropout(src_lstm)
src = self.dropout(src_lstm) + src
# feed forward module
src = src + self.dropout(self.feed_forward(src))
@ -523,6 +538,7 @@ class Conv2dSubsampling(nn.Module):
layer1_channels: int = 8,
layer2_channels: int = 32,
layer3_channels: int = 128,
is_pnnx: bool = False,
) -> None:
"""
Args:
@ -535,6 +551,9 @@ class Conv2dSubsampling(nn.Module):
Number of channels in layer1
layer1_channels:
Number of channels in layer2
is_pnnx:
True if we are converting the model to PNNX format.
False otherwise.
"""
assert in_channels >= 9
super().__init__()
@ -577,6 +596,10 @@ class Conv2dSubsampling(nn.Module):
channel_dim=-1, min_positive=0.45, max_positive=0.55
)
# ncnn supports only batch size == 1
self.is_pnnx = is_pnnx
self.conv_out_dim = self.out.weight.shape[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Subsample x.
@ -590,9 +613,15 @@ class Conv2dSubsampling(nn.Module):
# On entry, x is (N, T, idim)
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
x = self.conv(x)
if torch.jit.is_tracing() and self.is_pnnx:
x = x.permute(0, 2, 1, 3).reshape(1, -1, self.conv_out_dim)
x = self.out(x)
else:
# Now x is of shape (N, odim, ((T-3)//2-1)//2, ((idim-3)//2-1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
# Now x is of shape (N, ((T-3)//2-1))//2, odim)
x = self.out_norm(x)
x = self.out_balancer(x)

View File

@ -102,7 +102,28 @@ def add_model_arguments(parser: argparse.ArgumentParser):
"--encoder-dim",
type=int,
default=512,
help="Encoder output dimesion.",
help="Encoder output dimension.",
)
parser.add_argument(
"--decoder-dim",
type=int,
default=512,
help="Decoder output dimension.",
)
parser.add_argument(
"--joiner-dim",
type=int,
default=512,
help="Joiner output dimension.",
)
parser.add_argument(
"--dim-feedforward",
type=int,
default=2048,
help="Dimension of feed forward.",
)
parser.add_argument(
@ -395,14 +416,10 @@ def get_params() -> AttributeDict:
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"dim_feedforward": 2048,
# parameters for decoder
"decoder_dim": 512,
# parameters for joiner
"joiner_dim": 512,
# parameters for Noam
"model_warm_step": 3000, # arg given to model, not for lrate
"env_info": get_env_info(),
"is_pnnx": False,
}
)
@ -419,6 +436,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
aux_layer_period=params.aux_layer_period,
is_pnnx=params.is_pnnx,
)
return encoder

View File

@ -12,9 +12,12 @@ stop_stage=100
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/tal_csasr
# - $dl_dir/TALCS_corpus
# You can find three directories:train_set, dev_set, and test_set.
# You can get it from https://ai.100tal.com/dataset
# - dev_set
# - test_set
# - train_set
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
@ -44,7 +47,9 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# Before you run this script, you must get the TAL_CSASR dataset
# from https://ai.100tal.com/dataset
if [ ! -d $dl_dir/tal_csasr/TALCS_corpus ]; then
mv $dl_dir/TALCS_corpus $dl_dir/tal_csasr
fi
# If you have pre-downloaded it to /path/to/TALCS_corpus,
# you can create a symlink