mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
a bilingual recipe similar to the multi-zh_hans
(#1265)
This commit is contained in:
parent
238b45bea8
commit
ae67f75e9c
@ -95,3 +95,41 @@ for method in modified_beam_search fast_beam_search; do
|
|||||||
$repo/test_wavs/DEV_T0000000001.wav \
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
$repo/test_wavs/DEV_T0000000002.wav
|
$repo/test_wavs/DEV_T0000000002.wav
|
||||||
done
|
done
|
||||||
|
|
||||||
|
rm -rf $repo
|
||||||
|
|
||||||
|
cd ../../../egs/multi_zh_en/ASR
|
||||||
|
log "==== Test icefall-asr-zipformer-multi-zh-en-2023-11-22 ===="
|
||||||
|
repo_url=https://huggingface.co/zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22/
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bbpe_2000/bbpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_29.wav \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_55.wav \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_75.wav
|
||||||
|
|
||||||
|
for method in modified_beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bbpe_2000/bbpe.model \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_29.wav \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_55.wav \
|
||||||
|
$repo/test_wavs/_1634_210_2577_1_1525157964032_3712259_75.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
rm -rf $repo
|
@ -14,7 +14,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
name: run-multi-zh_hans-zipformer
|
name: run-multi-corpora-zipformer
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
@ -24,12 +24,12 @@ on:
|
|||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_multi-zh_hans_zipformer-${{ github.ref }}
|
group: run_multi-corpora_zipformer-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_multi-zh_hans_zipformer:
|
run_multi-corpora_zipformer:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'multi-zh_hans' || github.event.label.name == 'zipformer'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'multi-zh_hans' || github.event.label.name == 'zipformer' || github.event.label.name == 'multi-corpora'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -81,4 +81,4 @@ jobs:
|
|||||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
.github/scripts/run-multi-zh_hans-zipformer.sh
|
.github/scripts/run-multi-corpora-zipformer.sh
|
19
egs/multi_zh_en/ASR/README.md
Normal file
19
egs/multi_zh_en/ASR/README.md
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
# Introduction
|
||||||
|
|
||||||
|
This recipe includes scripts for training Zipformer model using both English and Chinese datasets.
|
||||||
|
|
||||||
|
# Included Training Sets
|
||||||
|
|
||||||
|
1. LibriSpeech (English)
|
||||||
|
2. AiShell-2 (Chinese)
|
||||||
|
3. TAL-CSASR (Code-Switching, Chinese and English)
|
||||||
|
|
||||||
|
|Datset| Number of hours| URL|
|
||||||
|
|---|---:|---|
|
||||||
|
|**TOTAL**|2,547|---|
|
||||||
|
|LibriSpeech|960|https://www.openslr.org/12/|
|
||||||
|
|AiShell-2|1,000|http://www.aishelltech.com/aishell_2|
|
||||||
|
|TAL-CSASR|587|https://ai.100tal.com/openData/voice|
|
||||||
|
|
||||||
|
|
||||||
|
|
44
egs/multi_zh_en/ASR/RESULTS.md
Normal file
44
egs/multi_zh_en/ASR/RESULTS.md
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
### Zh-En datasets bpe-based training results (Non-streaming) on Zipformer model
|
||||||
|
|
||||||
|
This is the [pull request #1238](https://github.com/k2-fsa/icefall/pull/1265) in icefall.
|
||||||
|
|
||||||
|
#### Non-streaming (Byte-Level BPE vocab_size=2000)
|
||||||
|
|
||||||
|
Best results (num of params : ~69M):
|
||||||
|
|
||||||
|
The training command:
|
||||||
|
|
||||||
|
```
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 35 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--max-duration 1000 \
|
||||||
|
--num-workers 8
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command:
|
||||||
|
|
||||||
|
```
|
||||||
|
for method in greedy_search modified_beam_search fast_beam_search; do
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 34 \
|
||||||
|
--avg 19 \
|
||||||
|
--decoding-method $method
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
Word Error Rates (WERs) listed below are produced by the checkpoint of the 20th epoch using greedy search and BPE model (# tokens is 2000).
