more fixes for lstm3 to support exporting to ncnn (#902)

This commit is contained in:
Fangjun Kuang 2023-02-13 12:16:43 +08:00 committed by GitHub
parent 48c2c22dbe
commit c102e7fbf0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -121,6 +121,8 @@ class RNN(EncoderInterface):
Period of auxiliary layers used for random combiner during training.
If set to 0, will not use the random combiner (Default).
You can set a positive integer to use the random combiner, e.g., 3.
is_pnnx:
True to make this class exportable via PNNX.
"""
def __init__(
@ -149,7 +151,13 @@ class RNN(EncoderInterface):
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_features -> d_model
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
self.encoder_embed = Conv2dSubsampling(
num_features,
d_model,
is_pnnx=is_pnnx,
)
self.is_pnnx = is_pnnx
self.num_encoder_layers = num_encoder_layers
self.d_model = d_model
@ -177,8 +185,6 @@ class RNN(EncoderInterface):
else None,
)
self.is_pnnx = is_pnnx
def forward(
self,
x: torch.Tensor,
@ -226,7 +232,6 @@ class RNN(EncoderInterface):
lengths = torch.floor((lengths1 - 1) / 2)
lengths = lengths.to(x_lens)
if not torch.jit.is_tracing():
assert x.size(0) == lengths.max().item()
@ -387,7 +392,7 @@ class RNNEncoderLayer(nn.Module):
# for cell state
assert states[1].shape == (1, src.size(1), self.rnn_hidden_size)
src_lstm, new_states = self.lstm(src, states)
src = src + self.dropout(src_lstm)
src = self.dropout(src_lstm) + src
# feed forward module
src = src + self.dropout(self.feed_forward(src))
@ -533,6 +538,7 @@ class Conv2dSubsampling(nn.Module):
layer1_channels: int = 8,
layer2_channels: int = 32,
layer3_channels: int = 128,
is_pnnx: bool = False,
) -> None:
"""
Args:
@ -545,6 +551,9 @@ class Conv2dSubsampling(nn.Module):
Number of channels in layer1
layer1_channels:
Number of channels in layer2
is_pnnx:
True if we are converting the model to PNNX format.
False otherwise.
"""
assert in_channels >= 9
super().__init__()
@ -587,6 +596,10 @@ class Conv2dSubsampling(nn.Module):
channel_dim=-1, min_positive=0.45, max_positive=0.55
)
# ncnn supports only batch size == 1
self.is_pnnx = is_pnnx
self.conv_out_dim = self.out.weight.shape[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Subsample x.
@ -600,9 +613,15 @@ class Conv2dSubsampling(nn.Module):
# On entry, x is (N, T, idim)
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
x = self.conv(x)
# Now x is of shape (N, odim, ((T-3)//2-1)//2, ((idim-3)//2-1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
if torch.jit.is_tracing() and self.is_pnnx:
x = x.permute(0, 2, 1, 3).reshape(1, -1, self.conv_out_dim)
x = self.out(x)
else:
# Now x is of shape (N, odim, ((T-3)//2-1)//2, ((idim-3)//2-1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
# Now x is of shape (N, ((T-3)//2-1))//2, odim)
x = self.out_norm(x)
x = self.out_balancer(x)