|
||||||
|
|
||||||
|
| Datasets | TAL-CSASR | TAL-CSASR | AiShell-2 | AiShell-2 | LibriSpeech | LibriSpeech |
|
||||||
|
|----------------------|-----------|-----------|-----------|-----------|-------------|-------------|
|
||||||
|
| Zipformer WER (%) | dev | test | dev | test | test-clean | test-other |
|
||||||
|
| greedy_search | 6.65 | 6.69 | 6.57 | 7.03 | 2.43 | 5.70 |
|
||||||
|
| modified_beam_search | 6.46 | 6.51 | 6.18 | 6.60 | 2.41 | 5.57 |
|
||||||
|
| fast_beam_search | 6.57 | 6.68 | 6.40 | 6.74 | 2.40 | 5.56 |
|
||||||
|
|
||||||
|
Pre-trained model can be found here : https://huggingface.co/zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22, which is trained on LibriSpeech 960-hour training set (with speed perturbation), TAL-CSASR training set (with speed perturbation) and AiShell-2 (w/o speed perturbation).
|
||||||
|
|
||||||
|
|
1
egs/multi_zh_en/ASR/local/compile_lg.py
Symbolic link
1
egs/multi_zh_en/ASR/local/compile_lg.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compile_lg.py
|
1
egs/multi_zh_en/ASR/local/prepare_char.py
Symbolic link
1
egs/multi_zh_en/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell/ASR/local/prepare_char.py
|
65
egs/multi_zh_en/ASR/local/prepare_for_bpe_model.py
Executable file
65
egs/multi_zh_en/ASR/local/prepare_for_bpe_model.py
Executable file
@ -0,0 +1,65 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script tokenizes the training transcript by CJK characters
|
||||||
|
# and saves the result to transcript_chars.txt, which is used
|
||||||
|
# to train the BPE model later.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
from icefall.utils import tokenize_by_CJK_char
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Output directory.
|
||||||
|
The generated transcript_chars.txt is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--text",
|
||||||
|
type=str,
|
||||||
|
help="Training transcript.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
text = Path(args.text)
|
||||||
|
|
||||||
|
assert lang_dir.exists() and text.exists(), f"{lang_dir} or {text} does not exist!"
|
||||||
|
|
||||||
|
transcript_path = lang_dir / "transcript_chars.txt"
|
||||||
|
|
||||||
|
with open(text, "r", encoding="utf-8") as fin:
|
||||||
|
with open(transcript_path, "w+", encoding="utf-8") as fout:
|
||||||
|
for line in tqdm(fin):
|
||||||
|
fout.write(tokenize_by_CJK_char(line) + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh_en/ASR/local/prepare_lang.py
Symbolic link
1
egs/multi_zh_en/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang.py
|
1
egs/multi_zh_en/ASR/local/prepare_lang_bbpe.py
Symbolic link
1
egs/multi_zh_en/ASR/local/prepare_lang_bbpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell/ASR/local/prepare_lang_bbpe.py
|
1
egs/multi_zh_en/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/multi_zh_en/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
1
egs/multi_zh_en/ASR/local/prepare_words.py
Symbolic link
1
egs/multi_zh_en/ASR/local/prepare_words.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell2/ASR/local/prepare_words.py
|
1
egs/multi_zh_en/ASR/local/text2segments.py
Symbolic link
1
egs/multi_zh_en/ASR/local/text2segments.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../wenetspeech/ASR/local/text2segments.py
|
1
egs/multi_zh_en/ASR/local/text2token.py
Symbolic link
1
egs/multi_zh_en/ASR/local/text2token.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../wenetspeech/ASR/local/text2token.py
|
1
egs/multi_zh_en/ASR/local/train_bbpe_model.py
Symbolic link
1
egs/multi_zh_en/ASR/local/train_bbpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell/ASR/local/train_bbpe_model.py
|
1
egs/multi_zh_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
1
egs/multi_zh_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_bpe_lexicon.py
|
149
egs/multi_zh_en/ASR/prepare.sh
Executable file
149
egs/multi_zh_en/ASR/prepare.sh
Executable file
@ -0,0 +1,149 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
vocab_sizes=(
|
||||||
|
2000
|
||||||
|
)
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
log "Dataset: musan"
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Soft link fbank of musan"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../librispeech/ASR/data/fbank/.musan.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_feats) .
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_cuts.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 4 --stop-stage 4"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: LibriSpeech"
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Soft link fbank of LibriSpeech"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../librispeech/ASR/data/fbank/.librispeech.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_cuts*) .
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_feats*) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: AiShell-2"
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Soft link fbank of AiShell-2"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../aishell2/ASR/data/fbank/.aishell2.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_cuts*) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats*) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../aishell2/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Prepare Byte BPE based lang"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ ! -d ../../aishell2/ASR/data/lang_char ] && [ ! -d ./data/lang_char ]; then
|
||||||
|
log "Abort! Please run ../../aishell2/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d ../../librispeech/ASR/data/lang_bpe_500 ] && [ ! -d ./data/lang_bpe_500 ]; then
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 6 --stop-stage 6"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
cd data/
|
||||||
|
if [ ! -d ./lang_char ]; then
|
||||||
|
ln -svf $(realpath ../../../aishell2/ASR/data/lang_char) .
|
||||||
|
fi
|
||||||
|
if [ ! -d ./lang_bpe_500 ]; then
|
||||||
|
ln -svf $(realpath ../../../librispeech/ASR/data/lang_bpe_500) .
|
||||||
|
fi
|
||||||
|
cd ../
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bbpe_${vocab_size}
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
|
||||||
|
cat data/lang_char/text data/lang_bpe_500/transcript_words.txt \
|
||||||
|
> $lang_dir/text
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/transcript_chars.txt ]; then
|
||||||
|
./local/prepare_for_bpe_model.py \
|
||||||
|
--lang-dir ./$lang_dir \
|
||||||
|
--text $lang_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/text_words_segmentation ]; then
|
||||||
|
python3 ./local/text2segments.py \
|
||||||
|
--input-file ./data/lang_char/text \
|
||||||
|
--output-file $lang_dir/text_words_segmentation
|
||||||
|
|
||||||
|
cat ./data/lang_bpe_500/transcript_words.txt \
|
||||||
|
>> $lang_dir/text_words_segmentation
|
||||||
|
|
||||||
|
cat ./data/lang_char/text \
|
||||||
|
>> $lang_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||||
|
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/words.txt ]; then
|
||||||
|
python3 ./local/prepare_words.py \
|
||||||
|
--input-file $lang_dir/words_no_ids.txt \
|
||||||
|
--output-file $lang_dir/words.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/bbpe.model ]; then
|
||||||
|
./local/train_bbpe_model.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--vocab-size $vocab_size \
|
||||||
|
--transcript $lang_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
|
||||||
|
|
||||||
|
log "Validating $lang_dir/lexicon.txt"
|
||||||
|
./local/validate_bpe_lexicon.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--bpe-model $lang_dir/bbpe.model
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
1
egs/multi_zh_en/ASR/shared
Symbolic link
1
egs/multi_zh_en/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared
|
385
egs/multi_zh_en/ASR/zipformer/asr_datamodule.py
Normal file
385
egs/multi_zh_en/ASR/zipformer/asr_datamodule.py
Normal file
@ -0,0 +1,385 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=300.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=True,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
1
egs/multi_zh_en/ASR/zipformer/beam_search.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/beam_search.py
|
851
egs/multi_zh_en/ASR/zipformer/decode.py
Executable file
851
egs/multi_zh_en/ASR/zipformer/decode.py
Executable file
@ -0,0 +1,851 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search (one best)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(6) fast beam search (nbest oracle WER)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(7) fast beam search (with LG)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall import byte_encode, smart_byte_decode, tokenize_by_CJK_char
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bbpe_2000/bbpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bbpe_2000",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-tal-csasr",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use TAL-CSASR training data.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-librispeech",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use LibriSpeech training data.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-aishell2",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use Aishell-2 training data.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||||
|
pad_len = 30
|
||||||
|
feature_lens += pad_len
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, pad_len),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest":
|
||||||
|
hyp_tokens = fast_beam_search_nbest(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(
|
||||||
|
byte_encode(tokenize_by_CJK_char(supervisions["text"]))
|
||||||
|
),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(smart_byte_decode(sp.decode(hyp)).split())
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key = f"beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
texts = [tokenize_by_CJK_char(str(text)).split() for text in texts]
|
||||||
|
# print(texts)
|
||||||
|
# exit()
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
word_table=word_table,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
test_sets_cuts = multi_dataset.test_cuts()
|
||||||
|
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_dl = [
|
||||||
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||||
|
for cuts_name in test_sets
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
logging.info(f"Start decoding test set: {test_set}")
|
||||||
|
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh_en/ASR/zipformer/decoder.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/multi_zh_en/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/multi_zh_en/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
1
egs/multi_zh_en/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx.py
|
541
egs/multi_zh_en/ASR/zipformer/export.py
Executable file
541
egs/multi_zh_en/ASR/zipformer/export.py
Executable file
@ -0,0 +1,541 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
Note: This is a example for librispeech dataset, if you are using different
|
||||||
|
dataset, you should change the argument values according to your dataset.
|
||||||
|
|
||||||
|
(1) Export to torchscript model using torch.jit.script()
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `torch.jit.load("jit_script.pt")`.
|
||||||
|
|
||||||
|
Check ./jit_pretrained.py for its usage.
|
||||||
|
|
||||||
|
Check https://github.com/k2-fsa/sherpa
|
||||||
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
|
||||||
|
|
||||||
|
Check ./jit_pretrained_streaming.py for its usage.
|
||||||
|
|
||||||
|
Check https://github.com/k2-fsa/sherpa
|
||||||
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
|
(2) Export `model.state_dict()`
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
To use the generated file with `zipformer/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bbpe_2000/bpe.model
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
|
||||||
|
# simulated streaming decoding
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bbpe_2000/bpe.model
|
||||||
|
|
||||||
|
# chunk-wise streaming decoding
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bbpe_2000/bpe.model
|
||||||
|
|
||||||
|
Check ./pretrained.py for its usage.
|
||||||
|
|
||||||
|
Note: If you don't want to train a model from scratch, we have
|
||||||
|
provided one for you. You can get it at
|
||||||
|
|
||||||
|
- non-streaming model:
|
||||||
|
https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
||||||
|
|
||||||
|
with the following commands:
|
||||||
|
|
||||||
|
sudo apt-get install git-lfs
|
||||||
|
git lfs install
|
||||||
|
git clone https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
||||||
|
# You will find the pre-trained models in exp dir
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import make_pad_mask, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def num_tokens(
|
||||||
|
token_table: k2.SymbolTable, disambig_pattern: str = re.compile(r"^#\d+$")
|
||||||
|
) -> int:
|
||||||
|
"""Return the number of tokens excluding those from
|
||||||
|
disambiguation symbols.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
0 is not a token ID so it is excluded from the return value.
|
||||||
|
"""
|
||||||
|
symbols = token_table.symbols
|
||||||
|
ans = []
|
||||||
|
for s in symbols:
|
||||||
|
if not disambig_pattern.match(s):
|
||||||
|
ans.append(token_table[s])
|
||||||
|
num_tokens = len(ans)
|
||||||
|
if 0 in ans:
|
||||||
|
num_tokens -= 1
|
||||||
|
return num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bbpe_2000/tokens.txt",
|
||||||
|
help="Path to the tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
It will generate a file named jit_script.pt.
|
||||||
|
Check ./jit_pretrained.py for how to use it.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderModel(nn.Module):
|
||||||
|
"""A wrapper for encoder and encoder_embed"""
|
||||||
|
|
||||||
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_embed = encoder_embed
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, features: Tensor, feature_lengths: Tensor
|
||||||
|
) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
features: (N, T, C)
|
||||||
|
feature_lengths: (N,)
|
||||||
|
"""
|
||||||
|
x, x_lens = self.encoder_embed(features, feature_lengths)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
|
|
||||||
|
class StreamingEncoderModel(nn.Module):
|
||||||
|
"""A wrapper for encoder and encoder_embed"""
|
||||||
|
|
||||||
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||||
|
super().__init__()
|
||||||
|
assert len(encoder.chunk_size) == 1, encoder.chunk_size
|
||||||
|
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
|
||||||
|
self.chunk_size = encoder.chunk_size[0]
|
||||||
|
self.left_context_len = encoder.left_context_frames[0]
|
||||||
|
|
||||||
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
|
self.pad_length = 7 + 2 * 3
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_embed = encoder_embed
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""Streaming forward for encoder_embed and encoder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
features: (N, T, C)
|
||||||
|
feature_lengths: (N,)
|
||||||
|
states: a list of Tensors
|
||||||
|
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
chunk_size = self.chunk_size
|
||||||
|
left_context_len = self.left_context_len
|
||||||
|
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = self.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def get_init_states(
|
||||||
|
self,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = self.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = self.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
# if torch.cuda.is_available():
|
||||||
|
# device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
params.blank_id = token_table["<blk>"]
|
||||||
|
params.vocab_size = num_tokens(token_table) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit is True:
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
# it here.
|
||||||
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||||
|
# torch scriptabe.
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
|
||||||
|
# Wrap encoder and encoder_embed as a module
|
||||||
|
if params.causal:
|
||||||
|
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
|
||||||
|
chunk_size = model.encoder.chunk_size
|
||||||
|
left_context_len = model.encoder.left_context_len
|
||||||
|
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
|
||||||
|
else:
|
||||||
|
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
|
||||||
|
filename = "jit_script.pt"
|
||||||
|
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
model.save(str(params.exp_dir / filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torchscript. Export model.state_dict()")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
193
egs/multi_zh_en/ASR/zipformer/generate_averaged_model.py
Executable file
193
egs/multi_zh_en/ASR/zipformer/generate_averaged_model.py
Executable file
@ -0,0 +1,193 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) use the checkpoint exp_dir/epoch-xxx.pt
|
||||||
|
./zipformer/generate_averaged_model.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp
|
||||||
|
|
||||||
|
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.load("epoch-28-avg-15.pt")`.
|
||||||
|
|
||||||
|
(2) use the checkpoint exp_dir/checkpoint-iter.pt
|
||||||
|
./zipformer/generate_averaged_model.py \
|
||||||
|
--iter 22000 \
|
||||||
|
--avg 5 \
|
||||||
|
--exp-dir ./zipformer/exp
|
||||||
|
|
||||||
|
It will generate a file `iter-22000-avg-5.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.load("iter-22000-avg-5.pt")`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints_with_averaged_model, find_checkpoints
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=9,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/tokens.txt",
|
||||||
|
help="Path to the tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
print("Script started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
print(f"Device: {device}")
|
||||||
|
|
||||||
|
symbol_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
params.blank_id = symbol_table["<blk>"]
|
||||||
|
params.unk_id = symbol_table["<unk>"]
|
||||||
|
params.vocab_size = len(symbol_table)
|
||||||
|
|
||||||
|
print("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
print(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, filename)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
print(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, filename)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained_ctc.py
|
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
1
egs/multi_zh_en/ASR/zipformer/joiner.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/multi_zh_en/ASR/zipformer/model.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/model.py
|
247
egs/multi_zh_en/ASR/zipformer/multi_dataset.py
Normal file
247
egs/multi_zh_en/ASR/zipformer/multi_dataset.py
Normal file
@ -0,0 +1,247 @@
|
|||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
|
||||||
|
|
||||||
|
class MultiDataset:
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files:
|
||||||
|
- aishell2_cuts_train.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.fbank_dir = Path(args.manifest_dir)
|
||||||
|
self.use_tal_csasr = args.use_tal_csasr
|
||||||
|
self.use_librispeech = args.use_librispeech
|
||||||
|
self.use_aishell2 = args.use_aishell2
|
||||||
|
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset train cuts")
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
if self.use_aishell2:
|
||||||
|
logging.info("Loading Aishell-2 in lazy mode")
|
||||||
|
aishell_2_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# TAL-CSASR
|
||||||
|
if self.use_tal_csasr:
|
||||||
|
logging.info("Loading TAL-CSASR in lazy mode")
|
||||||
|
tal_csasr_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "tal_csasr_cuts_train_set.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# LibriSpeech
|
||||||
|
if self.use_librispeech:
|
||||||
|
logging.info("Loading LibriSpeech in lazy mode")
|
||||||
|
train_clean_100_cuts = self.train_clean_100_cuts()
|
||||||
|
train_clean_360_cuts = self.train_clean_360_cuts()
|
||||||
|
train_other_500_cuts = self.train_other_500_cuts()
|
||||||
|
|
||||||
|
if self.use_tal_csasr and self.use_librispeech and self.use_aishell2:
|
||||||
|
return CutSet.mux(
|
||||||
|
aishell_2_cuts,
|
||||||
|
train_clean_100_cuts,
|
||||||
|
train_clean_360_cuts,
|
||||||
|
train_other_500_cuts,
|
||||||
|
tal_csasr_cuts,
|
||||||
|
weights=[
|
||||||
|
len(aishell_2_cuts),
|
||||||
|
len(train_clean_100_cuts),
|
||||||
|
len(train_clean_360_cuts),
|
||||||
|
len(train_other_500_cuts),
|
||||||
|
len(tal_csasr_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
elif not self.use_tal_csasr and self.use_librispeech and self.use_aishell2:
|
||||||
|
return CutSet.mux(
|
||||||
|
aishell_2_cuts,
|
||||||
|
train_clean_100_cuts,
|
||||||
|
train_clean_360_cuts,
|
||||||
|
train_other_500_cuts,
|
||||||
|
weights=[
|
||||||
|
len(aishell_2_cuts),
|
||||||
|
len(train_clean_100_cuts),
|
||||||
|
len(train_clean_360_cuts),
|
||||||
|
len(train_other_500_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
elif self.use_tal_csasr and not self.use_librispeech and self.use_aishell2:
|
||||||
|
return CutSet.mux(
|
||||||
|
aishell_2_cuts,
|
||||||
|
tal_csasr_cuts,
|
||||||
|
weights=[
|
||||||
|
len(aishell_2_cuts),
|
||||||
|
len(tal_csasr_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
elif self.use_tal_csasr and self.use_librispeech and not self.use_aishell2:
|
||||||
|
return CutSet.mux(
|
||||||
|
train_clean_100_cuts,
|
||||||
|
train_clean_360_cuts,
|
||||||
|
train_other_500_cuts,
|
||||||
|
tal_csasr_cuts,
|
||||||
|
weights=[
|
||||||
|
len(train_clean_100_cuts),
|
||||||
|
len(train_clean_360_cuts),
|
||||||
|
len(train_other_500_cuts),
|
||||||
|
len(tal_csasr_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(
|
||||||
|
f"""Not implemented for
|
||||||
|
use_aishell2: {self.use_aishell2}
|
||||||
|
use_librispeech: {self.use_librispeech}
|
||||||
|
use_tal_csasr: {self.use_tal_csasr}"""
|
||||||
|
)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset dev cuts")
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
logging.info("Loading Aishell-2 DEV set in lazy mode")
|
||||||
|
aishell2_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# LibriSpeech
|
||||||
|
dev_clean_cuts = self.dev_clean_cuts()
|
||||||
|
dev_other_cuts = self.dev_other_cuts()
|
||||||
|
|
||||||
|
logging.info("Loading TAL-CSASR set in lazy mode")
|
||||||
|
tal_csasr_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "tal_csasr_cuts_dev_set.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
return CutSet.mux(
|
||||||
|
aishell2_dev_cuts,
|
||||||
|
dev_clean_cuts,
|
||||||
|
dev_other_cuts,
|
||||||
|
tal_csasr_dev_cuts,
|
||||||
|
weights=[
|
||||||
|
len(aishell2_dev_cuts),
|
||||||
|
len(dev_clean_cuts),
|
||||||
|
len(dev_other_cuts),
|
||||||
|
len(tal_csasr_dev_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_cuts(self) -> Dict[str, CutSet]:
|
||||||
|
logging.info("About to get multidataset test cuts")
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
if self.use_aishell2:
|
||||||
|
logging.info("Loading Aishell-2 set in lazy mode")
|
||||||
|
aishell2_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
aishell2_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# LibriSpeech
|
||||||
|
if self.use_librispeech:
|
||||||
|
test_clean_cuts = self.test_clean_cuts()
|
||||||
|
test_other_cuts = self.test_other_cuts()
|
||||||
|
|
||||||
|
logging.info("Loading TAL-CSASR set in lazy mode")
|
||||||
|
tal_csasr_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "tal_csasr_cuts_test_set.jsonl.gz"
|
||||||
|
)
|
||||||
|
tal_csasr_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "tal_csasr_cuts_dev_set.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
test_cuts = {
|
||||||
|
"tal_csasr_test": tal_csasr_test_cuts,
|
||||||
|
"tal_csasr_dev": tal_csasr_dev_cuts,
|
||||||
|
}
|
||||||
|
|
||||||
|
if self.use_aishell2:
|
||||||
|
test_cuts.update(
|
||||||
|
{
|
||||||
|
"aishell-2_test": aishell2_test_cuts,
|
||||||
|
"aishell-2_dev": aishell2_dev_cuts,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if self.use_librispeech:
|
||||||
|
test_cuts.update(
|
||||||
|
{
|
||||||
|
"librispeech_test_clean": test_clean_cuts,
|
||||||
|
"librispeech_test_other": test_other_cuts,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return test_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-100 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-360 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-other-500 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||||
|
)
|
1
egs/multi_zh_en/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_check.py
|
1
egs/multi_zh_en/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/multi_zh_en/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
1
egs/multi_zh_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/multi_zh_en/ASR/zipformer/optim.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/optim.py
|
378
egs/multi_zh_en/ASR/zipformer/pretrained.py
Executable file
378
egs/multi_zh_en/ASR/zipformer/pretrained.py
Executable file
@ -0,0 +1,378 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads a checkpoint and uses it to decode waves.
|
||||||
|
You can generate the checkpoint with the following command:
|
||||||
|
|
||||||
|
Note: This is a example for librispeech dataset, if you are using different
|
||||||
|
dataset, you should change the argument values according to your dataset.
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 23 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--epoch 23 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens ./data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens ./data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bbpe_2000/tokens.txt \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
You can also use `./zipformer/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from export import num_tokens
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall import smart_byte_decode
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to byte-level bpe model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0].contiguous())
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
# model forward
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
s += f"{filename}:\n{hyp}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/multi_zh_en/ASR/zipformer/scaling.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/multi_zh_en/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/multi_zh_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
1
egs/multi_zh_en/ASR/zipformer/streaming_decode.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/streaming_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_decode.py
|
1
egs/multi_zh_en/ASR/zipformer/subsampling.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/subsampling.py
|
1416
egs/multi_zh_en/ASR/zipformer/train.py
Executable file
1416
egs/multi_zh_en/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_zh_en/ASR/zipformer/zipformer.py
Symbolic link
1
egs/multi_zh_en/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user